- (12) C. Daniel and F. S. Wood, "Fitting Equations to Data", Wiley-Interscience, New York, N.Y., 1971, pp 55, 169, and 203.
- (13) H. Kubinyi, J. Med. Chem., 20, 625 (1977).
- (14) H. Kubinyi, Arzneim-Forsch, 26, 1991 (1976).
- (15) Further discussion on the bilinear model will be published elsewhere: K. H. Kim, C. Hansch, J. Y. Fukunaga, E. E. Steller, P. Y. C. Jow, P. N. Craig, and J. Page, submitted

for publication.

- (16) V. D. Warner, D. M. Lynch, C. A. Meszoely, and W. G. Dykstra, Jr., J. Pharm. Sci., 66, 418 (1977).
- (17) F. H. S. Curd and F. L. Rose, J. Chem. Soc., 4422 (1956).
- (18) A. F. Yapel, Adv. Chem. Ser., No. 114, 189 (1972).
- (19) A. Albert and E. P. Serjeant, in "Determination of Ionization and Stability Constants", Butler and Tanner Ltd., London, England, 1962.

# Quantitative Structure-Activity Relationships in 1-Aryl-2-(alkylamino)ethanol Antimalarials<sup>1</sup>

Ki Hwan Kim, Corwin Hansch,\* James Y. Fukunaga, Edward E. Steller, Priscilla Y. C. Jow,

Department of Chemistry, Pomona College, Claremont, California 91711

#### Paul N. Craig,

The Franklin Institute Research Laboratories, Philadelphia, Pennsylvania 19103

#### and June Page

Walter Reed Army Institute for Medical Research, Washington, D.C. 20012. Received June 16, 1978

A quantitative structure-activity relationship has been formulated for 646 antimalarials acting against *P. berghei* in mice. The equation developed has 14 terms, 9 of which are indicator variables. The correlation coefficient for the QSAR is 0.898 and the standard deviation is 0.309. The antimalarials are all arylcarbinols of the type X-ArCHOHCH<sub>2</sub>NR<sub>1</sub>R<sub>2</sub>. Sixty different aryl structures, including a variety of heterocycles, are contained in the study. The most important determinate of activity is found to be the electron-withdrawing ability of the substituents X; the hydrogenobic character of X and R play less important roles. Suggestions for more potent analogues are made and the back of activity of about 100 additional analogues is also considered.

The use of quark in the treatment of malaria constitutes one of the oldest successful examples of chemotherapy. Its replacement by synthetic drugs is a most interesting chapter in modern chemotherapy.<sup>2</sup>

Prior to World War II, pamaquine, quinacrine, and chloroquine were developed in Germany. The war stimulated a huge increase in research for synthetic animalarials which has been documented by Wiselogle and

batney;<sup>3</sup> this work yielded, among others, amodiaquine, imaquine, and chlorguanide. The impetus of this research was also responsible for the somewhat later development of pyrimethamine and chloroproguanide.

During the later 1940s it began to become clear that various strains of malaria were more or less resistant to many of the known drugs. Drug resistance has been confirmed in South America, Southeast Asia, Central Africa, and New Guinea. All human malaria parasites have shown drug resistance. During the period of the Vietnam war, renewed interest in drug development came about as a result of developing resistance to known drugs, resistance of mosquitoes to residual insecticides, and the inability to use insecticides under some conditions. The Walter Reed Army Institute has taken the leading role in the current effort to find more effective antimalarial drugs.

The extensive history of malaria chemotherapy has been well reviewed by Thompson and Werbel<sup>2a</sup> and Pinder.<sup>2b</sup> Our concern in this report is with compounds of types I–III



and a number of closely related congeners (see Table II).

We considered analogues of type I in a preliminary analysis<sup>4</sup> of the structure-activity relationship of phenanthrene carbinols. These compounds can be regarded as analogues of quinine, IV. Early efforts were made by



Rabe,<sup>5,6</sup> Kaufmann,<sup>7</sup> Karrer,<sup>8</sup> and Ruzicka<sup>9,10</sup> to make quinoline analogues of quinine by replacing the quinuclidine unit with simpler structures. None of these early efforts were successful in a chemotherapeutic sense. King<sup>11</sup> and his co-workers produced the first quite active synthetic derivatives of type V.



Up to this time, chemists had not been able to break away from the conservative idea that there was something magical about the quinoline ring which was essential for antimalarial activity. May and Mosettig<sup>12</sup> broke out of this restricting view by showing that analogues of I were active against malaria. It was soon shown that even the simple aromatic rings such as naphthalene, benzene, and pyridine could be turned into arylcarbinols with antimalarial activity. The limits have never been reached on the kind of aromatic ring which will serve as the base for an aminocarbinol-type antimalarial.

0022-2623/79/1822-0366\$01.00/0 © 1979 American Chemical Society

| Table I. | Phenanthrenes | Acting | Against | Ma | laria | ( <b>P</b> . | bergh | ei) | ) |
|----------|---------------|--------|---------|----|-------|--------------|-------|-----|---|
|----------|---------------|--------|---------|----|-------|--------------|-------|-----|---|

|            |                                         | $\log 1/C$  |      |                    |                   |
|------------|-----------------------------------------|-------------|------|--------------------|-------------------|
| no.        | ring substit                            | NRR'ª       | obsd | calcd <sup>b</sup> | $\Delta \log 1/C$ |
| set I      |                                         |             |      |                    |                   |
| 1          | $2, 4-Cl_2; 6-CF_3$                     | 2-Pip       | 4.43 | 4.36               | 0.07              |
| 2          | $2, 3-Br_2; 6-CF_3$                     | $N(Bu)_2$   | 4.36 | 4.26               | 0.10              |
| 3          | $3-CF_3; 5, 7-Cl_2$                     | 2-Pip       | 4.35 | 4.21               | 0.14              |
| 4          | 1,3,6-Br <sub>3</sub>                   | $N(Bu)_2$   | 4.35 | 4.08               | 0.27              |
| 5          | $1, 3-Cl_2; 6-CF_3$                     | $N(Bu)_2$   | 4.29 | 4.05               | 0.24              |
| 6          | 2,5,7-Čl                                | 2-Pip       | 4.29 | 4.01               | 0.28              |
| 7          | 3-CF <sub>3</sub> ; 6-Cl                | 2-Pip       | 4.25 | 3.91               | 0.34              |
| 8          | $2, 4 - Br_2; 6 - CF_3$                 | $N(Bu)_2$   | 4.24 | 4.41               | 0.17              |
| 9          | $1, 3-Br_2; 6-CF_3$                     | 2-Pip       | 4.22 | 4.20               | 0.02              |
| 10         | $2,3-Cl_2; 6-CF_3$                      | 2-Pip       | 4.21 | 4.24               | 0.03              |
| set $II^c$ |                                         |             |      |                    |                   |
| 1          | $2, 4-(CF_3)_2; 6, 7-Cl_2$              | $N(Pr)_{2}$ | 5.18 | 4.83               | 0.35              |
| 2          | $1, 2, 3, 4 - Cl_4$ ; 6-CF <sub>3</sub> | 2-Pip       | 4.82 | 5.18               | 0.36              |
| 3          | $2,4-(CF_3)_2;7-Cl$                     | 2-Pip       | 4.82 | 4.34               | 0.48              |
| 4          | $2, 4 - (CF_3)_2$ ; 6-Cl                | 2-Pip       | 4.74 | 4.47               | 0.27              |
| 5          | $2,4-(CF_3)_2;6,7-Cl_2$                 | 2-Pip       | 4.47 | 4.88               | 0.41              |
| 6          | $2, 4, 6-Cl_3$                          | 2-Pip       | 4.46 | 4.26               | 0.20              |
| 7          | $1, 2-Cl_{3}; 6-CF_{3}$                 | 2-Pip       | 4.46 | 4.24               | 0.22              |
| 8          | 2-CF3                                   | 2-Pip       | 4.39 | 3.24               | 1.15              |
| 9          | 1,3,6-Cl <sub>3</sub>                   | $N(Pr)_2$   | 4.30 | 4.00               | 0.30              |
| 10         | 3-CF <sub>3</sub> , 6,7-Cl <sub>2</sub> | $N(Pr)_2$   | 4.30 | 4.32               | 0.02              |

<sup>a</sup> Pip = 2-piperdinyl. <sup>b</sup> Calculated using eq 4. <sup>c</sup> In our previous publication,<sup>13</sup> compound 116 in Table I was listed as 2,4-(Me)<sub>2</sub> and was badly predicted; this error resulted because compound 190 in Table I in the paper by Nodiff et al. [E. A. Nodiff, A. J. Saggiomo, K. Tanabe, E. H. Chen, M. Shimbo, M. P. Tyagi, A. Kozuka, H. Otomasu, B. L. Verma, and D. Goff, J. Med. Chem., 18, 1011 (1975)] is incorrectly labeled, while it is correctly shown in Table X to be 2,4-(CF<sub>3</sub>)<sub>2</sub>.

In our first analysis of Walter Reed data of Vietnam war vintage of analogues of I tested against *P. berghei* in mice, we formulated eq 1 and 2. In these expressions,  $\pi_{X+Y}$  is

$$\log 1/C = 0.33\pi_{X+Y} + 0.85\sigma_{X+Y} + 2.52 \tag{1}$$

$$n = 102; r = 0.894; s = 0.278$$

 $\log 1/C = 0.31\pi_{X+Y} + 0.78\sigma_{X+Y} + 0.13\Sigma\pi - 0.015\Sigma\pi^2 + 2.35$ (2)

$$n = 102; r = 0.908; s = 0.263$$

the sum of the  $\pi$  constants for substituents in the 1–8 positions of the phenanthrene ring, while  $\Sigma \pi$  is this sum plus  $\pi$  for R and R'. These equations correlate the molar concentration of drug necessary to cure 50% of mice of malaria. In all, 107 congeners were studied, but five were dropped because they were very poorly fit. The most interesting feature of eq 1 is that it correlates 80% of the variance in log 1/C without considering R and R'. Considering the hydrophobic character of R and R' in eq 2 results in a small (about 2%) but significant improvement over eq 1. This could have been brought out more clearly if more analogues with either very small or very large R groups had been tested. Equation 2 gave an ideal  $\Sigma \pi_0$  of 4.4.

After the publication of eq 1 and 2, new data on phenanthrenes and structures of types VI-X became



available. Fitting these new data to the same forms as eq 1 and 2 yields eq 3 and  $4^{.13}$  Although the sharpness of  $\log 1/C = 0.29\pi_{X+X} + 0.97\sigma_{X+X} + 2.53$  (3)

$$n = 212; r = 0.849; s = 0.328$$

$$\log 1/C = 0.29\pi_{X+Y} + 0.90\sigma_{X+Y} + 0.11\Sigma\pi - 0.013\Sigma\pi^2 + 2.41$$

$$n = 212; r = 0.860; s = 0.319$$

the new correlations is not as good as eq 1 and 2, the predictive ability illustrated in Table I is good. The 10 most active members of each set are listed in Table I along with the observed and calculated (eq 4) activities. Seven of the 10 of the second 109 congeners are more active than any of those in set I, yet 9 out of 10 are reasonably well predicted by eq 4. The coefficients of eq 4 are close to those of eq 2 and  $\pi_0$  (4.1) is also in good agreement. Very little information that was not known at the time eq 2 was derived was gained for the SAR in the testing of over 100 new congeners.

A slight change in the use of  $\sigma$  in eq 3 and 4 was made. In eq 3 and 4,  $\sigma_m$  was used for substituents in positions 2, 4, 6, and 8, and  $\sigma_p$  was used for positions 1, 3, 5, and 7. We erred in the derivation of eq 1 and 2 in using  $\sigma_p$  for groups in the 6 and 8 position. This makes only a slight difference in the results.

Equations 2 and 4 clearly show the predictive value of QSAR and the importance of avoiding redundancy in drug design. A variety of other examples also support the predictive value of QSAR.<sup>14</sup>

Moreover, as Unger<sup>15a</sup> and others<sup>4</sup> have pointed out, the redundancy in the first set of 102 congeners is great. Unger clustered the 102 congeners on the basis of  $\pi_{X+Y}$  and  $\sigma_{X+Y}$ ; then, using interactive APL, he made 50 random draws of 10 compounds each from the clusters. Fifty correlation equations were derived, one for each set of 10 congeners, and their coefficients averaged to give eq 5. Note that  $\log 1/C = 0.29(\pm 0.05)\pi_{X+Y} + 0.90(\pm 0.1)\sigma_{X+Y} +$ 

 $2.6(\pm 0.2)$  (5)

4)

$$n = 10; r = 0.90 \pm 0.06$$

the coefficients and quality of correlation in eq 5 are very close to those of eq 1.

Unger illustrated the value of cluster analysis<sup>15a</sup> in drug design by repeating the above process; however, instead of selecting one congener from each cluster, all 10 were selected from the same large cluster which contained 43 members. Averaging the 50 derived correlation equations as before yields eq 6. Even the coefficients in this equation  $\log 1/C = 0.20(\pm 0.3)\pi_{X+Y} + 0.80(\pm 0.6)\sigma_{X+Y} + 2.7(\pm 0.8)$  (6)

$$2.7(\pm 0.8)$$
  
n = 10; r = 0.60 ± 0.1

are close to those of eq 1; however, the standard deviations on r and the coefficients are quite large and the correlation coefficient (r) is very low; hence, any given equation out of the 50 might give quite misleading information. Unger's study clearly illustrates the value of the proper selection of substituents in drug design.

Since we were most interested in showing predictive values of QSAR, we did not attempt to use indicator variables<sup>16,17</sup> in deriving eq 3 and 4 to improve the correlation. Our aim in this report has been to encompass the widest variety of arylcarbinols into a QSAR to summarize and better define the work on this important class of antimalarials. The data in Table II (see paragraph concerning supplementary material) have been used to formulate eq 7-10.

#### Method

Our approach to the development of an overall QSAR for the arylcarbinol antimalarials of Table II (supplementary material) has been to first study subsets having a common aryl unit and then merge these into a final QSAR (eq 10). The parent partition coefficients for these structures are given in Table III. We have placed the definition of the symbols used for the aryl moieties of Table II (supplementary material) in Table IV. We have also indicated the numbering system used for the various rings; in some instances this is not standard but has been used to parallel that of phenanthrene as much as possible. The phenanthrene congeners constitute the largest and best-behaved set and we have elected to use them as the archetypical congener; this has been of help to us in parameterizing and organizing the other congeners.

We have derived a "best" equation for each of the three major subsets and then shown its stepwise development. We have given the best equation (lowest standard deviation) in each class in the stepwise development tables; that is, we have listed the best one-variable, two-variable equation, etc., regardless of the terms which occur therein.

Phenanthrene Analyses. We have reevaluated all of our previous  $\log 1/C$  values for phenanthrene.<sup>4,13</sup> Wherever possible in this report, the mol/kg concentration was determined by a linear interpolation between the concentration required to cure two mice and that required for three mice; that is,  $\log 1/C$  in Table II refers to the molar concentration (mol/kg) of drug necessary to cure 2.5 out of the 5 test mice. We believe that this gives a more consistent result than plotting all data and attempting to draw the best line for estimating the 2.5 end point. In those instances where a high enough concentration to cure 3 mice was not tested, a linear extrapolation was made from the highest cure (1 or 2) to the 2.5 level. If only a 4 or 5 cure concentration (mg/kg) was given, extrapolation was made from the 4-cure concentration. When doses for several equivalent cures were found, these were averaged. Values were calculated and then averaged when data on two isomers (erythro and threo) were given. As in our first report.<sup>4</sup> for those drugs which did not achieve any cures.

a linear extrapolation to the concentration needed to give an increase in lifespan of 30 days was made. The choice in the number of days was arbitrary; however, it seems to be a fortunate one, since the use of an indicator variable in the QSAR can serve to combine two types of data. Sixty-day survival is taken as cure in the Rane mouse test.

Careful reexamination of our previous  $\log 1/C$  values has led us to conclude that seven of these (99–101, 104–107) in Table I of ref 4 must really be considered as inactive. These have not been included in Table II, but are placed in Table XIII.

To account for electronic effects,  $\sigma$  was chosen with respect to the side-chain attachment; that is, for the phenanthrene ring,  $\sigma_p$  was used for positions 1, 3, 5, 7, and 10 and  $\sigma_{in}$  was used for the 2, 4, 6, and 8 positions. Attempts in earlier studies to factor electronic effects by position using  $\mathcal{F}$  and  $\mathcal{R}$  did not give significantly better results and of course required many more parameters.

In our first studies we were limited by the lack of log *P* values to the use of  $\pi$  constants for hydrophobic effects; to remedy this situation, we have prepared some typical arylcarbinols shown in Table III. Only one  $\log P$  was measured for the quinoline and pyridine homologues in Table III from which the others were calculated using phenanthrene data (see footnotes). The  $\log P$  values were determined between 1-octanol and 0.1 N HCl. We are assuming that it is the protonated form of the drug which is transported under physiological conditions. This is not a vital assumption because the difference between protonated and unprotonated species would be reasonably constant. All compounds in Table III are unsubstituted on the aryl ring. In order to test additivity principles, we measured log P values on five substituted phenanthrenes obtained from the Walter Reed files (ring substituents are given first, followed by side chain; examples 1-5).

(1) 3,6-Cl<sub>2</sub>; CHOHCH<sub>2</sub>N(Pr)<sub>2</sub>

log  $P_{\text{parent molecule |Table |}}(1.69) + 2\pi_{\text{Cl}}(1.42) = 3.11$ 

observed log P = 3.31

(2) 2,3-Cl<sub>2</sub>, 6-CF<sub>3</sub>; CHOHCH<sub>2</sub>N(Pr)<sub>2</sub>

 $\log P_{\text{parent molecule}}(1.69) + 2\pi_{\text{Cl}}(1.42) + \pi_{\text{CF}_3}(0.88) = 3.99$ 

observed log P = 3.79

 $\log P_{\text{parent incleave}}(1.69) + 2\pi_{\text{Br}}(1.72) = 3.41$ 

observed log P = 3.63

(4) 10-Br: CHOHCH<sub>2</sub>N(Bu)<sub>2</sub>

$$\log P_{\text{parent molecule}}(2.57) + \pi_{\text{Br}}(0.86) = 3.43$$

observed log P = 3.23

(5)  $2,4-(CF_3)_2, 6,7-Cl_2; CHOHCH_2N(Pr)_2$ 

log  $P_{\text{parent molecule}}(1.69) + 2\pi_{\text{Cl}}(1.42) + 2\pi_{\text{CF}_3}(1.76) = 4.87$ 

observed log P = 4.77

In two of the examples (2 and 5) one would expect and one finds slightly lower log P values because two substituents are adjacent to each other; however, the other examples are not in as good agreement as one sometimes finds. In any case, we believe that the accuracy of the physicochemical parameters is considerably better than that of the biological data.

To calculate log P values for substituted phenanthrene carbinols, log P values of Table III plus  $\pi$  constants<sup>18</sup> from

the benzene system were used. The benzylic OH was esterified in a number of congeners; this moiety is specified in Table II by being set off by a colon. Preliminary calculations showed that the best results for these esters were obtained by using  $\log P$  for the unesterified congener. It is possible that the ester groups are quickly hydrolyzed.

Branched alkyl groups occur in the side chain in several examples. We have used -0.2 for the branching factor for each alkyl group in calculating log P for these.

We have had to use fragment constants in a few instances<sup>19</sup> to calculate log P. The symbol f refers to log P for a fragment, while F refers to a bond factor or an interaction between two electronegative groups separated by one  $(F_{P_1})$  or two  $(F_{P_2})$  carbon atoms. The details on the calculation of  $F_{P_1}$  and  $F_{P_2}$  are to be published later.<sup>20</sup> **2-Phenylquinolines.** The largest number of the

2-Phenylquinolines. The largest number of the quinoline derivatives (218-433) are 2-phenylquinolines. In parameterizing substituents in this system, we have used  $\sigma_p$  for positions 3, 6, 8, 2', and 4' (the prime positions are on the 2-phenyl moiety). For positions 2, 5, 7, 3', and 5',  $\sigma_m$  has been used. It was surprising to find that if  $\sum \sigma$  was factored into two terms, one for the 2-phenyl ring and one for the quinoline ring, no improvement in correlation was found. The coefficients of the two terms were essentially identical.

The hydrophobic properties of the two rings differ significantly. A better correlation was obtained by setting  $\pi$  constants to zero for substituents on the 2-phenyl moiety; hence,  $\Sigma \pi$  for quinolines refers only to groups on the quinoline ring.

2-X-Quinolines. A number of quinolines with substituents other than phenyl in the 2 position were studied and their log *P* values calculated. For cases where  $X = CF_3$  (0.88),  $C(Me)_3$  (1.98), adamantyl (3.30),  $OC_6H_5$  (2.08),  $NHC_6H_5$  (1.37),  $COC_6H_5$  (1.05), or thienyl (1.61), the  $\pi$ values in parentheses were used as follows:

 $\log P_{2-X-\text{quinoline-4-CHOHCH}_2\text{NRR}'} =$ 

$$\log P_{2\text{-phenylquinoline-4-CHOHCH}_2NRR'} - \pi_{C_6H_5}(1.96) + \pi_X$$

The  $\pi$  value was not added to  $\Sigma \pi$  for the X substituents themselves. Indicator variables were tested to account for special steric and/or nonspecific interaction of these substituents. The  $\sigma_m$  for each of these substituents was added to  $\sum \sigma$ . In a number of instances, substituents are present on  $OC_6H_5$  and  $NHC_6H_5$ ; we have simply added  $\sigma$ for these substituents to  $\sigma_{OC_6H_5}$  or  $\sigma_{NHC_6H_5}$  and then added this sum to  $\sum \sigma$ . Although it is realized that this is not a strictly correct way to handle the electronic effect of 2 substituents, in general, it appears to be a reasonable approximation. Since we have explored the use of indicator variables with 2-CF<sub>3</sub>, 2-O $\tilde{C}_6H_5$ , and 2-NHC<sub>6</sub>H<sub>5</sub>, electronic and hydrophobic information which we cannot properly and directly parameterize were carried in these terms. In the end, these indicator variables did not turn out to be significant.

**Pyridines.** Most of the pyridines were 2,6-diphenyl derivatives whose  $\log P$  values were calculated using data of Table III. A number of variations were calculated as follows:



where  $\pi_x = CH = CHC_6H_5$  (2.68),  $COC_6H_5$  (1.05),  $CF_3$  (0.88),  $C(Me)_3$  (1.96), adamantyl (3.30).

**Miscellaneous (492–646).** For the thiaphenanthrenes (e.g., **506–519**) the figure of 0.32 (difference between log  $P_{C_{gH_5}}$  and log  $P_{thiophene}$ ) was subtracted from the appropriate phenanthrene log P. Since log P for anthracene is 0.01 less than that of phenanthrene, this conversion factor was used for anthracene congeners (e.g., **520–528**).

Log P for naphthalene analogues of the type



were calculated as follows:

 $\begin{array}{l} \log \ P_{3:\text{X-naphthalene-1-CHOHCH}_2\text{NR}_2} = \\ \log \ P_{\text{phenanthrene-9-CHOHCH}_2\text{NR}_2} - \log \ P_{\text{phenanthrene}} + \\ \log \ P_{\text{naphthalene}} + \ \pi_{\text{X}} \ (\text{e.g.}, \ 529-542) \end{array}$ 

For each of the following nuclei (see Table IV for definition),  $\sigma$  was selected as follows for the ring positions: Q2, Q4, Q5, Q7

|                 | $\sigma_{\rm m}$ : 2, 4, 5, 7, 3', 5' |
|-----------------|---------------------------------------|
|                 | $\sigma_{\rm p}$ : 3, 6, 8, 2', 4'    |
| Q3, Q6, Q8      |                                       |
|                 | $\sigma_{\rm m}$ : 3, 6, 8, 3', 5'    |
|                 | $\sigma_{\rm p}$ : 2, 4, 5, 7, 2', 4' |
| P1, P3          |                                       |
|                 | $\sigma_{\rm m}$ : 2, 4, 6, 8, 9      |
|                 | $\sigma : 1 3 5 7 10$                 |
|                 | <sup>o</sup> p. 1, 0, 0, 1, 10        |
| P, P4           |                                       |
|                 | $\sigma_{\rm m}$ : 2, 4, 6, 8         |
|                 | $\sigma_{\rm p}$ : 1, 3, 5, 7, 10     |
| AI. A9          |                                       |
| ,               | $\sigma_{\rm m}$ : 1, 3, 6, 8         |
|                 |                                       |
|                 | $\sigma_{\rm p}$ ; 2, 4, 5, 7, 10     |
| NI              |                                       |
|                 | $\sigma_{\rm m}$ : 3, 6, 8, 3', 5'    |
|                 | $\sigma_{p}$ : 2, 4, 5, 7, 2', 4'     |
| T1, T5, T7, T17 |                                       |
|                 | $\sigma_{\rm m}$ : 2, 4, 6, 8         |

 $\sigma_{\rm p}$ : 1, 3, 5, 7, 10

PY

$$\sigma_{\rm m}$$
: 3', 5', 3'', 5''  
 $\sigma_{\rm m}$ : 2', 4', 2'', 4''

Synthesis of New Phenanthrene Carbinols. In addition to eight known phenanthrene carbinols [compounds 1–7, Table III, and  $CH_2N(C_8H_{17})_2$ ], four new derivatives were prepared. Compounds 1–3 were prepared

|     |                                                 | mp, °C      | %<br>yield | solvent for<br>recrystn                 |
|-----|-------------------------------------------------|-------------|------------|-----------------------------------------|
| (1) | CH <sub>2</sub> NHC <sub>2</sub> H <sub>5</sub> | 152.5-153.5 | 27         | acetone +                               |
| (2) | CH <sub>2</sub> NHC <sub>3</sub> H <sub>7</sub> | 134-136     | 32         | hexane<br>acetone +<br>hexane           |
| (3) | $CH_2 NHC_4 H_9$                                | 189-190     | 45         | ethyl acetate +                         |
| (4) | 2-piperidinyl                                   | 288-290     | 22         | methanol<br>ethyl acetate +<br>methanol |

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |             | $\log 1/C$   |                    | i ≜ lo <i>r</i> |       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------------|--------------------|-----------------|-------|
|          | substituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aumhal  | anlada      | ohad         | anlad <sup>b</sup> | 1/C             | we fC |
|          | substituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | symbol  | calcu       | obsu         | calcu              | 1/01            | rei   |
| 1        | $2.4.(CF_{-}) = 6.7.Cl_{+} N(Pr)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Р       | 4 58        | 5.18         | 4.32               | 0.86            | 1     |
| 5        | $2,1(CF_{3})_{2},0,1(CF_{2})_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>D  | 1.00        | 1 99         | 4 1 9              | 0.00            | 1     |
| 2        | 1 0 2 4 Cl + CE + 0 Bin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L<br>D  | 4 5 9       | 475          | 4.00               | 0.70            | 1     |
| ں<br>۲   | $1, 2, 3, 4^{\circ} \text{Or}_{4}, 0^{\circ} \text{Or}_{3}, 2^{\circ} \text{Pr}_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r<br>D  | 4.00        | 4.70         | 4.22               | 0.55            | 1     |
| 4        | $3, 6 - (CF_3)_2; CH_2 NHBU$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P       | 4.38        | 4.73         | 4.25               | 0.48            | 1     |
| 5        | $3, 6 \cdot (CF_3)_2; CH_2 NH(t-Bu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р       | 4.39        | 4.73         | 4.25               | 0.48            | 1     |
| 6        | $2,4-(CF_3)_2, 6-Cl; 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р       | 4.40        | 4.72         | 4.20               | 0.52            | 1     |
| 7        | $1, 3-Cl_2, 6-CF_3; CH_2NHBu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Р       | 4.39        | 4.62         | 4.30               | 0.32            | 34    |
| 8        | $3.6 \cdot (CF_{3})_{3}$ ; CH_NH(c-C <sub>2</sub> H <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Р       | 4.14        | 4.53         | 4.08               | 0.44            | 1     |
| 9        | 1.3-Cl., 6-CF.: NHBu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P       | 4.09        | 4 48         | 3.98               | 0.50            | 34    |
| 10       | $2.4-(CF_{-}) = 6.7-Cl + 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P       | 4 5 9       | 4 4 8        | 4 32               | 0.16            | 1     |
| 11       | $3 6_{-}(CF) \cdot NH(P_{r})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>D  | 4.06        | 1 18         | 3 00               | 0.58            | 1     |
| 10       | 1.3 - CI = 6 - CE + CH N(Bu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D       | 4.36        | 4.47         | 4.20               | 0.00            | 1     |
| 12       | $1, 3 \cdot 0_{12}, 0 \cdot 0_{13}, 0 \cdot 1_{2} \cdot 1_{2}$ | r<br>D  | 4.00        | 4.47         | 4.29               | 0.10            | 1     |
| 10       | $2,4,0-(0F_3)_3, 2-FIP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r       | 4.48        | 4.47         | 4.27               | 0.20            | 1     |
| 14       | $2,4,6-Cl_3; 2-Plp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P       | 4.25        | 4.46         | 4.07               | 0.39            | 1     |
| 15       | $1, 2-Cl_2, 6-CF_3; 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р       | 4.10        | 4.45         | 3.91               | 0.53            | 1     |
| 16       | $2,4-Cl_2, 6-CF_3; 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р       | 4.32        | 4.43         | 4.13               | 0.29            | 1     |
| 17       | $3,4-Cl_2, 6-CF_3; 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р       | 4.10        | 4.40         | 3.91               | 0.48            | 1     |
| 18       | 2-CF <sub>3</sub> , 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р       | 3,43        | 4.39         | 3.39               | 1.00            | 1     |
| 19       | 3.6-(ČF.).: NHEt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P       | 4.04        | 4 39         | 3.88               | 0.51            | 1     |
| 20       | 3.6.(CF): NH(4-Hent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p       | 4 05        | 4 33         | 3 9 3              | 0.40            | ī     |
| 91       | $2.4-(CF_{-}) \cdot N(Pr)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ъ<br>Р  | 2 07        | 4 21         | 2 25               | 0.46            | 34    |
|          | $2_{3} + (2_{3} + 3_{2}) + (1_{1} + 1_{2})$<br>$2_{3} - B_{r} = 6_{r} + (CF + N(B_{11}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D       | 112         | 7.01<br>/ 01 | 3 00               | 0.40            | 1     |
| 44       | $2,0.51_2,0.01_3,11(50)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r<br>D  | 4.10        | 4.01         | 0.00               | 0.00            | 1     |
| 23       | $3 - 0r_3, 0, 1 - 0l_2; 2 - r^2 p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ц<br>Ц  | 4.18        | 4,30         | 4.04               | 0.26            | 1     |
| 24       | $3 - 0r_3, 0, 7 - 0l_2; N(Pr)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ľ       | 4.20        | 4.30         | 3.98               | 0.32            | 1     |
| 25       | $1,3-Cl_2, b-CF_3; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р<br>Г  | 4.07        | 4.29         | 3.98               | 0.31            | 1     |
| 26       | 2,5,7-Cl <sub>3</sub> ; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Р       | 4.01        | 4.29         | 3.91               | 0.38            | 1     |
| 27       | $2, 4-Br_2, 6-CF_3; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Р       | 4.37        | 4.28         | 4.21               | 0.07            | 1     |
| 28       | $2,6-Br_2; N(Pr)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Р       | 3.90        | 4.27         | 3.79               | 0.47            | 1     |
| 29       | $3, 4-Cl_2, 6-CF_1; N(Pent)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Р       | 4.02        | 4.26         | 3.89               | 0.37            | 1     |
| 30       | 3-CF., 6-Cl: 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Р       | 3.98        | 4 25         | 3.84               | 0.41            | 1     |
| 31       | 3 6-(CF.) · NHMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P       | 4.01        | 4 23         | 3 84               | 0.39            | 1     |
| 32       | 3.6.(CF): CH N(Pr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P       | 4 39        | 4 93         | 4 25               | 0.00            | 1     |
| 33       | $2.4_{\rm Br} + N({\rm Bu})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D       | 3.00        | 4.00         | 2 20               | 0.02            | 1     |
| 24       | $2,4 \cdot \text{Dr}_2, \text{N(Du})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r<br>D  | 1.50        | 4.01         | 3.02               | 0.40            | 1     |
| 04       | $2,4,0-Cl_3, N(Du)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P       | 4.20        | 4.21         | 4.08               | 0.13            | 1     |
| 30       | $3, 5, 7 - CI_3; N(BU)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P       | 3.89        | 4.21         | 3.84               | 0.37            | 1     |
| 36       | $1, 3-Br_2, 6-CF_3; 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P       | 4.14        | 4.20         | 4.03               | 0.17            | 1     |
| 37       | $3,6-(CF_{3})_{2}; NH(3-Pent)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Р       | 4.07        | 4.20         | 3.93               | 0.27            | 1     |
| 38       | $2, 3-Cl_2, 6-CF_3; 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р       | 4.10        | 4.19         | 3.91               | 0.27            | 1     |
| 39       | $1,3,6-Br_{3}; N(Bu)_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р       | 4.07        | 4.19         | 4.00               | 0.19            | 1     |
| 40       | $1,3,6-Cl_3; N(Pr),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р       | 4.01        | 4.19         | 3.91               | 0.28            | 1     |
| 41       | 2-CF <sub>3</sub> , 7-Cl: 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Р       | 3.77        | 4.19         | 3.69               | 0.50            | 1     |
| 42       | $2.4 - (CF_{2})_{2} : 2 - Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P       | 3.97        | 4.19         | 3.84               | 0.34            | 1     |
| 43       | 2.3.5.7-Cl.: N(Bu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P       | 4.17        | 418          | 4 02               | 0.16            | 1     |
| 44       | 2,3,5,6-Cl : N(Bu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p       | 4 18        | 4 1 8        | 3 96               | 0.22            | î     |
| 45       | $2, 3, 6, 7, 01_4, N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D       | 4 1 8       | 1 1 Q        | 3.90               | 0.22            | 1     |
| 40       | $2, 5, 0, 7, 01_4, N(Du)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r<br>D  | 2.00        | 4.10         | 0.90               | 0.22            | 1     |
| 40       | $2,0$ - $Br_2; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P       | 3.90        | 4.17         | 3.82               | 0.35            | 1     |
| 47       | $2,6-Br_2; 2-P1p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P       | 3.90        | 4.13         | 3.79               | 0.34            | 1     |
| 48       | $2, 4, 7 - Cl_3; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р       | 4.12        | 4.12         | 4.00               | 0.12            | 1     |
| 49       | 2,6-Cl <sub>2</sub> ; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р       | 3.80        | 4.12         | 3.70               | 0.42            | 1     |
| 50       | $3,6-(CF_3)_2; CH_2N(Et)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р       | 4.37        | 4.12         | 4.22               | 0.10            | 1     |
| 51       | 1,3,6-Cl <sub>3</sub> ; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Р       | 4.01        | 4.12         | 3.91               | 0.21            | 1     |
| 52       | 3-CF, 7-Cl; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Р       | 3.86        | 4.12         | 3.76               | 0.36            | 1     |
| 53       | $3.6 \cdot (CF_{2})_{1}$ ; CH <sub>2</sub> -2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Р       | 4.07        | 4.11         | 3,93               | 0.18            | 1     |
| 54       | $3.6 \cdot (CF_{2})_{*} : 2 \cdot (H_{2} \cdot \alpha u inoline)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P       | 3.80        | 4.11         | 3.75               | 0.36            | 1     |
| 54       | $3.6(CF_{1}) \cdot NHBu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>P  | 4 07        | 4 1 1        | 3 92               | 0 1 9           | 1     |
| 56       | $3.6-(CF) \cdot N(Bu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>P  | 4 07        | 4 10         | 3 93               | 017             | î     |
| 50       | 1.3 - CI = 6 - CF + 9 - Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ь<br>р  | 4.00        | 7.10<br>/ 10 | 307                | 0.10            | 1     |
| 57       | 2.01 - 6.0F + 2.Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r<br>D  | 977         | 4.10         | 3 60               | 0.12            | 1     |
| 50       | $3 - 01, 0 - 0F_3, 2 - F1p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r<br>P  | 0.11        | 4.09         | 3.09               | 0.40            | 1     |
| 59       | $2-01, 0-0F_3; 2-P1p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r<br>r  | 3.89        | 4.07         | 3.77               | 0.30            | 1     |
| 60       | 2-Br, $\circ$ -CF <sub>3</sub> ; N(Bu) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L<br>L  | 3.94        | 4.07         | 3.84               | 0.23            | Ţ     |
| 61       | $2,6-Cl_2; N(Pr)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Р.<br>Р | 3.81        | 4.06         | 3.71               | 0.35            | 1     |
| 62       | $2, 0-Cl_2; N(Et)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P<br>P  | 3.77        | 4.06         | 3.66               | 0.40            | 1     |
| 63       | 1,3,5,7-Cl <sub>4</sub> ; N(Bu) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P       | 4.15        | 4.05         | 4.08               | 0.03            | 1     |
| 64       | 2-Cl, 5-CF <sub>3</sub> ; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Р       | 3.98        | 4.05         | 3.84               | 0.21            | 1     |
| 65       | $3, 4-Cl_2, 6-CF_3; N(Pr)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Р       | 4.10        | 4.03         | 3.92               | 0.11            | 1     |
| 66       | $3,6-(CF_3)_2; CH_2N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р       | 4.37        | 4.03         | 4.25               | 0.22            | 1     |
| 67       | 3-CF <sub>3</sub> , 6,7-Cl <sub>2</sub> ; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Р       | 4.20        | 4.02         | 3.98               | 0.04            | 1     |
| 68       | $2,6-Cl_{2}; N(Pent),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р       | 3.80        | 4.01         | 3.74               | 0.27            | 1     |
| 69       | $3.6(CF_{1}): 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р       | 4.06        | 3,99         | 3.91               | 0.08            | 1     |
| 70       | $3.4-Cl_{}6-CF_{}N(Bu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>P  | 4.08        | 3.98         | 3.92               | 0.06            | 1     |
| 71       | $2.3.6-Br_{1}$ (Bu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>P  | 4 10        | 3 97         | 3 95               | 0.02            | î     |
| 79       | 2.87, 6.0F + 2.Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ь<br>Р  | 303         | 3 96         | 3 89               | 0.14            | 1     |
| 72       | $3 6_{\text{Br}} \cdot N(\text{Pr})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r<br>D  | 0.00        | 305          | 370                | 0.14            | 1     |
| 10<br>71 | $9.7 \cdot B_{r} = 10.0 M_{O} \cdot N(B_{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r<br>D  | ວ.//<br>ງແ≃ | 304<br>304   | 3.70               | 0.40            | 1     |
| 14       | $2, (-Di_2, 10-OMe; N(Du)_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r<br>P  | 0.00        | 0.94         | 0.01               | 0.37            | 1     |
| 15       | $2, 4 - (0 - 3)_2, 1 + (1) = 0_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r       | 3.92        | 0.94         | 5.19               | U.17)           | T     |

|             |                                                                                                                                       |        |               | $\log 1/C$   |              |      |                  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--------------|--------------|------|------------------|
| no.         | substituents                                                                                                                          | symbol | calcda        | obsd         | calcdb       |      | ref <sup>c</sup> |
|             |                                                                                                                                       |        | 0.75          | 0.00         | 0.71         | 0.01 |                  |
| 76          | $3,4-\text{Cl}_2, 6-\text{CF}_3; \text{N(Hept)}_2$                                                                                    | P      | 3.75          | 3.92         | 3.71         | 0.21 | 1                |
| 11          | $3, 0^{-}(UF_3)_2; N(PF)_2$<br>$2, 2^{-}(1 - 6 - Br, 2 - Din)$                                                                        | r<br>D | 4.00          | 301          | 3 80         | 0.01 | 1                |
| 79          | $2,5^{\circ}Cl_{2}, 0^{\circ}Bl_{2}, 2^{\circ}Pl_{2}$                                                                                 | P      | 4.07          | 3 91         | 392          | 0.02 | 1                |
| 80          | 1.3.6-CL: N(Et).                                                                                                                      | P      | 4.00          | 3.90         | 3.88         | 0.01 | 1                |
| 81          | $3.6 \cdot (CF_{*})_{*} : CH_{*} NH(i \cdot Pr)$                                                                                      | P      | 4.38          | 3.89         | 4.24         | 0.35 | 1                |
| 82          | $3,6-(CF_{1})_{2}; 3-Pip$                                                                                                             | P      | 4.06          | 3.89         | 3.91         | 0.02 | 1                |
| 83          | 3,6-Cl,; CH,-2-Pip                                                                                                                    | Р      | 3.70          | 3.89         | 3.64         | 0.25 | 1                |
| 84          | $3, 6 - (CF_3)_2; N(Hept)_2$                                                                                                          | Р      | 3.81          | 3.89         | 3.79         | 0.10 | 34               |
| 85          | $3, 6-(CF_3)_2; CH_2N(Pent)_2$                                                                                                        | P      | 4.30          | 3.89         | 4.22         | 0.33 | 1                |
| 86          | $2, 4-Cl_2, 6-SMe; N(Bu)_2$                                                                                                           | P      | 4.04          | 3.88         | 3.93         | 0.05 | 2                |
| 87          | $3-CF_3, 6-CI; N(Bu)_2$                                                                                                               | P<br>D | 3.99          | 3.88         | 3.87         | 0.01 | 1                |
| 88          | $3-CF_3$ , $6-BF$ ; $2-PIp$                                                                                                           | r<br>D | 4.03          | 3.86         | 0.00<br>3.77 | 0.02 | 1                |
| 90          | $2.6.(CF) \cdot 2.Pin$                                                                                                                | P      | 3.97          | 3.85         | 3.84         | 0.00 | 1                |
| 91          | $2-SMe_{2}, 5-6-Cl_{1}; N(Bu).$                                                                                                       | P      | 3.82          | 3.84         | 3.71         | 0.13 | 2                |
| 92          | $2.6-Cl_3$ ; N(Bu),                                                                                                                   | P      | 3.83          | 3.81         | 3.74         | 0.07 | 1                |
| 93          | 1,3-Cl., 6-Br; 2-Pip                                                                                                                  | Р      | 4.06          | 3.81         | 3.95         | 0.14 | 1                |
| 94          | $3,6-(CF_3)_2; NH(i-Pr)$                                                                                                              | Р      | 4.05          | 3.80         | 3.89         | 0.09 | 1                |
| 95          | $3,6-Cl_2; N(Bu)_2$                                                                                                                   | Р      | 3.71          | 3.79         | 3.66         | 0.13 | 1                |
| 96          | 1,3,7-Cl <sub>3</sub> ; 2-Pip                                                                                                         | P      | 3.90          | 3.79         | 3.83         | 0.04 | 1                |
| 97          | $2 \cdot CF_3$ ; N(Bu) <sub>2</sub>                                                                                                   | P      | 3.48          | 3.79         | 3.45         | 0.34 | 1                |
| 98          | $3,6-(CF_3)_2; NH(Hex)$                                                                                                               | P      | 4.06          | 3.78         | 3.93<br>222  | 0.15 | 24               |
| 100         | 6-Br; $N(Hept)_2$ : $OPO(OPh)_2$                                                                                                      | r<br>D | 3 2 9         | 3.73<br>3.74 | 3.30         | 0.37 | 04<br>9          |
| 100         | $2 \text{-SMe}, 0, 7 \text{-} \text{Cl}_2, \text{N}(\text{Bu})_2$<br>2 4-Cl 6-CF : N(Bu)                                              | P      | 4 30          | 3.74         | 4.14         | 0.40 | 1                |
| 102         | $2.50.Me_{-6.7}Cl_{-1}N(Bu)$                                                                                                          | P      | 3.78          | 3.74         | 3.50         | 0.24 | 1                |
| 103         | $1.3-Cl_{2}: 2-Pip$                                                                                                                   | P      | 3.57          | 3.73         | 3.54         | 0.19 | ī                |
| 104         | 5-CF <sub>3</sub> ; 2-Pip                                                                                                             | Р      | 3.52          | 3.73         | 3.46         | 0.27 | 1                |
| 105         | $3,6-Br_2; N(Pent)_2$                                                                                                                 | Р      | 3.73          | 3.72         | 3.71         | 0.01 | 1                |
| 106         | $1,3,6-Cl_{3}; N(Bu)_{2}$                                                                                                             | P      | 4.00          | 3.72         | 3.92         | 0.20 | 1                |
| 107         | $3,6-(CF_3)_2; C_2H_4N(Hept)_2$                                                                                                       | P      | 3.63          | 3.72         | 3.66         | 0.06 | 34               |
| 108         | $3,6-(CF_3)_2; NH(c-C_6H_{11})$                                                                                                       | P      | 3.84          | 3.72         | 3.76         | 0.04 | 1                |
| 109         | $3-1, 6-CF_3; N(Bu)_2$                                                                                                                | P      | 3.80          | 3.12<br>271  | 3.77         | 0.05 | 1                |
| 110         | $2,7-CI_2, 10-OMe; N(Bu)_2$                                                                                                           | r<br>P | 3.40          | 3.71<br>3.70 | 3.30         | 0.21 | 1                |
| 112         | 2 3 6 - C1 + 2 - Pin                                                                                                                  | P      | 4.03          | 3 69         | 3.85         | 0.00 | 1                |
| 112         | $2 \cdot Cl_{3} \cdot CF_{3} \cdot N(Bu)$                                                                                             | P      | 3.90          | 3.69         | 3.80         | 0.11 | 1                |
| 114         | $2 - Cl, 6 - CF_3; N(Hept)_2$                                                                                                         | P      | 3.67          | 3.68         | 3.68         | 0.00 | 1                |
| 115         | 4-CF <sub>3</sub> , 7-Cl; 2-Pip                                                                                                       | Р      | 3.77          | 3.66         | 3.69         | 0.03 | 1                |
| 116         | $3-Cl, 6-CF_3; N(Bu)_2$                                                                                                               | Р      | 3.79          | 3.65         | 3.72         | 0.07 | 1                |
| 117         | $3,6-Br_2; N(Bu)_2$                                                                                                                   | P      | 3.77          | 3.63         | 3.72         | 0.09 | 1                |
| 118         | 4-CF <sub>3</sub> ; 2-Pip                                                                                                             | P      | 3.43          | 3.62         | 3.39         | 0.23 | 1                |
| 119         | 3-Cl, 6-CF <sub>3</sub> ; N(Hept) <sub>2</sub>                                                                                        | P      | 3.55          | 3,61         | 3.60         | 0.01 | 1                |
| 120         | $3,0$ - $Br_2$ ; $NH(t-Bu)$                                                                                                           | P<br>D | 0.11<br>117   | 3.01         | 3.10         | 0.09 | 1                |
| 121         | $2.5 \text{-}\text{Br}_2, 5 \text{-}\text{Cr}_3; 2 \text{-}\text{Frp}$<br>$2.80 \text{ Me}, 5.6 \text{-}\text{Cl} \cdot \text{N(Bu)}$ | r<br>P | 3.78          | 3.50         | 3.50         | 0.40 | 2                |
| 122         | $6 - CF_1 + N(Hept_1)$                                                                                                                | P      | 3.34          | 3.56         | 3.40         | 0.16 | 1                |
| 124         | $3-1.6-CF_{3}$ ; N(Hept).                                                                                                             | P      | 3.51          | 3.55         | 3.60         | 0.05 | ī                |
| 125         | $6-Br; N(Hept)_2$                                                                                                                     | Р      | 3.31          | 3.55         | 3.38         | 0.17 | 1                |
| 126         | $1,2-Cl_{2}$ $6-CF_{3}$ ; $N(Bu)_{2}$                                                                                                 | Р      | 4.08          | 3.55         | 3.92         | 0.37 | 1                |
| 127         | $3,6-(CF_3)_2$ ; NH(CH <sub>2</sub> ) <sub>3</sub> CH(OEt) <sub>2</sub>                                                               | P      | 4.07          | 3.55         | 3.93         | 0.38 | 1                |
| 128         | $4,6-(CF_3)_2; 2-Pip$                                                                                                                 | P      | 3.97          | 3.54         | 3.84         | 0.30 | 1                |
| 129         | $1,3-Cl_2, 6-CF_3; N(Hept)_2$                                                                                                         | P<br>D | 3.74          | 3.53         | 3.11         | 0.24 | 1                |
| 130         | 6-Br; $N(Hept)_2$ : U-succinate<br>$A_2Br_6-CE \rightarrow N(Bu)$                                                                     | P<br>P | 3.31<br>3.04  | 3.52         | 381          | 0.14 | 04<br>1          |
| 132         | $5 7-Cl \cdot 2-Pin$                                                                                                                  | P      | 3.54          | 3.52         | 3.54         | 0.02 | 1                |
| 133         | $3.6-Br_{2}$ ; N(Hex),                                                                                                                | P      | 3.65          | 3.51         | 3.67         | 0.16 | î                |
| $\bar{1}34$ | 2-Br; N(Bu),                                                                                                                          | Р      | 3.44          | 3.50         | 3.42         | 0.08 | 1                |
| 135         | 3,6-Cl.; 2-Pip                                                                                                                        | Р      | 3.69          | 3.50         | 3.62         | 0.12 | 1                |
| 136         | 6-Br; 2-Pip                                                                                                                           | Р      | 3.3 <b>9</b>  | 3.49         | 3.36         | 0.13 | 1                |
| 137         | 3,6-Cl <sub>2</sub> ; 2-pyrolidine-NMe                                                                                                | P      | 3.47          | 3.46         | 3.46         | 0.00 | 34               |
| 138         | 3, 0-Br <sub>2</sub> ; N(Hept) <sub>2</sub>                                                                                           | л<br>Ч | 3.52          | 3.45         | 3.58         | 0.13 | 1                |
| 139         | $\sigma$ -Dr; 2-r1p-NMe<br>6-Br: N(Hopt) -NO                                                                                          | r<br>D | 3.42<br>211   | 3.44<br>3/2  | 3,40         | 0.04 | 1                |
| 140         | $3-CF_{2}: 2-Pip$                                                                                                                     | r<br>P | 3.52          | 3.43         | 3.46         | 0.03 | 1                |
| 142         | $1-Br, 6-CF_3; N(Hept).$                                                                                                              | P      | 3.55          | 3.43         | 3.61         | 0.18 | ī                |
| 143         | $6,10-Br_{2}; N(Hept)_{2}$                                                                                                            | P      | 3.52          | 3.42         | 3.58         | 0.16 | 34               |
| 144         | 6-CF <sub>3</sub> ; 2-Pip                                                                                                             | Р      | 3.43          | 3.37         | 3.39         | 0.02 | 1                |
| 145         | $3,6-Cl_2; NH(c-C_6H_{11})$                                                                                                           | P      | 3.48          | 3.36         | 3.49         | 0.13 | 1                |
| 146         | $2,7-Br_2, 10-OMe; N(Hept)_2$                                                                                                         | P      | 3.30          | 3.35         | 3.43         | 0.08 | 1                |
| 147         | $0 - 0 \cup F_3; 2 - Pip$<br>1 2 6 7 Cl + N(Bu)                                                                                       | ч. г.  | 3.42<br>1 1 0 | J.J4<br>2.24 | 3,40<br>206  | 0.06 | 1                |
| 140         | $2.7 \text{-Cl}_{-} 10 \text{-OMe} \cdot \text{N(Hent)}$                                                                              | r<br>P | 3 97          | 334          | 3 39         | 0.02 | 1                |
| 150         | $1, 6-Br_2; N(Hept),$                                                                                                                 | P      | 3.51          | 3.33         | 3.58         | 0.25 | $3\overline{4}$  |
|             |                                                                                                                                       |        |               |              |              |      |                  |

|                     |                                                                                                       |              |                    | $\log 1/C$    |               |              |                  |
|---------------------|-------------------------------------------------------------------------------------------------------|--------------|--------------------|---------------|---------------|--------------|------------------|
| no                  | substituents                                                                                          | symbol       | calcd <sup>a</sup> | obsd          | calcdb        | 1/C          | ref <sup>c</sup> |
|                     | substituents                                                                                          |              |                    |               |               |              |                  |
| 151                 | 10-Br; N(Hept) <sub>2</sub>                                                                           | Р            | 3.17               | 3.33          | 3.29          | 0.04         | 1                |
| 152                 | 3-SO <sub>2</sub> Me, 6-CF <sub>3</sub> ; 2-Pip                                                       | Р            | 3.58               | 3.32          | 3.35          | 0.03         | 1                |
| 153                 | 3,6-Br <sub>2</sub> ; 2-Pip                                                                           | Р            | 3.76               | 3.31          | 3.70          | 0.39         | 1                |
| 154                 | $2,6-(SMe)_2; N(Bu)_2$                                                                                | Р            | 3.43               | 3.30          | 3.45          | 0.15         | 2                |
| 155                 | 2-Br; 2-Pip                                                                                           | Р            | 3.39               | 3.25          | 3.36          | 0.11         | 1                |
| 156                 | 2-Cl, 7-CF <sub>3</sub> ; 2-Pip                                                                       | Р            | 3.98               | 3.25          | 3.84          | 0.59         | 1                |
| 157                 | 1,3-(Me) <sub>2</sub> , 6-CF <sub>3</sub> ; 2-Pip                                                     | Р            | 3.38               | 3.25          | 3.45          | 0.20         | 1                |
| 158                 | $7,8-(CH)_4; N(Hept)_2$                                                                               | Р            | 3.07               | 3.25          | 3.24          | 0.01         | 34               |
| 159                 | $6-CF_3$ ; N(Bu) <sub>2</sub>                                                                         | Р            | 3.48               | 3.23          | 3.45          | 0.22         | 1                |
| 160                 | 6,10-Br <sub>2</sub> ; N(Bu) <sub>2</sub>                                                             | Р            | 3.77               | 3.23          | 3.72          | 0.49         | 1                |
| 161                 | 7-CF <sub>3</sub> ; 2-Pip                                                                             | Р            | 3.52               | 3.22          | 3.46          | 0.24         | 1                |
| 162                 | 6-Br; 2-Pip-NBu                                                                                       | Р            | 3.44               | 3.22          | 3.44          | 0.22         | 1                |
| 163                 | $3,6-(t-Bu)_2; N(Bu)_2$                                                                               | Р            | 3.22               | 3.19          | 3.51          | 0.32         | 1                |
| 164                 | 3-CF <sub>3</sub> , 6-Me; 2-Pip                                                                       | Р            | 3.58               | 3.16          | 3.55          | 0.39         | 1                |
| 1 <b>6</b> 5        | 3-Me, 6-CF <sub>3</sub> ; 2-Pip                                                                       | Р            | 3.41               | 3.16          | 3.43          | 0.27         | 1                |
| 1 <b>6</b> 6        | 2,3-(OCH <sub>2</sub> O), 6-Cl; 2-Pip                                                                 | Р            | 3.09               | 3.14          | 3.07          | 0.07         | 1                |
| 167                 | $3-CF_3$ ; N(Hept) <sub>2</sub>                                                                       | Р            | 3.43               | 3.12          | 3.47          | 0.35         | 1                |
| 168                 | $3,6-Cl_2; N(Hept)_2$                                                                                 | Р            | 3.50               | 3.12          | 3.55          | 0.43         | 1                |
| 169                 | 2-Cl; $N(Hept)_2$                                                                                     | Р            | 3.28               | 3.09          | 3.35          | 0.26         | 1                |
| 170                 | 5-Cl; N(Hept),                                                                                        | Р            | 3.17               | 3.09          | 3.27          | 0.18         | 1                |
| 171                 | 6-F; N(Hept),                                                                                         | Р            | 3.22               | 3.08          | 3.26          | 0.18         | 1                |
| 172                 | 2-Cl; N(Bu),                                                                                          | Р            | 3.39               | 3.01          | 3.38          | 0.37         | 1                |
| 173                 | $-; CH_N(Hept)_2$                                                                                     | Р            | 3.20               | 3.00          | 3.35          | 0.35         | 1                |
| 174                 | $3-Cl, 6-OMe; N(Hept)_2$                                                                              | Р            | 3.26               | 2.98          | 3.34          | 0.36         | 1                |
| 175                 | 6-Br, NEt(2-MeO-5-NH,-Bzl)                                                                            | Р            | 3.08               | 2.97          | 3.11          | 0.14         | 1                |
| 176                 | $7-Cl; N(Hept)_2$                                                                                     | Р            | 3.17               | 2.97          | 3.27          | 0.30         | 1                |
| 177                 | $-; N(Hept)_2$                                                                                        | Р            | 2.92               | 2.87          | 3.05          | 0.18         | 1                |
| 178                 | 6-Me, 2-Pip                                                                                           | Р            | 2.94               | 2.83          | 3.02          | 0.19         | 1                |
| 179                 | 10-Me; N(Bu) <sub>2</sub>                                                                             | Р            | 2.92               | 2.79          | 3.03          | 0.24         | 1                |
| 180                 | $2-Br, 6-SO_2Me, N(Bu), \qquad ($                                                                     | 2) P         | 2.93               | 3.43          | 2.57          | 0.86         | 34               |
| 181                 | 3,6-Cl <sub>2</sub> ; quinuclidine                                                                    | 1) P         | 2.84               | 2.98          | 2.68          | 0.30         | 34               |
| 182                 | $3-CF_3$ , $6-Cl$ ; N(Hept) <sub>2</sub> (                                                            | 2) P         | 3.12               | 2.90          | 2.95          | 0.05         | 34               |
| 183                 | $1, 6-Br_2; N(Bu)_2$ (                                                                                | 2) P         | 3.13               | 2.90          | 2.93          | 0.03         | 34               |
| 184                 | $4-Cl; \tilde{N}(Hept),$ (                                                                            | 2) P         | 2.64               | 2.82          | 2.55          | 0.26         | 34               |
| 185                 | $3-CF_3; N(Bu)_2$                                                                                     | 2) P         | 2.93               | 2.80          | 2.72          | 0.08         | 34               |
| 186                 | $6-Cl; N(Bu)_2$ (                                                                                     | 2) P         | 2.75               | 2.77          | 2.58          | 0.19         | 34               |
| 187                 | $5-Cl; N(Bu)_2$                                                                                       | 2) P         | 2.64               | 2.77          | 2.50          | 0.27         | 34               |
| 188                 | $1 \text{-Cl}; \mathbf{N}(\mathbf{Bu}),$                                                              | 2) P         | 2.64               | 2.65          | 2.50          | 0.15         | 34               |
| 189                 | 2-Cl; N-Pip (                                                                                         | 2) P         | 2.51               | 2.56          | 2.39          | 0.17         | 34               |
| 190                 | $3,6-(CF_3)_2; CH_2N(Hept)_2$ ((                                                                      | E) P         | 3.40               | 3.20          | 3.26          | 0.06         | 16               |
| 191                 | $2,7,10-Br_3; N(Hept),$ (                                                                             | E) P         | 3.06               | 3.16          | 2.97          | 0.19         | <b>3</b> 5       |
| 19 <b>2</b>         | $2,7,10-Br_{3}; N(Bu)_{2}$ (                                                                          | E) P         | 3.43               | 3.09          | 3.20          | 0.11         | 34               |
| 193                 | 2-Br, 6-SMe; N(Bu) <sub>2</sub> (                                                                     | E) P         | 3.03               | 3.04          | 2.84          | 0.20         | 34               |
| 194                 | $2,5- \text{ or } 7-\text{Cl},; N(\text{Hept})_2$ (                                                   | E) P         | 2.64               | 2.79          | 2.75          | 0.03         | 34               |
| 1 <b>9</b> 5        | $10 \cdot OC_6 H_s; N(Bu)_2 \tag{(}$                                                                  | E) P         | 2.11               | 2.71          | 2.62          | 0.09         | 35               |
| 196                 | $1 \text{-OH}, \text{CH}_2 \text{N}(\text{Oct})_2$ (                                                  | E) P         | 2.53               | 2.65          | 2.20          | 0.45         | 34               |
| 197                 | $6-Cl; N(Hept)_2$ (                                                                                   | E) P         | 2.64               | 2.59          | 2.55          | 0.03         | 34               |
| 198                 | $6 \cdot \mathbf{F}; \mathbf{N}(\mathbf{Bu})_2$ (                                                     | E) P         | 2.35               | 2.58          | 2.43          | 0.14         | 34               |
| 1 <b>9</b> 9        | $1-Cl, N(Hept)_2$ (                                                                                   | E) P         | 2.53               | 2.56          | 2.47          | 0.08         | 34               |
| <b>2</b> 00         | $-; \mathbf{N}(\mathbf{Oct})_2$                                                                       | E) P         | 2.86               | 2.54          | 2.20          | 0.34         | 34               |
| 201                 | —; 2-Pip                                                                                              | E) P         | 2.73               | 2.53          | 2.11          | 0.41         | 34               |
| 202                 | $1-OH; CH_2N(Hex)_2 $                                                                                 | E) P         | 2.21               | 2.52          | 2.27          | 0.25         | 34               |
| 203                 | 10-Cl; N(Bu) <sub>2</sub> (                                                                           | E) P         | 2.34               | 2.52          | 2.50          | 0.02         | 35               |
| 204                 | 10-Br, N(Bu) <sub>2</sub> (                                                                           | E) P         | 2.24               | 2.51          | 2.54          | 0.03         | 34               |
| 205                 | $7 \text{-Cl}; \mathbf{N}(\mathbf{Bu})_2$ (                                                           | E) P         | 2.64               | 2.51          | 2.50          | 0.01         | 34               |
| 206                 | 10-OMe; N(Hept) <sub>2</sub> (                                                                        | E) P         | 2.67               | 2.51          | 2.10          | 0.41         | <b>3</b> 5       |
| 207                 | 3-Cl, $6$ -OMe; N(Bu) <sub>2</sub> (                                                                  | E) P         | 2.61               | 2.49          | 2.57          | 0.08         | 34               |
| 208                 | 6-Br; NH-2-norbornyl (                                                                                | E) P         | 2.19               | 2.49          | 2.47          | 0.02         | 37               |
| 209                 | $-; CH_2N(Bu)_2$ (                                                                                    | E) P         | 2.38               | 2.45          | 2.56          | 0.11         | 16               |
| 210                 | 6-Br; 2-(1,2,3,4-4H-quinoline) (                                                                      | E) P         | 2.58               | 2.44          | 2.47          | 0.03         | 37               |
| 211                 | $3-Cl; N(Hept)_2 $ (                                                                                  | E) P         | 2.64               | 2.44          | 2.47          | 0.03         | 34               |
| 212                 | $3 \cdot \mathbf{F}; \mathbf{N}(\mathbf{B}\mathbf{u})_2 \tag{(11)}$                                   | E) P         | 2.58               | 2.43          | 2.27          | 0.15         | 34               |
| 213                 | $-; N(Hex)_2$ (                                                                                       | E) P         | 2.64               | 2.40          | 2.28          | 0.12         | 34               |
| 214                 | $3-F; N(Hept)_{\pm}$ (                                                                                | E) P         | 2.75               | 2.32          | 2.31          | 0.01         | 34               |
| 215                 | $\begin{array}{c} 8-UI; N(Bu), \\ CD & N(CH) \end{array} $                                            | E) P         | 2.06               | 2.32          | 2.58          | 0.26         | 34               |
| 216                 | $0-Br; N(UH_2), \qquad ($                                                                             | E) P<br>D) D | 2.58               | 2.29          | 2.47          | 0.18         | 37               |
| 217                 | $= -; \mathbf{NH}(t - \mathbf{D}\mathbf{u}) \tag{(}$                                                  | E) P         | 2.22               | 2.09          | 2.12          | 0.03         | 34               |
| 218                 | $0,0,0,3,4$ $-01_4$ ; $U\Pi_2 N(BU)_2$                                                                | W2P          | 3.90               | 4.07          | 4.21          | 0.46         | 10               |
| 218                 | $0^{-01}, 0^{-01}, 3, 4^{-01}, N(Du)_2$<br>6 8 Cl = 4' 1 N(Du)                                        | Q2P          | 3.97               | 4.01          | 4.08          | 0.00         | ა <u>4</u><br>ი  |
| 220                 | $0,0^{-}01_{2}, 4^{-}1; 11(DU)_{2}$<br>$0,0^{-}01_{2}, 4^{-}.01_{2}, 9_{2}Dim$                        | W2P<br>Con   | 4.UJ<br>200        | 44.0U<br>∕/⁄⊏ | 2 00          | 0.44         | 9                |
| 221                 | 6 - 0 + 3, 4 - 01, 2 - 10 = 0.000<br>$6 - M = -7 - 01 + A - (2 + N(P_{11}))$                          | Q2P<br>Con   | 0,00<br>2 71       | 4.40<br>1 90  | 3 60          | 0.00<br>0 50 | 9                |
| 242                 | $3 \cdot F = 6 \cdot 8 \cdot 4' \cdot C1 \cdot N(Bu)_2$                                               | Q2P<br>Opp   | 0./4<br>2 05       | 4.42          | 303           | 0.00         | 10               |
| 220<br>994          | 6.4' - I = N(Bu)                                                                                      | Q2P<br>O2P   | 3 24               | 4.00          | 0.90<br>3 2 5 | 0.29         | 11               |
| 224<br>9 <b>9</b> 5 | 6.8-C[-3'4'-C] + N(Bu)                                                                                | vg∠r<br>Q2P  | 3.04               | 4.22          | 3 9 9         | 0.37         | 10               |
| 440                 | $\mathbf{O}_{10} \mathbf{O}_{12}, \mathbf{O}_{12}, \mathbf{O}_{12}, \mathbf{O}_{12}, \mathbf{O}_{12}$ | vg∠1         | 0.00               | 7.41          | 0.04          | 0.40         | 10               |

|            |                                                                                            |                     |                    | $\log 1/C$   |                    |                |                  |
|------------|--------------------------------------------------------------------------------------------|---------------------|--------------------|--------------|--------------------|----------------|------------------|
| no.        | substituents                                                                               | symbol              | calcd <sup>a</sup> | obsd         | calcd <sup>b</sup> | 1/0            | ref <sup>c</sup> |
|            | $7 \text{ OE}$ $4^{2} \text{ OL} \text{ N(Ps-)}$                                           |                     | 9.70               | A 1 4        | 9 77               | 0.27           | 24               |
| 226        | $(-0F_3, 4 - 01; N(Bu)_2) = 6.8 - (M_0) - 4^2 - C1 + 2 - Pin$                              | Q2P<br>O2P          | 3,70               | 4.14         | 3.77               | 0.37           | 34<br>19         |
| 221        | $6.8-Cl = 4^{2}-CF_{-1} \cdot N(Bu)$                                                       | Q2F<br>Q2P          | 3.00               | 4 04         | 4 09               | 0.02           | 9                |
| 229        | 6.8.4'-Cl <sub>2</sub> ; N(Bu) <sub>2</sub> :OTHP                                          | Q2P                 | 3.79               | 4.03         | 3.87               | 0.15           | 34               |
| 230        | $6.8 \cdot Cl_{2}, 4' \cdot Cl_{1} N(Bu)_{2}$                                              | $\tilde{Q}_{2P}^{}$ | 3,79               | 4.03         | 3.87               | 0.15           | 34               |
| 231        | $6, 8-Cl_{2}^{2}, 4'-F; N(Bu)_{2}^{2}$                                                     | Q2P                 | 3.52               | 3.98         | 3.64               | 0.34           | 9                |
| 232        | 6,8-Cl <sub>2</sub> , 4'-Cl; 2-Pip                                                         | Q2P                 | 3.93               | 3.97         | 3.96               | 0.01           | 9                |
| 233        | 8-CF <sub>3</sub> , 4'-Me; 2-Pip                                                           | Q2P                 | 3.64               | 3.94         | 3.66               | 0.28           | 9                |
| 234        | $6-OMe, 8-CF_3, 4'-Cl; N(Bu)_2$                                                            | Q2P                 | 3.61               | 3.93         | 3.68               | 0.25           | 34               |
| 235        | $6,8-Cl_2, 3'-CF_3; N(Bu)_2$                                                               | Q2P                 | 3.71               | 3.93         | 3.84               | 0.09           | 34               |
| 236        | $(-CI, 4 - CI; N(Bu)_2)$                                                                   | Q2P<br>O2P          | 3.64               | 3.91         | 3.71               | 0.20           | 34               |
| 207        | 6.8-(1+2)                                                                                  | Q2F<br>02P          | 3,55               | 3.90         | 3.62               | 0.20           | 34               |
| 239        | 8-CF = 4'-OMe' 2-Pip                                                                       | Å2P                 | 3.63               | 3.88         | 3.63               | 0.20<br>0.25   | 12               |
| 240        | 6-OMe, 7,4'-Cl.; NHBu                                                                      | $\tilde{Q}_{2P}^{}$ | 3.48               | 3.88         | 3.40               | 0.48           | 14               |
| 241        | $6-OMe_{, 7, 4}'-Cl_{2}; N(Bu)_{2}$                                                        | Q2P                 | 3.49               | 3.87         | 3.41               | 0.46           | 34               |
| 242        | $3,6,8,4'-Cl_4; N(Bu)_2$                                                                   | Q2P                 | 3.98               | 3.87         | 4.10               | 0.23           | 10               |
| 243        | 7-Cl, 8-Me, $4'$ -Cl; N(Hex) <sub>2</sub>                                                  | Q2P                 | 3.58               | 3.85         | 3.58               | 0.27           | 34               |
| 244        | 6,8,4'-Cl <sub>3</sub> ; 4-Me-piperazine                                                   | Q2P                 | 3.80               | 3.81         | 3.88               | 0.07           | 9                |
| 245        | 6-Cl, 4'-Cl; $N(Bu)_2$                                                                     | Q2P                 | 3.57               | 3.80         | 3.63               | 0.17           | 34               |
| 246        | $6,8 \cdot Me_2, 4' \cdot Cl; N(Hex)_2$                                                    | Q2P<br>O2P          | 3.41               | 3.10         | 3.52               | 0.22           | 34               |
| 24 (       | $0,0-01_2, 4-01; N(Me)-r-rr$<br>8.Mo. 4'.F. 9.Pin                                          | vy2r<br>∩9P         | 3.10               | 3.12         | 3.00               | 0.14           | 34               |
| 240<br>940 | $3.2^{\circ}-C$ H = $6.8.4^{\circ}-C1$ · N-Pin                                             | 02P                 | 3.83               | 3.69         | 3.95               | 0.26           | 34               |
| 240        | $8-CF_{1}$ , 4'-Cl; N(Bu).                                                                 | Ö2P                 | 3.76               | 3.69         | 3.83               | 0.14           | 9                |
| 251        | $7-CF_{3}, 3', 4'-Cl_{3}; N(Hex)_{2}$                                                      | $\tilde{Q}_{2P}^{}$ | 3.69               | 3.68         | 3,70               | 0.02           | 34               |
| 252        | 8-CF <sub>3</sub> ; 2-Pip                                                                  | $\dot{Q}_{2}P$      | 3.53               | 3.68         | 3.59               | 0.09           | 34               |
| 253        | 8-Me, 4'-Cl; 2-Pip                                                                         | Q2P                 | 3.54               | 3.67         | 3.55               | 0.12           | 34               |
| 254        | $6, 8-Cl_2, 2', 4'-Cl_2; N(Bu)_2$                                                          | Q2P                 | 3.87               | 3.66         | 3.98               | 0.32           | 10               |
| 255        | 6,8,3',4'-Cl <sub>4</sub> ; NHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                | Q2P                 | 3.80               | 3.66         | 3.78               | 0.12           | 15               |
| 256        | $6,7-\text{Cl}_2, 4$ -OMe; N(Bu) <sub>2</sub>                                              | Q2P<br>O2P          | 3.68               | 3.63         | 3.59               | 0.04           | 14               |
| 207        | $7-F, 4-CI; N(BU)_2$                                                                       | Q2P<br>O2P          | 3.38               | 3.62         | 3 43               | 0.04           | 9                |
| 250        | $6.8 \cdot Cl = 3' \cdot 4' \cdot Cl \cdot NH(c \cdot Pr)$                                 | Q2P                 | 3.82               | 3.60         | 3.79               | $0.10 \\ 0.19$ | 9                |
| 260        | $3.2'-C.H.$ $6.8.3'-Cl_1;$ N-Pip                                                           | Q2P                 | 3.73               | 3.60         | 3.75               | 0.15           | 34               |
| 261        | 6,8,4'-Cl.; NH-1-adamantyl                                                                 | Q2P                 | 3.58               | 3.59         | 3.69               | 0.10           | 34               |
| 262        | $7 - CF_3, 4' - Cl; N(Hex)_2$                                                              | Q2P                 | 3.58               | 3.55         | 3.69               | 0.14           | 34               |
| 263        | 6, 8, 4'-Cl <sub>3</sub> ; NH(c-pent)                                                      | Q2P                 | 3.62               | 3.53         | 3.71               | 0.18           | 34               |
| 264        | 7-Cl; 2-Pip-6-Me                                                                           | Q2P                 | 3.30               | 3.52         | 3.41               | 0.11           | 24               |
| 265        | 6,8,4 -Cl <sub>3</sub> ; N-Plp<br>7 L 4' Cl <sub>2</sub> N(B <sub>11</sub> )               | Q2P<br>O2P          | 3.62               | 3.49         | 3.71               | 0.22<br>0.34   | 11               |
| 200        | $(-1, 4 - 01, N(Du)_2)$<br>8-Met 2-Pin                                                     | Q21<br>Q2P          | 3.18               | 3.38         | 3.23               | 0.04<br>0.14   | $12^{11}$        |
| 268        | $6-OMe_{1}, 2-11p_{1}, 4'-OMe_{1}, N(Hex)_{1}$                                             | Q2P                 | 3.25               | 3.38         | 3.15               | 0.23           | 34               |
| 269        | $6, 8-Cl_2, 4'-Cl; N(Hex)_2$                                                               | Q2P                 | 3.61               | 3.37         | 3.76               | 0.39           | 34               |
| 270        | 6-OMe, $3', 4'$ -Cl <sub>2</sub> ; N(Hex) <sub>2</sub>                                     | Q2P                 | 3.28               | 3.35         | 3.22               | 0.13           | 34               |
| 271        | $6,7-Cl_2, 4'-OMe; N(Hex)_2$                                                               | Q2P                 | 3.58               | 3.35         | 3.53               | 0.18           | 14               |
| 272        | $6.8 \cdot \text{Cl}_2$ ; N(Hex) <sub>2</sub>                                              | Q2P                 | 3.39               | 3.35         | 3.54               | 0.19           | 9                |
| 273        | 6 OMe, 3, 4 $\cdot$ OI <sub>2</sub> ; N(Bu) <sub>2</sub><br>6 OL 2' 4' (OMo) $\cdot$ N(Bu) | Q2P<br>02P          | 349                | 0.00<br>3.33 | 3,29               | 0.04           | 9<br>14          |
| 214        | 6-Cl 3' 4'-(OMe): N(Hex).                                                                  | Q2P                 | 3,39               | 3.32         | 3.30               | 0.02           | 14               |
| 276        | 7-OMe, $3', 4'-Cl_2; N(Et)_2$                                                              | Q2P                 | 3.53               | 3.32         | 3.45               | 0.13           | $34^{-1}$        |
| 277        | 6-OMe, 7-Cl, $4'$ -OMe; N(Bu) <sub>2</sub>                                                 | Q2P                 | 3.28               | 3.32         | 3.16               | 0.16           | 14               |
| 278        | $6, 8-Cl_2, 3'-CF_3; N(Hex)_2$                                                             | Q2P                 | 3.51               | 3.32         | 3.71               | 0.39           | 9                |
| 279        | 8-Cl, 4'-Cl; $N(Hex)_2$                                                                    | Q2P                 | 3.46               | 3.32         | 3.56               | 0.24           | 9                |
| 280        | 7-Cl, $3', 4'$ -(OMe) <sub>2</sub> ; N(Hex) <sub>2</sub>                                   | Q2P                 | 3.47               | 3.32         | 3.38               | 0.06           | 9                |
| 281        | $7,8-(CH=CH)_2, 6-Cl, 3',4',5'-(OMe)_3; N(Bu)_2$                                           | Q2P                 | 3.46               | 3.32         | 3.24               | 0.08           | 22               |
| 282        | $(, 4 - \text{Cl}_2; \text{N}(\text{HeX})_2)$<br>2 OMa 6 8 (Ma) 4 (-Cl · N(Bu))            | Q2P<br>Opp          | 3.54               | 3.28<br>3.96 | 3.04<br>316        | 0.36           | 34<br>10         |
| 200<br>984 | $7-C1 = 4^{2}-C1$ ; NH-1-adamantvl                                                         | vg⊿r<br>Ω2P         | 3 4 5              | 3.20         | 3 53               | 0.20           | 34               |
| 285        | 7-OMe. $3'.4'$ -Cl <sub>2</sub> ; N(Bu).                                                   | Ö2P                 | 3.59               | 3.21         | 3.51               | 0.30           | 14               |
| 286        | $7,8-(CH=CH)_2, 4'-Cl; 2-Pip$                                                              | $\tilde{Q}_{2P}$    | 3.50               | 3.20         | 3.49               | 0.29           | 34               |
| 287        | 8-Me, 4'-OMe; 2-Pip                                                                        | Q2P                 | 3.29               | 3.18         | 3.27               | 0.09           | 12               |
| 288        | $6, 8-\mathrm{Cl}_2; \mathrm{N}-\mathrm{Pip}$                                              | Q2P                 | 3.31               | 3.17         | 3.44               | 0.27           | 9                |
| 289        | $6,8-Cl_2, 3-I; N(Bu)_2$                                                                   | Q2P                 | 3.65               | 3.16         | 3.79               | 0.63           | 11               |
| 290        | $6,4 - (OMe)_2, 8 - CI; N(Hex)_2$                                                          | Q2P                 | 3.18               | 3.15         | 3.21               | 0.06           | 34<br>14         |
| 291        | 6-Cl 3' $4'$ -(OMe). N(Oct)                                                                | Q2F<br>0.2P         | 3.32<br>3.16       | 3.15         | 3.23<br>3.14       | 0.08           | 4<br>Q           |
| 292        | $8-CF_{1}$ , $4'-Cl_{1}$ ; N(Hept).                                                        | Å2P                 | 3.50               | 3.13         | 3.66               | 0.53           | 9                |
| 294        | $6-Cl, 3', 4'-(OMe)_{2}; N(Et)_{2}$                                                        | $\tilde{Q}_{2P}$    | 3.29               | 3.12         | 3.21               | 0.09           | 34               |
| 295        | $6-F, 4'-Cl; N(Bu)_2$                                                                      | Q2P                 | 3.38               | 3.11         | 3.42               | 0.31           | 34               |
| 296        | $6-Cl, 3', 4'-(OMe)_2; N(Oct)_2$                                                           | Q2P                 | 3.16               | 3.11         | 3.14               | 0.03           | 14               |
| 297        | 7-OMe, $3', 4'-Cl_2; N(Hex)_2$                                                             | Q2P                 | 3.49               | 3.10         | 3.44               | 0.34           | 14               |
| 298<br>999 | $7.01_2$ , $3.41.0$ CH $O: N(B_1)$                                                         | 62P                 | 3.12<br>3.98       | 3.09         | 3.07               | 0.58           | 34<br>34         |
| 300        | 6-OMe, $7-Cl$ ; $4'-Cl$ ; $N(Hex)$ ,                                                       | Q2P                 | 3.39               | 3.07         | 3.34               | $0.11 \\ 0.27$ | $14^{-14}$       |

| Table II (Continueu) | Table | Π | (Continue | d) |
|----------------------|-------|---|-----------|----|
|----------------------|-------|---|-----------|----|

| ·           |                                                                                                                   | · · · · ·        |                                       |                    | $\log 1/C$          |                     | ······         |                  |
|-------------|-------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|--------------------|---------------------|---------------------|----------------|------------------|
|             |                                                                                                                   |                  |                                       |                    |                     |                     | $\Delta \log$  | •                |
| no.         | substituents                                                                                                      |                  | symbol                                | calcd <sup>a</sup> | obsd                | calcd <sup>o</sup>  | 1/C            | ref <sup>c</sup> |
| 301         | $7,8-(CH=CH)_2, 3,2',4'-(Me)_3, 6-Cl; N(Bu)_2$                                                                    |                  | Q2P                                   | 3.20               | 3.05                | 3.30                | 0.25           | 22               |
| 302         | $7,8-(CH=CH)_2$ ; 2-Pip                                                                                           |                  | Q2P                                   | 3.13               | 3.05                | 3.17                | 0.12           | 34               |
| 303         | $6,7 \cdot OCH_2O; 4' \cdot Cl; N(Bu)_2$                                                                          |                  | Q2P                                   | 3.24               | 2.99                | 3.13                | 0.14           | 34               |
| 304         | 6-OMe, 7-Cl, 4'-OMe; $N(Et)_2$                                                                                    |                  | Q2P                                   | 3.15               | 2.92                | 3.06                | 0.14           | 14               |
| 305         | $6-OMe; N(Bu)_2$                                                                                                  |                  | Q2P                                   | 2.83               | 2.89                | 2.90                | 0.01           | 34               |
| 306         | $5.8-(OM_2)$ , 4 -OH; N(Bu) <sub>2</sub><br>5.8-(OM <sub>2</sub> ) 4' Cl: NH 1 adamentul                          |                  | Q2P<br>Q2P                            | 3.35               | 2.66                | 3.44                | 0.78           | 34               |
| 307         | $2.8 \cdot (CF) + 2 \cdot Pin$                                                                                    |                  | Q2P<br>02F                            | 3.00               | 2.40                | 3.11                | 0.63           | 04<br>91         |
| 309         | $2.3^{\circ}(\text{CF}_3)_2, 2^{\circ}\text{Pip}$                                                                 |                  | Q2F                                   | 3 55               | 4.41                | 3.66                | 0.00           | 21               |
| 310         | $2.8 \cdot (CF_3)_2, 2.11p$<br>2.8 · (CF_3)_2, 6 · OMe: 2 · Pip                                                   |                  | Q2F                                   | 3.46               | 3.98                | 3.57                | 0.41           | 21               |
| 311         | $2,6-(CF_3)_2; 2-Pip$                                                                                             |                  | $\tilde{Q}_{2F}^{}$                   | 3.61               | 3.65                | 3.72                | 0.07           | $\frac{1}{21}$   |
| 312         | $2, 8 - (CF_3)_2$ ; NHBu                                                                                          |                  | Q2F                                   | 3.52               | 3.65                | 3.67                | 0.02           | 19               |
| 313         | $2,8-(CF_3)_2; N(Bu)_2$                                                                                           |                  | Q2F                                   | 3.59               | 3.60                | <b>3</b> .73        | 0.13           | 19               |
| 314         | $2,8-(CF_3)_2; CH_2NH(t-Bu)$                                                                                      |                  | Q2F                                   | 3.55               | 3.47                | 4.02                | 0.55           | 19               |
| 315         | $2-CF_3$ , 7,8-(CH) <sub>4</sub> ; 2-Pip                                                                          |                  | Q2F                                   | 3.28               | 3.44                | 3.35                | 0.09           | 23               |
| 316         | $2 - CF_3, 6 - CI, 7, 8 - (CH = CH)_2; 2 - Pip$                                                                   |                  | Q2F                                   | 3.58               | 3.43                | 3.65                | 0.22           | 23               |
| 317         | $2,8-(CF_3)_2; CH_2-2-Pip$                                                                                        |                  | Q2F                                   | 3.54               | 3.36                | 3.69                | 0.33           | 19               |
| 310         | $2,6-(CF_3)_2; C(Me)_2NDU$<br>$2,6-(CF_3) + CH_N(B_1)$                                                            |                  | Q2F<br>02F                            | 3.00               | 3.27<br>2.21        | 3.74                | 0.47           | 19               |
| 320         | $2.04(CF_3)_2, CH_2N(Bu)_2$<br>2.CF 6.0Me: 2.Pip                                                                  |                  | Q21<br>02F                            | 0.02<br>0.80       | 0.01<br>0.07        | 4.07                | 0.70           | 34<br>20         |
| 321         | $2 \text{ CF}_{3}$ , $0 \text{ CMe}$ ; $2 \text{ Pip}$                                                            |                  | Q21<br>Q2F                            | 3.25               | 2.07                | 3.35                | 0.03           | 20               |
| 322         | $2 \circ CF_{3}, 6.8 \cdot Me_{3}; 2 \cdot Pip$                                                                   |                  | Q2F                                   | 3.43               | 2.93                | 3.54                | 0.61           | 20               |
| 323         | $2, 8-(CF_3), NHPr$                                                                                               |                  | Q2F                                   | 3.46               | 2.92                | 3.63                | 0.71           | 19               |
| 324         | $2, 8-(CF_3)_2, N(Pr)_2$                                                                                          |                  | <b>Q</b> 2F                           | 3.49               | 2.88                | 3.65                | 0.77           | 19               |
| 325         | 2-CF <sub>3</sub> , 6-Me; 2-Pip                                                                                   |                  | Q2F                                   | 3.25               | 2.84                | 3.35                | 0.51           | 34               |
| 326         | $6, 8-Cl_2, 4'-CF_3; N(Bu)_2$                                                                                     |                  | Q2COP                                 | 4.12               | 4.86                | 4.23                | 0.63           | 18               |
| 327         | $6,3',5'-Cl_3, 8-CF_3; N(Bu)_2$                                                                                   |                  | Q2COP                                 | 4.26               | 4.82                | 4.43                | 0.39           | 18               |
| 328         | $6,8-Cl_2, 3',5'-(CF_3)_2; N(Bu)_2$                                                                               |                  | Q2COP                                 | 4.12               | 4.64                | 4.29                | 0.35           | 18               |
| 329         | $6 - CI, 8, 3 - (CF_3)_2; N(Bu)_2$                                                                                |                  | Q2COP                                 | 4.10               | 4.52                | 4.26                | 0.26           | 18               |
| 330         | $6, 3, 4 - Cl_3, 6 - CF_3; N(Bu)_2$                                                                               |                  | Q2COP                                 | 4.37               | 4.52                | 4.35                | 0.17           | 18               |
| 330         | $6.4^{\prime}$ -Cl $8$ -CF $\cdot$ N(Bu)                                                                          |                  | Q2COP                                 | 3.99               | 2 0 2               | 4.08                | 0.40           | 10               |
| 333         | 6.8-Cl + N(Bu)                                                                                                    |                  | Q2COP                                 | 366                | 3,50                | 4.20                | 0.30           | 10               |
| 334         | 6.8.4'-Cl.: 2-Pip                                                                                                 |                  | Q2001<br>Q20P                         | 4 07               | 4 16                | 4 11                | 0.05           | 17               |
| 335         | 6,8,3',4'-Cl,; 2-Pip                                                                                              |                  | Q2OP                                  | 4.26               | 4.10                | 4.17                | 0.00           | 17               |
| 336         | $6,4'-Cl_2, 2-Pip$                                                                                                |                  | Q2OP                                  | 3.82               | 3.23                | 3.83                | 0.60           | 17               |
| 337         | 6-Me, 4'-Cl; 2-Pip                                                                                                |                  | <b>Q</b> 2NP                          | 3.44               | 2.87                | 3.45                | 0.58           | 17               |
| 338         | $2-t-Bu$ , $6-Cl$ , $7, 8-(CH=CH)_2$ ; $N(Bu)_2$                                                                  |                  | Q2TB                                  | <b>3</b> .26       | <b>2.9</b> 8        | 3.37                | 0.39           | 22               |
| 339         | 2-t-Bu, 6-Cl; N(Bu) <sub>2</sub>                                                                                  |                  | Q2TB                                  | 3.21               | 2.91                | 3.31                | 0.40           | 30               |
| 340         | $5 \cdot Br; N(Bu)_2$                                                                                             |                  | Q2TH                                  | 3.09               | 3.06                | 3.18                | 0.12           | 34               |
| 341         | $0 - Br; N(CH_2)_6$<br>2-adament 1 yl 8-CF : N(By)                                                                |                  | Q2TH<br>O2AD                          | 2.91               | 2.89                | 3.01                | 0.12           | 34               |
| 343         | 2-adamant-1-yl, $6.8$ -Cl $\cdot N(Bu)$                                                                           |                  | Q2AD<br>Q2AD                          | 3.40               | 3.00                | 0.02<br>3.55        | 0.07           | 30               |
| 344         | 6.8.3'.4'-Cl.: N(Bu).                                                                                             |                  | Q2P4H                                 | 3.93               | 3.60                | 3.91                | 0.31           | 25               |
| 345         | 4'-Cl; N(Bu),                                                                                                     |                  | Q3P3N                                 | 3.26               | 2.85                | 3.31                | 0.56           | 24               |
| 346         | 7-Cl; $N(Et)_z$                                                                                                   |                  | Q                                     | 2.83               | <b>3</b> .03        | 3.04                | 0.01           | 34               |
| 347         | <b>3-Me</b> , $6, 8, 2^{7}, 4^{7}$ -Cl <sub>3</sub> ; N(Bu) <sub>2</sub>                                          | (2)              | Q2P                                   | 3.12               | 3.15                | 3.15                | 0.00           | 10               |
| 348         | 6,8,4'-Me <sub>3</sub> ; 2-Pip                                                                                    | (1)              | Q2P                                   | 2.75               | 3.11                | 2.66                | 0.45           | 12               |
| 349         | $3 - Me, 6, 8, 4 - Cl_3; N(Bu)_2$                                                                                 | (2)              | Q2P                                   | 3.06               | 3.06                | 3.06                | 0.00           | 10               |
| 300         | 6-Me, 4 -OMe; 2-Pip                                                                                               | (2)              | Q2P<br>Opp                            | 2.59               | 3.00                | 2.48                | 0.52           | 12               |
| 352         | $(10 \Gamma_3, 4 \cdot 0), N(10 \chi)_2$<br>$6 \cdot 0 M_{\bullet} = 3' \cdot 4' \cdot 0) + N(C + 0 E_{\bullet})$ | (2)              | 92r<br>02P                            | 2.70               | 2.00                | 2.10                | 0.09           | 54<br>11         |
| 353         | 7-Cl: N(Oct).                                                                                                     | (1)              | Q21<br>Q2P                            | 2.00               | $\frac{2.00}{2.82}$ | 2.45                | $0.34 \\ 0.37$ | 9                |
| 354         | $7 \cdot \text{Cl}, 3', 4' \cdot (\text{OMe})_{2}; \text{N(Et)}_{2}$                                              | (2)              | Q2P                                   | 2.67               | 2.81                | 2.49                | 0.31           | 14               |
| 355         | $6,4'-Cl_2, 7-OMe; N(Hex),$                                                                                       | $(\overline{2})$ | $\tilde{Q}_{2P}^{}$                   | 2.83               | 2.80                | 2.69                | 0.11           | 9                |
| 356         | 6,8,4'-Me <sub>3</sub> ; N(Et) <sub>2</sub>                                                                       | (2)              | $Q_{2P}$                              | 2.59               | 2.80                | 2.55                | 0.25           | 9                |
| 357         | $6,4'-Cl_2, 7-OMe; N(Bu)_2$                                                                                       | (2)              | Q2P                                   | 2.93               | 2.76                | 2.76                | 0.00           | <b>3</b> 2       |
| <b>3</b> 58 | 7-Cl; 2-Pip                                                                                                       | (1)              | Q2P                                   | 2.70               | 2.72                | 2.66                | 0.06           | 34               |
| 359         | 6,8,4 -Me <sub>3</sub> ; N(Bu) <sub>2</sub>                                                                       | (2)              | Q2P                                   | 2.63               | 2.72                | 2.59                | 0.13           | 32               |
| 360         | 2-Ph-quinine                                                                                                      | (2)              | Q2P                                   | 2.00               | 2.72                | 1.97                | 0.75           | 22               |
| 362         | 8-Cl · 2-Pin                                                                                                      | (2)              | Q2P<br>O2P                            | 2.60               | 2.70                | 2.01                | 0.09           | 34<br>24         |
| 363         | 6.8-Cl : 4-Ph-ninerazine                                                                                          | (2)              | Q2F<br>Q2P                            | 2.02               | 2.05                | 2.58                | 0.03           | 13               |
| 364         | 7.4'-Cl.; 4-Me-piperazine                                                                                         | (1)              | Q21<br>Q2P                            | $2.00 \\ 2.76$     | 2.66                | 2.00<br>2.74        | 0.08           | 13               |
| 365         | $6, 8-Cl_2; NH(c-pent)$                                                                                           | $(\overline{1})$ | $\tilde{\mathbf{Q}}_{2\mathbf{P}}^{}$ | 2.61               | 2.54                | 2.64                | 0.10           | 34               |
| 366         | $-; N(Bu)_2$                                                                                                      | (2)              | $\mathbf{Q}_{2\mathrm{P}}$            | 2.28               | 2.54                | 2.26                | 0.28           | 9                |
| 367         | 7 - F, 4' - F, N(Bu),                                                                                             | (1)              | Q2P                                   | 2.53               | 2.52                | 2.53                | 0.01           | 13               |
| 368         | 6-Me; 2-Pip                                                                                                       | (1)              | Q2P                                   | 2.49               | 2.47                | 2.44                | 0.03           | 12               |
| 369         | $2 - UF_3, 6 - CI; 2 - Pip$                                                                                       | (1)              | Q2F                                   | 2.70               | 2.53                | 2.70                | 0.17           | 20               |
| 370         | $\mathbf{o}, \mathbf{o}$ -me <sub>2</sub> ; $4$ -U; $2$ -rip<br><b>4</b> '-C: $2$ -Pin                            | (2)              | Q2OP<br>Coop                          | 3.12               | 2.12                | 3.05                | 0.33           | 17               |
| 379         | $4^{-}$ Cl: 2-Pin                                                                                                 | (2)              | Q20P<br>Q2NP                          | 2.84<br>9.80       | 2.00                | 2.70<br>2.81        | 0.07<br>0.07   | 17               |
| 373         | 6.4'-Cl <sub>2</sub> ; 2-Pip                                                                                      | (2)              | Q2NP                                  | 2.88               | $\frac{2.72}{2.72}$ | $\frac{2.01}{2.79}$ | 0.07           | 17               |
| 374         | 4'-Cl; 2-Pip                                                                                                      | $(\overline{1})$ | <b>Q</b> 2NP                          | 2.57               | 2.52                | 2.48                | 0.04           | 17               |
| <b>37</b> 5 | $4'$ -Cl; N( $\overline{Bu}$ ) <sub>2</sub>                                                                       | (E)              | $\mathbf{Q}_{2}\mathbf{P}$            | 2.63               | 2.73                | 2.57                | 0.16           | 34               |

|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |              |                     | $\log 1/C$    |                     | . 1               |                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|---------------------|---------------|---------------------|-------------------|------------------|
| no                | substituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | symbol       | alada               | ohed          | caladb              | $\Delta \log 1/C$ | rof <sup>C</sup> |
| 110.              | substituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | symbol       | Calcu               |               | calcu               |                   |                  |
| 376               | 6-Cl, 7-OMe; 4'-OMe; $N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (E)                        | Q2P          | 2.72                | 2.71          | 2.51                | 0.20              | 9                |
| 377               | $(OMe)_2; N(HeX)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (E)<br>(F)                 | Q2P<br>O2P   | 2.69                | 2.64          | 2.50                | $0.14 \\ 0.27$    | 9                |
| 379               | 4'-OMe: 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (E)                        | Q21<br>Q2P   | $\frac{2.33}{2.42}$ | 2.53          | $\frac{2.00}{2.31}$ | 0.27              | 34               |
| 380               | $5.8-(OMe)_{2}, 4'-Cl; N(Bu)_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(\widetilde{\mathbf{E}})$ | Q2P          | 2.54                | 2.52          | 2.47                | 0.05              | 34               |
| 381               | 6,8-Cl <sub>2</sub> ; 4-Me-piperazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (E)                        | Q2P          | 2.62                | 2.48          | 2.64                | 0.16              | 34               |
| 382               | 7-F, 4'-F; N-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (E)                        | Q2P          | 2.32                | 2.45          | 2.33                | 0.12              | 9                |
| 383               | 6-OMe; N(Et) <sub>2</sub><br>$C \approx (M_{2}) = A' CU (M_{2}) N(B_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (E)                        | Q2P          | 1.94                | 2.44          | 1.96                | 0.48              | 34               |
| 384<br>385        | $6.8 - (Me)_2, 4 - Cl; CH(Me)N(Bu)_2$<br>6.4' - Me + 2-Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (E)<br>(E)                 | Q2P<br>Q2P   | 2.84                | 2.42<br>9 4 9 | 2.82                | 0.40              | 34<br>34         |
| 386               | 6.8.2'.6'-CL: N(Bu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (E)<br>(E)                 | Å2P          | 2.99                | 2.41          | $\frac{2.01}{3.04}$ | 0.63              | 34               |
| 387               | 4'-Me; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(\widetilde{\mathbf{E}})$ | Q2P          | 2.46                | 2.38          | 2.35                | 0.03              | 34               |
| 388               | -; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (E)                        | Q2P          | 2.32                | 2.37          | 2.27                | 0.10              | 34               |
| 389               | 6,8-Cl <sub>2</sub> ; NH-1-adamantyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (E)                        | Q2P          | 2.61                | 2.36          | 2.64                | 0.28              | 13               |
| 390               | 6-F, 4'-Me; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (E)                        | Q2P          | 2.65                | 2.34          | 2.55                | 0.21              | 32               |
| 391               | 7,4 -F <sub>2</sub> ; 2-Pip<br>7,4'-F : 4-Mo-piperezine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (E)<br>(F)                 | Q2P<br>O2P   | 2.58                | 2.32          | 2.04                | 0.22              | 13               |
| 393               | - 2-pyrrolidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (E)                        | Q21<br>Q2P   | 1.95                | 2.26          | 1.98                | 0.28              | 34               |
| 394               | 3', 5'-Me <sub>2</sub> ; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(\mathbf{\tilde{E}})$     | Q2P          | 2.35                | 2.24          | 2.27                | 0.03              | 34               |
| 395               | 6,8-Cl <sub>2</sub> ; <i>N</i> -morpholino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Ē)                        | Q2P          | 2.35                | 2.23          | 2.43                | 0.20              | 34               |
| 396               | $2,8-(CF_3)_2$ ; CH <sub>2</sub> NHPr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (E)                        | Q2F          | 2.83                | 2.82          | 2.88                | 0.06              | 19               |
| 397               | $2,8-(CF_3)_2$ ; NH(t-Bu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (E)                        | Q2F          | 2.80                | 2.64          | 2.86                | 0.22              | 19               |
| 398               | $2,8-(CF_3)_2$ ; C(Me) <sub>2</sub> NHEt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (E)                        | Q2F          | 2.81                | 2.54          | 2.87                | 0.33              | 19               |
| 399               | $2-CF_3, 8-F; 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (E)                        | Q2F          | 2.43                | 2.36          | 2.44                | 0.08              | 32               |
| 400               | $2-CF_3, 6-F; 2-P1p$<br>7.8 (CH-CH) 2 Ma 6 Cl: N(Pu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (E)<br>(F)                 | Q2F          | 2.43                | 2.33          | 2.44                | 0.11              | 32<br>99         |
| 401               | $1,0.001-0.01_2, 0.001, 0.001, 0.001_2$<br>8-CF : 2-Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (E)                        | å            | 2.55                | 2.30<br>2.75  | 2.50<br>2.58        | 0.10              | 32               |
| 403               | $2-(1-Me-c-pent) = 6 - 8-Cl_{+} : N(Bu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (E)                        | ລັ           | 2.75                | 2.66          | 2.78                | 0.12              | 34               |
| 404               | -: N(Oct),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\widetilde{\mathbf{E}})$ | õ            | 2.28                | 2.44          | 2.27                | 0.17              | 34               |
| 405               | $7-CF_3$ ; N(Bu),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | È)                         | Q            | 2.51                | 2.51          | 2.55                | 0.04              | 32               |
| 406               | 2-CONH <sub>2</sub> , $8$ -CF <sub>3</sub> ; $2$ -Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (E)                        | Q            | 2.37                | 2.42          | 2.50                | 0.08              | 34               |
| 407               | 2-NHC <sub>4</sub> H <sub>9</sub> ; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (E)                        | Q            | 2.03                | 2.41          | 1.99                | 0.42              | 34               |
| 408               | quinine: O-succinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (E)                        | Q            | 1.83                | 2.28          | 1.84                | 0.44              | 34               |
| 409               | 2-OEt; $N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (E)                        | Q            | 2.12                | 2.24          | 2.15                | 0.08              | 34               |
| 410               | 2-Cl; $N(Et)_2$<br>7-Cl: 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (E)<br>(下)                 | Ŷ            | 1.95                | 2.14<br>9.14  | 2.05                | 0.09              | 17               |
| 411               | auinine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (E)                        | ລັ           | 1.83                | 2.14<br>2.06  | 1.40                | 0.23<br>0.22      | 22               |
| 413               | dihydroquinine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(\mathbf{E})$             | å            | 1.85                | 2.00<br>2.04  | 1.85                | 0.19              | $\frac{1}{34}$   |
| 414               | $7,8-(CH=CH)_2, 3-Me; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ÌE)                        | Q            | 2.28                | 2.15          | 2.27                | 0.12              | 22               |
| 415               | 8-Cl; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (E)                        | Q            | 2.32                | 2.01          | 2.35                | 0.34              | 34               |
| 416               | quinine: OCOC, H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (E)                        | ୁଦ           | 1.83                | 1.98          | 1.84                | 0.14              | 34               |
| 417               | 6-OEt; quinuclidine-5-Et<br>6.9. $O(1 - 2)' OE + N(Bu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (E)<br>(E)                 | မိုက္စာ      | 2.00                | 1.97          | 2.00                | 0.03              | 34               |
| 418               | $6_{\text{Mo}} \frac{1}{4} \frac{1}{2} \text{Mo} \frac{2}{2} \frac{1}{2} \frac{1}$ | (臣)<br>(도)                 | Q2OP<br>Q2OP | 3.17<br>2.75        | 2.70          | 3.20                | 0.44              | 34               |
| $\frac{110}{420}$ | 2-t-Bu, 7.8-(CH=CH), N(Bu),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\mathbf{E})$             | Q2TB         | 2.34                | 2.65          | 2.32                | 0.33              | 34               |
| 421               | 2-t-Bu, 6-Me; N(Bu),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(\vec{\mathbf{E}})$       | Q2TB         | 2.39                | 2.53          | 2.39                | 0.14              | 34               |
| 422               | 2-t-Bu, 6-Cl; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (E)                        | Q2TB         | 2.59                | 2.48          | 2.55                | 0.07              | 34               |
| 423               | $2-t-Bu$ , $6-Me$ , $7, 8-(CH=CH)_2$ ; $N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (E)                        | Q2TB         | 2.44                | 2.32          | 2.44                | 0.12              | 22               |
| 424               | 2-t-Bu; 2-Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (E)                        | Q2TB         | 2.28                | 2.08          | 2.24                | 0.16              | 34               |
| 425               | $5 - Br; N(Et)_2$<br>$5' - Br; NM_0 CH C H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (王)<br>(王)                 | Q21H<br>02TH | 2.20                | 2.38          | 2.28                | 0.10              | 34<br>34         |
| 427               | 6-C: CH(CH,OH)N(Et).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (E)                        | Q2TH         | 2.19                | 2.20<br>2.12  | 2.21<br>2.27        | 0.05              | 34               |
| 428               | 2-adamant-1-yl, 6-Cl; N(Bu),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(\widetilde{\mathbf{E}})$ | Q2AD         | 2.52                | 3.05          | 2.53                | 0.52              | 34               |
| 429               | $6, 8-Cl_2; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ÌE)                        | Q2CH2P       | 2.76                | 2.60          | 2.77                | 0.17              | 34               |
| 430               | 8-Cl; $N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (E)                        | Q2CH2P       | 2.51                | 2.30          | 2.50                | 0.20              | 18               |
| 431               | $6,8-Cl_2; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (E)                        | Q2CF2P       | 2.80                | 2.61          | 2.81                | 0.20              | 34               |
| 432               | $\begin{array}{l} 5 \cdot \mathbf{U}_1 \cdot \mathbf{N} \left( \mathbf{B} \mathbf{U} \right)_2 \\ 6 \cdot \mathbf{S} \cdot \mathbf{C} \mathbf{I} + 2 \cdot \mathbf{P} \mathbf{i} \mathbf{n} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (E)<br>(E)                 | Q2CF2P       | 2.56                | 2.46          | 2.56                | 0.10              | 18               |
| 400<br>434        | $4' 4'' - (CF_{*}) = CH_N(Bu).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (E)                        | y2r4⊓<br>PV  | 2.92                | 2.11          | 2.00<br>1 91        | 0.17              | 54<br>16         |
| 435               | $4'.4''-(CF_{3})_{2}; NH(2-Pent)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | PY           | 4.40                | 4.44          | 4.11                | 0.33              | 26               |
| 436               | $4', 4'' - (CF_3)_2; NH(4-Hept)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | PY           | 4.33                | 4.35          | 4.05                | 0.30              | $\frac{1}{26}$   |
| 437               | $4', 4'' - (CF_3)_2; N(Bu)_2: O$ -succinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | PY           | 4.01                | 4.23          | 3.92                | 0.30              | 34               |
| 438               | $4', 4'' - (CF_3)_2; 2-Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | PY           | 4.02                | 4.19          | 3.96                | 0.23              | 33               |
| 439               | $4', 4'' - (CF_3)_2; NH(c-C_6H_{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | PY           | 4.01                | 4.17          | 3.76                | 0.41              | 26               |
| 440               | $4, 4'' - (UF_3)_2; NH-Pent$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | PY<br>DV     | 4.02                | 4.17          | 3.93                | 0.23              | 26               |
| 441<br>⊿/9        | $4, 4 - (OF_3)_2; NBU$<br>$4' 4'' - (OF_3) + NH(2-Bu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | PY<br>PV     | 4.03                | 4.16<br>4.15  | 3.95                | 0.21              | 26               |
| 443               | $4'.4''-(CF_{3})_{2}$ , M(4-Hept).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | PY           | 4.40<br>3 94        | 4.10          | 3.83                | 0.02              | 20<br>26         |
| 444               | $4', 4''-Cl_2; NH(4-Hept)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | PY           | 3.77                | 4.13          | 3.72                | 0.41              | $\frac{10}{27}$  |
| 445               | $4'_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''_{,4''}}}}}}}}}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | PY           | 4.01                | 4.09          | 3.92                | 0.16              | 26               |
| 446               | $4', 4''-Cl_2; NH(2-Bu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | PY           | 3.79                | 4.09          | 3.77                | 0.32              | 27               |
| 447               | $4^{\prime}, 4^{\prime\prime}, (CF_3)_2; NHPr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | PY           | 4.02                | 4.03          | 3.96                | 0.07              | 26               |
| 448               | 4,4 $-(\mathbf{UF}_3)_2; \mathbf{N}(\mathbf{Pent})_2$<br>$A'A''_2(\mathbf{CF}) + \mathbf{NH}(\mathbf{Herr})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | PY<br>PV     | 3.91                | 3.97          | 3.85                | 0.12              | 26               |
| 450               | $4'-CF_3, 4''-Br; NHBu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | PY           | 3.99                | 3.90          | 3.78                | 0.05              | 20<br>26         |

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                        |        | $\log 1/C$   |             | . l  |                 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|--------|--------------|-------------|------|-----------------|
|              | - 1 - ( 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                        |        | - 1 - 1      | a. 1 a. 1 b |      | no fC           |
| no.          | substituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | sympol                 | calca~ | obsa         | calcd       | 1/0  | rei             |
| 451          | $3' 3'' - (CF) \cdot NHBu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | PY                     | 3.82   | 3 94         | 3.83        | 0.11 | 26              |
| 452          | $4'_{1} 4''_{1} (CF_{1}) + NH(a_{1}C_{1}H_{1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | PV                     | 4.01   | 3 85         | 3 80        | 0.05 | 26              |
| 452          | $4'_{4''}(CF_3)_2, N(I(C^{*}C_4II_7))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                        | 2 4 4  | 2.00         | 2.50        | 0.05 | 20              |
| 400          | $4, 4 - 01_2$ ; N(Du) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                        | 0.44   | 0.04         | 0.09        | 0.25 | 27              |
| 454          | $4, 4$ - $Cl_2; 2$ -Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | PY                     | 3.42   | 3.83         | 3.61        | 0.22 | 33              |
| 455          | $4', 4'' - (CF_3)_2; NH(Oct)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | PY                     | 3.86   | 3.76         | 3.82        | 0.06 | 26              |
| 456          | $4', 4'' - (CF_3)_2$ ; NHEt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | PY                     | 3.99   | 3.72         | 3.96        | 0.24 | 26              |
| 457          | 4', 4''-Cl <sub>2</sub> ; N(Bu) <sub>2</sub> :O-succinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | PY                     | 3.44   | 3.71         | 3.59        | 0.12 | 27              |
| 458          | $4', 4'' - (CF_{3})_{2}; NH(Hept)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | PY                     | 3.94   | 3.67         | 3.87        | 0.20 | 26              |
| 459          | 4'-CF, $4''$ -Br; N(Bu),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | PY                     | 3.72   | 3.62         | 3.75        | 0.13 | 26              |
| 460          | 4'.4''-Cl.: N(Me)Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | PY                     | 3.42   | 3.59         | 3.61        | 0.02 | 27              |
| 461          | 4' 4'' - Cl + N(Me)(2 - Bu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | PY                     | 3 78   | 3 59         | 3 77        | 0.18 | 27              |
| 462          | $A'_{1} A''_{2} C_{1} + N(B_{11}) NO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | PV                     | 3 25   | 3.57         | 3 5 9       | 0.10 | 27              |
| 462          | 4' 4'' Cl + NHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | DV                     | 0.20   | 2.57         | 3,30        | 0.01 | 27              |
| 403          | $4', 4'' = 01_2$ ; NHDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                        | 0.40   | 0.00         | 3.60        | 0.04 | 27              |
| 404          | $4', 4' - Ol_2; 2-Plp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                        | 5.44   | 0.40         | 3.61        | 0.16 | 34              |
| 465          | 4 - $C1, 4$ -Br; N(Bu) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | PY                     | 3.44   | 3.36         | 3.58        | 0.22 | 27              |
| 466          | $4^{\circ}, 4^{\circ}$ - $Br_2$ ; N(Bu) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | PY                     | 3.43   | 3.31         | 3.57        | 0.26 | 27              |
| 467          | $4', 4'' - Cl_2; N(Pr)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | PY                     | 3.42   | 3.30         | 3.61        | 0.31 | 27              |
| 468          | $4', 4'' - Cl_2; N(Me)(i-Bu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | PY                     | 3.42   | 3.29         | 3.77        | 0.48 | 27              |
| 469          | $4', 4'' - F_2; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | PY                     | 3.78   | 3.23         | 3.41        | 0.18 | 27              |
| 470          | 4',4''-Cl.; NH-1-adamantyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | PY                     | 3.08   | 3.23         | 3.39        | 0.16 | 26              |
| 471          | 4'.4''-Cl.: quinuclidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | PY                     | 3.41   | 3.21         | 3.43        | 0.22 | 34              |
| 472          | 4' 4'' - Cl + N(Et)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | PV                     | 3 4 4  | 3 1 9        | 3 60        | 0.41 | 27              |
| 473          | $A' A'' - Cl : N(M_{\Theta})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | PV                     | 3 36   | 219          | 3 60        | 0.49 | 27              |
| 474          | 4', 4'', C'', N(How)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | DV                     | 2.20   | 0.10         | 3.00        | 0.42 | 21              |
| サイモ<br>オラミ   | $\pi$ , $\pi$ $\mathcal{O}_2$ , $\mathcal{O}_$ |          | L T<br>DV              | 0.02   | 0.10         | 0,40        | 0.20 | 41              |
| 4/0          | $4 - OF_3, 0, 4 - OI_2; N(BU)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | r I<br>DV              | 3.21   | 3.16         | 3.78        | 0.02 | 20              |
| 476          | 4, 4 -Br <sub>2</sub> ; N(Et) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | PY                     | 3.44   | 3.13         | 3.61        | 0.48 | 27              |
| 477          | 4,4 $-\text{Cl}_2$ ; N(Pent) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | PY                     | 3.39   | 3.13         | 3.52        | 0.39 | 27              |
| 478          | $3^{\circ}, 4^{\circ}, 3^{\circ}, 4^{\circ}$ -Cl <sub>4</sub> ; N(Et) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | PY                     | 3.36   | 3.04         | 3.74        | 0.70 | 27              |
| 479          | $3^{\prime\prime}, 4^{\prime}, 4^{\prime\prime}$ -Cl <sub>3</sub> ; N(Bu),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | PY                     | 2.98   | 3.00         | 3.62        | 0.63 | <b>27</b>       |
| 480          | 4''-Cl; N(Bu),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | PY                     | 3.16   | 2.91         | 3.47        | 0.56 | 27              |
| 481          | 4' - CF, 4'' - Cl; N(Bu), (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2)       | PY                     | 3.21   | 3 43         | 2.96        | 0.47 | 26              |
| 482          | 3' - CF = 3'' - 4'' - CI = N(Bu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2)       | PV                     | 3 05   | 2 90         | 2.00        | 0.03 | 26              |
| 493          | $\frac{1}{4'-C'} \frac{1}{4''} OM_{2} \cdot N(Bu) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2)       |                        | 0.00   | 2.50         | 2.50        | 0.00 | 20              |
| 400          | $= -2^{\prime} (1, 4^{\prime} + 0) (Du)_{2}$ ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2)<br>1) | DV                     | 2.07   | 2.04         | 2.52        | 0.32 | 21              |
| 484          | $3,4,3,4$ , $-Ol_4; N(Bu)_2NO$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1)       | PY                     | 2.67   | 2.72         | 2.96        | 0.24 | 27              |
| 485          | $3', 4'-Cl_2, 4''-OMe; N(Bu)_2$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1)       | PY                     | 2.44   | 2.68         | 2.58        | 0.10 | <b>27</b>       |
| 486          | $3, 4, 3', 4' - Cl_4, N(Bu)_2$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1)       | PY                     | 2.67   | 2.63         | 2.84        | 0.21 | 26              |
| 487          | $4', 4''-Cl_2; N(Hept)_2$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E)       | PY                     | 2.55   | 2.67         | 2.50        | 0.16 | 27              |
| 488          | $4', 4''-F_2; N(Hex)_2$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E)       | PY                     | 2.77   | 2.58         | 2.55        | 0.03 | 27              |
| 489          | $4', 4'' - F_{2}; N(Hept)_{2}$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E)       | PY                     | 2.62   | 2.55         | 2.46        | 0.09 | 34              |
| 490          | -: N(Bu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ΕĹ       | РҮ                     | 2.65   | 2.51         | 2.55        | 0.04 | 34              |
| 491          | 4' 4'' - (OMe) + N(Bu) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ē        | PV                     | 214    | 217          | 2.00        | 0.07 | 34              |
| 492          | A' A'' - (CE) > N(Bu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ы)       | DVOVD                  | 2.17   | 4.96         | 2.27        | 0.07 | 20              |
| 402          | $4', 4'', (OF_3)_2, NUD_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | DVOVD                  |        | 4.20         | 0.00        | 0.00 | 29              |
| 493          | $4', 4'' + (OF_3)_2; NHDU$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | F I ZVP                |        | 3.89         | 3.92        | 0.03 | 29              |
| 494          | $4, 4 - (CF_3)_2; NH(4-Hept)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | PY22VP                 |        | 4.24         | 3.87        | 0.37 | 29              |
| 495          | $4^{\circ}, 4^{\circ} - Cl_2; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | PY22VP                 |        | 4.18         | 3.51        | 0.67 | 29              |
| 496          | $4', 4''-(CF_3)_2; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | PY22VP                 |        | 3.82         | 3.81        | 0.01 | 29              |
| 497          | $4', 4'' - (CF_3)_2; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | PY2COP                 |        | 3.91         | 4.15        | 0.24 | 29              |
| 498          | $2-CF_{3}, 4''-Cl; N(Bu)_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Y2VP                   |        | 4.37         | 3.72        | 0.65 | <b>29</b>       |
| 499          | $2-CF_{3}, 4''-CF_{3}; NH(4-Hept)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | Y                      |        | 4.47         | 4.07        | 0.40 | 28              |
| 500          | $2 - CF_3, 4'' - CF_3; 2 - Pip$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Υ                      |        | 4.32         | 3.86        | 0.46 | 33              |
| 501          | $2 \cdot CF_{3}, 4'' \cdot CF_{3}; N(Bu),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Y                      |        | 4.13         | 3.90        | 0.23 | 28              |
| 502          | 2-CF <sub>3</sub> , 4''-CF <sub>3</sub> ; NHBu <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Y                      |        | $4.0\bar{8}$ | 3.87        | 0.21 | 28              |
| 503          | 2-CF, 2''-CF, NHBu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | Y                      |        | 3.78         | 3.87        | 0.09 | 28              |
| 504          | $2 - CF_{2}, 4'' - CF_{2}; NH(3 - Pent)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Ÿ                      |        | 3.28         | 4 05        | 0.77 | $\frac{-0}{28}$ |
| 505          | $2-CF_{i} 4''-CF_{i} N(i-Pent)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | v                      |        | 3 04         | 4 07        | 1 02 | 28              |
| 500          | $3 \text{ CF} = 6 \text{ C} \text{ I} \cdot \text{ N}(\text{Bu})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | <b>T</b> 7             |        | 2 01         | 200         | 1.00 | 20              |
| 500          | $1.9 \in O(1, N(D_{12}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 1 /<br>T7              |        | 0.04         | 0.00        | 0.04 | ن<br>م          |
| 0U/          | $1, 0, 0 - OI_3; N(BU)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | T7<br>77               |        | 3.53         | 3.92        | 0.39 | 3               |
| 508          | $1,3-Ol_2, 6-Me; N(Hept)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | T (                    |        | 3.48         | 3.50        | 0.02 | 3               |
| 509          | 3-Br, 6-Cl; $N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | $\underline{T7}$       |        | 3.43         | 3.68        | 0.25 | 3               |
| 510          | $3-CF_3$ , $6-Cl$ ; N(Hept) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | T7                     |        | 3.38         | 3.77        | 0.39 | 3               |
| 51 <b>1</b>  | $1,3-Cl_2, 6-Me; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | T7                     |        | 3.30         | 3.64        | 0.34 | 3               |
| 512          | $1,3-Cl_{2}; N(Hept)_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | T7                     |        | 3.00         | 3.50        | 0.50 | 3               |
| 513          | $1,3-Cl_2; N(Bu)_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | $\mathbf{T7}$          |        | 3.20         | 3.57        | 0.37 | 4               |
| 514          | $6-Cl; \tilde{N}(Bu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | T17                    |        | 3.36         | 3.34        | 0.02 | 5               |
| $51\bar{5}$  | 3-CF <sub>3</sub> ; N(Hept),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | T5                     |        | 3.36         | 3.49        | 0 13 | 6               |
| 516          | 1.3-Cl.: N(Bu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | $\hat{\mathbf{T}}_{5}$ |        | 3.98         | 3 57        | 0.10 | ĥ               |
| 517          | $3-CF + N(B_{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | $\hat{\mathbf{T}}_{5}$ |        | 2020         | 3 50        | 0.20 | 6               |
| 519          | $6 \cdot \mathbf{CF} + \mathbf{N}(\mathbf{Bu})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | T3                     |        | 2.00         | 9 4 4       | 0.02 | 6               |
| 510          | $6 \mathbf{B}_{2} \mathbf{N}(\mathbf{D}_{1})_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 10                     |        | 0.00         | 0.44        | 0.00 | 0               |
| 519          | $\frac{0}{10} \frac{1}{10} \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 13                     |        | 3.31         | 3.41        | 0.04 | 5               |
| 520          | $4, 3-01_2; N(Hept)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | AI                     |        | 3.56         | 3.55        | 0.01 | 1               |
| 521          | $4, 5 - Ol_2; N(Bu)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | AI                     |        | 3.39         | 3.66        | 0.27 | 1               |
| 522          | $-; N(Hept)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Al                     |        | 2.99         | 3.05        | 0.06 | 1               |
| 523          | 4,5-Cl <sub>2</sub> ; N(Hept) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | A9                     |        | 3.92         | 3.47        | 0.45 | 1               |
| 5 <b>2</b> 4 | 10-Cl; N(Hept) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | A9                     |        | 3.70         | 3.27        | 0.43 | 1               |
| <b>52</b> 5  | 10-Cl; N(Bu) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | A9                     |        | 3.51         | 3.30        | 0.21 | 1               |

|      |                                                  |                                        |                           |       | $\log 1/C$   |       | 1.1    |                                         |
|------|--------------------------------------------------|----------------------------------------|---------------------------|-------|--------------|-------|--------|-----------------------------------------|
|      | • · · · ·                                        |                                        |                           | 1 10  |              | 1 16  | IA log |                                         |
| no.  | substituents                                     |                                        | symbol                    | calcd | obsd         | calcd | 1/C    | rei                                     |
| 5.96 | -: N(Non)                                        |                                        | 10                        |       | 3.94         | 2 00  | 0.34   | 34                                      |
| 526  | -; N(NOII) <sub>2</sub>                          |                                        | AS                        |       | 0.24         | 2.90  | 0.04   | 1                                       |
| 527  | $-; N(Hept)_2$                                   |                                        | A9                        |       | 3.07         | 3.05  | 0.02   | 1                                       |
| 528  | $2,3-Cl_2; N(Bu)_2$                              |                                        | A9                        |       | 2.89         | 3.52  | 0.63   | 1                                       |
| 529  | $6-Cl, 3', 4'-Cl_3; N(Bu)_2$                     |                                        | N2P                       |       | 4.81         | 3.76  | 1.05   | 7                                       |
| 530  | 6-Cl, $4'$ -Cl; N(Bu),                           |                                        | N 2P                      |       | 4.24         | 3.70  | 0.54   | 7                                       |
| 531  | 7-OMe, 4'-Cl; N(Hept),                           |                                        | N2P                       |       | 4.18         | 3.09  | 1.09   | 7                                       |
| 532  | 7-OMe. 4'-Cl: N(Bu).                             |                                        | N2P                       |       | 3.90         | 3.21  | 0.69   | 7                                       |
| 533  | A'-Cl: N(Bu)                                     |                                        | N2P                       |       | 3.87         | 3 37  | 0.50   | 7                                       |
| 533  | $4^{\prime}$ Cl. N(E <sub>4</sub> )              |                                        | NOD                       |       | 3 51         | 2 20  | 0.00   | 7                                       |
| 534  | $4 - 01$ , $N(EU)_2$                             |                                        | NOD                       |       | 0.01         | 2.30  | 0.21   | 7                                       |
| 535  | 4 -CI; $N(Hept)_2$                               |                                        | NZP                       |       | 3.35         | 3.24  | 0.11   | <u> </u>                                |
| 536  | 6-Cl, $4$ -Cl; NHBu                              |                                        | N2P                       |       | 3.29         | 3.71  | 0.42   | <u> </u>                                |
| 537  | 6-Cl, 7-OMe, 4'-Cl; N(Hept) <sub>2</sub>         |                                        | N 2P                      |       | 3.31         | 3.20  | 0.10   | 7                                       |
| 538  | 6,3',4'-Cl <sub>3</sub> , 7-OMe; 2-Pip           |                                        | N2P                       |       | 3.14         | 3.48  | 0.34   | 7                                       |
| 539  | 6.3'.4'-Cl <sub>2</sub> , 7-OMe; N(Bu),          |                                        | N2P                       |       | 3.06         | 3.46  | 0.40   | 7                                       |
| 540  | 6-Cl. 7-OMe. 4'-Cl: N(Bu).                       |                                        | N2P                       |       | 2.96         | 3.41  | 0.45   | 7                                       |
| 541  | 6-Cl 7-OMe 4'-Cl: 2-Pip                          |                                        | N2P                       |       | 3.00         | 3.40  | 0.40   | 7                                       |
| 549  | $5.7 \cdot Cl = 4' \cdot Cl \cdot N(Bu)$         |                                        | N4P                       |       | 3 33         | 3 69  | 0.36   | 7                                       |
| 542  | $3'_{1} A'_{2} C_{1} + N(B_{11})$                |                                        | P1                        |       | 2 96         | 3 27  | 0.31   | Ŕ                                       |
| 545  | $3', 4', 0_1, N(Du)_2$                           |                                        | D1                        |       | 2.00         | 2 4 2 | 0.01   | ě                                       |
| 544  | $5, (-O_2, N(\operatorname{nept})_2)$            |                                        | DAN                       |       | 2.50         | 0.40  | 0.17   | 24                                      |
| 545  | $-; N(Hept)_2$                                   |                                        | P4N<br>DEN                |       | 2.90         | 3.07  | 0.17   | 34                                      |
| 546  | $1,3-Cl_2; N(Bu)_2$                              |                                        | P5N                       |       | 2.94         | 3.50  | 0.56   | 34                                      |
| 547  | $1,3-Cl_2; N(Bu)_2$                              |                                        | P6N                       |       | 2.94         | 3.51  | 0.57   | 34                                      |
| 548  | $3,6-(CF_3)_2; N(Bu)_2$                          |                                        | DPE                       |       | 3.22         | 3.92  | 0.70   | 34                                      |
| 549  | $3, 6-Cl_{2}, N(Bu)_{2}$                         |                                        | FH2                       |       | 3.97         | 3.65  | 0.32   | 31                                      |
| 550  | $3.6-Cl_{2}; N(Bu)_{2}$                          |                                        | FCO                       |       | 3.39         | 3.80  | 0.40   | 31                                      |
| 551  | 6.8.4 Cl <sub>2</sub> : N(Bu)                    |                                        | Q2P5                      |       | 3.60         | 3.87  | 0.27   | 34                                      |
| 552  | 6.8.4'-Cl : N(Bu)                                |                                        | $\tilde{O}_{2P7}$         |       | 3.02         | 3.21  | 0.19   | 34                                      |
| 552  | $G_{A'} O_1 + N(D_1)$                            |                                        | 0.258                     |       | 2 90         | 3 03  | 0.13   | 34                                      |
| 222  | $0,4 - 01_2, N(Du)_2$                            | (9)                                    | V V                       |       | 2.50         | 2 01  | 0.10   | 28                                      |
| 554  | $2-OF_3$ , $3-OF_3$ ; NHDU                       | (2)                                    | 1<br>(T)7                 |       | 0.05         | 0.01  | 0.07   | 20                                      |
| 555  | $3 - CF_3; N(Bu)_2$                              | (2)                                    | T7                        |       | 2.81         | 2.70  | 0.11   | 4                                       |
| 556  | $3-CF_3$ ; N(Hept) <sub>2</sub>                  | (1)                                    | $\mathbf{T}7$             |       | 2.69         | 2.69  | 0.00   | 4                                       |
| 557  | 3-Br; N(Bu),                                     | (2)                                    | T5                        |       | 2.82         | 2.52  | 0.30   | 6                                       |
| 558  | 3-Cl; N(Hept),                                   | (2)                                    | A1                        |       | 3.10         | 2.56  | 0.54   | 1                                       |
| 559  | 3-Cl: N(Bu)                                      | (2)                                    | A1                        |       | 2.72         | 2.58  | 0.14   | 1                                       |
| 560  | $4.5-C1 \cdot N(Bu)$                             | (2)                                    | A 9                       |       | 2.76         | 2.78  | 0.02   | 1                                       |
| 561  | $5.7.3'.5'.Cl. \cdot N(Bu)$                      | $\langle 2 \rangle$                    | N2OP                      |       | 2 90         | 3 31  | 0.41   | 7                                       |
| 501  | 7  Du  N(Here)                                   | $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ | D1                        |       | 2.00         | 2.54  | 0.23   | 34                                      |
| 562  | $(-Br; N(HeX)_2)$                                | (2)                                    |                           |       | 2.77         | 2.04  | 0.20   | 04                                      |
| 563  | $3, 4 - Cl_2, 7 - Cl; N(Hept)_2$                 | (1)                                    | PI                        |       | 2.71         | 2.55  | 0.16   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 564  | $1,3-Cl_2; N(Hept)_2$                            | (2)                                    | P5N                       |       | 2.86         | 2.77  | 0.09   | 34                                      |
| 565  | $4^{\prime\prime}$ -Cl; N(Bu) <sub>2</sub>       | (E)                                    | PY2AD                     |       | 2.72         | 2.62  | 0.10   | 34                                      |
| 566  | $3-CF_3$ ; N(Pr),                                | (E)                                    | T7                        |       | 2.82         | 2.64  | 0.18   | 3                                       |
| 567  | 3-CF.: N(Pent).                                  | (E)                                    | T7                        |       | 2.69         | 2.74  | 0.05   | 3                                       |
| 568  | 1.3.6-Cl.: N(Hept).                              | ÌΕ)                                    | T7                        |       | 2.67         | 2.97  | 0.30   | 3                                       |
| 560  | $3_{Br} N(Bu)$                                   | (E)                                    | <u> </u>                  |       | 2.57         | 2 52  | 0.05   | 4                                       |
| 505  | 2  CF = 6  Mov  N(Bu)                            |                                        | <b>T</b> 7                |       | 2.57         | 2.02  | 0.26   | 3                                       |
| 570  | $3 \text{ CF}_3, 0 \text{ MIE}, \text{ N(BU)}_2$ |                                        | 17<br>T7                  |       | 2.52         | 2.10  | 0.15   | 3                                       |
| 571  | 3-OF <sub>3</sub> ; NHBU                         |                                        | 17                        |       | 2.01         | 2.00  | 0.15   | 5                                       |
| 572  | $3-\mathrm{UF}_3$ ; N(Hex) <sub>2</sub>          | (E)                                    | 17                        |       | 2.49         | 2.73  | 0.24   | 3                                       |
| 573  | 3-Br, $6$ -Me; N(Bu) <sub>2</sub>                | (E)                                    | 17                        |       | 2.44         | 2.60  | 0.16   | 3                                       |
| 574  | $-; N(Bu)_2$                                     | $(\mathbf{E})$                         | $\mathbf{T}_{\mathbf{T}}$ |       | 2.22         | 2.18  | 0.04   | 4                                       |
| 575  | $6-Cl; N(Hept)_2$                                | (E)                                    | T17                       |       | 2.64         | 2.59  | 0.05   | 5                                       |
| 576  | $-; N(Hept)_2$                                   | (E)                                    | <b>T</b> 17               |       | 2.58         | 2.27  | 0.31   | 5                                       |
| 577  | -; N(Bu),                                        | (E)                                    | T17                       |       | 2.10         | 2.15  | 0.05   | 5                                       |
| 578  | $1,3-Cl_2; N(Hept),$                             | (E)                                    | $T_5$                     |       | 2.89         | 2.70  | 0.19   | 6                                       |
| 579  | 3-Br: N(Hept).                                   | ÌΕĹ                                    | <b>T</b> 5                |       | 2.67         | 2.51  | 0.16   | 6                                       |
| 580  | $6-CF_{1}$ : N(Hent).                            | ÌΕ)                                    | T3                        |       | 2.77         | 2.63  | 0.14   | 6                                       |
| 581  | $6 \cdot Br \cdot N(Hept)$                       | ίΞ)                                    | Ť3                        |       | 2.68         | 2 60  | 0.08   | Ğ                                       |
| 590  | $\sim N(\mathbf{Bu})$                            | (E)                                    | T3                        |       | 2.38         | 218   | 0.20   | ĕ                                       |
| 502  | $P(\mathbf{I}_{2}   \mathbf{N}_{2})$             |                                        | A 1                       |       | 2.00         | 2.10  | 0.20   | 40                                      |
| 503  | $6.7 \text{ OL} \cdot \text{N}(\text{Ber})$      |                                        | A1                        |       | 2.00         | 2.00  | 0.20   | 36                                      |
| 584  | $0, 7 - 0 I_2; N(Du)_2$                          |                                        |                           |       | 2.40         | 2.12  | 0.24   | 40                                      |
| 585  | 8-CI; $N(Bu)_2$                                  | (E)                                    | AI                        |       | 2.26         | 2.58  | 0.32   | 40                                      |
| 586  | $5-O1; N(Hept)_2$                                | (E)                                    | AI                        |       | 2.44         | 2.48  | 0.04   | 30                                      |
| 587  | $-; N(Bu)_2$                                     | (E)                                    | A1                        |       | 2.27         | 2.20  | 0.06   | 40                                      |
| 588  | 5-Cl; $N(Bu)_2$                                  | (E)                                    | A1                        |       | 2.10         | 2.50  | 0.40   | 36                                      |
| 589  | $-; N(Bu)_2$                                     | (E)                                    | A2                        |       | 2.49         | 2.20  | 0.28   | 40                                      |
| 590  | -; N(Hept),                                      | (E)                                    | A2                        |       | 2.62         | 2.26  | 0.36   | 40                                      |
| 591  | 3-CF, 10-Cl; CH, NHBu                            | ÌΕ                                     | A9                        |       | 3.00         | 3.25  | 0.25   | 36                                      |
| 592  | 10-Br: N(Bu).                                    | È                                      | A9                        |       | 2.88         | 2.54  | 0.34   | 39                                      |
| 502  | 10-C1: CH NHB                                    | λĒί                                    | Δ <u>9</u>                |       | 2 49         | 2.81  | 0.32   | 36                                      |
| 500  | $-: N(B_{11})$                                   |                                        | 40                        |       | 9 35         | 2.01  | 0.14   | 40                                      |
| 594  | $A^{\prime} (Du)_{2}$                            | (E)                                    | NOD                       |       | 2.00<br>0.00 | 2.20  | 0.14   |                                         |
| 595  | $(0,0,4,-0)_3$ ; N(nept) <sub>2</sub>            |                                        | IN ZP<br>NOD              |       | 2.00         | 2.90  | 0.30   | -                                       |
| 596  | $0,3,4$ - $OI_3,7$ -OMe; N(Hept) <sub>2</sub>    | (E)                                    | IN ZP                     |       | 2.58         | 2.38  | 0.19   | -                                       |
| 597  | 4-Br, 6,4 - $Cl_2$ ; N(Bu) <sub>2</sub>          | (E)                                    | N2OP                      |       | 2.62         | 3.30  | 0.68   | 1                                       |
| 598  | 5,7,4 -Cl <sub>3</sub> ; N(Bu) <sub>2</sub>      | $(\mathbf{E})$                         | N2OP                      |       | 2.57         | 3.20  | 0.63   | 7                                       |
| 599  | $5,7-Cl_2, 3-CF_3; N(Bu)_2$                      | (E)                                    | N2OP                      |       | 2.52         | 3.32  | 0.80   | 7                                       |
| 600  | $5,7,3',4'-Cl_4; N(Bu)_2$                        | (E)                                    | N2OP                      |       | 2.49         | 3.23  | 0.74   | 7                                       |
|      |                                                  |                                        |                           |       |              |       |        |                                         |

|     |                                          |                            |              |                    | $\log 1/C$ |             | 1A log |                  |
|-----|------------------------------------------|----------------------------|--------------|--------------------|------------|-------------|--------|------------------|
| no. | substituents                             |                            | symbol       | calcd <sup>a</sup> | obsd       | $calcd^{b}$ | 1/C    | $\mathrm{ref}^c$ |
| 601 | $5,7,4'-Cl_3; N(Bu)_2$                   | (E)                        | N2COP        |                    | 2.66       | 3.28        | 0.62   | 7                |
| 602 | 4-Br; N(Oct)                             | (E)                        | N            |                    | 2.24       | 2.50        | 0.26   | 34               |
| 603 | 4-Br; N(Pent),                           | (E)                        | N            |                    | 2.16       | 2.53        | 0.37   | 34               |
| 604 | -; N(Hept),                              | (E)                        | P1           |                    | 2.58       | 2.26        | 0.32   | 34               |
| 605 | $3', 4'-Cl_{2}; N(Hept),$                | (E)                        | P1           |                    | 2.55       | 2.37        | 0.18   | 8                |
| 606 | 3'-Cl; N(Hept),                          | (E)                        | P1           |                    | 2.54       | 2.43        | 0.11   | 8                |
| 607 | 2-Br; N(Hept),                           | (E)                        | P1           |                    | 2.50       | 2.49        | 0.01   | 8                |
| 608 | 7-Cl; $N(Hept)_{2}$                      | (E)                        | P1           |                    | 2.50       | 2.47        | 0.02   | 34               |
| 609 | 7-Cl; $N(Hex)$ ,                         | ÌΕ)                        | P1           |                    | 2.39       | 2.52        | 0.13   | 34               |
| 610 | 3'-CF <sub>3</sub> ; N(Hept)             | ÌΕ)                        | <b>P</b> 1   |                    | 2.34       | 2.61        | 0.27   | 34               |
| 611 | -: N(Pent)                               | (E)                        | P1           |                    | 2.33       | 2.26        | 0.07   | 34               |
| 612 | 8-Br; N(Hept),                           | ÌΕ)                        | P1           |                    | 2.27       | 2.58        | 0.31   | 8                |
| 613 | 7-Cl; $N(Bu)$ ,                          | (E)                        | P1           |                    | 2.26       | 2.50        | 0.24   | 34               |
| 614 | 7-Br; $N(Bu)_{2}$                        | ÌΕ)                        | P1           |                    | 2.15       | 2.54        | 0.39   | 34               |
| 615 | 7-Cl: N(Pent).                           | (Ē)                        | P1           |                    | 2.14       | 2.53        | 0.39   | 34               |
| 616 | -: N(Bu)                                 | ίΞ)                        | P1           |                    | 2.06       | 2.21        | 0.15   | 34               |
| 617 | -; N(Hex),                               | (Ē)                        | P1           |                    | 2.03       | 2.28        | 0.25   | 34               |
| 618 | 7 - Cl; N(Pr)                            | $(\mathbf{E})$             | P1           |                    | 2.02       | 2.45        | 0.43   | 34               |
| 619 | $7.8-(CH=CH)_{a}$ ; N(Hept),             | $(\mathbf{E})$             | P1           |                    | 2.28       | 2.21        | 0.07   | 34               |
| 620 | $5-CF_{2}$ ; N(Hept).                    | $(\mathbf{\overline{E}})$  | P3           |                    | 2.58       | 2.52        | 0.06   | 34               |
| 621 | $5-CF_3$ ; N(Bu),                        | ίΞ)                        | P3           |                    | 2.23       | 2.56        | 0.33   | 34               |
| 622 | 5-Br: $N(Hex)$                           | (Ē)                        | P4           |                    | 2.39       | 2.54        | 0.15   | 34               |
| 623 | 5-Cl; N(Bu),                             | (Ē)                        | P4           |                    | 2.30       | 2.50        | 0.20   | 34               |
| 624 | 5-Br; N(Bu)                              | È)                         | P4           |                    | 2.23       | 2.54        | 0.31   | 34               |
| 625 | -: N(Hex)                                | È)                         | P4           |                    | 2.20       | 2.28        | 0.08   | 34               |
| 626 | -: N(Hept)                               | (Ē)                        | P4           |                    | 2.19       | 2.26        | 0.07   | 34               |
| 627 | -: N(Bu)                                 | Ē                          | P4           |                    | 2.09       | 2.21        | 0.12   | 34               |
| 628 | -: N(Hept)                               | È)                         | P2N          |                    | 2.47       | 2.27        | 0.20   | 34               |
| 629 | $5.7 - Cl_{2}$ ; N(Bu).                  | È)                         | P2N          |                    | 2.42       | 2.71        | 0.29   | 34               |
| 630 | $5.7 \cdot \text{Cl}_{2}; \text{N(Bu)},$ | (Ē)                        | P3N          |                    | 2.57       | 2.71        | 0.14   | 34               |
| 631 | -: N(Hept)                               | (Ē)                        | P3N          |                    | 2.33       | 2.27        | 0.06   | 34               |
| 632 | 6-Br: N(Hept).                           | Ē                          | P3N          |                    | 2.12       | 2.56        | 0.44   | 34               |
| 633 | 3-Cl: N(Hept)                            | (Ē)                        | P5N          |                    | 2.48       | 2.53        | 0.05   | 34               |
| 634 | -: N(Hept)                               | (Ē)                        | P5N          |                    | 2.25       | 2.27        | 0.02   | 34               |
| 635 | 3-Cl: N(Hept).                           | (Ē)                        | P7N          |                    | 2.31       | 2.53        | 0.22   | 34               |
| 636 | 4'-Cl: N(Bu).                            | $(\mathbf{E})$             | Q6N          |                    | 2 11       | 2.08        | 0.03   | 34               |
| 637 | 8-Cl: $N(Bu)$                            | $(\mathbf{E})$             | Q5           |                    | 2.16       | 2.39        | 0.23   | 34               |
| 638 | 6.8.4'-Cl <sub>2</sub> : N(Et).          | $(\mathbf{E})$             | <b>Ã</b> 2P3 |                    | 247        | 2.40        | 0.07   | 34               |
| 639 | 6.8.4'-Cl <sub>2</sub> : N(Hept).        | $(\mathbf{E})$             | Q2P3         |                    | 2.43       | 2.17        | 0.26   | 34               |
| 640 | 6.8.4'-Cl <sub>2</sub> ; N(Bu).          | $(\mathbf{E})$             | Q2P3         |                    | 2.32       | 2.41        | 0.09   | 34               |
| 641 | 7.4'-Cl <sub>2</sub> ; N(Bu).            | $(\tilde{\mathbf{E}})$     | <b>Å</b> 2P3 |                    | 2.20       | 2.24        | 0.04   | 34               |
| 642 | 7.4'-Cl <sub>2</sub> : N(Et)             | $(\mathbf{E})$             | Q2P3         |                    | 2.11       | 2.18        | 0.07   | 34               |
| 643 | 8-Cl: N(Bu).                             | (E)                        | Q2P5         |                    | 2.47       | 2.55        | 0.08   | 34               |
| 644 | 8-Cl: $N(Bu)$                            | (E)                        | Q2P6         |                    | 2.51       | 2.55        | 0.00   | 34               |
| 645 | 6.4'-Cl <sub>a</sub> : N(Et).            | $(\mathbf{E})$             | Q2P8         |                    | 2.12       | 2.18        | 0.06   | 34               |
| 646 | $6.4'-Cl_{2}; N(Hept)_{2}$               | $(\widetilde{\mathbf{E}})$ | Q2P8         |                    | 2.34       | 2.08        | 0.26   | 34               |

<sup>a</sup> Calculated using eq 7c, 8c, and 9. <sup>b</sup> Calculated using eq 10. <sup>c</sup> (1) C. Hansch and J. Fukunaga, CHEMTECH., 7, 120 (1977). (2) A. Markovac and M. P. LaMontagne, J. Med. Chem., 19, 978 (1976). (3) B. P. Das, M. E. Nuss, and D. W. Boykin, Jr., *ibid.*, 17, 516 (1974). (4) B. P. Das, J. A. Campbell, F. B. Samples, R. A. Wallace, L. K. Whisenant, R. W. Woodard, and D. W. Boykin, Jr., *ibid.*, 15, 370 (1972). (5) B. P. Das and D. W. Boykin, Jr., *ibid.*, 16, 413 (1973). (6) B. P. Das, R. T. Cunningham, and D. W. Boykin, Jr., *ibid.*, 16, 1361 (1973). (7) J. S. Gillespie, Jr., S. P. Acharya, D. A. Shamblee, and R. E. Davis, *ibid.*, 18, 1223 (1975). (8) J. T. Traxler, L. O. Krbechek, R. R. Riter, R. G. Wagner, and C. W. Huffman, *ibid.*, 14, 90 (1971). (9) P. N. Craig, *ibid.*, 15, 144 (1972). (10) H. R. Munson, Jr., R. E. Johnson, J. M. Sanders, C. J. Ohnmacht, and R. E. Lutz, *ibid.*, 18, 1232 (1975). (11) E. R. Atkinson and A. J. Puttick, *ibid.*, 13, 537 (1970). (12) D. W. Boykin, Jr., A. R. Patel, and R. E. Lutz, *ibid.*, 11, 273 (1968). (13) E. R. Atkinson and A. J. Puttick, *ibid.*, 11, 123 (1968). (14) J. S. Gillespie, Jr., R. J. Rowlett, Jr., and R. E. Davis, *ibid.*, 11, 425 (1968). (15) T. Singh and J. H. Biel, *ibid.*, 13, 541 (1970). (16) W. T. Colwell, V. Brown, P. Christie, J. Lange, C. Reece, K. Yamamoto, and D. W. Henry, *ibid.*, 5, 771 (1972). (17) C. R. Wetzel, J. R. Shanklin, Jr., and R. E. Lutz, *ibid.*, 16, 528 (1973). (18) A. J. Saggiomo, S. Kano, T. Kikuchi, K. Okubo, and M. Shinbo, *ibid.*, 15, 989 (1972). (19) P. Blumbergs, M.-S. Ao, M. P. LaMontagne, A. Markovac, J. Novotny, C. H. Collins, and F. W. Starks, *ibid.*, 14, 926 (1971). (22) K. C. Rice, B. J. Boone, A. B. Rubin, and T. J. Rauls, *ibid.*, 19, 887 (1976). (23) M. Loy and M. M. Joullie, *ibid.*, 16, 549 (1973). (24) P. A. Cruickshank and W. E. Hymans, *ibid.*, 17, 468 (1974). (25) E. R. Atkinson, *ibid.*, 17, 1012 (1974). (26) A. Markovac, M. P. LaMontagne, P. Blumbergs, A. B. Ash, and C. L. Stevens, *ibid.*, 15, 918

Table III. Partition Coefficient (Log P) of Aromatic Methanolamines

|        | ОН                                |                                       |                                                 |                                                         |
|--------|-----------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------------------------|
|        | Ar-CH                             | -R·HCl                                |                                                 |                                                         |
|        |                                   | partition                             | coefficien                                      | t $(\log P)$                                            |
|        | R                                 | phenan-<br>threne <sup>a</sup><br>(A) | 2-phenyl-<br>quino-<br>line <sup>b</sup><br>(B) | 2,6-di-<br>phenyl-<br>pyri-<br>dine <sup>c</sup><br>(C) |
| 1      | -CH <sub>2</sub> NMe <sub>2</sub> | 0.65                                  | 1.08                                            | 2.25                                                    |
| $^{2}$ | $-CH_2NEt_2$                      | 0.94                                  | 1.37                                            | 2.54                                                    |
| 3      | -CH <sub>2</sub> NPr <sub>2</sub> | 1.69                                  | 2.12                                            | 3.29                                                    |
| 4      | -CH, NBu,                         | 2.57                                  | $3.00^{d}$                                      | $4.17^{e}$                                              |
| 5      | -CH, NPen,                        | 3.58                                  | 4.01                                            | 5.18                                                    |
| 6      | -CH, NHex,                        | 4.51                                  | 4.94                                            | 6.11                                                    |
| 7      | -CH,NHep,                         | 5.51                                  | 5.94                                            | 7.11                                                    |
| 8      | -CH <sub>2</sub> NHMe             | $0.55^{f}$                            | 0.98                                            | 2.15                                                    |
| 9      | -CH,NHEt                          | 0.99                                  | 1.42                                            | 2.59                                                    |
| 10     | -CH <sub>2</sub> NHPr             | 1.43                                  | 1.86                                            | 3.03                                                    |
| 11     | -CH <sub>2</sub> NHBu             | 1.87                                  | 2.30                                            | 3.47                                                    |
| 12     | -CH <sub>2</sub> NHPen            | 2.37 <sup>g</sup>                     | 2.80                                            | 3.97                                                    |
| 13     | 2-piperidinyl                     | 1.58                                  | 2.01                                            | 3.18                                                    |

<sup>a</sup> Unless otherwise noted, log *P* values were measured from 0.1 N HCl solution. <sup>b</sup> Calculated by adding the difference ( $\Delta \log P$ ) obtained from the corresponding analogues in the phenanthrenes to the log *P* values of B-4·HCl measured in pH 7.4 phosphate buffer solution. <sup>c</sup> Calculated by adding the difference ( $\Delta \log P$ ) obtained from the corresponding analogues in the phenanthrenes to the log *P* values of C-4·HCl. <sup>d</sup> Measured in pH 7.4 phosphate buffer solution. <sup>e</sup> Calculated by adding the difference ( $\Delta$ log *P*) in log *P* values of 2,6-diphenylpyridine between those measured in 0.1 N HCl and in pH 7.4 phosphate buffer solution to the log *P* value of C-3·HCl in 0.1 N HCl solution: log *P* C-3·HCl (7.4 buffer) = log *P* C-3·HCl (0.1 N HCl) - log *P* 2,6-Ph<sub>2</sub>Pyr (0.1 N HCl) + log *P* 2,6-Ph<sub>2</sub>Pyr (7.4 buffer) = 1.11 - 1.98 + 5.04 = 4.17. <sup>f</sup> Log *P* A-8·HCl = log *P* A-9·HCl (0.99) - 0.44 = 0.55. <sup>g</sup> Log *P* A-12·HCl = log *P* A-11·HCl (1.87) + 0.50 = 2.37.

by the procedure of Duncan et al.<sup>22a</sup> and compound 4 by the method of Nodiff et al.<sup>22b</sup> All compounds were checked for purity by thin-layer chromatography. Carbonhydrogen analyses of the new compounds gave values which agreed within 0.4% with the theoretical values.

**Bilinear Model.** Kubinyi<sup>23</sup> has recently developed a new approach to deal with the "parabolic" dependence of log 1/C on log P. In his model, the  $a \log P - b(\log P)^2$  of biological QSAR are replaced by  $a' \log P - b' \log(\beta P + 1)$ . This approach requires one more disposable parameter; namely,  $\beta$ . Nevertheless, Kubinyi has shown that the bilinear model often yields more significant correlations than the symmetrical parabolic model. We therefore replaced the log P terms of eq 7c and 10 with the above bilinear log P terms and refit the data. The usual least-squares method cannot be employed. We have used an algorithm provided by Kubinyi.

#### Results

The parameters necessary for the formulation of eq 7-10 are shown in Table II (supplementary material). Two calculated log 1/C are given for each congener. One value is given for each congener calculated using eq 10 for all antimalarials. An additional value for comparison is shown for the phenanthrenes (1-217) obtained from eq 7c, the quinolines (218-433) from eq 8c, and the pyridines (434-491) from eq 9.

The symbol E after the formula for the antimalarial means that  $\log 1/C$  was obtained by extrapolation; these compounds did not produce cures. A (1) or (2) following

the formula indicates the highest number of cures produced by these compounds; all other congeners achieved at least three cures. The definition of the symbols for the aromatic nuclei, as well as the number of each type occurring in the data set, is given in Table IV.

**Phenanthrenes.** To formulate the QSAR in this report, we have employed our previously outlined approach for dealing with large data sets and many variables.<sup>24</sup> Stepwise regression has not been employed; instead, we have generated all possible equations.

In reexamining the phenanthrenes, we have factored the data into two sets of congeners: those which achieved three cures (eq 7a) and those which achieved less than three

 $\log 1/C = 0.860(\pm 0.15) \sum \sigma + 0.212(\pm 0.07) \sum \pi + 0.171(\pm 0.16) \log P - 0.023(\pm 0.016)(\log P)^2 - 0.162(\pm 0.20) \text{c-side} + 0.260(\pm 0.15) \text{CNR}_2 - 0.141(\pm 0.09) \text{AB} + 2.559(\pm 0.34)$ (7a)

 $n = 176; r = 0.857; s = 0.240; \log P_0 = 3.8 (0.8-4.5)$ 

 $\log 1/C = 0.665(\pm 0.28) \sum \sigma + 0.005(\pm 0.12) \sum \pi +$ 

 $\begin{array}{r} 0.046(\pm 0.24) \log P - 0.004(\pm 0.02)(\log P)^2 - \\ 0.176(\pm 0.20) \text{c-side} + 0.222(\pm 0.23) \text{CNR}_2 + 2.326(\pm 0.53) \\ (7b) \end{array}$ 

 $n = 38; r = 0.791; s = 0.188; \log P_0 = -0.4 \ (\pm \infty)$ 

$$\begin{split} &\log 1/C = 0.827(\pm 0.13) \sum \sigma + 0.163(\pm 0.07) \sum \pi + \\ &0.187(\pm 0.14) \log P - 0.024(\pm 0.014) (\log P)^2 - \\ &0.225(\pm 0.15) \text{c-side} + 0.315(\pm 0.13) \text{CNR}_2 - \\ &0.103(\pm 0.09) \text{AB} - 0.639(\pm 0.10) < 3\text{-cures} + \\ &2.613(\pm 0.30) \text{ (7c)} \end{split}$$

$$n = 214; r = 0.925; s = 0.239; \log P_0 = 3.9 (2.4-4.5)$$

cures (eq 7b). Then the two data sets were combined to yield a single QSAR (eq 7c). Three data points (18, 148, and 156) were omitted in deriving eq 7c; when these are included, essentially the same equation is obtained with r = 0.912, s = 0.258, and  $\log P_0 = 3.8$ .

Equation 7a is a good correlation compared to our earlier equations in terms of s, although the correlation coefficient is lower because the amount of variance in  $\log 1/C$  has been reduced by removal of the less active compounds. In this expression,  $\sum \sigma$  and  $\sum \pi$  refer to substituents on the phenanthrene ring. The indicator variable c-side takes the value of 1 for congeners having a cycloalkyl group attached to the side-chain nitrogen atom; its negative coefficients show that these compounds on the average are slightly less active than normal alkyl chains, other factors being equal. The variable  $CNR_2$  is given the value of 1 for those analogues having an extra  $CH_2$  between the CHOH and  $NR_2$  of the side chain; its positive coefficient suggests increased activity may be the result of hydrophobic or dispersion forces. The variable AB is assigned a value of 1 when two ring substituents are adjacent to each other, the value of 2 when two such pairs are present, and the value of 3 when there are three such adjacencies (e.g., 2, 3, 4, 5). The small negative effect of this term may reflect the loss in hydrophobicity due to groups being placed next to each other; for example, the difference between simple additive and observed  $\sum \pi$  for 3,4-dibromobenzene is 0.21.<sup>18</sup>

The same terms, except for AB, have been used to derive eq 7b. Since there are no examples of adjacent ring substituents in this subset of phenanthrenes, this term had to be omitted. The single most important variable,  $\sum \sigma$ , has roughly the same weight in both eq 7a and 7b. The indicator variables c-side and CNR<sub>2</sub> are also in good agreement; however, the  $\sum \pi$  and log P terms are not very

| no. | compounds                                                                                     | no. of<br>congeners <sup>a</sup> | symbols in<br>Table II |
|-----|-----------------------------------------------------------------------------------------------|----------------------------------|------------------------|
| 1   |                                                                                               | 217<br>(21)                      | Р                      |
| 2   |                                                                                               | 133<br>(12)                      | Q2P                    |
| 3   | , , , , , , , , , , , , , , , , , , ,                                                         | 24<br>(1)                        | Q2F                    |
| 4   | , , , , , , , , , , , , , , , , , , ,                                                         | 18<br>(7)                        | Q                      |
| 5   |                                                                                               | 8                                | Q2COP                  |
| 6   | S<br>H<br>NH<br>S<br>S<br>NH<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | 4                                | Q2NP                   |
| 7   |                                                                                               | 7<br>(2)                         | Q2OP                   |
| 8   | 2                                                                                             | 7<br>(3)                         | Q2TB                   |
| 9   |                                                                                               | 5<br>(1)                         | Q2 <b>T</b> H          |
| 10  | 2                                                                                             | 3<br>(1)                         | Q2AD                   |
| 11  |                                                                                               | 2                                | Q2CH2P                 |
| 12  | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                            | 2                                | Q2CF2P                 |
| 13  |                                                                                               | 2                                | Q2P4H                  |
| 14  |                                                                                               | 1                                | Q2 <b>P</b> 3N         |
| 15  |                                                                                               | 58<br>(3)                        | РҮ                     |

# 1-Aryl-2-(alkylamino)ethanol Antimalarials

| no. | compounds   | no. of<br>congeners <sup>a</sup> | symbols in<br>Table II |  |
|-----|-------------|----------------------------------|------------------------|--|
| 16  |             | 2                                | PY2VP                  |  |
| 17  |             | 3<br>(1)                         | PY22VP                 |  |
| 18  |             | 1                                | РҮ2СОР                 |  |
| 19  |             | 1                                | Y2VP                   |  |
| 20  |             | 1                                | PY2AD                  |  |
| 21  | 5 0 0 0 F 3 | 8<br>(1)                         | Y                      |  |
| 22  |             | 19                               | <b>T</b> 7             |  |
| 23  |             | 4                                | <b>T</b> 17            |  |
| 24  |             | 6<br>(1)                         | T5                     |  |
| 25  |             | 5                                | Т3                     |  |
| 26  |             | 11                               | A1                     |  |
| 27  |             | 2                                | A2                     |  |
| 28  | ,           | 11<br>(1)                        | A9                     |  |
| 29  |             | 15                               | N2P                    |  |
| 30  |             | 5                                | N2OP                   |  |

## 382 Journal of Medicinal Chemistry, 1979, Vol. 22, No. 4

| no. | compounds                               | no. of<br>congeners <sup>a</sup> | symbols in<br>Table II |
|-----|-----------------------------------------|----------------------------------|------------------------|
| 31  |                                         | 1                                | N2COP                  |
| 32  | 7 • • • • • • • • • • • • • • • • • • • | 1                                | N4P                    |
| 33  |                                         | 2<br>(4)                         | Ν                      |
| 34  |                                         | 20                               | P1                     |
| 35  |                                         | 2                                | Рз                     |
| 36  |                                         | 6<br>(1)                         | P4                     |
| 37  |                                         | 2                                | P2N                    |
| 38  |                                         | 3<br>(1)                         | P3N                    |
| 39  |                                         | 1                                | P4N                    |
| 40  |                                         | 4                                | P5N                    |
| 41  |                                         | 1<br>(1)                         | P6N                    |
| 42  |                                         | 1                                | P7N                    |
| 43  |                                         | 1                                | DPE                    |
| 44  |                                         | 1                                | FH2                    |
| 45  |                                         | 1                                | FCO                    |

| no. | compounds                                                           | no. of congeners <sup>a</sup> | symbols in<br>Table II |
|-----|---------------------------------------------------------------------|-------------------------------|------------------------|
| 46  | y = 0                                                               | 5                             | Q2P3                   |
| 47  | s = d = ≤ +3<br>= = × +3<br>= - × + +<br>= - × + + +<br>= - × + + + | 2                             | Q2P5                   |
| 48  |                                                                     | 1<br>(4)                      | Q2P6                   |
| 49  |                                                                     | 1<br>(1)                      | Q2P7                   |
| 50  |                                                                     | 3<br>(2)                      | Q2P8                   |
| 51  |                                                                     | 1                             | Q6N                    |
| 52  |                                                                     | 1                             | Q5                     |
| 53  |                                                                     | (6)                           | Q2                     |
| 54  |                                                                     | (9)                           | Q3                     |
| 55  | 6                                                                   | (2)                           | $Q_{2}$                |
| 56  |                                                                     | (8)                           | Q8                     |
| 57  |                                                                     | (3)                           | Q4P2                   |
| 58  |                                                                     | (1)                           | P1N                    |
| 59  | ° • <sup>N</sup> − • · · · · · · · · · · · · · · · · · ·            | (1)                           | Q4H                    |
| 60  |                                                                     | (4)                           | P8N                    |

<sup>a</sup> Figures in parentheses are number of congeners in Table XIII.

Table V. Development of Equation 7c for Phenanthrenes

| inter-<br>cept | $\Sigma \sigma$ | <3 <b>-c</b> ures | $\Sigma \pi$ | CNR <sub>2</sub> | $(\log P)^2$ | c-side | log P | AB   | r              | s     | $F_{1,X}^{a}$ |  |
|----------------|-----------------|-------------------|--------------|------------------|--------------|--------|-------|------|----------------|-------|---------------|--|
| <br>2.68       | 1.38            |                   |              |                  |              |        |       |      | 0.794          | 0.382 | 361           |  |
| 3.07           | 1.00            | $\sim 0.75$       |              |                  |              |        |       |      | 0.891          | 0.286 | 170           |  |
| 2.97           | 0.82            | -0.70             | 0.14         |                  |              |        |       |      | 0.901          | 0.274 | 18.9          |  |
| 2.94           | 0.80            | -0.70             | 0.15         | 0.32             |              |        |       |      | 0.910          | 0.262 | 21.0          |  |
| 3.02           | 0.75            | - 0, <b>6</b> 9   | 0.19         | 0.35             | - 0.005      |        |       |      | 0.917          | 0.253 | 15.8          |  |
| 3.03           | 0.76            | - 0.66            | 0.19         | 0.35             | 0.005        | - 0.23 |       |      | 0.920          | 0.248 | 8.37          |  |
| 2.63           | 0.79            | - 0.67            | 0.15         | 0.32             | -0.025       | -0.23  | 0.20  |      | 0.923          | 0.244 | 7.90          |  |
| <br>2.58       | 0.83            | 0.66              | 0.15         | 0.31             | 0.026        | 0.24   | 0.21  | 0.10 | 0.9 <b>2</b> 5 | 0.242 | 5.22          |  |
| <br>           |                 |                   |              |                  |              |        |       |      |                |       |               |  |

 ${}^{a}F_{i_{*}+2i(6=-a,a5i)} = 11.4; F_{i_{*}+2i(6i=a,a6i)} = 8.18; F_{i_{*}+2i(6i=a,a2i)} = 5.15$ 

Table VI. Squared  $(r^2)$  Correlation Matrix for Equation 7c for Phenanthrenes

|                                                                                                  | log P | c-side       | Σπ                   | $\Sigma \sigma$              | CNR <sub>2</sub>                     | AB                                                                     | <3-<br>cures                                         |
|--------------------------------------------------------------------------------------------------|-------|--------------|----------------------|------------------------------|--------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
| $     log P      c-side      \Sigma \pi      \Sigma \sigma      CNR_2      AB      < 3-cures   $ | 1.00  | 0.01<br>1.00 | 0.05<br>0.01<br>1.00 | 0.00<br>0.00<br>0.46<br>1.00 | 0.01<br>0.00<br>0.01<br>0.00<br>1.00 | $\begin{array}{c} 0.00\\ 0.01\\ 0.14\\ 0.17\\ 0.01\\ 1.00 \end{array}$ | 0.00<br>0.03<br>0.21<br>0.22<br>0.00<br>0.03<br>1.00 |

significant, as can be seen from their 95% confidence intervals, and log  $P_0$  cannot be calculated with any confidence.

When the data sets of eq 7a and 7b are combined using indicator variables <3-cures for the points of eq 7b, eq 7c can be formulated. The coefficients of eq 7c are in good agreement with those of eq 7a, and the goodness of fit, as judged by s, has not been decreased by the addition of the 38 poor data points.

There are some important advantages to combining eq 7a and 7b into eq 7c, although at first this might seem to be a dubious procedure since eq 7a and 7b are not essentially identical. In fact, however, congeners 180-217as a group are well fit by eq 7c. Only 10 of the 38 congeners have deviations from eq 7c higher than the standard deviation of eq 7c. The standard deviation for the group is 0.227, which is less than that for the whole group of 214 congeners; therefore, this poorly active subset does conform to the same structure-activity relationship as the larger group of highly active compounds. One cannot ascertain this without combining the two data sets, because the limited range in log 1/C for compounds 180-217 provides little perspective.

Including these less important molecules has important benefits for the drug designer. With a better spread in data, one can now place much better confidence limits on log  $P_0$  and the confidence limits on the intercept can also be tightened. From the point of view of molecular bookkeeping, we can more easily keep track of a more diverse set of molecules.

The negative coefficient with the  $\leq 3$ -cures term of eq 7c reflects the fact that the dose-response curve rises more steeply in the region where one is simply extending the lifespan of the mice. It appears to change slope sharply in the region where the majority of the mice are beginning to be cured.

A data point of particular interest is 163. This congener contains the bulky 3,6-di-*tert*-butyl groups; nevertheless, it is moderately well fit, showing that rather bulky substituents can be placed on the phenanthrene ring without undue loss of activity.

The development of eq 7c is given in Table V and the correlation among its variables is shown in Table VI.

Quinolines. As with the phenanthrenes, we have

factored the quinolines to obtain equations for congeners producing at least three cures (eq 8a) and those producing

three or more cures

 $\log 1/C = 0.621(\pm 0.15) \sum \sigma + 0.365(\pm 0.16) \sum \pi + 0.365(\pm 0.16) \log P - 0.043(\pm 0.017)(\log P)^2 - 0.400(\pm 0.19)c\text{-side} + 0.476(\pm 0.19)MR-4'-Q + 0.341(\pm 0.25)Me-6,8-Q + 0.248(\pm 0.15)2-Pip + 2.060(\pm 0.15) (8a)$ 

$$n = 122; r = 0.834; s = 0.274; \log P_0 = 4.23 (3.7-4.7)$$

extrapolated cures

$$\log 1/C = 0.176(\pm 0.16) \sum \sigma + 0.071(\pm 0.11) \sum \pi + 0.088(\pm 0.09) \log P - 0.005(\pm 0.01) (\log P)^2 + 0.330(\pm 0.17) MR-4'-Q + 0.073(\pm 0.21) Me-6,8-Q + 0.018(\pm 0.17)2-Pip + 2.156(\pm 0.17) (8b)$$

 $n = 87; r = 0.744; s = 0.184; \log P_0 = 9.5 (\pm \infty)$ 

all quinolines

$$\log 1/C = 0.541(\pm 0.13) \sum \sigma + 0.155(\pm 0.10) \sum \pi + 0.228(\pm 0.10) \log P - 0.026(\pm 0.012) (\log P)^2 - 0.181(\pm 0.13) \text{c-side} - 0.695(\pm 0.10) <3 \text{-cures} + 0.365(\pm 0.15) \text{MR-4'-Q} + 0.232(\pm 0.20) \text{Me-6,8-Q} + 0.130(\pm 0.11) 2 \text{-Pip} + 2.492(\pm 0.22) (8c)$$

$$n = 216; r = 0.898; s = 0.296; \log P_0 = 4.37 (3.7-5.2)$$

one, two, or no cures (eq 8b). 'These two sets were then merged to afford eq 8c. Seven data points (218, 298, 306, 308, 333, 336, and 337) were excluded in the formulation of eq 8a.

All data points are included in the formulation of eq 8c. Equation 8a has several variables not present in eq 7c. The term in MR-4'-Q is assigned MR values for substituents in the 4' position of the 2-phenyl ring. Since MR gives a better correlation than  $\pi$  for these substituents, this suggests that dispersion forces and/or a conformational change due to steric effects may be behind the increased inhibitory power of such groups. Although there are many examples of 3' substitution with several different types of substituents, these congeners are well fit without being included in a  $\sum \pi$  or the MR term. The evidence is good that 3' substituents are only involved in an electronic effect and the overall hydrophobic character (log P). The Me-6,8-Q term takes the value of 1 for quinolines with methyl groups in the 6 and 8 positions and the value of 0.5 when only one such group is present. Its positive coefficient brings out an activating effect of Me in these positions which is not produced by other groups, such as Cl. It is not clear why such groups are activating in quinoline while nothing in the phenanthrene series corresponds to this. In the case of the quinolines, the 2-Pip

Table VII. Development of Equation 8c for Quinolines

| inter- |           |              |      |         | Me-6, |        |       |              |       |       |       |               |
|--------|-----------|--------------|------|---------|-------|--------|-------|--------------|-------|-------|-------|---------------|
| cept   | < 3-cures | $\Sigma \pi$ | Σσ   | MR-4'-Q | 8-Q   | c-side | log P | $(\log P)^2$ | 2-Pip | r     | 8     | $F_{1,X}^{a}$ |
| 3,55   | -1.04     |              |      |         |       |        |       |              |       | 0.774 | 0.419 | 320           |
| 3.19   | -0.91     | 0.38         |      |         |       |        |       |              |       | 0.833 | 0.367 | 65.9          |
| 3.04   | -0.75     |              | 0.55 | 0.50    |       |        |       |              |       | 0.861 | 0.338 |               |
| 2.94   | -0.72     |              | 0.68 | 0.48    | 0.48  |        |       |              |       | 0.876 | 0.321 | 24.8          |
| 2.89   | -0.72     | 0.15         | 0.56 | 0.44    | 0.36  |        |       |              |       | 0.882 | 0.315 | 9.38          |
| 2.92   | -0.70     | 0.16         | 0.54 | 0.42    | 0.31  | -0.17  |       |              |       | 0.886 | 0.310 | 6.52          |
| 2.62   | -0.70     | 0.21         | 0.43 | 0.38    |       | -0.25  | 0.22  | -0.027       |       | 0.891 | 0.305 |               |
| 2.49   | -0.70     | 0.20         | 0.46 | 0.36    |       | -0.20  | 0.24  | -0.027       | 0.16  | 0.895 | 0.300 | 8.15          |
| 2.49   | -0.70     | 0.16         | 0.54 | 0.37    | 0.23  | -0.18  | 0.23  | -0.026       | 0.13  | 0.898 | 0.296 | 5.33          |

<sup>a</sup>  $F_{1,120(\alpha=0.001)} = 11.4; F_{1,120(\alpha=0.005)} = 8.18; F_{1,120(\alpha=0.01)} = 6.85; F_{1,120(\alpha=0.025)} = 5.15.$ 

Table VIII. Squared  $(r^2)$  Correlation Matrix for Equation 8c for Quinolines

|              | <3-cures | $\Sigma \pi$ | Σσ   | MR-4'-Q | Me-6,8-Q | 2-Pip | log P | c-side |
|--------------|----------|--------------|------|---------|----------|-------|-------|--------|
| <3-cures     | 1.00     | 0.09         | 0.13 | 0.11    | 0.00     | 0.02  | 0.12  | 0.03   |
| $\Sigma \pi$ |          | 1.00         | 0.25 | 0.03    | 0.01     | 0.04  | 0.21  | 0.00   |
| Σσ           |          |              | 1.00 | 0.00    | 0.19     | 0.04  | 0.05  | 0.00   |
| MR-4'-Q      |          |              |      | 1.00    | 0.01     | 0.02  | 0.22  | 0.02   |
| Me-6.8-Q     |          |              |      |         | 1.00     | 0.06  | 0.00  | 0.02   |
| 2-Pip        |          |              |      |         |          | 1.00  | 0.23  | 0.05   |
| $\log P$     |          |              |      |         |          |       | 1.00  | 0.00   |
| c-side       |          |              |      |         |          |       |       | 1.00   |

Table IX. Development of Equation 9 for Pyridines

| intercept | <3-cures | Σσ   | AB      | NBrPy | $(\log P)^2$ | $\log P$ | r     | 8     | $F_{1,X}^{a}$ |
|-----------|----------|------|---------|-------|--------------|----------|-------|-------|---------------|
| 3.67      | -0.97    |      | <b></b> |       |              |          | 0.692 | 0.406 | 51.5          |
| 2.83      |          | 1.15 | -0.75   |       |              |          | 0.864 | 0.286 | 58.2          |
| 3.02      | -0.41    | 0.95 | -0.58   |       |              |          | 0.896 | 0.255 | 15.1          |
| 2.98      | -0.37    | 0.91 | -0.54   | 0.37  |              |          | 0.919 | 0.228 | 14.5          |
| 3.08      | -0.30    | 0.99 | -0.57   | 0.35  | -0.005       |          | 0.926 | 0.221 | 4.64          |
| 1.72      | -0.29    | 0.95 | -0.58   | 0.37  | -0.046       | 0.49     | 0.933 | 0.212 | 5.58          |

<sup>a</sup>  $F_{1,40(\alpha=0.001)} = 12.0; F_{1,40(\alpha=0.025)} = 5.42; F_{1,40(\alpha=0.05)} = 4.08.$ 

group in the side chain seems to be *slightly* more active than other types of alkylamino groups; this is brought out by the 2-Pip indicator variable.

The AB variable was not significant in the quinoline set and, since only three examples of congeners with an extra  $CH_2$  in the side chain are present in the quinolines, these points were dropped at this stage of the correlation analysis; however, they were parameterized by  $CNR_2$  in the overall equation and are reasonably well fit.

The correlation with eq 8a is not as good as that of eq 7a; however, the agreement between the coefficients for the variable common to each equation is not bad.

Equation 8b is rather meaningless when one considers the confidence limits on the various parameters. The major reason for this is that there is very little variance in the data ( $\sigma^2 = 0.069$  compared to 0.229 for eq 8a). However, when eq 8a and 8b are merged to produce eq 8c, the 87 extrapolated log 1/C values do not distort the shape of eq 8c. Equation 8c is much like eq 8a, except that one term, <3-cures, is needed to merge the two sets. The coefficient with this term is close in size to that in eq 7c.

That the 87 congeners of eq 8b conform to the QSAR of the more active quinolines can be seen from their good fit to eq 8c. The standard deviation of these 87 compounds from eq 8b is 0.184, which is less than the standard deviation (0.296) for eq 8c.

The most surprising aspect of eq 8a and 8c is the  $\sum \sigma$  term. Our first approach was to factor  $\sigma$  into two terms, one for substitutents on the 2-phenyl moiety and one for substituents on the quinoline ring. Doing so yielded an equation with two electronic terms with identical coefficients. Merging these two terms did not reduce the quality of the correlation. This is a most important discovery which was observed in a less dramatic way with the X and

Table X. Squared  $(r^2)$  Correlation Matrix for Parameters of Equation 9 for Pyridines

|          | < 3-  |                 |      |       |       |              |
|----------|-------|-----------------|------|-------|-------|--------------|
|          | cures | $\Sigma \sigma$ | AB   | NBrPy | log P | $\Sigma \pi$ |
| <3-cures | 1.00  | 0.10            | 0.13 | 0.04  | 0.03  | 0.07         |
| Σσ       |       | 1.00            | 0.11 | 0.01  | 0.09  | 0.71         |
| AB       |       |                 | 1.00 | 0.02  | 0.01  | 0.35         |
| NBrPy    |       |                 |      | 1.00  | 0.00  | 0.00         |
| log P    |       |                 |      |       | 1.00  | 0.05         |
| Σπ       |       |                 |      |       |       | 1.00         |

Y substituents on I. This relationship between the electronic effect of the substituents and biological activity must be incorporated into any molecular mechanism of activity. The development of eq 8c is given in Table VII and the intercorrelation of the variables is shown in Table VIII.

2,6-Diphenylpyridines. There are 58 examples of 2,6-diphenylpyridines (434-491) in Table II. The "best" QSAR for these is eq 9. One unique point not included

 $log 1/C = 0.953(\pm 0.19) \sum \sigma - 0.289(\pm 0.19) < 3 - cures - 0.583(\pm 0.14) AB + 0.371(\pm 0.17) NBrPy - 0.485(\pm 0.42) log P - 0.046(\pm 0.04) (log P)^2 + 1.718(\pm 1.2) (9)$ 

$$n = 57; r = 0.933; s = 0.212; \log P_0 = 5.3 (3.0-5.9)$$

in eq 9 contains an additional  $CH_2$  in the side chain. This point is included in the final equation where the  $CNR_2$ term accounts for this structural variation. The development of eq 9 is given in Table IX and the relationships between its variables are presented in Table X. One new parameter has been introduced (NBrPy) which does not occur in the phenanthrene or quinoline equations. This

Table XI. Development of Equation 10 for All Congeners

| inter-<br>cept | <3-<br>cures | Σσ   | $\Sigma \pi$ | Рy   | Q2P-<br>378 | MR-<br>4'-Q | $CNR_2$ | AB    | Me-6,<br>8-Q | c-<br>side | log<br>P | $(\log P)^2$ | NBr-<br>Py | 2-<br>Pip | r     | \$    | $F_{1,X}^{a}$ |
|----------------|--------------|------|--------------|------|-------------|-------------|---------|-------|--------------|------------|----------|--------------|------------|-----------|-------|-------|---------------|
| 3.68           | - 1.15       |      |              |      |             |             |         |       |              |            |          |              |            |           | 0.791 | 0.425 | 1077          |
| 3.26           | 0.92         | 0.63 |              |      |             |             |         |       |              |            |          |              |            |           | 0.860 | 0.355 | 283           |
| 3.1 <b>9</b>   | -0.90        | 0.55 | 0.11         |      |             |             |         |       |              |            |          |              |            |           | 0.867 | 0.347 | 30.3          |
| <b>3</b> .13   | - 0.87       | 0.45 | 0.19         | 0.28 |             |             |         |       |              |            |          |              |            |           | 0.873 | 0.340 | 25.7          |
| 3. <b>12</b>   | - 0.86       | 0.47 | 0.19         | 0.27 | -0.51       |             |         |       |              |            |          |              |            |           | 0.877 | 0.335 | 20.5          |
| 3.04           | ~ 0.82       | 0.49 | 0.20         | 0.33 | - 0.64      | 0.26        |         |       |              |            |          |              |            |           | 0.881 | 0.330 | 22.7          |
| 3.03           | -0.82        | 0.47 | 0.21         | 0.35 | -0.64       | 0.28        | 0.35    |       |              |            |          |              |            |           | 0.886 | 0.324 | 23.1          |
| 3.02           | - 0.82       | 0.51 | 0.21         | 0.35 | 0.71        | 0.36        | 0.33    | -0.15 |              |            |          |              |            |           | 0.890 | 0.319 | 21.2          |
| <b>3.0</b> 0   | 0.81         | 0.56 | 0.19         | 0.32 | -0.68       | 0.31        | 0.33    | -0.15 | 0.31         |            |          |              |            |           | 0.892 | 0.317 | 11.7          |
| 3.01           | - 0.81       | 0.56 | 0,19         | 0.32 | -0.70       | 0.32        | 0.33    | -0.15 | 0.30         | - 0.16     |          |              |            |           | 0.894 | 0.314 | 9.7           |
| 2.77           | - 0.80       | 0.53 | 0.19         | 0.33 | -0.71       | 0.35        | 0.32    | -0.15 |              | -0.19      | 0.15     | -0.017       |            |           | 0.895 | 0.312 |               |
| 2.74           | -0.80        | 0.58 | 0.17         | 0.30 | -0.69       | 0.30        | 0.32    | -0.15 | 0.30         | -0.18      | 0.15     | -0.017       |            |           | 0.897 | 0.310 | 11.0          |
| 2.74           | 0.79         | 0.58 | 0.17         | 0.27 | -0.69       | 0.30        | 0.32    | -0.15 | 0.29         | -0.18      | 0.15     | -0.018       | 0.16       |           | 0.898 | 0.309 | 2.79          |
| 2.69           | - 0.80       | 0.58 | 0.17         | 0.27 | -0.67       | 0.28        | 0.32    | -0.14 | 0.25         | - 0.17     | 0.17     | -0.019       | 0.17       | 0.08      | 0.898 | 0.309 | 2.48          |

<sup>*a*</sup>  $F_{1,120;\alpha=0,901} = 11.4; F_{1,120;\alpha=0,905} = 8.18; F_{1,120;\alpha=0,1} = 2.75.$ 

Table XII. Squared  $(r^2)$  Correlation Matrix for Parameters of Equation 10

|                    | < 3-  |      | Me-6, |              | _    |        | MR-  |      |           |        |          |       |       |
|--------------------|-------|------|-------|--------------|------|--------|------|------|-----------|--------|----------|-------|-------|
|                    | cures | Σσ   | 8-Q   | $\Sigma \pi$ | Ру   | Q2P378 | 4'-Q | AB   | $CNR_{2}$ | c-side | $\log P$ | 2-Pip | NBrPy |
| < 3-cures          | 1.00  | 0.17 | 0.00  | 0.09         | 0.02 | 0.01   | 0.00 | 0.02 | 0.00      | 0.01   | 0.02     | 0.01  | 0.01  |
| Σσ                 |       | 1.00 | 0.11  | 0.22         | 0.03 | 0.00   | 0.02 | 0.04 | 0.01      | 0.00   | 0.04     | 0.05  | 0.01  |
| Me-6,8-Q           |       |      | 1.00  | 0.00         | 0.01 | 0.00   | 0.05 | 0.00 | 0.00      | 0.01   | 0,00     | 0.12  | 0.00  |
| $\Sigma \pi$       |       |      |       | 1.00         | 0.19 | 0.00   | 0.00 | 0.02 | 0.00      | 0.00   | 0.01     | 0.02  | 0.03  |
| Py                 |       |      |       |              | 1.00 | 0.00   | 0.04 | 0.00 | 0.00      | 0.00   | 0.06     | 0.01  | 0.15  |
| Q2P378             |       |      |       |              |      | 1.00   | 0.04 | 0.00 | 0.00      | 0.00   | 0.00     | 0.00  | 0.00  |
| MR 4 Q             |       |      |       |              |      |        | 1.00 | 0.08 | 0.01      | 0.00   | 0.01     | 0.03  | 0.01  |
| AB                 |       |      |       |              |      |        |      | 1.00 | 0.00      | 0.00   | 0.03     | 0.01  | 0.00  |
| CNR,               |       |      |       |              |      |        |      |      | 1.00      | 0.00   | 0.00     | 0.00  | 0.00  |
| c-side             |       |      |       |              |      |        |      |      |           | 1.00   | 0.01     | 0.01  | 0.00  |
| $\log P$           |       |      |       |              |      |        |      |      |           |        | 1.00     | 0.12  | 0.01  |
| $2 - \tilde{P}$ ip |       |      |       |              |      |        |      |      |           |        |          | 1.00  | 0.00  |
| NBrPy              | _     |      |       |              |      |        |      |      |           |        |          |       | 1.00  |

indicator variable takes the value of 1 for branched alkyl groups attached to the side-chain nitrogen. The side chain of the 2,6-diphenylpyridines may be positioned on the receptor somewhat differently from the phenanthrenes and quinolines so that branching increases inhibitory power.

No  $\sum \pi$  term appears in eq 9. In this sense, the 2,6diphenylpyridines resemble the 2-phenylquinolines where  $\sum \pi$  does not include substituents on the 2-phenyl moiety. However, the MR-4' variable does not improve the correlation with the pyridines, which is probably due to the high collinearity between  $\sum \sigma$  and MR-4'. The larger coefficient with  $\sum \sigma$  is no doubt due to this collinearity and/or the collinearity between  $\sum \pi$  and  $\sum \sigma$ . The coefficient with  $\sum \sigma$  (0.95) in eq 9 is close to the sum of the coefficients for  $\sum \sigma$  and MR-4'-Q in eq 8c (0.54 + 0.37 = 0.91) (this is not a strict comparison, since MR and  $\sigma$  are not equiscalar).

The interecept of the pyridine equation is much lower than that of the phenanthrene or quinoline equations; however, the confidence limits on it are so large that we cannot assume the difference to be significant.

The log P and log  $P_0$  terms also differ from those of the other antimalarial equations, but again the confidence limits are so wide that a true difference cannot be inferred with any surety.

There are only two examples of 2,6-diphenylpyridines with cycloalkyl groups on the side-chain nitrogen (c-side); hence, this parameter was not included in eq 9. These points are so parameterized in the overall equation.

**Overall QSAR.** Equations 7-9 embrace the first 491 compounds of Table II. Beyond this, there are 155 miscellaneous compounds of "similar" structure (see Table IV for classification of the nuclei). In order to formulate

the most general structure-activity picture, all of the congeners of Table II have have been fit to eq 10 and no data points were excluded.

 $\log 1/C = 0.575(\pm 0.09) \sum \sigma + 0.173(\pm 0.05) \sum \pi + 0.171(\pm 0.07) \log P - 0.019(\pm 0.008)(\log P)^2 - 0.168(\pm 0.10)c\text{-side} + 0.321(\pm 0.14)CNR_2 - 0.140(\pm 0.06)AB - 0.795(\pm 0.06) <3\text{-cures} + 0.281(\pm 0.11)MR \cdot 4' \cdot Q + 0.252(\pm 0.18)Me \cdot 6.8 \cdot Q + 0.081(\pm 0.10)2\text{-Pip} + 0.166(\pm 0.19)NBrPy - 0.674(\pm 0.22)Q2P378 + 0.272(\pm 0.11)Py + 2.689(\pm 0.17) (10)$ 

$$n = 646; r = 0.898; s = 0.309; \log P_0 = 4.50 (4.0-5.0)$$

The last two terms of eq 10 do not occur in the QSAR of the three other subsets. The indicator variable Py takes the value of 1 for pyridine derivatives. The small positive weighting factor with this term indicates that, other parameters being equal, pyridines are intrinsically more active than the phenanthrenes or quinolines.

The variable Q2P378 is given the value of 1 for 2phenylquinolines in which the side chain is attached at positions 3, 7, or 8. These congeners are about five times less active than when the side chain is attached to positions 4-6. Care must be taken in interpreting this term, since there are only two data points supporting the term where the side chain is attached to position 5 and one example each when the side chain is at position 6 or 7.

The development of eq 10 is given in Table XI and the interrelationship of its variables in Table XII. Equation 10 is a robust expression with an average of 46 data points per variable. There is over a 1000-fold range in the activities of Table II and eq 10, with a standard deviation of 0.3, indicates that these activities can, on the average, be predicted within a factor of  $\pm 2$ . Considering the fact that many of the more lipophilic congeners are quite insoluble and, hence, difficult to administer and that the range in structural modification is large, eq 10 is about as good as one could expect. For comparison, we have placed the log 1/C values calculated by eq 10 and eq 7c, 8c, and 9c in Table II.

#### Discussion

Phenanthrenes. One of the most serious obstacles to developing comprehensive correlation equations for the antimalarials was the problem of formulating a  $\log 1/C$ value for those congeners which did not achieve a cure rate of at least 3 out of 5 mice; the problem was especially acute with those congeners which did not achieve any cures. Using an indicator variable to parameterize such a heterogeneous group of congeners having low activity might seem to be a dubious procedure; however, the coefficient with the <3-cure terms in eq 7c, 8c, and 10 are in rather good agreement. The coefficient with this indicator variable in eq 9 does not agree well with the others, but there are only 11 congeners in this case which did not reach the 3-cure level. The best evidence for the use of the <3-cures indicator variable is the fact that the compounds in eq 10 which did not achieve 3 cures are as well fit as the others.

The negative coefficient with this term shows that compounds which do not attain 3 cures are less effective than one would expect from our mode of extrapolation. We believe the techniques employed with these less active compounds may be useful in other QSAR studies.

The use of the  $\leq 3$ -cures variable shows that the initial dose-response curve rises more rapidly in the "extending-life" region and then flattens out somewhere between 2 and 3 cures. This might well have been anticipated, since eliminating all microbes to achieve a cure is much more difficult than extending the life of the mice for a certain number of days. What is of greatest interest is that the QSAR for the two processes are quite similar; this is particularly valuable to know since, in much drug research and especially in cancer chemotherapy, one often finds no cures for a whole set of congeners. Our results suggest that QSAR formulated with weakly active compounds are of value in designing congeners with curative power.

In the development of eq 7c (Table V), two variables,  $\sum \sigma$  and <3-cures, account for 79.4% of the variance in the data. The  $\sum \pi$  term accounts for 1.7% and the other five variables for an additional 6.1%. The log  $P + (\log P)^2$ terms at the optimum log P add 0.37 to log 1/C. It is only for very high and low log P values that these terms become critical. There are 14 examples (76, 84, 114, 119, 124, 129, 138, 142, 143, 146, 150, 182, 190, and 191) where log  $P \ge$ 7, and all but one of these are tightly fit by eq 7c. When log P is 7, the contribution to log 1/C is 0.13, other factors being constant; it is -0.04 at 8 and becomes -0.26 at 9. The highest log P in the phenanthrene series is 8.09 and the lowest log P is 0.83 so that a good test of the limits of log P has not been made.

One of the uses of QSAR is to bring out compounds with unusual activity which can serve as leads for new modifications. Looking over the activity of congeners 1-219 of Table II predicted by eq 7c, we find only five examples (1, 2, 18, 180, and 195) which are *underpredicted* by 0.5 or more. There is nothing special about any of these compounds. The high deviations are probably due to testing aberrations. The molecule most widely out of line is 18, which has a single  $2\text{-}CF_3$  group. While this is the only such example, there are several examples of compounds with a single Br or Cl in the 2 position which are well fit. Compound 18 does not suggest any new line of approach to more active congeners. Compounds 1 and 2 are three to four times more active than expected, but they are similar to compounds 3, 6, and 10, which are well fit. Compound 196 has a 1-OH group, but so does compound 202, and the latter shows no unusual activity. It would be interesting to retest these compounds to see if this high activity is indeed real.

Adding in terms  $(\sum \sigma)^2$  and  $(\sum \pi)^2$  to eq 7c did not improve the correlation; hence, we are left with the impression that activity can still be increased by adding relatively small, strong electron-withdrawing lipophilic substituents. The best substituent of this type would be  $-SO_2CF_3$  with  $\pi = 0.55$  and  $\sigma_p = 0.93$ . Placing three such substituents in the 1, 3, 5, or 7 position and using  $CH_2OHCH_2CH_2N(Bu)_2$  as a side chain would give a compound with a calculated log 1/C of 5.72. With four such groups, activity of 6.5 is predicted, provided that  $\sum \sigma$ continues to affect activity in a linear fashion from the present highest value of 1.63 up to 3.72. Since the  $SO_2CF_3$ is particularly stable metabolically, this would be a practical molecule to test.

Quinolines. The striking aspect of eq 8c for the quinolines is that all of the parameters common to eq 7c and 8c, except  $\sum \sigma$  and the standard deviation, are almost identical. The close agreement between intercepts underlines the bioisosteric character of the two ring systems. The majority of the quinolines are substituted 2phenylquinolines. Log P for phenanthrene is 4.46 and it is 3.90 for 2-phenylquinoline; hence, the two ring systems are almost isolipophilic. What is surprising is that, this being so, the quinolines are not intrinsically more active than the phenanthrenes because of the electronegative character of the ring nitrogen atom. Since electron withdrawal by substituents is so clearly important in eq. 7c, one would expect  $sp^2$  ring nitrogen atoms to enhance activity, other factors being equal. Of course, substituting an aromatic CH with an N results in a large drop in hydrophobicity; for example,  $\log P_{\text{naphthalene}} = 3.37$  while  $\log$  $P_{\text{quinoline}} = 2.03$ . Nevertheless, the almost identical intercepts of eq 7c and 8c show that isolipophilic phenanthrenes and quinolines yield bioisosteric antimalarials. Moreover, there are many miscellaneous congeners of Table II (supplementary material) with one or two ring nitrogen atoms which are well fit by eq 10. The expected increase in activity by the electronegativity of the aromatic nitrogen atom in the heterocyclic antimalarials of this report must somehow be offset by some repulsive interaction between these nitrogen atoms and some part of the receptor site.

Another unexpected aspect of the electronic effect is that substituents attached directly to the quinoline ring or to the 2-phenyl moiety have the same effect on activity. This is an important clue to the mechanism of action of these antimalarials. There is evidence that antimalarials act by intercalation with DNA;<sup>24,26</sup> if this is so, then the role of electron withdrawal by substituents might be that of promoting electron donation from DNA bases to the aromatic ring of the arylcarbinols. This effect might be more or less the same from the quinoline ring or its 2phenyl substituent. Of course, such an argument could be made for any active site, and it is not necessary to invoke intercalation with DNA.

## Table XIII. Inactive Congeners

|                 |                                                                                                        |               | $\log 1/C$         |         |              | a h        |
|-----------------|--------------------------------------------------------------------------------------------------------|---------------|--------------------|---------|--------------|------------|
| no.             | substituent                                                                                            | symbol        | calcd <sup>a</sup> | MR-4'-Q | log P        | ref        |
| 1               | $7,4'-F_{2}; N(C_{2}H_{4}), NEt$                                                                       | Q2P           | 2.36               | 0.09    | 3.32         | 34         |
| 2               | $7.8 - (CH = CH)_{3.3}, 3.2', 4' - Me_{3}; NBu_{3.3}$                                                  | 02P           | 2.24               | 0.57    | 6.00         | 22         |
| 3               | 6-Cl, 4'-Me; 2-Pip                                                                                     | 02OP          | 2.80               | 0.57    | 3.40         | $34^{-34}$ |
| 4               | 6-OMe; quinuclidine-5-Et                                                                               | Å.            | 1.86               | 0.00    | 2.31         | 34         |
| 5               | 2-CONHPH, 8,3'-(CF <sub>3</sub> ),; 2-Pip                                                              | Q             | 3.14               | 0.00    | 2.30         | 34         |
| 6               | 6-OCHMeCH <sub>2</sub> OH; quinuclidine-5-Et                                                           | Q             | 1.86               | 0,00    | 2,31         | 34         |
| 7               | 2-t-Bu, 6-Cl; 2-Pip                                                                                    | Q2TB          | 2.55               | 0.00    | 2.74         | 34         |
| 8               | $-; NHC(Me)_2 CH_2 C(Me)_3$                                                                            | Å9            | 2.26               | 0,00    | 3.46         | 34         |
| 9               | 4-Cl; $N(Et)_{2}$                                                                                      | N             | 2.24               | 0.00    | 0.56         | 34         |
| 10              | 4-Cl; $N(Bu)_2$                                                                                        | N             | 2.43               | 0.00    | 2.19         | 34         |
| 11              | 4-Cl; $N(Dec)_2$                                                                                       | N             | 2.28               | 0.00    | 8.13         | <b>34</b>  |
| 12              | 6-Cl; $N(Bu)_2$                                                                                        | N             | 2.51               | 0.00    | 2.19         | <b>34</b>  |
| 13              | 5-Br, 7,8-(CH=CH) <sub>2</sub> ; N(Hept) <sub>2</sub>                                                  | P4            | 2.41               | 0.00    | 7.69         | <b>34</b>  |
| 14              | $6-Br; N(Hept)_2$                                                                                      | P3N           | 2.65               | 0.00    | 4.89         | <b>34</b>  |
| 15              | $6, 8-Cl_2; N(Bu)_2$                                                                                   | Q2            | 2.71               | 0.00    | 2.46         | 34         |
| 16              | $6, 8-Cl_2; N(Hex)_2$                                                                                  | $\mathbf{Q}2$ | 2.79               | 0.00    | 4.40         | 34         |
| 17              | 6-OMe, 7-Cl; $N(Bu)_2$                                                                                 | $\mathbf{Q2}$ | 2.31               | 0.00    | 1.73         | 34         |
| 18              | 4-OMe, $6, 8-Cl_2$ ; N(Bu) <sub>2</sub>                                                                | Q2            | 2.77               | 0.00    | 2.44         | 34         |
| 19              | 4-OMe, $6, 8-Cl_2$ ; N(Hex) <sub>2</sub>                                                               | $Q_2$         | 2.85               | 0.00    | 4.38         | 34         |
| 20              | $4,6-(OMe)_2, 7-Cl; N(Bu)_2$                                                                           | $Q_2$         | 2.37               | 0.00    | 1.71         | 34         |
| 21              | 7,4 -Cl <sub>2</sub> ; N(Hept) <sub>2</sub>                                                            | Q3            | 1.97               | 0.00    | 5.40         | 34         |
| 22              | 8-Cl; $N(Hex)_2$                                                                                       | Q5            | 2.52               | 0.00    | 3.69         | 34         |
| 23              | 4-Me, 5-Cl; $N(Hept)_2$                                                                                | Q8            | 1.85               | 0.00    | 5.25         | 34         |
| 24              | $6, 8-Cl_2, 4-Cl; N(Bu)_2$                                                                             | Q4P2          | 2.91               | 0,00    | 5.13         | 34         |
| 25              | 6-OMe, 7-Cl, 4 -Cl; $N(Bu)_2$                                                                          | Q4P2          | 2.59               | 0.00    | 4.40         | 34         |
| 26              | $6-U_6H_5, 4-UI; N(Bu)_2$                                                                              | Q4P2          | 2.72               | 0.00    | 5.67         | 34         |
| 27              | $-; N(CH_2CH_2CO_2H)_2$                                                                                | P             | 1.99               | 0,00    | 0.60         | 1          |
| 28              | $-; N(allyl)_2$                                                                                        | P             | 1.99               | 0.00    | 0.59         | 1          |
| 29              | -; N(C-U <sub>6</sub> H <sub>11</sub> )UH <sub>2</sub> UH <sub>2</sub> UH <sub>2</sub> UH              | P             | 1.99               | 0.00    | 2.00         | 1          |
| 30              | 6 Br. 2 anabianala [2, 9, 9 homena                                                                     | P             | 2.44               | 0.00    | 2.98         | 34         |
| 31              | $7.4$ Cl $\rightarrow$ N(C H $\rightarrow$ C                                                           | P             | 2.47               | 0.00    | 3.74         | 37         |
| 32              | $7,4 - O_2; N(O_2H_4)_2 O_2$                                                                           | Q2P<br>Opp    | 2.53               | 0.60    | 1.14         | 13         |
| 24              | $7,4 - F_2; N(C_2 H_4)_2 O$                                                                            | Q2P           | 2.00               | 0.09    | 0.00         | 13         |
| 04<br>95        | $7,4$ $\mathbf{F}_2; \mathbf{N}(\mathbf{U}_2\mathbf{\Pi}_4)_2\mathbf{N}\mathbf{U}_6\mathbf{\Pi}_5$     | Q2P<br>Opp    | 2.39               | 0.09    | 4.26         | 13         |
| 20              | $5,2 - C_2 \Pi_4$ ; N-PIP<br>6.8 Cl 2' OH, N(B <sub>11</sub> )                                         | Q2P<br>Opp    | 2.20               | 0.10    | 3.51         | 34         |
| 30              | $6_{-}OM_{2}$ , 3'- $OH_{1}$ , N(Du) <sub>2</sub><br>$6_{-}OM_{2}$ , 3'- $A'_{-}OI_{1}$ , N(Oat)       | Q2P<br>O2P    | 2.87               | 0.10    | 3.15         | 34         |
| 38              | $4'_{-}$ Me: 2-Pin                                                                                     | Q2F<br>O2OP   | 2.30               | 0.60    | 0.34         | 14         |
| 39              | $6 - \Omega M_{e}$ , $2 - P i p - 5 - C H - C H B +$                                                   | Q201          | 2.50               | 0.57    | 2.09         | 4<br>94    |
| 40              | $2 \cdot i \cdot \Pr(2 \cdot \Pr)$                                                                     | ð             | 2.00               | 0.00    | 1.71         | 24         |
| 41              | -: N(Hent)                                                                                             | P1 N          | 2.20               | 0.00    | 4.03         | 34         |
| 42              | $6.8 \cdot Me^{-1} 2 \cdot Pin$                                                                        | 63            | 1.84               | 0.00    | 1 17         | 34         |
| 43              | $8-C1: N(CH_{-}).$                                                                                     | Q2P6          | 2 46               | 0.00    | 3.62         | 34         |
| 44              | 6-Me: $N(CH_{*})$                                                                                      | Q2P8          | 1 63               | 0.10    | 3 47         | 34         |
| 45              | $-: N(c-C_2H_1)CH_2CH_2CN$                                                                             | P             | 2.01               | 0.00    | 227          | 1          |
| 46              | -; N(CH <sub>2</sub> CH <sub>2</sub> CN),                                                              | P             | 1.70               | 0.00    | 0.37         | 1          |
| 47              | $3,6-(CF_3)_2; 4-Pip^2$                                                                                | Р             | 3.11               | 0.00    | 3.34         | 39         |
| 48              | 10-OMe; N(Bu),                                                                                         | Р             | 2.05               | 0.00    | 2.55         | 35         |
| 49              | $2,6-(SO_2Me)_2; \tilde{N}(Bu)_2$                                                                      | Р             | 1.89               | 0.00    | -0.69        | 2          |
| 50              | 3-COOH, 6-ČF.; 2-Pip                                                                                   | Р             | 2.77               | 0.00    | 2.14         | 38         |
| 51              | $3,6-(CF_3)_2; CH_2N(Non)_2$                                                                           | Р             | 2.93               | 0.00    | 9.77         | 16         |
| 52              | $3,6-(CF_{3})_{2}; NH_{2}$                                                                             | Р             | 3.04               | 0.00    | 2.19         | 39         |
| 53              | 6,8,4'-Cl <sub>3</sub> ; N(C <sub>2</sub> H <sub>4</sub> ) <sub>2</sub> NC <sub>6</sub> H <sub>5</sub> | Q2P           | 2.87               | 0.60    | 6.11         | 34         |
| 54              | $7,4'-Cl_2; N(C_2H_4)_2NC_6H_5$                                                                        | Q2P           | 2.73               | 0.60    | 5.40         | 34         |
| 55              | $7,4'-F_2$ ; NH-1-adamantyl                                                                            | Q2P           | 2.38               | 0.09    | 3.84         | 13         |
| 56              | $3-Br; N(Bu)_2$                                                                                        | Q2P           | 2.58               | 0.10    | 3.86         | 10         |
| 57              | 2-CF <sub>3</sub> ; 2-Pip                                                                              | Q2F           | 2.36               | 0.00    | 0.93         | 34         |
| 58              | 2- <i>t</i> -Bu; 2-Pip                                                                                 | Q2TB          | 2.24               | 0.00    | 2.03         | 34         |
| 59              | 8-CF <sub>3</sub> ; 2-Pip                                                                              | Q4H           | 2.60               | 0.00    | 1.12         | 32         |
| 60              | -; 2-Pip                                                                                               | Q             | 1.98               | 0.00    | 0.05         | 34         |
| 61              | 2-C-Hex; 2-Pip                                                                                         | Q             | 2.29               | 0.00    | 2.56         | 34         |
| 62              | 4,4"- $Br_2$ ; N(Hept) <sub>2</sub>                                                                    | PY            | 2.46               | 0.00    | 8.83         | 27         |
| 63              | 3, 4, 3, 4 -Cl <sub>4</sub> ; N(Hept) <sub>2</sub>                                                     | PY            | 2.40               | 0.00    | 9.95         | 27         |
| 04              | $4, 4'' + (OF_3)_2$ ; N(BU) <sub>2</sub>                                                               | I             | 3,16               | 0.00    | 3.97         | 28         |
| 60              | $=$ , $=$ ( $\cup$ $\Gamma_3$ ) <sub>2</sub> , NIDU<br>= N-Pin                                         | rizzvr<br>Te  | 3.08               | 0.00    | 0.07         | 29         |
| 67              | - N(Hept)                                                                                              | DAN           | 1.90               | 0.00    | 1.13         | 24         |
| 69              | - N(Hept)                                                                                              | PON           | 2.21               | 0.00    | 4.03<br>1 09 | 04<br>24   |
| 60              | 3-Br: N(Hent)                                                                                          | LOIN          | 2.21               | 0.00    | 4.03<br>/ 20 | 04<br>94   |
| 70              | 3-Cl: N(Hent)                                                                                          | PSN           | 2.00               | 0.00    | 4.05<br>171  | 34         |
| 71              | 1.3-CL. 7-Me: N(Hept)                                                                                  | P8N           | 2.55               | 0.00    | 6.01         | 34         |
| $\overline{72}$ | 4.6.8-Cl <sub>2</sub> ; N(Bu).                                                                         | Q3            | 2.50               | 0.00    | 3.17         | 34         |
| 73              | $4,7-Cl_2; N(Bu)_2$                                                                                    | ລີ້ອິ         | 2.03               | 0.00    | 2.46         | 34         |
| 74              | 4-Cl, 8-CF <sub>3</sub> ; $N(Bu)_{3}$                                                                  | <b>Q</b> 3    | 2.19               | 0.00    | 2.63         | 34         |
| 75              | 4-Cl, 8-C <sub>6</sub> $H_s$ ; $N(Bu)_2$                                                               | Q3            | 2.19               | 0.00    | 3.71         | 34         |
| 76              | $6,8-Cl_2; N(Bu)_2$                                                                                    | Q3            | 2.20               | 0.00    | 2.46         | 34         |

| no  | substituent                                           | symbol        | $\log 1/C$ | MB-4'-0   | log P | rofb |
|-----|-------------------------------------------------------|---------------|------------|-----------|-------|------|
|     |                                                       | symbol        | calcu      | MI10-4-1Q | log I |      |
| 77  | $8-CF_3$ ; N(Bu) <sub>2</sub>                         | Q3            | 1.88       | 0.00      | 1.92  | 34   |
| 78  | 4-Cl, $6$ , $8$ -Me <sub>2</sub> ; N(Bu) <sub>2</sub> | Q3            | 2.17       | 0.00      | 2.87  | 34   |
| 79  | $6, 8-Cl_2; N(Bu)_2$                                  | $Q_5$         | 2.71       | 0.00      | 2.46  | 34   |
| 80  | 6-Cl; $N(Et)_2$                                       | $\mathbf{Q8}$ | 1.58       | 0.00      | 0.12  | 34   |
| 81  | $6-Cl; N(Bu)_2$                                       | $\mathbf{Q8}$ | 1.80       | 0.00      | 1.75  | 34   |
| 82  | 4-Me, 5-Cl; $N(Et)_2$                                 | <b>Q</b> 8    | 1.58       | 0.00      | 0.68  | 34   |
| 83  | 4-Me, 5-Cl; $N(Bu)_2$                                 | $\mathbf{Q8}$ | 1.77       | 0.00      | 2.31  | 34   |
| 84  | 4-Me, 6-Cl; $N(Et)_2$                                 | <b>Q</b> 8    | 1.66       | 0.00      | 5,25  | 34   |
| 85  | 4-Me, 6-Cl; $N(Bu)_2$                                 | $\mathbf{Q8}$ | 1.85       | 0.00      | 2.31  | 34   |
| 86  | 4-Me, 6-Cl; $N(Hept)_2$                               | <b>Q</b> 8    | 1.93       | 0.00      | 525   | 34   |
| 87  | 8-Cl; $N(Hex)_2$                                      | Q2P6          | 2.61       | 0.10      | 5.65  | 34   |
| 88  | 8-Me; $N(CH_2)_6$                                     | Q2P6          | 2.30       | 0.10      | 3.47  | 34   |
| 89  | $8,4'-Me_2; N(CH_2)_6$                                | Q2P6          | 2.30       | 0.57      | 4,03  | 34   |
| 90  | $4'-Cl; N(CH_2)_6$                                    | Q2P7          | 1.72       | 0.60      | 3.62  | 34   |
| 91  | $-; N(CH_2)_6$                                        | Q2P8          | 1.42       | 0.10      | 2.91  | 34   |
| 92  | 2-adamant-1-yl, 6,8-Cl <sub>2</sub> ; 2-Pip-NCOMe     | Q2AD          | 2.87       | 0.00      | 4.29  | 34   |
| 93  | 2-t-Bu; CH(CH <sub>2</sub> OH)N(Et) <sub>2</sub>      | Q2TB          | с          |           |       | 34   |
| 94  | 6-Br; 2-Pip-N-COOEt                                   | Р             | с          |           |       | 34   |
| 95  | $3,6-(CF_3)_2$ ; NHCH(COOMe)- <i>i</i> -Pr            | Р             | с          |           |       | 34   |
| 96  | $-; C(CH_2OH)N(Et)_2$                                 | Q2TH          | с          |           |       | 34   |
| 97  | $-; N(CH_2CH_2CH_2NH_2)_2$                            | Р             | С          |           |       | 34   |
| 98  | $-; N(CH_2CCH)_2$                                     | Р             | с          |           |       | 34   |
| 99  | 6-Br; 2-Pip-NCOPr:OCOBu                               | Р             | с          |           |       | 34   |
| 100 | 6-Br; NHCH <sub>2</sub> -2-Pip-N-Me                   | Р             | С          |           |       | 34   |
| 101 | 6-Br; $N(C_2H_4)_2N(CH_2)_3N(Me)_2$                   | Р             | с          |           |       | 34   |
| 102 | 6-Br; $N[(CH_2)_2N(Et_2)]_2$                          | Р             | с          |           |       | 34   |
| 103 | 4', 4''-Cl <sub>2</sub> ; N(Bu)Succ                   | PY            | с          |           |       | 34   |

<sup>a</sup> Calculated using eq 10. <sup>b</sup> See footnote c, Table II. <sup>c</sup> Variations in these side chains are so unusual that we were not able to make reasonable estimates of  $\log P$ ; hence, we have not been able to give a calculated  $\log 1/C$ .

The quinolines differ from the phenanthrenes in a number of ways. The most important difference is that accounted for by the MR-4'-Q variable. The rather large coefficient (compared to that with  $\sum \pi$ ) with this term suggests a role for dispersion forces or steric effects by substituents in the 4' position on the 2-phenyl group. These substituents are better correlated by MR than by  $\pi$ . MR could be modeling binding by 4' substituents to the active site and/or the production of a conformational change in the site. No such effect is apparent in the phenanthrene series. In addition, it was found that better results are obtained by not including  $\pi$  or MR for 3' substituents; hence, both 3' and 4' substituents appear to be positioned outside of the hydrophobic region of the active site into which substituents on the phenanthrene ring fall (as modeled by  $\Sigma \pi$ ).

Other differences between quinolines and phenanthrenes are accounted for by the Me-6,8-Q and 2-Pip terms. The former term brings out the special activating effect of methyl groups in either the 6 or 8 position. The activating effect of such methyl groups was also noticed by Pinder and Burger.<sup>25</sup> The 2-Pip side chain seems to confer some small extra activity on quinolines not seen with the phenanthrenes.

The small contribution of the AB term present in the phenanthrenes does not have a significant role in the quinolines. The poorer correlation with the quinolines may mask this small effect.

The <3-cures term in eq 8c is more significant because 87 of the 219 quinolines produce less than 3 cures, while only 38 out of 217 phenanthrenes failed to achieve 3 cures. The anomalous position of  $\sum \sigma$  in the development of eq 8c compared to eq 7c requires comment. In the case of the phenanthrenes, the better spread in  $\pi$  values may allow a better separation of the roles of  $\pi$  and  $\sigma$ . We have a mean and standard deviation in the phenanthrenes for  $\sum \pi$  of  $1.52 \pm 0.80$  and  $0.67 \pm 0.38$  for  $\sum \sigma$ , while a somewhat lower variance is seen with the quinolines in the corresponding figures:  $\sum \pi = 0.79 \pm 0.55$  and  $\sum \sigma = 0.38 \pm 0.44$ . It should be possible to make a more potent quinoline by adding two  $SO_2CF_3$  groups to the quinoline ring and placing one in the 4' position. This combination with a CHOHCH<sub>2</sub>-2-Pip side chain has a calculated log 1/C of 5.52.

**2,6-Diphenylpyridines.** A most notable difference between eq 9 for the pyridines and eq 7c and 8c for the phenanthrenes and quinolines is that eq 9 does not contain a  $\sum \pi$  term. In addition, its coefficient with  $\sum \sigma$  is larger than that for eq 7c and 8c, which is probably due to the high collinearity between  $\sum \pi$  and  $\sum \sigma$  (see Table X). The  $\sum \sigma$  term in eq 9 may account for the hydrophobic effect as well as the electronic effect of the substituents; however, one must recall that the 2-phenyl group in the pyridines is analogous to the 2-phenyl group in the quinolines and that no parameterization was made in eq 8c for the hydrophobic effect of 3' and 4' substituents.

All Congeners. Two new variables not needed in the preceding equations are required in eq 10. The variable Py is assigned the value of 1 for all pyridines and the variable Q2P378 is assigned the value of 1 for 2-phenyl-quinolines with side chains attached at positions 3, 7, and 8. The corresponding quinolines with side chains at positions 4–6 are given the value of 0 for Q2P378. The negative coefficient with Q2P378 shows that aromatic nuclei cannot be placed on the active site in just any fashion; certain configurations are more effective, although almost any aromatic nucleus appears to give congeners with some activity.

In Table II (supplementary material) one can compare the results obtained with eq 10 for all congeners with those of the specialized eq 7c, 8c, and 9 for the phenanthrenes, quinolines, and pyridines. Although these three specialized equations give somewhat better results, the agreement in general is quite good. Equation 10 would be as good a guide for the synthesis of new compounds as eq 7c and 8c. Equation 9 might be misleading because of high collinearity between  $\Sigma \pi$  and  $\Sigma \sigma$ .

Inactive Congeners. Almost all structure-activity

studies turn up compounds which show little or no activity even though they are closely related structurally to active compounds. Attempts are being made to deal with such derivatives by using discriminate analysis or pattern recognition We believe, however, that the lack of activity of such molecules should, where possible, be rationalized in terms of the QSAR. Undue weight should not in general be accorded such compounds, since their borderline activity often means that their activities are at *best* less accurately known.

In the present study we have placed such molecules in Table XIII along with their calculated log 1/C values (eq 10) and their physiochemical parameters. Compounds 1-26 showed a mean survival time ( $\Delta t_{\rm ms}$ ) of from 2-11 days; most were in the range of 3-6 days. Compounds 27-44 produced a  $\Delta t_{\rm ms}$  of between 1 and 2 days. The remaining 48 derivatives can be considered to be inactive, since their  $\Delta t_{\rm ms}$  was less than 1 day. Excluding compound 80, which is reported to be very toxic to mice, the average of their predicted log 1/C values is 2.34. This of course is reassuring, since they are, as expected from eq 10, weakly active and predicted to be near the bottom of the scale in Table II (supplementary material). The least active compound in Table II has a log 1/C of 1.97.

Most of the compounds in the inactive group have calculated values near the borderline of 2. Notable exceptions are compounds 5, 47, 52, 64, and 65, which have predicted log 1/C of 3 or more. Compound 52 is unique in that it has no alkyl groups attached to the side-chain amino group; such alkyl groups appear to be essential for activity. Compounds 64 and 65 were tested only up to 160 mg/kg instead of the usual 640; they may well show activity at higher doses. Compound 5 is a unique structure with a 2-CONHC<sub>6</sub>H<sub>5</sub> substituent on the quinoline ring; it would be interesting to know if this group is generally deactivating or if it is just a fluke. Compounds 47 and 64 are also unique structures.

Compounds 15–20 and 24–26 are another group having a special feature. The side chain in these compounds is attached to the 2 position of the quinoline ring; such an attachment essentially destroys activity. Other compounds with unique structures are 67-71.

A number of compounds having more or less "normal" structures and rather large log 1/C values are 3 (2.80), 36 (2.87), 50 (2.78), 51 (2.93), and 53 (2.87). It is possible that activity in some of these compounds was missed because of difficulty in testing. Many of the compounds discussed in this report are highly insoluble and difficult to test.

Two other general types of arylmethanols which have always turned out to be inactive are those with a pyridine moiety<sup>25</sup> serving as the basic group in the side chain and bis compounds<sup>26</sup> in which two aryl units are joined together by connection through the side chain via a diamine.

All in all, we feel that the more or less inactive compounds of Table XIII are reasonably well accounted for when those with unique structural features for which no parameterization is present in eq 10 can be set aside. Certainly there are no bad surprises where high activity was found and low predicted or where high activity was predicted (log 1/C > 4) and low was found. Nothing important would have been missed if one had been making new congeners on the basis of developing eq 10 and all of the compounds of Table XIII had simply not been made.

Kubinyi Bilinear Model. Using the technique outlined under Method, we have fit all active congeners to the bilinear model. Equation 11, obtained by this method, can

$$\log 1/C = 0.576(\pm 0.09) \sum \sigma + 0.168(\pm 0.05) \sum \pi + 0.105(\pm 0.05) \log P - 0.167(\pm 0.07) \log (\beta P + 1) \\ 0.169(\pm 0.10) \text{c-side} + 0.319(\pm 0.136) \text{CNR}_2 - 0.139(\pm 0.06) \text{AB} - 0.795(\pm 0.06) <3\text{-cures} + 0.278(\pm 0.11) \text{MR-4'-Q} + 0.252(\pm 0.18) \text{Me-6,8-Q} + 0.084(\pm 0.10)2\text{-Pip} + 0.151(\pm 0.19) \text{NBrPy} - 0.683(\pm 0.22) \text{Q2P378} + 0.267(\pm 0.11) \text{Py} + 2.726(\pm 0.15) (11)$$

$$n = 646; r = 0.898; s = 0.309; \log P_0 = 4.19; \log \beta = 3.959$$

be compared with eq 10. With the possible exception of log  $P_0$ , the parameters of eq 10 and 11 do not differ significantly. Since the bilinear model contains one more parameter than the parabolic model, eq 11 is less satisfactory than eq 10.

The drug-modification study of Table II (supplementary material) is most impressive. The best compounds are 1000 times as potent as quinine (412), which, with a log 1/C of 2.06, is almost at the bottom of the list. This large data set of complex drugs acting on a most complex organism in mice constitutes an excellent proving ground for developing our ideas about structure-activity relationships. While the result embodied in eq 10 is highly satisfying, it is unlikely to be the "last word" on this set of congeners; the complexity of the set is enormous. Moreover, we have had to make a number of assumptions in calculating log P values and in dealing with the electronic effects of substituents which no doubt have introduced some errors into our calculations. We may have overlooked interaction terms and we may even have missed indicator variables which would help in our analysis. The amount of information for correlation in Table II (supplementary material) is so huge that we have not been able to completely get it "into our heads", even after working with it off and on for several years; that is, there are so many variations on so many compounds that it is extremely difficult to keep in mind all of the various structural features for hypothesis testing. It was only by careful study of the residuals from the various correlation equations as they developed that various indicator variables began to show significance. Eventually, the commonality came to light and merging the sets became feasible. A kind of manageable order has been brought to the 646 molecules of Table II; also, the lack of activity of the compounds in Table XIII is accounted for moderately well.

Acknowledgment. We thank Hugo Kubinyi for the algorithm used to calculate the best  $\beta$  value for the bilinear model. We thank Nicholas Dreyer for modifying our regression program to include the bilinear model as an option. Yvonne Martin kindly called our attention to many of the articles in ref 14.

**Supplementary Material Available:** Substituent constants for Tables II and XIII and the method of calculating partition coefficients (77 pages). Ordering information is given on any current masthead page.

#### **References and Notes**

- The initial impetus for this work was under Contract DADA 17-69-C-9106 from the Army Research Program on Malaria. The work reported in this paper was supported by U.S. Public Health Service Grant CA-11110 from the National Cancer Institute.
- (2) (a) P. E. Thompson and L. M. Werbel, "Antimalarial Agents", Academic Press, New York, N.Y., 1972; (b) R. M. Pinder in "Medicinal Chemistry", 3rd ed, A. Burger, Ed., Wiley-Interscience, New York, N.Y., 1970, p 492.
- (3) (a) F. Y. Wiselogle, Ed., "A Survey of Antimalarial Drugs 1941-1945", Vol. I and II, J. W. Edwards, Ann Arbor, Mich.,

1946; (b) G. R. Coatney et al., "Survey of Antimalarial Agents", Public Health Monograph, No. 9, Public Health Service, 1953.

- (4) P. N. Craig and C. Hansch, J. Med. Chem., 16, 661 (1973).
- (5) P. Rabe and R. Pasternack, Ber. Dtsch. Chem. Ges., 46, 1026, 1032 (1913).
- (6) P. Rabe, R. Pasternack, and K. Kindler, Ber. Dtsch. Chem. Ges., 50, 144 (1917).
- (7) A. Kaufmann, Ber. Dtsch. Chem. Ges., 46, 1823 (1913).
- (8) P. Karrer, Ber. Dtsch. Chem. Ges., 50, 1499 (1917).
- (9) L. Ruzicka, Helv. Chim. Acta, 4, 472, 482, 486 (1921).
- (10) L. Ruzicka, C. F. Seidel, and Fr. Liebl, Helv. Chim. Acta, 7, 995 (1924).
- (11) H. King and T. S. Work, J. Chem. Soc., 1307 (1940).
- (12) E. L. May and E. Mosettig, J. Org. Chem., 11, 1 (1946).
  (13) C. Hansch and J. Y. Fukunaga, CHEM. TECH., 7, 120
- (1977).
- (14) (a) C. Hansch, M. Yoshimoto, and M. H. Doll, J. Med. Chem., 19, 1089 (1976); (b) C. Hansch, R. N. Smith, A. Rockoff, D. F. Calef, P. Y. C. Jow, and J. Y. Fukunaga, Arch. Biochem. Biophys., 183, 383 (1977); (c) C. Hansch in "Biological Activity and Chemical Structure", J. A. K. Buisman, Ed., Elsevier, Amsterdam, 1977, p 47; (d) W. B. Neely, D. R. Branson, and G. E. Blau, Environ. Sci. Technol., 8, 1113 (1974); (e) Y. C. Martin, W. B. Martin, and J. D. Taylor, J. Med. Chem., 18, 883 (1975); (f) Y. C. Martin and J. H. Biel in "Neuropharmacology of Monoamines and Their Regulatory Enzymes", E. Usdin, Ed., Raven Press, New York, N.Y., 1974; (g) Y. C. Martin, T. M. Bustard, and K. R. Lyn, J. Med. Chem., 16, 1089 (1973); (h) B. J. Broughton, P. Chaplen, P. Knowles, E. Lunt, S. M. Marshall, D. L. Pain, and K. R. H. Wooldridge, ibid., 18, 1117 (1975); (i) R. Cranfield, P. J. Goodford, F. E.

Norrington, W. H. G. Richards, G. C. Sheppy, and S. G. Williams, Br. J. Pharmacol., 52, 87 (1974); (j) L. K. Gibbons, E. F. Koldenhoven, A. A. Nethery, R. E. Montgomery, and W. P. Purcell, J. Agr. Food Chem., 24, 203 (1976); (k) J. K. Seydel and E. Wempe, Arzneim.-Forsch., 21, 187 (1971); (l) P. H. Bell and R. O. Roblin, Jr., J. Am. Chem. Soc., 64, 2905 (1942).

- (15) (a) S. H. Unger, presented at the 161st American Chemical Society Meeting, April, 1971, Los Angeles, Calif. (b) C. Hansch, S. H. Unger, and A. B. Forsythe, J. Med. Chem., 16, 1217 (1973).
- (16) C. Silipo and C. Hansch, J. Am. Chem. Soc., 97, 6849 (1975).
- (17) M. Yoshimoto and C. Hansch, J. Med. Chem., 19, 71 (1976).
- (18) C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani, and E. J. Lien, J. Med. Chem., 16, 1207 (1973).
- (19) A. Leo, P. Y. C. Jow, and C. Hansch, J. Med. Chem., 18, 865 (1975).
- (20) A. Leo and C. Hansch, unpublished results.
- (21) A. Panthananickal, C. Hansch, A. Leo, and F. R. Quinn, J. Med. Chem., 21, 16 (1978).
- (22) (a) W. G. Duncan, W. T. Colwell, C. R. Scott, and D. W. Henry, J. Med. Chem., 11, 1221 (1968); (b) E. A. Nodiff, K. Tanabe, C. Seyfried, S. Matsuura, Y. Kondo, E. H. Chen, and M. P. Tyagi, *ibid.*, 14, 921 (1971).
- (23) (a) H. Kubinyi, Arzneim. Forsch., 26, 1991 (1976); (b) H. Kubinyi, J. Med. Chem., 20, 625 (1977).
- (24) J. Y. Fukunaga, C. Hansch, and E. E. Steller, J. Med. Chem., 19, 605 (1976).
- (25) (a) D. W. Boykin, Jr., A. R. Patel, and R. E. Lutz, J. Med. Chem., 11, 273 (1968); (b) R. M. Pinder and A. Burger, *ibid.*, 11, 267 (1968).
- (26) E. R. Atkinson and A. J. Puttick, J. Med. Chem., 11, 1223 (1968).

# Structure-Activity Relationships of Dimeric *Catharanthus* Alkaloids. 2. Experimental Antitumor Activities of N-Substituted Deacetylvinblastine Amide (Vindesine) Sulfates<sup>1-3</sup>

#### Robert A. Conrad,\* George J. Cullinan, Koert Gerzon,<sup>4</sup> and Gerald A. Poore

The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206. Received August 18, 1978

While structure-activity relationships for vinblastine (VLB), vincristine, deacetyl-VLB, and deacetyl-VLB amide (vindesine, VDS) in several tumor and leukemia models have been reported previously,<sup>3</sup> the present study explores these relationships for a series of N-substituted vindesine analogues. These compounds were prepared from the reaction of deacetyl-VLB acid azide with the appropriate amines and were characterized by mass spectral analysis, <sup>1</sup>H and <sup>13</sup>C NMR spectra, electrometric titration, and infrared spectra. N-Alkylvindesines have reduced activity compared to that of VDS against the Gardner lymphosarcoma (GLS). N- $\beta$ -Hydroxyethyl-VDS surpasses vindesine in its activity against the Ridgway osteogenic sarcoma and the GLS, whereas against the B16 melanoma it is less active than VDS. N- $\beta$ -(4-Hydroxyphenethyl)-VDS, envisaged as a substrate for the enzyme tyrosinase, was shown to be more active than VDS against the B16 melanoma but has only marginal activity against the GLS. In terms of *collective* antitumor activity against the model systems used, vindesine emerges as the congener with optimum qualities. Bis(N-ethylidenevindesine) disulfide, the first example of a bridged bisvindesine and comparable to VDS in its antitumor profile, shows evidence of activity against a P388/VCR leukemia strain known to be resistant to maytansine as well as to vincristine.

Despite the relatively "minor" difference between the molecular structures of the *Catharanthus* alkaloids vinblastine (VLB,  $N_a$ -CH<sub>3</sub>) and vincristine (VCR,  $N_a$ -CHO), substantial differences in the clinical usefulness and clinical toxicity of these two oncolytic agents have been noted.<sup>3,5</sup> Vindesine (VDS, 1,  $R_1 = R_2 = H$ ), a chemically modified vinblastine product selected for clinical evaluation, provides an opportunity to explore the consequences of another "minor" structural change.<sup>3</sup>

The selection of VDS for trial in man depended on several factors. VDS possesses an experimental antitumor spectrum<sup>3</sup> which resembles that of VCR rather than that of the parent alkaloid VLB, while its toxicological profile<sup>6</sup> suggested a potential for reduced neurotoxicity relative to that of VCR. The relative ease with which a preparation of adequate purity could be secured also favored this choice.

Phase I and II clinical trial reports<sup>7-13</sup> indicate vindesine to be an active oncolytic agent. Clinically, vindesine appears to be less neurotoxic than VCR, and generally its administration has not had to be discontinued because of neurotoxicity.<sup>13</sup>

These preliminary clinical observations obtained with vindesine provide much needed feedback information for the design of further improved *Catharanthus* alkaloid modification products.