(cyclostyled report), WHO, Geneva.
(14) R. C. Elderfield, W. J. Gensler, T. A. Williamson, J. M. Griffing, S. M. Kupchan, J. T. Maynard, F. J. Kreysa, and J. B. Wright, J. Am. Chem. Soc., 68, 1584 (1946).
(15) Where analyses are indicated only by symbols of the elements, analytical results were within $\pm 0.4 \%$ of the theo-
retical values.
(16) R. C. Elderfield, W. R. Vaughan, B. B. Millward, and J. H. Ross, J. Org. Chem., 23, 1378 (1958).
(17) The use of triethylamine for this type of reaction was brought to our attention by Dr. Saggiomo of Germantown Laboratories, Inc.

β-Adrenergic Blocking Agents. 13. (3-Amino-2-hydroxypropoxy)benzamides

L. H. Smith

Imperial Chemical Industries Limited, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire, England. Received December 30, 1975

A series of (1-amino-2-hydroxypropoxy) benzamides has been tested in experimental animals. Several of the compounds are potent selective β-blockers; their structure-activity relationships and chemistry are discussed.

The search for cardioselective, β-adrenergic blocking agents, initiated by practolol ${ }^{1}$ (Eraldin ${ }^{2}$), has led several groups of workers to examine analogous compounds which contain an amide function. Thus Cox and co-workers ${ }^{3}$ have examined a series of compounds of the general structure 1 where R and R_{1} represent a variety of amidic

functions, and they have demonstrated a selectivity of action on cardiac vs. tracheal β-receptors. Similarly Shtacher and co-workers ${ }^{4}$ found that compounds with a carbamoyl substituent show selectivity for cardiac vs. vascular β-receptors. In an extension of our work on selective β-blocking agents we have prepared a series of analogues in which the aryl residue has a para-substituted carbamoyl group together with an ortho substituent. ${ }^{5}$

We report here the synthesis and biological activity of these compounds, some of which were more potent than practolol and exhibited similar selectivity for myocardial relative to vascular β-receptors. Some conclusions on structure-activity relationships in the series are also included.

Chemistry. The compounds were prepared in a manner analogous to that used for other 1-amino-3-(substituted phenoxy)-2-propanols using the reaction of 1,2 -epoxy3 -(substituted carbamoylphenoxy)propane (2) or 1-chloro-3-(substituted carbamoylphenoxy)-2-propanol (3) with the appropriate amine. The various hydroxy-N-

2

$$
\mathrm{R}_{2} \mathrm{NH}_{2}
$$

3
substituted benzamides used as starting material were
synthesized by well-known methods, those which are novel are listed in Table II. The epoxide 2 and chlorohydrin 3 intermediates were used without purification in most cases. A marked feature of the series was the difficulty experienced in isolating the final product, TLC separation being necessary for the isolation of one-third of the compounds quoted in Table I. As in previous work ${ }^{1,6}$ we surmised that the chloropropanols (used in methods C and D) in the presence of base lost HCl to give the 1,2-epoxypropane. Confirmation that the epoxide ring of 2 opened up in the manner indicated was obtained when N -ethyl-3-chloro4 -hydroxybenzamide (5) was condensed with 1-chloro3 -isopropylamino-2-propanol in the presence of base to give the same compound (8 , Table I) as that already obtained by method C. The oxazolidine 6 was formed when the

5
amino alcohol (8, Table I) as the free base was treated with formaldehyde in hot EtOH. Resolution of 8 to give the

dextro and levo enantiomers was effected by the crystallization of the (+)- and (-)- 0,0 -di- p-toluoyl tartrate salts. ${ }^{7}$

Pharmacology. β-Adrenoceptor blocking potency was estimated in vivo using the previously described cat preparation. ${ }^{8}$ The results given in Table I are expressed as the total dose, infused over a period of 30 min , causing a 50% inhibition of the tachycardia produced by a submaximal dose of isoproterenol ($0.2 \mu \mathrm{~g} / \mathrm{kg}$, dosed iv). The degree (\%) of blockade of the vasodepressor response at that dose level is also given. The relative potencies of these two systems give some indication of selectivity for β_{1} (cardiac) as opposed to β_{2} (vascular) receptors. Statistical analysis of the results shows that the mean ED_{50} on the log scale for compounds with an average of two to three tests per compound was $\pm 0.12 \log$ units (i.e., a mean error of approximately 30%).

Discussion

The objective of this investigation was to determine whether the carbamoyl moiety, like the acylamino moiety, would confer β_{1} cardiac selectivity. The data in Table I show that many of the compounds had a profile of activity similar to that of the practolol series, ${ }^{1}$ in that they exhibit

Table I

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. \& R \& \(\mathrm{R}_{1}\) \& \(\mathrm{R}_{2}\) \& HCO
\[
R_{f}
\] \&
\[
\mathrm{Mp},{ }^{\circ} \mathbf{C}
\] \& \begin{tabular}{l}
\[
\mathrm{OHCH}_{2} \mathrm{NHR}_{1}
\] \\
Crystn solvent
\end{tabular} \& Emp formula \& Analyses \& Method of prepn \& Dose, \(\mu \mathrm{g} / \mathrm{kg}\), giving 50\% inhibn of tachycardia \& Inhibn, \(\%\), of depressor response \\
\hline 1 \& \(\mathrm{CH}_{3}\) \& \(i-\mathrm{C}_{3} \mathrm{H}_{7}\) \& H \& \& 146-148 \& \(\mathrm{Me}_{2} \mathrm{CO}\) \& \[
\begin{gathered}
\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \\
0.25 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
\] \& C, H, N \& C \& 1133 \& -2 \\
\hline 2 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(t-\mathrm{C}_{4} \mathrm{H}_{9}\) \& H \& \& 132 \& \(\mathrm{Me}_{2} \mathrm{CO}\) \& \(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}\) \& C, H, N \& C \& 271 \& 1 \\
\hline 3 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(i-\mathrm{C}_{3} \mathrm{H}_{7}\) \& \(n-\mathrm{C}_{3} \mathrm{H}_{7}\) \& \& 116 \& EtOAc \& \(\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}\) \& C, H, N \& A \& 380 \& 32 \\
\hline 4 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(t-\mathrm{C}_{4} \mathrm{H}_{9}\) \& \(n \cdot \mathrm{C}_{3} \mathrm{H}_{7}\) \& 0.8 \& 116-118 \& \[
\begin{aligned}
\& \mathrm{Me}_{2} \mathrm{CO}- \\
\& \text { petr ether }{ }^{b}
\end{aligned}
\] \& \(\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}\) \& C, H, N \& B \& 36 \& 16 \\
\hline 5 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(i-\mathrm{C}_{3} \mathrm{H}_{7}\) \& \(-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\) \& \& 120-121 \& \(\mathrm{Me}_{2} \mathrm{CO}\) \& \(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}\) \& C, H, N \& A \& 140 \& 30 \\
\hline 6 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(t-\mathrm{C}_{4} \mathrm{H}_{9}\) \& \(-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\) \& 0.6 \& Oil \& \& \[
\begin{gathered}
\mathrm{C}_{1} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} . \\
0.5 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
\] \& C, H, N \& B \& 59 \& 48 \\
\hline 7 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(i-\mathrm{C}_{3} \mathrm{H}_{7}\) \& \(\mathrm{NO}_{2}\) \& 0.7 \& Oil \& \& \(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}\) \& C, H, N \& D \& N/A \& \\
\hline 8 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(i-\mathrm{C}_{3} \mathrm{H}_{7}\) \& Cl \& \& 136-138 \& EtOAc \& \(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3}\) \& \[
\mathbf{C}, \mathbf{H}, \mathrm{N}
\] \& \[
\mathbf{C}
\] \& \[
106
\] \& 26 \\
\hline 9 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(t-\mathrm{C}_{4} \mathrm{H}_{9}\) \& Cl \& 0.5 \& 109 \& \[
\begin{aligned}
\& \mathrm{Me}_{2} \mathrm{CO}- \\
\& \text { petr ether }{ }^{b}
\end{aligned}
\] \& \(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3}\) \& C, H, N \& D \& 32 \& -5 \\
\hline 10 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(s-\mathrm{C}_{4} \mathrm{H}_{9}\) \& Cl \& \& 90 \& EtOAc \& \(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3}\) \& C, H, N \& A \& 2417 \& 14 \\
\hline 11 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(n-\mathrm{C}_{4} \mathrm{H}_{9}\) \& Cl \& \& 106-108 \& EtOAc \& \(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3}\) \& C, H, N \& A \& 787 \& -7 \\
\hline 12 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\) \& Cl \& 0.5 \& 129 \& \(\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOH}\) \& \(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4}\) \& C, H, N \& D \& 176 \& -2 \\
\hline 13 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \[
\underset{n-\mathrm{C}_{3} \mathrm{C}_{7}}{ }
\] \& Cl \& \& 112 \& \(\mathrm{Me}_{2} \mathrm{CO}\) \& \(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3}\) \& C, H, N \& C \& 2593 \& 8 \\
\hline 14 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \(i-\mathrm{C}_{3} \mathrm{H}_{7}\) \& \(\stackrel{\mathrm{Br}}{\mathrm{Br}}\) \& \& \[
140
\] \& EtOAc \& \(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BrN} \mathrm{N}_{2}\) \& \[
\mathrm{C}, \mathrm{H}, \mathrm{~N}
\] \& C \& 499 \& 21 \\
\hline 15 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \({ }_{t-\mathrm{C}_{4} \mathrm{H}_{9}}^{\mathrm{C}\left(\mathrm{CH}_{3}\right)}\) \& Br
Br \& 0.6
0.6 \& Oil
\(136-138\) \& \& \(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{CO}_{3} \mathrm{CrN}_{2} \mathrm{BrN}_{2}\) \& \[
\mathbf{C}, \mathrm{H}, \mathrm{~N}
\] \& D \& 33
157 \& 21
-25 \\
\hline 16 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \& Br \& 0.6 \& 136-138 \& \(\mathrm{Me}_{2} \mathrm{CO}\) \& \(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{4}\) \& C, H, N \& D \& 157 \& -25 \\
\hline 17 \& \[
\mathrm{C}_{2} \mathrm{H}_{5}
\] \& \(\mathrm{C}_{2} \mathrm{CH}_{5} \mathrm{CH}_{2} \mathrm{OC}_{6}{ }_{5}\) \& \(\stackrel{\mathrm{Cl}}{\mathrm{Cl}}\) \& \& 135 \& EtOAc \& \(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}\) \& C, \(\mathrm{H}, \mathrm{N}\) \& A \& 504
1003 \& 7
30 \\
\hline 18
19 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\)
\(\mathrm{C}_{2} \mathrm{H}_{5}\) \& \& Cl \& \& 112-114 \& EtOAc \& \(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{4}\) \& C, H, N \& A \& 1003 \& 30 \\
\hline 19 \& \(\mathrm{C}_{2} \mathrm{H}_{5}\)

$\mathrm{C} 2 \mathrm{H}_{5}$ \& $$
\begin{aligned}
& \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5} \\
& \mathrm{CH}_{3}
\end{aligned}
$$ \& Cl \& \& 124 \& EtOAc \& $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{3}$ \& C, H, N \& A \& 976 \& -8

\hline 20 \& $\mathrm{C}_{2} \mathrm{H}_{5}$ \& \& Cl \& \& 116-118 \& $$
\begin{aligned}
& \text { EtOAc- } \\
& \mathbf{M e}_{2} \mathbf{C O}
\end{aligned}
$$ \& $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4}$ \& C, H, N \& A \& 360 \& 24

\hline 21 \& $\mathrm{C}_{2} \mathrm{H}_{5}$ \& c- $\mathrm{C}_{3} \mathrm{H}_{5}$ \& Cl \& \& 90-92 \& EtOAc \& $$
\begin{gathered}
\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3} . \\
0.5 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$ \& C, H, N \& A \& 862 \& 47

\hline 22 \& $\mathrm{C}_{2} \mathrm{H}_{5}$ \& $i-\mathrm{C}_{3} \mathrm{H}_{7}$ \& COCH_{3} \& 0.5 \& 117 \& $$
\begin{aligned}
& \text { EtOAc- } \\
& \text { petr ether } b
\end{aligned}
$$ \& $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ \& C, H, N \& B \& 725 \& - 28

\hline 23 \& $n \cdot \mathrm{C}_{3} \mathrm{H}_{7}$ \& $t-\mathrm{C}_{4} \mathrm{H}_{9}$ \& H \& \& 124-125 \& $\mathrm{Me}_{2} \mathrm{CO}$ \& $$
\begin{gathered}
\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} . \\
0.5 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$ \& C, H, N \& C \& 462 \& - 41

\hline 24 \& $n-\mathrm{C}_{3} \mathrm{H}_{7}$ \& \& H \& \& 114-116 \& $$
\begin{aligned}
& \mathrm{Me}_{2} \mathrm{CO}- \\
& \text { petr ether }{ }^{b}
\end{aligned}
$$ \& $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& C, H, N \& C \& 1336 \& 5

\hline
\end{tabular}

Table I (Continued)

Table II ${ }^{a}$

$\mathrm{C}_{2} \mathrm{H}_{5}$	Cl	92	80
$i-\mathrm{C}_{3} \mathrm{H}_{7}$	Cl	88	75
$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	Cl	166-168	76
$\mathrm{CH}_{2} \mathrm{OH}$			
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	Cl	114	46
$\mathrm{c}^{-} \mathrm{C}_{5} \mathrm{H}_{9}$	Cl	96-98	80
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$	Cl	86-88	77
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$	Cl	210	66
$p-\mathrm{ClC}_{6} \mathrm{H}_{5}$	Cl	184	52
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$	Br	280-290	86
$\mathrm{C}_{2} \mathrm{H}_{5}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	106	54
$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	122-124	47
$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CH}_{3} \mathrm{CO}-$	80	60
$n-\mathrm{C}_{3} \mathrm{H}_{7}$	NO_{2}	124-126	54

${ }^{a}$ The above phenols are novel and were characterized only by ir and melting point.
marked inhibition of an isoproterenol-induced tachycardia with only small effects on the vascular response.
The compounds synthesized are represented by structure 7 and consist primarily of compounds substituted

7
at R_{1} by $i-\mathrm{Pr}$ and t - Bu groups and at R by alkyl chains ranging from C_{2} to C_{6}.
The ortho substituent, R_{2}, was noted at an early stage in the work to be playing an important part in the potency (ED_{50}) of the compounds. We, therefore, submitted the data to a multiple parameter analysis using the Hansch approach. The methods used in this analysis have been applied to several series of β-adrenergic blocking agents and are shortly to be published. ${ }^{9}$ The conclusions of this analysis that relate to this series are as follows.
(1) The replacement of an acylamino group (-NHCO-) in the para position of an aryloxypropanolamine by a carbamoyl group (-CONH-) results in a reduction of the total β-blocking activity of the series, this being attributed to the weaker hydrogen bond donor properties of the - NH- moiety in the carbonyl group (cf. compounds 1 and 69). (2) The electron contribution of the group R_{2} can be correlated and is independent of the steric bulk of the substituent. This would indicate steric freedom in the ortho position of the molecule. Electron-withdrawing groups in this position were found to increase potency, the effect being less than that observed in the acylamino series. (3) The lipophilic contribution from the groups $\mathrm{R}, \mathrm{R}_{\mathrm{i}}$, and R_{2} was observed to be additive and produced a marked effect on potency. (4) Throughout the series the $t-\mathrm{Bu}$ group at R_{1} is intrinsically more potent than the i - Pr group (cf. compounds 9 and 8,38 and 39,42 and 43,59 and 60).

Experimental Section

Chemistry. All melting points are uncorrected and were obtained using an Electrothermal capillary melting point apparatus. Ir spectra were recorded in KBr disks on a Perkin-Elmer 457 spectrophotometer. Where analyses are indicated only by symbols of the elements, analytical results obtained for those

elements were within $\pm 0.4 \%$ of the theoretical values.

General Methods. Method A. 1-(4-Ethylcarbamoyl-2-n-propylphenoxy)-3-isopropylamino-2-propanol (3). 1,2-Epoxy-3-(4-ethylcarbamoyl-2-propylphenoxy)propane (1.5 g , $0.0057 \mathrm{~mol})$ and $i \cdot \mathrm{PrNH}_{2}(20 \mathrm{ml}, 0.234 \mathrm{~mol})$ were left at room temperature for 24 h . The mixture was evaporated to dryness and the residue was stirred with $1 \mathrm{~N} \mathrm{HCl}(25 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}$ (25 ml). The acidic phase was basified with 11 N NaOH and extracted with EtOAc (25 ml). The EtOAc extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness and the residue was crystallized from EtOAc: yield $0.8 \mathrm{~g}(33 \%) ; \operatorname{mp} 116^{\circ}$.

Method B. 1-(4-Ethylcarbamoyl-2-n-propylphenoxy)-3-tert-butylamino-2-propanol (4). 1,2-Epoxy-3-(4-ethyl-carbamoyl-2-n-propylphenoxy)propane ($1.5 \mathrm{~g}, 0.0057 \mathrm{~mol}$) and $t-\mathrm{BuNH}_{2}(20 \mathrm{ml}, 0.19 \mathrm{~mol})$ were left at room temperature for 24 h. The mixture was evaporated to dryness and the residue was stirred with $1 \mathrm{~N} \mathrm{HCl}(25 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$. The acidic phase was basified with 11 N NaOH and extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ (50 $\mathrm{ml})$. The combined ethereal extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. The residue was subjected to thick-layer chromatography on a $2-\mathrm{mm}$ thick plate of silica gel (Merck, Kieselgel PF_{254} gipshaltig), area $20 \times 40 \mathrm{~cm}$, using a mixture of 1 part by volume of $\mathrm{NH}_{4} \mathrm{OH}$ (sp gr 0.89) and 99 parts by volume of MeOH as eluting solvent. The material with an R_{f} value of 0.8 was extracted with methanol, the methanol extract was evaporated to dryness, and the residue was crystallized from acetone-petroleum ether (bp 80-100 $)$: yield $0.1 \mathrm{~g}(4 \%) ; \mathrm{mp}$ $116-118^{\circ}$.

Method C. 1-(2-Chloro-4-ethylcarbamoylphenoxy)-3-isopropylamino-2-propanol (8). 1-Chloro-3-(2-chloro-4-ethylcarbamoylphenoxy)-2-propanol ($2.9 \mathrm{~g}, 0.01 \mathrm{~mol}$), i - PrNH_{2} $(10 \mathrm{ml}, 0.12 \mathrm{~mol})$, and $n \cdot \operatorname{PrOH}(40 \mathrm{ml})$ were heated together under reflux for 24 h . The mixture was evaporated to dryness and the residue was stirred with $2 \mathrm{~N} \mathrm{HCl}(20 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$. The acidic phase was basified with 11 N NaOH and extracted twice with EtOAc (25 ml). The combined EtOAc extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness and the residue was crystallized from EtOAc: yield 1.4 g (45%); mp 136-138 .

Method D. 1-tert-Butylamino-3-(2-chloro-4-n-hexyl-carbamoylphenoxy)-2-propanol (42). 1-Chloro-3-(2-chloro4 -n-hexylcarbamoylphenoxy)-2-propanol ($3.25 \mathrm{~g}, 0.0093 \mathrm{~mol}$), $t-\mathrm{BuNH}_{2}(10 \mathrm{ml}, 0.096 \mathrm{~mol})$, and $n-\operatorname{PrOH}(30 \mathrm{ml})$ were heated together under reflux for 18 h . The mixture was evaporated to dryness and the residue was stirred with $2 \mathrm{NHCl}(25 \mathrm{ml})$ and ether (50 ml). The acidic phase was basified with 11 N NaOH and extracted twice with EtOAc (25 ml). The combined EtOAc extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. The residue was subjected to thick-layer chromatography on a $2-\mathrm{mm}$ thick plate of silica gel (Merck, Kieselgel PF_{254} gipshaltig), area $20 \times 40 \mathrm{~cm}$, using a mixture of 1 part by volume of $\mathrm{NH}_{4} \mathrm{OH}$ (sp gr 0.89) and 99 parts by volume of MeOH as eluting solvent. The material with an R_{f} value of 0.5 was extracted with methanol and the methanol extract was evaporated to dryness to leave an oil.

1-(2-Chloro-4-ethylcarbamoylphenoxy)-3-isopropyl-amino-2-propanol (8). A mixture of N-ethyl-3-chloro-4hydroxybenzamide ($1 \mathrm{~g}, 0.005 \mathrm{~mol}$), $\mathrm{NaOH}(0.4 \mathrm{~g}, 0.01 \mathrm{~mol})$, 1-chloro-3-isopropylamino-2-propanol hydrochloride ($0.67 \mathrm{~g}, 0.0035$ $\mathrm{mol}), \mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$, and $\mathrm{EtOH}(12.5 \mathrm{ml})$ was heated under reflux for 3 h . The mixture was evaporated to dryness and the residue was stirred with a mixture of $\mathrm{EtOAc}(25 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$. The EtOAc phase was dried (MgSO_{4}) and evaporated under reduced pressure and the residue was crystallized from EtOAc: mp 136-138 ${ }^{\circ}$

1-Amino-3-(4-ethylcarbamoyl-2-chlorophenoxy)-2propanol. A solution of 1,2-epoxy-3-(4-ethylcarbamoyl-2chlorophenoxy) propane ($2.55 \mathrm{~g}, 0.01 \mathrm{~mol}$) in $\mathrm{MeOH}(20 \mathrm{ml})$ was added to a $12 \% \mathrm{w} / \mathrm{v}$ solution of NH_{3} in $\mathrm{MeOH}(100 \mathrm{ml})$ and left at room temperature for 72 h . The mixture was evaporated to dryness and the residue was stirred with $1 \mathrm{~N} \mathrm{HCl}(25 \mathrm{ml})$ and EtOAc (25 ml). The acidic phase was basified with 11 N NaOH and extracted with EtOAc (50 ml). The EtOAc extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and acidified with ethereal HCl . The mixture was filtered and the solid residue was crystallized from i - PrOH : yield $0.12 \mathrm{~g}(4 \%) ; \operatorname{mp~198-200^{\circ }}$. Anal. ($\left.\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-(2-Chloro-4-ethylcarbamoylphenoxymethyl)-3-isopropyloxazolidine Dipicrate. A mixture of 1 -(2-chloro 4 -
ethylcarbamoylphenoxy)-3-isopropylamino-2-propanol (0.5 g, 0.0016 mol), $36 \% \mathrm{w} / \mathrm{v}$ formalin (4 ml), and $\mathrm{EtOH}(25 \mathrm{ml}$) was heated under reflux for 6 h . The mixture was evaporated under reduced pressure and the residue was dissolved in $\mathrm{EtOH}(10 \mathrm{ml}$) and acidified with ethanolic picric acid. The mixture was filtered and the solid residue was crystallized $\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right)$: yield 0.55 $\mathrm{g}(43 \%) ; \mathrm{mp} 86^{\circ}$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, H, N.
(-)-1-(2-Chloro-4-ethylcarbamoylphenoxy)-3-isopropyl-amino-2-propanol. A solution of 1-(2-chloro-4-ethylcarba-moylphenoxy)-3-isopropylamino-2-propanol ($1.5 \mathrm{~g}, 0.0048 \mathrm{~mol}$) in $\mathrm{EtOH}(10 \mathrm{ml})$ was added to a solution of (+)-O,O $\mathrm{di} \cdot \mathrm{p}$ toluoyltartaric acid (1.9 g) in $\mathrm{EtOH}(10 \mathrm{ml})$ and the mixture was maintained at -20° for 48 h . The mixture was filtered and the solid residue was crystallized from EtOH: mp $172-170^{\circ}$ dec. The crystallized solid was then stirred with $1 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{ml})$ and EtOAc (10 ml); the EtOAc phase was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness under reduced pressure. The solid residue was stirred with a mixture of allylamine (6 ml) and petroleum ether (bp 60-80 $)(12 \mathrm{ml})$ for 15 min . The mixture was filtered and the filtrate was evaporated to dryness under reduced pressure, this procedure was repeated, and the product was stirred with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ and filtered, leaving the pure optical isomer: yield $0.17 \mathrm{~g}(22 \%) ; \operatorname{mp~} 122-124^{\circ} ;[\alpha]^{21} \mathrm{D}-13.0^{\circ}$ (c 1.9 , 1 NHCl).
(+)-1-(2-Chloro-4-ethylcarbamoylphenoxy)-3-isopropyl-amino-2-propanol. The above procedure was repeated using (-)-O,O-di-p-toluoyltartaric acid. The product was isolated in a 14% yield: $\operatorname{mp} 122-124^{\circ} ;[\alpha]^{21} \mathrm{D}+13.2^{\circ}$ (c $2.1,1 \mathrm{~N} \mathrm{HCl}$).

The phenols used as starting material in this series were synthesized by the following general method.

3-Chloro-4-hydroxy- N-(n-propyl)benzamide. A mixture of 3-chloro-4-hydroxybenzoic acid ($8.6 \mathrm{~g}, 0.05 \mathrm{ml}$) and acetyl chloride ($30 \mathrm{ml}, 0.42 \mathrm{~mol}$) was heated under reflux for 30 min and then evaporated to dryness. The residue was then heated under reflux with thionyl chloride ($30 \mathrm{ml}, 0.42 \mathrm{ml}$) for 3 h . The mixture was then evaporated to dryness to give 4 -acetoxy-3-chlorobenzoyl chloride which was used without further purification. A solution of 4-acetoxy-3-chlorobenzoyl chloride ($11.5 \mathrm{~g}, 0.05 \mathrm{~mol}$) in benzene (50 ml) was added to a stirred solution of n-propylamine $(8.2 \mathrm{ml}$, 0.1 mol) in benzene (50 ml) at ambient temperature. The mixture was stirred for 1 h , evaporated to dryness, and then heated under reflux for 5 min with $1 \mathrm{~N} \mathrm{NaOH}(150 \mathrm{ml})$. The mixture was cooled and filtered, the filtrate was acidified with 11 N HCl and fiitered, and the solid residue was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and crystallized from a mixture of $\mathrm{EtOH}(25 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$: yield 7.4 g (75%); mp 76-78 ${ }^{\circ}$. Anal. ($\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}_{2}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$. In general, the phenols thus prepared were used without further purification; several were oils. Table II lists those phenols that were characterized by ir analysis and melting point.
Acknowledgment. The author wishes to thank Mr. D. Griffiths for his expert technical assistance, Professor J. D. Fitzgerald and Mr. J. Carter for providing the biological data, and Mr. C. J. Howarth for providing the analytical data.

References and Notes

(1) A. F. Crowther, R. Howe, and L. H. Smith, J. Med. Chem., 14, 511 (1971).
(2) Eraldin is a trademark, the property of Imperial Chemical Industries Ltd.
(3) J. Augstein, D. A. Cox, A. L. Ham, P. R. Leeing, and M. Snarey, J. Med. Chem., 16, 1245 (1973).
(4) G. Shtacher, M. Erez, and S. Cohen, J. Med. Chem., 16, 516 (1973).
(5) L. H. Smith, U.K. Patent 1269775 (1972).
(6) (a) A. F. Crowther and L. H. Smith, J. Med. Chem., 11, 1009 (1968); (b) A. F. Crowther, D. J. Gilman, B. J. McLoughlin, L. H. Smith, R. W. Turner, and T. M. Wood, ibid., 12, 638 (1969).
(7) T. Leigh, Chem Ind. (London), 1016 (1970).
(8) J. D. Fitzgerald and S. R. O'Donnell, Br. J. Pharmacol., 43, (1), 222 (1971).
(9) R. Davies, ICI Pharmaceuticals Division, unpublished results.

