Irreversible Enzyme Inhibitors. ${ }^{1}$ Inhibitors of Guinea Pig Complement Derived by Quaternization of Substituted Pyridines with Benzyl Halides

Michael H. Doll* and B. R. Baker ${ }^{2}$
Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106. Received December 15, 1975
A series of 83 compounds derived from hydrocarbon-substituted pyridines by quaternization with $\mathrm{PhCH}_{2} \mathrm{Br}$ usually containing a $2-\mathrm{SO}_{2} \mathrm{~F}$ or $6-\mathrm{Cl}-2-\mathrm{SO}_{2} \mathrm{~F}$ group was synthesized and evaluated as inhibitors of guinea pig complement and in most cases its $\mathrm{C} \overline{1}$ component. The most active compounds were 3 -(4-phenylphenylbutyl)- N -(6-chloro-2fluorosulfonylbenzyl)pyridinium bromide (43) and 3-(4-phenylphenylbutyl)- N -(2-fluorosulfonylbenzyl)pyridinium bromide (44), each showing 50% inhibition at $7.8 \mu \mathrm{M}$. The most effective irreversible inhibitor of the $\mathrm{C} \overline{1}$ component was N-(6-chloro-2-fluorosulfonylbenzyl)-5,6-benzoquinolinium bromide (87), which showed 50% inhibition at $4 \mu \mathrm{M}$.

The serum complement system is a mixture of 11 distinct proteins ${ }^{3,4}$ which has protease activity that is both "tryptic" and "chymotryptic". Acting in concert with antibodies, the complement system represents one of the two aspects of the mammalian immune system. Inhibitors of the complement system have potential medicinal use in preventing tissue and organ rejection as well as in the treatment of arthritis. ${ }^{5,6}$ Also, complement inhibitors have been useful in supplying information about the molecular biology of the complement system itself. ${ }^{7}$ Complement inhibition is readily measured by the antibody mediated complement lysis of sheep red blood cells (RBC). ${ }^{5,8}$

Studies in this laboratory have utilized the qualitative approach of designing biologically active compounds which was developed by the late Bernard R. Baker. This four step modus operandi ${ }^{9,10}$ employs hydrophobic interactions, hydrogen bonding, anionic-cationic interactions, and charge-transfer complexes to selectively enhance in-hibitor-enzyme binding, thereby selectively inhibiting target enzymes. Slight evolutionary differences outside the active site are then exploited to provide dimensions of specificity when target pathways are also used by host cells, such as in cancer, or when several enzymes have similar active sites, such as with proteolytic enzymes.

In the first step the binding points of a reversible inhibitor are determined; some binding points can be eliminated if stronger binding can be found in another area on the inhibitor.

The second step consists of a search for bulk tolerance areas in the enzyme-inhibitor complex. These are areas where a portion of the inhibitor, usually a modified substrate molecule, does not contact the enzyme.

The third step involves the placement of an alkylating group in a noncontact area. If the dimensions between the inhibitor-attached alkylating group and an enzyme nucleophilic group are correct, then irreversible inhibition

[^0]by a facile neighboring-group reaction may occur.
The final step of the sequence is the modification of the irreversible inhibitor so that differences in enzymes from different species or tissues can be found and exploited.

Since the serum complement is a complex, multienzyme system, the above modus operandi has not been rigidly applied. The initial studies involved the preparation of potent trypsin ${ }^{11-13}$ and chymotrypsin ${ }^{14-19}$ inhibitors which were then tested on the complement system. ${ }^{5,20,21}$ This preliminary information was then used as a starting point in designing potent complement inhibitors. ${ }^{8,22-25}$ The most effective chymotryptic type inhibitors thus developed have been quaternized pyridines (I). ${ }^{1 \mathrm{~b}}$

I
$1, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$
$2, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)^{2}$
$3, \mathrm{R}=3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OCH}_{2} \mathrm{CONH}$
Compound 1 showed 40% inhibition of whole complement at $125 \mu \mathrm{M}$ while 2 and 3 , each with a slightly larger R group, showed 50% inhibition at 62 and $31 \mu \mathrm{M}$, respectively. ${ }^{\text {1b }}$ These results suggested that a slightly larger and/or different type of R group might achieve greater hydrophobic binding to a complement enzyme, thereby maximizing inhibition of the whole complement system. Consequently, compounds related to I were prepared and evaluated as inhibitors of whole guinea pig complement and, in most cases, its $\mathrm{C} \overline{1}$ component ${ }^{26}$ as well. The results are the subject of this paper.

Assay Results. When the phenyl ring of 1 was substituted with a 4 -phenyl group, the resulting compound

Table 1. Inhibition ${ }^{a}$ of Guinea Pig Complement and Irreversible. Inhibition of the $\overline{\mathrm{C}} \overline{\mathrm{C}}$ Component by

No.	R_{1}	R_{2}	X	mM inhibn	Whole complement		$\overline{\mathrm{C}}, \%$ inactn ${ }^{d}$	Yield, ${ }^{\text {e, }}$ \% $\%$	Mp, ${ }^{\circ} \mathrm{C}$
					\% inhibn ${ }^{\text {b }}$	\% lysis ${ }^{\text {c }}$			
39	3-[3-C66 $\left.\mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$6-\mathrm{Cl}-2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.125	85		65	13^{h}	157-159
				0.062 0.031	85 35	3 1	30		
40	$3-\left[4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	6-Cl-2-SO2 ${ }_{2} \mathrm{~F}$	Br	0.031 0.125		100	60	52^{i}	150-151
				0.062		100	20		$150-151$
				0.031	60				
				0.016	15				
41	3-[3-C6 $\left.\mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$6-\mathrm{Cl}-2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.125		100	60	57^{h}	98-100
				0.062 0.031	60 50	15 0	25		
				0.031	50	0			
42	3-[3-C6 $\left.\mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	2-SO2F	Br	0.016 0.125	20 30	30	30	90^{h}	80-82
	$3\left[3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	${ }^{2} \mathrm{O}_{2}$		0.062	10	0	20		
43	$3-\left[4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$6-\mathrm{Cl}-2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.125		100		61^{i}	163-165
				0.062	100 100	0	65		
				0.031 0.016	100 85				
				0.012	60				
				0.0078	50				
				0.0039	10				
44	$3-\left[4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.062	85		40	75^{i}	158-160
				0.031 0.016	80				
				0.0078	50				
45	$3-\left[4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=\mathrm{CH})_{2}\right]$	$6-\mathrm{Cl}-2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.125			40	27^{i}	198-200
				0.062	80		10		
				0.031	55				
				0.016 0.125	10			51^{i}	
46	3-(4-C $\left.{ }_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONH}\right)$	$6-\mathrm{Cl}-2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.125 0.062	35		60	51	184-185
				0.031	15		40		
47	3-(4-C66 $\left.\mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONHCH}_{2}\right)$	$6-\mathrm{Cl}-2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.062 0.031	85	3	70 10	35^{h}	86-89
				0.016	15				
48	3-(4-C6 $\mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}$)	$6-\mathrm{Cl}-2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.062	85	0	60	50^{i}	175-177
49	$3-\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{2}\right)$	$6 \mathrm{Cl}-2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.031 0.125	50 65		15	$49^{\text {h }}$	116-118
				0.062	45	1	40		
50	3-(3-C66 $\mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONH}$)	$2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.062			65	50^{i}	171-173
51	$3-\left[4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	H	Br	0.031 0.25	0	100	35	30^{i}	134-135
				0.125	20	15	0		134-135
				0.062	0		0		
52	$3-\left[4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$2-\mathrm{SO}_{3}{ }^{-}$		0.25			10	80°	187-189
				0.125^{n}	0	10			
				0.062	0				
53	$4-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	H	Br	0.5 0.25	35 40	65		62^{p}	170-172
				0.125	10	2			
54	$3-\left[4-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{+}\right]$	H	Br	1.0	35	3		31^{p}	148-150
				0.5	15	4			

62 3-[4-(4-SO $\left.\left.2_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{2}\right]$

3-[4-(4-SO $\left.\left.2_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	CH_{3}, no benzyl	I	1.0 0.5	20
3-[3-(4-SO $\left.\left.2_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	CH_{3}, no benzyl	I	1.0	20
			0.5	15
3-[4-(3-SO $\left.\left.{ }_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONH}\right]$	H	Br	$\begin{aligned} & 0.125^{n} \\ & 0.062 \end{aligned}$	0
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	H	Br	$0.250{ }^{n}$	20
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2}\right]$	H	Br	0.125 1.0	10 40
			0.5	15
4-[4-(4-SO $\left.\left.2_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2}\right]$	H	Br	1.0	40
			0.5	15
3-[4-(4-SO $\left.\left.{ }_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONHCH}_{2}\right]$	H	Br	1.0	30
			0.5 0.25	25 20
3-[4-(4-SO $\left.\left.{ }_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{2}\right]$	H	Br	1.0	35
			0.5	20
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	H	Br	$0.25{ }^{n}$	30
			0.125	25
3-[4-(4-SO $\left.\left.{ }_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	H	Br	$0.25{ }^{n}$	
			0.125	20
			0.062	15
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$4-\mathrm{NO}_{2}$	$\stackrel{\mathrm{Br}}{8}$	0.062^{n}	5
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$3-\mathrm{NO}_{2}$	Br	$0.031{ }^{n}$	0
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$3-\mathrm{CF}_{3}$	Cl	0.125	
			0.062	0
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	4-Cl	Cl	$\begin{aligned} & 0.062^{n} \\ & 0.031 \end{aligned}$	0 10
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$.	$3-\mathrm{Cl}$	Cl	0.062^{n}	0
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$2-\mathrm{Cl}$	Cl	0.125^{n}	10
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	3,4- Cl_{2}	Cl	0.062 0.062	0
			0.031	5
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	4-CH3 ${ }^{\text {O }}$	Br	0.125^{n}	10
			0.062	15
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$3-\mathrm{CH}_{3} \mathrm{O}$	Br	0.125^{n}	10
			0.062	5
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$2-\mathrm{CH}_{3} \mathrm{O}$	Br	0.125^{n}	5
			0.062	5
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	4- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}$	Cl		
			0.031	
			0.016	0
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, \\ & \text { no benzyl } \end{aligned}$	Br	0.062^{n}	10
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$3,4-(\mathrm{CH}=\mathrm{CH})_{2}$	Br	0.125^{n}	
			0.062	5
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$2,3-(\mathrm{CH}=\mathrm{CH})_{2}$	Cl	0.062^{12}	20
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$4-\mathrm{C}_{6} \mathrm{H}_{5}$	Br	0.125^{n}	
			0.062	20
			0.031	10
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$3-\mathrm{C}_{6} \mathrm{H}_{5}$	Br	$0.062{ }^{\text {n }}$	
			0.031	0
			0.016	10
$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	2- $\mathrm{C}_{6} \mathrm{H}_{5}$	Br	0.062^{n}	
3-[4-(4-SO $\left.\left.{ }_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.031 0.125	5 50
$3\left[4\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$2-\mathrm{SO}_{2} \mathrm{~F}$	Br	0.126	30

2	85^{h}	135-136
3	80^{h}	137-138
1	55^{p}	185-186
2	60^{p}	205-207
	65^{p}	217-219
5	54^{p}	215-217
2	56^{p}	184-186
2		
2	50^{h}	128-130
1	58^{k}	118-120
$\begin{array}{r} 60 \\ 0 \end{array}$	45^{p}	193-195
1	67^{p}	215-217
0	56^{p}	230-233
60	10^{p}	172-174
3	70^{p}	217-220
0	35^{p}	195-198
2	73^{p}	164-166
0		
0	51^{p}	213-215
0		
0	$57^{p, q}$	144-146
0		
0	$73^{p, q}$	175-176
0		
6	$64^{p, q}$	159-160
0		
60	63^{p}	153-155
30		
0	34^{p}	174-176
30	58^{p}	153-155
1	75^{p}	165-168
80	$56^{p, r}$	131-134
20		
$\begin{array}{r} 50 \\ 5 \end{array}$	$21^{p, r}$	175-177
30	$33^{p, r}$	171-173
0	63^{p}	107-108

[^1](4) was five times more potent than the parent compound and twice as effective as 2 . When 1 was 4 -phenethyl substituted, the resultant 7 was threefold more potent than 1. This suggested a large area of binding and bulk tolerance which might be explored for further inhibition enhancement. First, large hydrophobic substituents along the aliphatic chain of 2 were studied with compounds 8-12, but these changes were only moderately effective, as were both the extension of the chain to six carbon atoms (13) and the replacement by unsaturated chains (14-18).
The terminal phenyl group of 2 was then investigated for the optimum placement of small substituents and later for larger groups. The $4-\mathrm{Cl}(26)$ and $2,4-\mathrm{Cl}_{2}$ (28) compounds were twice as effective as 2 while the $2,6-\mathrm{Cl}_{2}$ and $3,4-\mathrm{Cl}_{2}$ compounds 29 and 19 were slightly more effective than the parent compound 2. The 3 -benzyl and 3phenethyl groups of 39 and 41 slightly increased inhibition, while a 3-phenyl group (42) caused a threefold loss of inhibition. The 4 -benzyl and 4-phenethyl groups of 38 and 40 were responsible for twofold increases in inhibition while the 4 -phenyl-substituted compound 43 was eight times as effective as 2, showing 50% inhibition at $7.8 \mu \mathrm{M}$.

At this point.changes in the aliphatic bridge of 43 were made in an attempt to more favorably position the biphenyl moiety. Four- and tenfold losses of inhibition resulted when the $\left(\mathrm{CH}_{2}\right)_{4}$ bridge of 43 was replaced by $(\mathrm{CH}=\mathrm{CH})_{2}$ in 45 and $\mathrm{OCH}_{2} \mathrm{CONH}$ in 46 , respectively. Other bridge changes were also made but the resulting compounds ($47-50$) were far less potent than 43 . The removal of the $6-\mathrm{Cl}$ of 43 , previously resulting in enhancement, ${ }^{\text {lb }}$ had no effect (44 vs .43).
The $\mathrm{SO}_{2} \mathrm{~F}$ moiety has previously been found to be required for inhibition in compounds like I. ${ }^{21}$ When the $\mathrm{SO}_{2} \mathrm{~F}$ group of 44 was removed, the resulting 51 was about 20 -fold less effective. To exclude the possibility that the $\mathrm{SO}_{2} \mathrm{~F}$ was being hydrolyzed and the resulting $\mathrm{SO}_{3}{ }^{-}$moiety was responsible for all or part of the enhancement, 52 was prepared by hydrolysis of 44 and then tested; 52 showed no inhibition at its maximum solubility.

The area of bulk tolerance adjacent to the terminal phenyl group of 2 was then explored with compounds 53-64 for a possible alternate location to effectively place a $\mathrm{SO}_{2} \mathrm{~F}$ group. None of the new compounds were as effective as 2, indicating the absence of an appropriate nucleophilic group on the enzyme and confirming the hydrophobicity of the area where the $4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}$ moiety of 43 rests. Additionally, compounds 65-82 were prepared to explore the binding of the benzyl ring of I. These were too insoluble and/or impotent to supply meaningful information.

Compounds $1-52$ were also tested as irreversible inhibitors of the $\mathrm{C} \overline{1}$ component ${ }^{26}$ of complement. The assay, which uses a rate-limiting quantity of $C \overline{1}$, has been described. ${ }^{8}$ Within a factor of 2 , compounds 1-42 had similar potencies on the two assays. Compounds with bulky substituents on the terminal phenyl ring of $2(38,40,41$, and 43-45) generally showed a larger disparity between the two assays. Due to the large excess of the Ci component in whole complement (90% of $\mathrm{C} \overline{1}$ can be inhibited with little loss in whole complement activity ${ }^{27}$), it is unlikely that a compound whose sole action was on CI would be as potent in the whole complement assay as in the $\mathrm{C} \overline{1}$ assay. Conversely, a potent inhibitor of a $\mathrm{C} 2-\mathrm{C} 9 \mathrm{com}-$ ponent, but with no real $\mathrm{C} \overline{1}$ potency, would show $\mathrm{C} \overline{1}$ assay inhibition at only one-tenth of its whole complement level. This is a consequence of the one to ten CI and inhibitor dilution before reconstitution of the complement system with the C2-C9 components. ${ }^{8}$ It should be noted, then,

Scheme I

that to obtain the real Cí inhibition one must subtract the whole complement activity at one-tenth the inhibitor concentration of the C1 assay. In most cases this factor is negligible. Compounds 43 and 44, however, appear to have little or no real C1 activity and therefore show very strong selectivity between the two assays. The other compounds, 1-42 and 45-50, appear to act on $\mathrm{C} \overline{1}$ as well as another component having a similar active site.
Since the $\mathrm{C} \overline{1}$ component had been strongly inhibited by a quaternized quinoline (84), ${ }^{\text {1b }}$ several similar compounds (85-88) were prepared. A fourfold increase in inhibition in the $\mathrm{C} \overline{1}$ assay was observed in 87 by a simple benzo substitution. Thus 87 showed 50% inhibition of $\mathrm{C} \overline{1}$ at 4 μ M. Compounds 85 and 86 , analogous to 84 and 87 but without the $6-\mathrm{Cl}$ groups, are each fourfold less active, indicating a strong preference for this moiety on potent $\mathrm{C} \overline{1}$ inhibitors. This $6-\mathrm{Cl}$ enhancement was not observed with the potent whole complement inhibitors, 43 vs. 44.

Since the preparation of the compounds reported here, there have been two studies by Hansch et al. utilizing quantitative structure-activity relationships (QSAR) to correlate complement inhibitors derived from quaternized pyridines. The first paper ${ }^{6}$ correlated previously reported compounds, ${ }^{16,21,22}$ while the later ${ }^{28}$ demonstrates the utility of the approach by showing that the previously derived equation predicts, with uncanny accuracy, the potencies of the compounds presented here. The equations derived from these studies also suggest areas to be explored for designing more potent complement inhibitors. Work is currently underway to prepare new inhibitors which should be more potent and should further demonstrate the utility and validity of QSAR in designing active molecules.

Chemistry. The quaternary salts in Table I were prepared by reaction ${ }^{1 b, 22}$ of the appropriate benzyl bromides ${ }^{22}$ or alkyl halides with the appropriate pyridines. The substituted pyridines necessary for 9 and $85-87$ were commercially available. Those needed for the remainder

Table II. Physical Properties of Substituted Pyridines, $\mathrm{RC}_{5} \mathrm{H}_{4} \mathrm{~N}$

No.	R	Method ${ }^{\text {a }}$	Yield, \%	Mp, ${ }^{\circ} \mathrm{C}$	Formula ${ }^{6}$
83	3-[4-(4-SO2, $\left.\left.\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	B (from 132)	61^{c}	184-185	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}$
89	$3-\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$	$C+E$	$20^{d, e}$	84-88	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}$
90	$4-\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$	$\mathrm{C}+\mathrm{E}$	$88^{d, f}$	126-128	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}^{g}$
91	$4-\left(3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$	$\mathrm{D}^{h}+\mathrm{E}$	$32^{d, i}$	180-182 ${ }^{j}$	$\mathrm{C}_{19} \mathrm{H}_{1} \mathbf{N} \cdot \mathrm{HCl}$
92	$3-\left[4-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$]	$\mathrm{C}^{k}+\mathrm{E}$	$33^{d, l}$	92-94	$\mathrm{C}_{21} \mathrm{H}_{2}, \mathrm{~N}$
93	$3-\left(2-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$	$\mathrm{C}+\mathrm{E}$	26^{d}	160-162 ${ }^{\text {m }}$	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N} \cdot \mathrm{HCl}$
94	$3-\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right]$	$\mathrm{D}+\mathrm{E}$	$28^{d, i}$	171-173 ${ }^{\text {j }}$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}$
95	$3-\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{\left.\left(\mathrm{CH}_{2}\right)_{3}\right]}\right.$	$\mathrm{C}+\mathrm{E}$	$20^{d, i}$	170-172	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}$
96	$4-\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right]$	$C+E$	35^{d}	68-70	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}$
97	$3-\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{6}$	E	25	101-103 ${ }^{\text {j }}$	$\mathrm{C}_{1}, \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}$
98	$3-\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{CH}=\mathrm{CH})_{3}$	D	43^{f}	149-150	$\mathrm{C}_{1}, \mathrm{H}_{15} \mathrm{~N}$
99	$3-\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{CH}=\mathrm{CH})_{2}$	D^{n}	40°	101-102 ${ }^{p}$	
100	$3-\left[3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=\mathrm{CH})_{2}\right]$	C^{q}	59^{f}	128-130	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
101	$3-\left[4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=\mathrm{CH})_{2}\right]$	${ }^{\text {C }}$	70^{f}	173-175	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
102	$3-\left[3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{CH}=\mathrm{CH})_{2}\right]$	C^{r}	$6^{i, l}$	109-111	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NCl}_{2}$
103	$3-\left[2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$\mathrm{D}+\mathrm{E}$	$36^{d, s}$	117-119	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N} \cdot \mathrm{HCl}$
104	$3-\left[3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$D+E$	$26^{d, i}$	121-123	$\mathrm{C}_{16} \mathrm{H}_{19} \mathbf{N} \cdot \mathrm{HCl}$
105	$3-\left[4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$D+E$	$35^{d, i}$	144-146 ${ }^{j}$	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N} \cdot \mathrm{HCl}$
106	$3-\left[3,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$D+E$	$31^{d, s}$	148-150 ${ }^{j}$	$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}$
107	$3-\left[2-\mathrm{ClC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$D+E$	$30^{d, s}$	115-117 ${ }^{j}$	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN} \cdot \mathrm{HCl}$
108	$3-\left[3-\mathrm{ClC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$\mathrm{D}+\mathrm{E}$	$30^{\text {d.s }}$	118-120	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN} \cdot \mathrm{HCl}$
109	$3-\left[4-\mathrm{ClC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$\mathrm{D}+\mathrm{E}$	$47^{d, i}$	170-172	$\mathrm{C}_{15} \mathrm{H}_{6} \mathrm{ClN} \cdot \mathrm{HCl}$
110	$3-\left[4-\mathrm{FC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{4}\right]$	$D+E$	$36^{d, i, t}$	$49-51$	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NF}$
111	$3-\left[2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$\mathrm{D}+\mathrm{E}$	$40^{d, i, t}$	31-32	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}$
112	$3-\left[2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$D+E$	$50{ }^{\text {d,i }}$ 600^{f}	$134-136^{j}$ $107-108$	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N} \cdot \mathrm{HCl}$
113	3-[4-($\left.\left.\mathrm{CH}_{3} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	B (from 132)	60^{\prime}	$107-108$	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
115	$3-\left[4-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	B (from 132)	$61^{\text {c }}$	167-168	$\mathrm{C}_{2 z} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$
116	$3-\left[4-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	B (from 132)	62^{f}	94-96	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$
117	$3-\left[4-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	B (from 132)	80^{f}	130-131	$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$
118	$3-\left[4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$\mathrm{D}+\mathrm{E}$	$40^{d, s}$	141-142 ${ }^{j}$	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N} \cdot \mathrm{HCl}$
119	$3-\left[1-\mathrm{C}_{10} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$D+E$	37 $86^{d, i}$ d,, l	144-146 ${ }^{\text {67-69 }}$	$\text { C. }{ }_{y} \mathrm{H}_{1,} \mathbf{N} \cdot \mathrm{HCl}$
120	$3-\left[2-\mathrm{C}_{10} \mathrm{H}_{7}\left(\mathrm{CH}_{2}\right)_{+}\right]{ }^{\text {d }}$	C + E	$86^{d, i, u}$	$67-69$	$\mathrm{C}_{1} \mathrm{H}_{19} \mathrm{~N}$
121	$3-\left[4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$\mathrm{D}+\mathrm{E}$	$15^{d, s}$	117-118 ${ }^{j}$	
122	$3-\left[3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$D+E$	$44^{d, i}$	139-141 ${ }^{\text {j }}$	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N} \cdot \mathrm{HCl}$
123	$3-\left[4-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$D+E$	$48^{\text {d,e }}$	$65-66$	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}^{8}$
124	$3-\left[3-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	$D+E$	$36^{d, s}$	109-110 ${ }^{j}$	
125	$3-\left[3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	D + E	$50^{d, s}$	121-122 ${ }^{\text {j }}$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}$
126	$3 \cdot\left[4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$ $\left.3-\left[4-\mathrm{H}_{4} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)_{2}\right]$	D D	$42^{d, e}$ 600^{c}	66-67 $175-176$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}$
127	$3-\left[4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=\mathrm{CH})_{2}\right]$	D	60^{c}	175-176	$\mathrm{C}_{21} \mathrm{H}_{1}$, N
128	3-(4- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONH}$)	B	75 49^{c}	143-145	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
129	$3-\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONHCH} 2\right)$	B	$49^{\text {c }}$	178-180	$\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
130	$3-\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right)$	$B+E$	85	151-152	$\mathrm{C}_{20} \mathrm{H}_{1} ; \mathrm{N}_{2} \mathrm{O}$
131	$3-\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH} 2\right)$	$\mathrm{B}+\mathrm{E}$	75^{\prime}	149-150	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
132	$3-\left(3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONH}\right)$	B (from 101)	67°	153-155	$\mathrm{C}_{1}, \mathrm{H}_{1}, \mathrm{~N}_{2} \mathrm{O}_{2}$
133	$3-\left[4-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	E (from 101)	$60^{\text {e }}$	229-233 ${ }^{\text {j }}$	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N} \cdot 2 \mathrm{HCl}$
134	$3-\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCONHCH}_{2}\right)$	B	83^{f}	180-181	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
135	$3-\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCONH}\right)$	B	$95{ }^{f}$	200-202	$\mathrm{C}_{2} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
136	$3-\left[4-\left(3-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONH}\right]$	B (from 141)	33^{f}	151-153	$\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{~S}$
137	$4-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$	B (from 142)	$38{ }^{f}$	165-167	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}$
138	$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2}\right]$	B (from 145)	35^{f}	198-200	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}$
139	$4-\left[4 \cdot\left(4-\mathrm{SO}_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2}\right]$	B	33^{f}	194-196	$\mathrm{C}_{24} \mathrm{H}_{1} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}$
140	3-[4-(4-SO $\left.\left.{ }_{2} \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONHCH}_{2}\right]$	B (from 147)	34^{w}	215-217	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{~S}$
141	$3-\left[4-\left(4-\mathrm{SO}_{2} \mathrm{FCC}_{6} \mathrm{H}_{4} \mathrm{CONH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{2}\right]$	B (from 149)	41^{c}	200-202	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S}$
142	$3-\left(4-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONH}\right)$	E (from 142)	85^{f}	134-135	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$
143	3 -(4- $\left.\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONH}\right)$	B (from 144)	66^{w}	197-198	$\mathrm{C}_{1}, \mathrm{H}_{11} \mathrm{~N}, \mathrm{O}_{4}$
144 145	$4-\left[4-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{4}\right]$ $4-\left[4-\mathrm{NO} \mathrm{C}_{4}(\mathrm{CH}=\mathrm{CH})_{2}\right]$	E (from 144)	86 47	$75-77$ $193-195$	$\mathrm{C}_{15} \mathrm{H}_{1} \mathrm{~N}_{2} \mathrm{~g}$
145	$4-\left[4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=\mathrm{CH})_{2}\right]$	C	$87{ }^{\prime}$	193-195	$\mathrm{C}_{1} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
146 147	$3-\left(4-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$	$\underset{\mathrm{E}}{\mathrm{E}}$ (from 146)	88 40	118-120	$\mathrm{C}_{3} \mathrm{H}_{1} \mathrm{~N}_{2}^{\mathrm{g}}$
147 148	$3-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)$ $3-\left(4-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{O}_{4} \mathrm{OCH}_{2} \mathrm{CONHCH} 2\right)$	C (from 146)	40^{c}	143-145 ${ }^{\text {231-233 }}$	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~N}^{2} \cdot 2 \mathrm{HCl}$
148 149	$3-\left(4-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CONHCH}_{2}\right)$ $3-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{OCH}_{2} \mathrm{CONHCH}_{2}\right)$	E (from 146)	65^{x} 488^{w}	231-233 $135-137$	$\mathrm{C}_{14} \mathrm{C}_{14} \mathrm{H}_{1} \mathrm{~N}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$
150	3-(4- $\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{2}$)	E (from 150)	82^{y}	104-106	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}^{4}$
151	$3-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCONHCH}_{2}\right)$	B	68^{w}	231-233	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$

${ }^{a}$ Methods: B, amide synthesis, amine plus acid chloride (see Experimental Section), C, ${ }^{1 b}$ Wittig reaction, 3-or 4-picolyltriphenylphosphonium chloride hydrochloride and appropriate $\mathrm{RCHO} ; \mathrm{D},{ }^{16}$ Wittig reaction, $\mathrm{RCH}_{2} \mathrm{P}^{+}\left(\mathrm{Ph}_{\mathrm{H}}\right)_{3} \mathrm{X}^{-}$and 3 - or 4-pyridinecarboxaldehyde; $\mathrm{E},{ }^{1 \mathrm{~b}}$ catalytic reduction. ${ }^{5}$ Analyses for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ unless otherwise indicated. ${ }^{c}$ Recrystallized from EtOH. ${ }^{d}$ Overall yield for Wittig reaction and catalytic reduction. e Recrystallized from petroleum ether (bp $60-$ 110°). f Recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$. g^{\prime} Analyses for C and H only. \boldsymbol{h} 3-Phenylbenzyltriphenylphosphonium bromide was prepared by the procedure of Baker and Bramhall, J. Med. Chem., 15, 937(1972). ${ }^{i} \mathrm{HCl}$ salt was recrystallized by dissolving in boiling $\mathrm{Me}_{2} \mathrm{CO}$ containing about $5 \% \mathrm{MeOH}$ followed by the addition of petroleum ether (bp $60-110^{\circ}$) to cloudiness. ${ }^{j} \mathrm{HCl}$ salt. ${ }_{k} 4$-Stilbenecarboxaldehyde prepared by the procedure of Baker and Gibson, J. Med. Chem., 14 , 315 (1971). ${ }^{l}$ Recrystallized from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$. ${ }^{m}$ Free amine, mp 59-60 ${ }^{\circ}{ }^{n}$ Cinnamyltriphenylphosphonium bromide prepared by the method of McDonald and Campbell, J. Org. Chem., 24, 1969 (1959). o Recrystallized from $i-\mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}$. ${ }_{p}$ R. Bodalski, A. Malkiewicz, and J. Michalski, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 13,139 (1965), reported mp 101-102 ${ }^{\circ}$ $\boldsymbol{q} m$-Nitrocinnamaldehyde obtained from Starks Associates, Buffalo, N.Y. r Preparation of 3,4-dichlorocinnamaldehyde is described in ref 1 b . ${ }^{s}$ Recrystallized from $\mathrm{Me}_{2} \mathrm{CO}$-petroleum ether (bp 60-110 ${ }^{\circ}$). ${ }^{t}$ Purified by recrystallization of HCl salt and then treating an ether solution with gaseous NH_{3} to obtain the free amine. ${ }^{u} \mathrm{HCl}$ salt, mp $175-177^{\circ}$. ${ }^{v}$ Recrystallized from $\mathrm{Me}_{2} \mathrm{CO}$. ${ }^{w}$ Recrystallized from $\mathrm{MeOEtOH}-\mathrm{EtOH} . \quad{ }^{x} \mathrm{Di}-\mathrm{HCl}$ salt recrystallized from MeOH-petroleum ether (bp $60-$ 110°). ${ }^{2}$ Recrystallized from CHCl_{3}-petroleum ether (bp 60-110).

Table III. Physical Properties of $\bigcirc \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{P}^{+}(\mathrm{Ph})_{3} \mathrm{X}^{-}$

No.	R	X	Method ${ }^{\text {a }}$	Yield, \%	Mp, ${ }^{\circ} \mathrm{C}$	Formula ${ }^{\text {b }}$
152	$2-\mathrm{CH}_{3}$	Cl	F	$25^{\text {c,d }}$	154-157	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClP}$
153	$3-\mathrm{CH}_{3}$	Cl	F	$31^{c, e}$	180-182	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClP}^{\text {ClP}} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$
154	$4-\mathrm{CH}_{3}$	Cl	F	$38^{\text {d,f }}$	184-186	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClP} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
155	$3,4-\left(\mathrm{CH}_{3}\right)_{2}$	Cl	F	$16^{e, g}$	200-202	$\mathrm{C}_{29} \mathrm{H}_{28}{ }^{2} \mathrm{ClP} \cdot \mathrm{H}_{2} \mathrm{O}$
156	$2-\mathrm{Cl}$	Cl	F	$30^{\text {d,f }}$	203-205	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{P}$
157	$3-\mathrm{Cl}$	Cl	F	$17^{c, d}$	135-137	$\mathrm{C}_{2}{ }^{2} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{P} \cdot \mathrm{O} .5 \mathrm{H}_{2} \mathrm{O}$
158	$4-\mathrm{Cl}$	Cl	F	$28^{e, f}$	198-200	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Cl} \mathrm{l}_{2} \mathrm{P} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
159	4-F	Br	G	$46^{\text {d, }} \boldsymbol{f}$	187-189	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{BrFP}$
160	2,4-Cl	Cl	F	$24^{d, f}$	146-148	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{P} \cdot \mathrm{H}_{2} \mathrm{O}$
161	2,6-Cl ${ }_{2}$	Cl	F	$25^{d, f}$	252-254	$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{P}$
162	$4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	Br	G	$52^{d, f}$	200-202	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{BrP}$
162	$4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	Br	H	$47^{\text {d,f }}$	200-202	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{BrP}$
163	2,3-Benzo	Cl	F	$27^{c, d}$	180-182	$\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{ClP}$
164	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	Br	G	$40^{\text {d, }} \mathrm{f}$	167-169	$\mathrm{C}_{34} \mathrm{H}_{30}{ }^{2} \mathrm{BrP}$
165	$3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	Br	H	$55^{d, f}$	228-229	$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{BrP}$
166	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}$	Br	G	$36^{\text {d, }} \mathrm{f}$	203-204	$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{BrP}$
167	$3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}$	Br	G	$40^{\text {d, }}$ f	175-176	$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{BrP}$
168	$3-\mathrm{C}_{6}^{6} \mathrm{H}_{5}$	Br	H	$35^{d, f}$	217-218	$\mathrm{C}_{33} \mathrm{H}_{28}{ }^{3} \mathrm{BrP}$
169	$4-\mathrm{C}_{6} \mathrm{H}_{5}$	Br	G	$60^{d, f}$	238-240	$\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{BrP}$
hods RCO_{2}	perimental Sect $\xrightarrow{2} \mathrm{RCOCl} \xrightarrow{\mathrm{NaBH}_{4}}$		$\underset{(\mathrm{g})}{\mathrm{O}_{2} \mathrm{H}} \frac{\mathrm{SOCl}_{2}}{}$	$\xrightarrow{\mathrm{COCl}_{(\mathrm{Ph})_{3} \mathrm{P}}^{\mathrm{NaB}}} \mathrm{~B}$	$\mathrm{H}_{2} \mathrm{OH} \mathrm{SO}$ Ph) ${ }_{3} \mathrm{Br}^{-}$;	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{Cl} \xrightarrow{\left(\mathrm{Ph}_{3} \mathrm{P}\right.} \mathrm{RC} \\ & \mathrm{O}_{2} \mathrm{H} \xrightarrow{\mathrm{SOCl}_{2}} \mathrm{RCO} \end{aligned}$

$\mathrm{RCH}_{2} \mathrm{OH} \xrightarrow{(\mathrm{Ph})_{3} \mathrm{PHBr}} \mathrm{RCH}_{2} \mathrm{P}^{+}(\mathrm{Ph})_{3} \mathrm{Br}^{-} .{ }^{b}$ Analyses for C and $\mathrm{H} . \quad{ }^{c}$ Yield from appropriate benzaldehyde (see Table IV and method J). ${ }^{d}$ Recrystallized from $\mathrm{Me}_{2} \mathrm{CO}$ containing about $5 \% \mathrm{MeOH}$-petroleum ether (bp 60-110 ${ }^{\circ}$). ${ }^{e}$ Recrystallized from $\mathrm{Me}_{2} \mathrm{CO}$-petroleum ether (bp 60-110 ${ }^{\circ}$). f Yield from appropriate cinnamic acid. gield from 3,4-dimethylbenzonitrile.

Table IV. Physical Properties of Miscellaneous Compounds

No.	Structure	Method ${ }^{\text {a }}$	Yield, \%	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Formula ${ }^{\text {b }}$
170	$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	I	$95^{\text {c }}$	171-174 ${ }^{\text {d }}$	
171	$3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	I	$98^{\text {c }}$	115-117 ${ }^{\text {e }}$	
172	$3,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	J + I	$82^{c, f}$	172-174 ${ }^{\text {g }}$	
173	$1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	I	97^{c}	207-210 ${ }^{\text {h }}$	
174	$3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	I	95^{c}	159-161 ${ }^{\text {i }}$	
175	$3-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	I	$14^{j, k}$	177-179	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$
176	$3-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	$\mathrm{K}+\mathrm{J}+\mathrm{I}$	$70^{l, m}$	120-122	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$
177	$3-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	$\underline{L}+\mathrm{I}$	94^{l}	183-185	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$
178	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	\underline{I}	$96{ }^{\text {c }}$	220-222 ${ }^{\text {n }}$	
179	$4-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\stackrel{\mathrm{CHCO}}{2}$ H	$\mathbf{K}+\mathbf{J}+\mathbf{I}$	$65^{l, m}$	165-167 ${ }^{\circ}$	
180	$4-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	$\underline{L}+\mathrm{I}$	95^{j}	254-257 ${ }^{\text {P }}$	
181	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	M	$40^{\text {c }}$	186-1909	
182	$4-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	L	87	$111-113^{r}$	
183	$3-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	L	55	95-97 ${ }^{\text {s }}$	

${ }^{a}$ Methods (see Experimental Section): I, RArCHO $+\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{CO}_{2} \mathrm{H} \rightarrow \mathrm{RArCH}=\mathrm{CHCO}_{2} \mathrm{H} ; \mathrm{J}, \mathrm{RArCN}+\mathrm{Red}-\mathrm{Al} \rightarrow \mathrm{RAr}-$ $\mathrm{CHO} ; \mathrm{K}, \mathrm{RArCH}_{2} \mathrm{Br}+\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{AlCl}_{3} \rightarrow \mathrm{RArCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{L}$, prepared from benzyltriphenylphosphonium chloride and the appropriate benzenedicarboxaldehyde by the general procedure of Baker and Gibson J. Med. Chem., 14, 315 (1971); M, $\mathrm{RArOH}+t-\mathrm{BuO}_{2} \mathrm{CCH}_{2} \mathrm{Cl} \rightarrow \rightarrow \mathrm{RArOCH}_{2} \mathrm{CO}_{2} \mathrm{H} .{ }^{b}$ Analyses for C and H . ${ }^{c}$ Crystallized from reaction, used without further purification. d J. Frederick, J. Dippy, and J. E. Page, J. Chem. Soc., 357 (1938), reported mp 169°. e J. Frederick, J. Dippy, and J. E. Page, J. Chem. Soc., 357 (1938), reported mp 119°. f Overall yield from 3,4-dimethylbenzonitrile. ${ }^{g}$ S. Sugasawa and S. Sugimoto, J. Pharm. Soc. Jpn., 61, 62 (1941), reported mp 172°. h B. West, J. Am. Chem. Soc., 42, 1656 (1920), reported mp 209-212 ${ }^{\circ} .{ }^{i}$ K. Pandya and R. Pandya, Proc. Indian Acad. Sci., Sect. A, 14, 112 (1941), reported mp 163°. ${ }^{j}$ Recrystallized from $\mathrm{MeOEtOH}-\mathrm{H}_{2} \mathrm{O}$. ${ }^{k}$ Overall yield from 3-phenylbromobenzene. l Recrystallized from EtOH- $\mathrm{H}_{2} \mathrm{O} .{ }^{m}$ Overall yield from appropriate α-bromotolunitrile. ${ }^{n}$ G. Cavallini, E. Massarani, D. Nardi, and R. D'Ambrosia, J. Am. Chem. Soc., 79, 3514 (1957), reported mp 225 ${ }^{\circ}$: o J. Gilbert, J. Rech. C. N. R.S., No. 36, 271 (1956) [Chem. Abstr., 51, $8702 q$ (1957)], reported mp 167°. p G. Cavallini, E. Massarini, D. Nardi, and R. D'Ambrosia, J. Am. Chem. Soc., 79, 3514 (1957), reported mp 256-258 ${ }^{\circ}$. q M. Synerholm and P. Zimmerman, Contrib. Boyce Thompson Inst., 14, 91 (1945), reported mp 189-190 ${ }^{\circ}{ }^{\text {r }}{ }^{r}$ B. R. Baker and R. E. Gibson, J. Med. Chem., 14, 315 (1971), reported mp 115-116 ${ }^{\circ}$. ${ }^{\circ}$ R. Heck, J. Am. Chem. Soc., 90,5518 (1968), reported mp 94.5-95 ${ }^{\circ}$.
of the compounds were prepared by one of the following general routes (see Scheme I).
Compounds 89, 90, 92, 93, 95, 96, and 120 (see Table II) were prepared by a Wittig reaction with 3 - or 4 -picolyltriphenylphosphonium chloride ${ }^{1 b}$ and the appropriate benzaldehyde or cinnamaldehyde, followed by catalytic reduction. ${ }^{16}$ Compounds $91,94,103-112,118,119$, and 121-126 were similarly prepared from 3 - or 4 -pyridinecarboxaldehyde and the appropriate benzyl- or cinnamyltriphenylphosphonium halides listed in Table III,
followed by catalytic reduction. Compounds 97-102 and 127 were similarly prepared. When 133 was treated with the appropriate acid chloride, compounds 83 and 113-117 were formed. The amides 128-132, 134-143, and 148-151 were similarly prepared from 3 -aminopyridine, 3 -aminomethylpyridine, or from $133,142,144,146,148$, or 150.

Experimental Section

Melting points were taken in capillary tubes on a Mel-Temp block and are uncorrected. Each analytical sample had an ir
spectrum compatible with its structure and moved as a single spot on TLC on Brinkman silica gel GF. All analytical samples gave combustion values for C, H, or $\mathrm{C}, \mathrm{H}, \mathrm{N}$ within $\mathbf{~} 0.4 \%$ of theoretical values.

3-(4-Benzamidophenylbutyl)pyridine (114) (Method B). A solution of $0.8 \mathrm{~g}(3.5 \mathrm{mmol})$ of $133,0.5 \mathrm{~g}(3.5 \mathrm{mmol})$ of benzoyl chloride, and 0.5 g (5 mmol) of $\mathrm{Et}_{3} \mathrm{~N}$ in 40 ml of DMF was heated at 100° for 10 min and allowed to cool to room temperature before 50 ml of $\mathrm{H}_{2} \mathrm{O}$ was added. The crystalline product was collected, washed with $\mathrm{H}_{2} \mathrm{O}$, air-dried, and recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$: yield, $0.8 \mathrm{~g}(69 \%) ; \mathrm{mp} 114-115^{\circ}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Fluorocinnamyltriphenylphosphonium Bromide (159) (Method G). A solution of 4.0 g (26 mmol) of 4-fluorocinnamyl alcohol [prepared from 4-fluorocinnamic acid by the general method of Baker and Doll ${ }^{1 \mathrm{~b}}$ and recrystallized from petroleum ether ($\mathrm{bp} 60-110^{\circ}$)] was dissolved in 75 ml of dry $\mathrm{Et}_{2} \mathrm{O}$ which had been saturated with dry HBr . The solution was stirred at room temperature for 3 h ; the organic layer was decanted, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to a purple solid which was heated overnight in a benzene solution containing 7.0 g of $(\mathrm{Ph})_{3} \mathrm{P}$. The crystalline product was collected by filtration and recrystallized by dissolving in hot $\mathrm{Me}_{2} \mathrm{CO}$ containing about $5 \% \mathrm{MeOH}$ and adding petroleum ether ($\mathrm{bp} 60-110^{\circ}$) to cloudiness: yield, 5.7 g (46%); mp 187-189 ${ }^{\circ}$. Anal. ($\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{BrFP}$) C, H .

5-Phenyl-2,4-pentadienyltriphenylphosphonium Bromide (Method H). A solution of 6.7 g (42 mmol) of 5 -phenyl-2,4pentadienol (prepared in 90% yield from 5 -phenyl-2,4-pentadienoic acid by the general method of Baker and Doll ${ }^{1 \mathrm{~b}}$ and used without further purification) and 13.0 g (38 mmol) of triphenylphosphonium bromide ${ }^{29}$ in 60 ml of MeOH was stirred at room temperature for 72 h , poured into $\mathrm{H}_{2} \mathrm{O}$, and twice extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to a light yellow oil which crystallized upon trituration in $\mathrm{Me}_{2} \mathrm{CO}$: yield, $11.9 \mathrm{~g}(65 \%)$; white solid; mp 229-230 ${ }^{\circ}$ (lit. ${ }^{30} 236-240^{\circ}$).

3-Styrylcinnamic Acid (177) (Method I, See Table IV). A solution of 3.8 g (18 mmol) of 3 -stilbenecarboxaldehyde (183), 3.6 g (35 mmol) of malonic acid, and 0.5 ml of piperidine in 25 ml of pyridine was heated on a steam bath for 4 h and then poured into a solution of 75 g of ice and 40 ml of concentrated HCl . The product was separated by filtration and washed with dilute HCl and $\mathrm{H}_{2} \mathrm{O}$: yield $4.3 \mathrm{~g}(94 \%)$; mp 183-185 ${ }^{\circ}$. Anal. ($\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$) C, H.

4-Benzylbenzaldehyde (Method J). A benzene solution of 4-benzylbenzonitrile was treated with Red-Al according to the general procedure of Baker and Gibson. ${ }^{31}$ The crude product was used without further purification.

4-Benzylbenzonitrile (Method K). Upon mixing, a stirred solution of $23.1 \mathrm{~g}(0.12 \mathrm{~mol})$ of α-bromo- p-tolunitrile and 13.3 g $(0.10 \mathrm{~mol})$ of AlCl_{3} in 120 ml of PhH became warm and evolved HCl gas. After $15 \mathrm{~min} 5.3 \mathrm{~g}(0.04 \mathrm{~mol})$ of additional AlCl_{3} was added. After stirring at ambient temperature overnight, the solution was poured into ice water; the organic layer was twice extracted with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to a brown solid ($21.3 \mathrm{~g}, 90 \%$) which was treated by method J without further purification.

3-Phenylphenoxyacetic Acid (Method M). A solution of 4.75 g (28 mmol) of 3 -phenylphenol, 4.2 g (28 mmol) of tertbutylchloroacetate, and 3.9 g (28 mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 30 ml of DMF was stirred overnight at 70°, poured into $\mathrm{H}_{2} \mathrm{O}$, and twice extracted with PhMe . The organic layers were combined, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried $\left(\mathrm{MgSO}_{4}\right)$. After 50 mg of TsOH was added the solution was heated at 100° overnight, evaporated to 25 ml , and treated with petroleum ether ($\mathrm{bp} 60-110^{\circ}$) to promote crystallization; yield, 2.7 g (42%); mp $100-102^{\circ}$ (lit. ${ }^{32} \mathrm{mp} 108-109.5^{\circ}$).
β-Phenylcinnamyltriphenylphosphonium chloride (184) was prepared from 5.0 g of β-phenylcinnamic acid by the general method of Baker and Doll ${ }^{\text {1b }}$ and was recrystallized from acetone: yield, $7.1 \mathrm{~g}(60 \%)$; white solid; mp 253-255 . Anal. ($\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{ClP}$) C, H .
3-Phenylbenzaldehyde. A solution of 3-phenylphenylmagnesium bromide was prepared from 3-phenylbromobenzene
and Mg in the usual manner and then treated with ethyl orthoformate. The crude acetal was heated for 1.5 h in a refluxing solution of 90 ml of EtOH and 10 ml of $3 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. This solution was poured into water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were combined, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to an amber oil which was treated by method I to prepare 175 in 14% yield overall.

Acknowledgment. We are grateful to Dr. Michael Cory of Stanford Research Institute for his suggestions and assistance in the preparation of this manuscript.

References and Notes

(1) (a) This work was generously supported by Grant CA-08695 from the National Cancer Institute, U.S. Public Health Service. (b) For the previous paper in this series, see B. R. Baker and M. H. Doll, J. Med. Chem., 14, 793 (1971).
(2) Deceased Oct 1971.
(3) H. J. Muller-Eberhardt, Adv. Immunol., 8, 1 (1968).
(4) P. H. Schur and K. F. Austen, Annu. Rev. Med., 19, 1 (1968).
(5) B. R. Baker and E. H. Erickson, J. Med. Chem., 12, 408 (1969).
(6) M. Yoshimoto, C. Hansch, and P. Y. C. Jow, Chem. Pharm. Bull., 23, 437 (1975).
(7) D. H. Bing, M. Cory, and M. Doll, J. Immunol., 113, 584 (1974).
(8) B. R. Baker and M. Cory, J. Med. Chem., 14, 119 (1971).
(9) B. R. Baker, "Design of Active Site Directed Irreversible Enzyme Inhibitors", Wiley, New York, N.Y., 1967, p 156.
(10) B. R. Baker, Acc. Chem. Res., 2, 129 (1969).
(11) B. R. Baker and E. H. Erickson, J. Med. Chem., 10, 1123 (1967).
(12) B. R. Baker and E. H. Erickson, J. Med. Chem., 11, 245 (1968).
(13) B. R. Baker and E. H. Erickson, J. Med. Chem., 12, 112 (1969).
(14) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 10, 1129 (1967).
(15) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 11, 233 (1968).
(16) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 11, 241 (1968).
(17) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 11, 1054 (1968).
(18) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 118 (1969).
(19) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 221 (1969).
(20) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 415 (1969).
(21) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 677 (1969).
(22) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 902 (1969).
(23) B. R. Baker and M. Cory, J. Med. Chem., 12, 1049 (1969).
(24) B. R. Baker and M. Cory, J. Med. Chem., 12, 1053 (1969).
(25) B. R. Baker and M. Cory, J. Med. Chem., 14, 805 (1971).
(26) $\mathrm{C} \overline{1}$ refers to the activated C 1 component of complement, formerly designated by Cla. ${ }^{1 b, 8,22,25} \mathrm{C} \overline{1}$ is the standard notation outlined by the World Health Organization Memorandum, Immunochemistry, 7, 137 (1970).
(27) H. J. Rapp and T. Borsos, "Molecular Basis of Complement Action", Meredith Corp., New York, N.Y., 1970, p 70.
(28) M. Yoshimoto, C. Hansch, and M. H. Doll, J. Med. Chem., following paper in this issue.
(29) J. D. Surmatis and A. Ofner, J. Org. Chem., 28, 2735 (1963).
(30) S. Misumi and M. Nakagawa, Bull. Chem. Soc. Jpn., 36, 399 (1963).
(31) B. R. Baker and R. E. Gibson, J. Med. Chem., 14, 315 (1971),
(32) C. Hansch, R. Muir, T. Fujita, P. Maloney, F. Geiger, and M. Streich, J. Am. Chem. Soc., 85, 2817 (1963).

[^0]: * To whom correspondence should be addressed at Pharm-Eco Laboratories, Inc., Simi Valley, Calif. 93065.

[^1]:

 \min at 37° with $\mathbf{C} \overline{1}$, then whole complement restored and assayed as previously described; ${ }^{5}$ average of three or more determinations, each within five absolute percent of the

 phenyltoluene and NBS.

