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An investigation was made into the use of linear and quadratic discriminant analysis, along with K nearest-neighbor 
analysis, in the classification of a set of 51 compounds which were divided into five therapeutic categories. By 
superimposing each compound on a pattern structure, as first proposed by Cammarata, eight positions were assigned 
on the molecule. Each position was coded with the numerical value of a descriptor index. Relative molar refraction, 
which was the index used by Cammarata, was compared with a number of molecular connectivity indices. For each 
of the indices studied, it was found that only four of the eight positions contributed significantly to between-class 
differences. It was also found that first-order molecular connectivity, calculated as the sum of the contributions 
of each of the bonds joining a given position, resulted in consistently fewer misclassifications as compared with the 
other indices. Using first-order molecular connectivity, validation procedures were performed on the original set 
of compounds, on random samples drawn from this set, and on a set of ten compounds not included in the analysis. 
The results obtained were highly data dependent, but they, nevertheless, suggest that molecular connectivity indices 
should prove useful in structural classification procedures. 

Throughout the last decade, a good deal of research in 
medicinal chemistry has been directed toward the study 
of quantitative relationships between physicochemical 
properties and the levels of biological activity of drugs.1'2 

Such QSAR's lend themselves readily to the application 
of the usual univariate statistical methods of regression 
analysis and analysis of variance. Lately, however, interest 
has arisen in the study of a form of a qualitative struc­
ture-activity relationship in which one attempts to classify 
drugs according to the type of activity shown. This 
problem of classification, though long examined and used 
in other disciplines,3,4 is relatively new to medicinal 
chemistry5 and to chemistry in general.6 It can be handled 
through various techniques, such as pattern recognition7,8 

and learning machine programs,9,10 or by traditional 
statistical methods. The most common and appropriate 
of the latter is the method of discriminant analysis.11"13 

Recently, Prakash,14 Martin,15 and Dunn16 have used 
discriminant analysis for the classification of drugs ac­
cording to the level of activity, using traditional physi­
cochemical properties as independent variables. As Martin 
has demonstrated, the case for classification in the two-
group example can be handled conveniently by a univariate 
regression analysis in which the dependent variable as­
sumes discrete values of 0 (or -1) and 1. The problem of 
multigroup classification must, nevertheless, be handled 
by multivariate techniques.17-19 

Cammarata and Menon have reported the use of one 
multivariate technique, principal component analysis, as 
a preprocessing step in a study of the clustering of similar 
compounds according to their structural features, as ex­
pressed by molar refraction.20 They have applied this 
technique to the pattern recognition of several sets of 
compounds of diverse biological activities.21 These authors 
suggested using the largest principal components of the 
overall correlation matrix as inputs to a pattern recognition 
machine. By contrast, Tou has suggested the use of the 
smallest principal components of the individual within-
groups covariance matrices.22 Other applications which 
are similar to principal component analysis include the 
Karhunen-Loeve transform23 and the SIMCA method.8,24 

Discriminant analysis resembles principal component 
analysis in that linear combinations of the original vari­

ables are constructed. The goal, however, is not to 
maximize the overall variance, rather it is to maximize the 
ratio of the between-groups (hypothesis) variance to the 
within-groups (error) variance. In general, whenever there 
is prior information available about the class to which a 
particular observation belongs a discriminant analysis will 
be more useful than a principal component analysis for 
deciding which of the variables are of value in determining 
between-groups differences and for classification purposes. 
Thus, one purpose of this report is to extend some of the 
concepts which Cammarata has introduced, by the ap­
plication of discriminant analysis to the multigroup 
classification of a number of the compounds which have 
already been studied by principal component analysis. 

Relative molar refraction was the descriptor index which 
Cammarata selected for coding various positions on a given 
structure. In this context, each position becomes a sep­
arate variable, and the terms position and variable can be 
used interchangeably. This is in contrast to some QSAR 
studies where the descriptor index itself is considered the 
variable, when measured at one or more positions. For 
each of the compounds, the various positions were iden­
tified by superimposing the structure on a pattern which 
included all the positions of interest. This pattern is seen 
in Table I. As Cammarata has pointed out, it is this 
process of superimposing which is the least objective step 
in the method, since it requires some judgement on the 
part of the researcher.20 

As alternatives to the use of molar refraction, a number 
of fragment molecular connectivity indices were selected 
as descriptors.25 Molecular connectivity indices, whether 
applied to whole molecules or to structural fragments, 
possess a number of useful qualities which molar refraction 
values lack.26 Foremost is the fact that molecular con­
nectivity values can be calculated unambiguously, given 
the structure or the connectivity (adjacency) matrix of the 
molecule. A Fortran program is available for this pur­
pose.27 Also, molecular connectivity values can uniquely 
describe positions on a molecule which may show only 
subtle differences between one another, as in predomi­
nantly aliphatic systems. By comparison, the molar re­
fraction value of an aliphatic carbon atom is usually 
considered constant, regardless of whether the atom is 
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Table I. Raw MC, Values for the Compounds Used in the Analyses" 

Henry, Block 

no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

compound 

pyrroliphene 
levoprome 
carbiphene 
fentanyl 
dextromoramide 
methadone 
propoxyphene 
carbamazepine 
profadol 
tilidine 
prodilidine 
imipramine 
protriptylene 
amitriptylene 
nortriptylene 
doxepin 
desipramine 
dimethindene 
methdilazine 
promethazine 
methapyrilene 
ethopropazine 
cyproheptadine 
cyclizine 
diphenhydramine 
tripellenamine 
doxylamine 
trimeprazine 
orphenadrine 
diphenidol 
benztropine 
poldine 
diphemanil 
thiphemanil 
methixene 
piperidolate 
adiphenine 
pentapiperium 
oxyphenonium 
methantheline 
glycopyrrolate 
alverine 
pipenzolate 
mepenzolate 
hexocyclium 
tridihexethyl 
isometheptine 
cycrimine 
trihexphenidyl 
procyclidine 
biperidine 

classification6 

true 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
D 
D 
D 
D 
D 
D 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
C 
C 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
p 
p 
p 
p 
p 

lin.c 

A 
H 
A 
A 
A 
P 
A 
D 
A 
A 
A 
D 
D 
D 
D 
D 
D 
A 
H 
H 
H 
H 
D 
C 
C 
H 
P 
H 
H 
P 
C 
C 
H 
C 
H 
C 
C 
C 
C 
C 
C 
H 
C 
C 
C 
P 
C 
P 
P 
P 
P 

quad.d 

A 
H 
A 
A 
A 
A 
A 
A 
A 
A 
A 
D 
D 
D 
D 
D 
D 
A 
H 
H 
H 
H 
D 
H 
H 
H 
P 
H 
C 
P 
P 
C 
C 
H 
C 
H 
C 
C 

c 
c 
A 

c 
c 
c 
c 
c 
p 
p 
p 
p 
p 

A 

v_ 
A 

0.000 
0.408 
0.000 
0.000 
0.000 
0.000 
0.000 
0.911 
0.000 
0.000 
0.000 
1.207 
0.911 
1.207 
1.207 
0.846 
1.207 
0.000 
0.408 
0.408 
0.000 
0.408 
0.911 
0.000 
0.000 
0.000 
0.000 
0.408 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.408 
0.000 
0.000 
0.000 
0.000 
0.408 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

B—C—D N 

J 

B 

1.096 
0.763 
0.954 
0.705 
1.039 
1.104 
1.096 
0.671 
1.311 
1.142 
1.096 
0.763 
0.986 
0.789 
0.789 
0.789 
0.763 
0.789 
0.763 
0.763 
0.856 
0.763 
0.750 
0.836 
0.813 
0.856 
1.204 
0.763 
0.818 
1.077 
0.813 
0.974 
0.750 
0.866 
0.986 
0.866 
0.866 
0.911 
1.012 
0.866 
1.012 
0.000 
0.974 
0.974 
1.116 
1.116 
1.289 
1.116 
1.116 
1.116 
1.077 

C 

0.000 
0.000 
0.687 
0.000 
0.000 
0.000 
0.000 
0.716 
0.000 
0.762 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.471 
0.658 
0.000 
0.697 
0.000 
0.697 
0.697 
0.697 
0.658 
0.697 
0.658 
0.000 
0.658 
0.658 
0.670 
0.000 
0.697 
0.000 
0.000 
0.000 
0.000 

position 

D 

1.274 
0.724 
0.816 
0.816 
1.274 
0.854 
1.274 
0.289 
0.854 
0.742 
0.854 
0.816 
0.908 
0.697 
0.697 
0.697 
0.816 
0.957 
0.724 
0.724 
0.816 
0.724 
0.957 
0.891 
0.524 
0.816 
0.493 
0.724 
0.524 
0.844 
1.052 
0.493 
0.957 
0.493 
0.816 
0.440 
0.493 
0.440 
0.493 
0.493 
0.440 
0.000 
0.440 
0.440 
0.949 
0.854 
0.908 
0.854 
0.854 
0.854 
0.854 

E 

0.724 
1.393 
0.816 
0.908 
0.724 
0.816 
0.724 
0.000 
0.816 
0.667 
0.816 
1.000 
1.000 
0.908 
0.908 
0.908 
1.000 
0.854 
1.225 
1.244 
0.816 
1.244 
0.854 
0.816 
0.789 
0.816 
0.789 
1.394 
0.789 
1.000 
0.816 
0.697 
0.854 
0.789 
0.724 
0.724 
0.789 
0.908 
0.789 
0.789 
0.697 
1.000 
0.697 
0.697 
0.816 
0.789 
0.908 
0.816 
0.816 
0.816 
0.816 

F 

0.000 
0.724 
0.816 
0.816 
0.000 
0.000 
0.000 
0.000 
0.000 
0.592 
0.000 
0.816 
0.854 
0.816 
0.854 
0.816 
0.854 
0.816 
0.724 
0.000 
0.000 
0.000 
0.816 
0.816 
0.816 
0.000 
0.816 
0.724 
0.816 
0.816 
1.075 
0.666 
0.789 
0.816 
0.000 
0.000 
0.816 
0.789 
0.789 
0.789 
0.000 
0.816 
0.000 
0.000 
0.789 
0.000 
1.274 
0.000 
0.000 
0.000 
0.000 

G 

0.707 
0.000 
0.000 
0.000 
0.000 
0.000 
0.707 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.707 
0.000 
0.000 
0.670 
0.000 
0.000 
0.000 
0.000 
0.577 
0.500 
0.000 
0.500 
0.224 
0.000 
0.224 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.224 
0.000 
0.224 
0.854 
0.224 
0.224 
0.224 
0.224 
0.000 
0.224 
0.224 
0.224 
0.224 

H 

0.408 
0.000 
0.493 
0.781 
0.678 
0.808 
0.408 
0.000 
0.854 
0.658 
0.408 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
1.155 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.854 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

a Positions were assigned by superimposing the structure of the compound on the structure shown.20 b Group codes are: 
analgesics, A; antidepressants, D; antihistamines, H; anticholinergics, C; antiparkinsonians, P. c Linear classification per­
formed using position variables a, b, c, and h. The BMDP7M program was used, and the results shown were obtained using 
the Lachenbruch or jackknife holdout procedure. d Quadratic classification results obtained using the first three canonical 
discriminant functions; the program used was M U L T D I S . 

primary, secondary, or tertiary. Finally, molecular con­
nectivity values have been shown to correlate well with 
many of the more common physical and chemical prop­
erties which have been used in QSAR studies28 and with 
biological activities as well.29 Thus, in addition to de­
termining the value of discriminant analysis in the mul-
tigroup classification of drugs, a second purpose of this 
report is to compare the performance of molar refraction 

with several fragment molecular connectivity indices when 
applied to this problem. 

Experimental Section 
Calculations were performed on the Oregon State University 

CDC Cyber 70 Model 73-16 computer. Software which was used 
included SPSS and SPSSONLINE discriminant analysis programs,30 

the University of California BMDP7M discriminant analysis 
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Pyrroliphene (A) Levoprome (A) 

Figure 1. Structures of the compounds added to the design set 
of Cammarata.20 The lower-case letters indicate the position 
assignments relative to the pattern structure of Table I. All the 
compounds are analgesics except biperidin, which is an anti­
parkinsonian. 

program,31,32 and the University of Wisconsin MULTDIS program.11 

Also, use was made of the Oregon State Statistical Interactive 
Programming System (SIPS)33 and the Oregon State Conventional 
Aid to Research (OSCAR).34 

Coding the Molecules. In one paper, Cammarata studied 43 
compounds falling into six categories.20 Of these, 42 were selected, 
omitting the single antipsychotic drug promazine. To give a larger 
selection of compounds, an additional eight analgesics and one 
antiparkinsonian drug were selected from a text.35 In this way, 
a total of 51 compounds representing five relatively well-defined 
classes were obtained, for an average of ten compounds per class. 
The position assignments were made in accordance with Cam-
marata's designations. In the case of the added compounds, the 
positions were assigned by visually superimposing planar rep­
resentations of the structures on the pattern shown in Table I. 
In most cases, the assignments were not ambiguous, and in those 
cases where some question existed, assignment was made by 
analogy to similar compounds in Cammarata's data set. Figure 
1 shows the structures and the position assignments of the ad­
ditional compounds. The relative molar refraction values were 
used as defined by Cammarata.20 As additional descriptor indices, 
four fragment molecular connectivity indices were adopted for 
use in this study. 

(1) Vertex valence (5V or A) values were included as the most 
basic numerical index of the connectedness of a given position. 
They were calculated from the formula given by Kier.36 By 
convention for this study, those positions coded with zero for molar 
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Table II. Correlation Matrix Showing Pairwise 
Comparisons of the Descriptor Indices" 

MR 
A 
MC0 
MC, 
MCn 

MR 

1.0 

A 

0.533 
1.0 

MC0 

0.731 
0.585 
1.0 

MC, 

0.403 
0.681 
0.344 
1.0 

MC„ 

0.165 
0.192 
0.207 
0.140 
1.0 

a The standardized values at each of the eight positions 
on each of the 51 compounds were compared to the cor­
responding values for the other indices. The number of 
points for each correlation is 51 X 8 = 408. 

refraction, indicating the absence of a substituent at the position, 
were coded zero in A as well. Another convention was to sum 
the A values in those cases where a subgroup containing more 
than one atom occupied a given position. Thus, a disubstituted 
ethylene group - C = C - in which each carbon has A = 3 would 
be assigned an overall A value of 6, which makes it electronically 
equivalent to an oxy group. 

(2) Zero-order molecular connectivity (°xv or MC0) values 
were calculated as (A"1/2). The same A values as calculated above 
were used, and again the convention of zero was adopted for 
missing substituents. Although zero has physical significance and 
is a computational possibility for A values, a zero for any higher 
order molecular connectivity term is undefined. In addition, zero 
represents a break in the continuum of molecular connectivity 
values; as one progresses from lower to higher levels of con­
nectedness, as represented by A, the higher order molecular 
connectivity terms approach 0. This value then implies infinite 
connectedness and not the absence of connectedness. This is of 
no consequence for classification problems, but it could have 
significance in other types of structure-activity relationship 
studies. An alternative to using zero for missing substituents 
would be to leave the entry in the data table blank, resulting in 
an incomplete data vector. The use of incomplete observations 
in discriminant analysis has been discussed by Kittler.37 Most 
available discriminant analysis packages do not have the capability 
of dealing with missing data, so it was decided to use zero entries 
instead. 

(3) First-order molecular connectivity ( V or MCj) values 
can be defined for each bond in a structure joining atoms i and 
;' as (A;-Aj)"1/2. For this report, the MC! value at a given position 
was defined to be the sum of the MC] values of each of the bonds 
joining the position. In cases of multiple atoms being considered 
as a single position, the MCi term was simply the sum of the MCi 
terms for each bond included in the substructure, with no bond 
being counted more than once. The raw MCX values for the 
compounds used in this study are shown in Table I. 

(4) Higher-order molecular connectivity Cxv or MC„) 
terms were calculated as the inverse root of the product of all 
the A values at, and immediately adjacent to, a given position, 
that is, all the A values used in the calculation of the MCi term: 
MC„ = [(A0)(A1)...(An)]"

1/2. In this application, the order of a 
higher-order term clearly depends on the number of adjacent 
vertices. All higher order terms were grouped as a single variable, 
and no attempt was made to distinguish among orders or to 
separate the various types of higher order terms (e.g., path, cluster, 
etc.), although this can be done.24 

An initial examination of the raw data showed that molecular 
connectivity indices in general appeared to differentiate better 
among the various positions on the molecules than did molar 
refraction. It was also noted that the values of MC„ were much 
smaller in magnitude than those of the other indices. Conse­
quently, following the recommendation of VandeGeer,38 each of 
the variables (i.e., positions) was standardized to a mean of 0 and 
a variance of 1. This process, which is sometimes called au-
toscaling, will not alter any of the classification results, since the 
ordinal postions of the points representing the observations do 
not change with respect to each other. 

A correlation matrix showing the relationships among the 
various descriptor indices is seen in Table II. The coefficients 
in this table are not large, indicating that, although the indices 
may contain much the same information about the structures, 
the manner in which this information is expressed varies from 
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Table III. Positions Which Showed Constant Values 
(i.e., Zero Variance) Within a Given Group 

index 

Table V. Variable Selection Table Showing the Five 
"Best" Five-Variable Models with the Associated 
F Values0 

group MR A and MC„ MC, MC„ 
analgesics 
antidepressants c, e, f, c, e, f, g, h c, h g, h 

g,h 
antihistamines c c c c 
anticholinergics e e 
antiparkinsonians a, d, a, b, d, e, h b, h a, h 

e, h 

Table IV. F Values for the Decrease in Signil 
the Full Eight-Variable Model" 

index 

MR 

A 

MC0 

MC. 

MC„ 

df 
F 
x 0.01 

best 2 

8.3(a, h) 

11.7 (c, h) 

13.2 (a, h) 

7.8(a, h) 

10.1 (a, d) 

8, 78 
2.75 

best 3 

3.2(0, c, h) 

4.3(c, £,fc) 

5.0 (a, d, h) 

2.9 (a, c, h) 

4.0 (a, d, h) 

12, 104 
2.36 

best 4 

1.4 (a, c, 
e, h) 
1.5 (b, c, 
g,h) 
2.1 (a, d, 
e, h) 
0.9 (a, b, 
c, h) 
1.8 (a, d, 
e, h) 

16, 121 
2.15 

ficance from 

best 5 

0.6 (a, c, 
d, e, h) 
0.8 (b, c, 
d, g, h) 
0.9 (a, c, 
d, e, h) 

0.4 (a, 6, 
C /, /I) 
1.0 (a, d, 
e,g, h) 

20, 132 
2.02 

° A large F means a large decrease in significance. 
Variables selected are in parentheses. The critical F0.01 
values are given for comparison. 
one index to the next. As is likely to be the case when only a 
limited number of compounds are studied, it was found that some 
of the variables within a given group showed zero variance, which 
is a clear violation of multivariate normal assumptions (Table III). 
Rather than drop these variables at the beginning, which would 
have been the most conservative approach, it was decided to keep 
all the variables for the analyses and to rely on stepwise selection 
procedures to remove the variables which did not contribute to 
between-groups differences. In one sense, a constant variable 
within a given group can be viewed as a perfect descriptor, if it 
varies from group to group. 

Results and Discussion 
Selection of Significant Variables. Most discrimi­

nant analysis procedures have stepwise options for in­
cluding the most significant variable, and/or dropping the 
least significant one, from a given set of variables. This 
is necessary, since the inclusion of a sufficient number of 
variables will guarantee good classification results, even 
when no true differences exist among the groups. An 
observation/variable ratio of 10 has been suggested by one 
author,39 while others have recommended values ranging 
from 2 to 20.12 

A complete stepwise selection procedure was performed 
for each of the indices, and every possible combination of 
variables at a given subset level was examined to find the 
combination of variables with the highest F ratio derived 
from Wilk's \ . This all-subsets option is a part of the 
MULTDIS program,11 but it was found that, with very few 
exceptions, the best subsets selected by this procedure were 
the same as the subsets that selected one variable at a time 
by the SPSS or BMDP programs. At each subset level it was 
possible to test for the loss of information from the full 
eight-variable model. The results are summarized in Table 
IV. There is clearly no loss of information in dropping 
from eight variables to five. The loss at the four-variable 
level is marginal, but it becomes significant at three 
variables. Consequently, it was decided to use the best 
four-variable subset in the discriminant analysis classi­
fication procedures as a basis for comparing the descriptor 
indices. 

variable 
index 

MR 

MC„ 

MC, 

MC„ 

a 

X 
X 
X 
X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

b 

X 

X 
X 
X 
X 
X 

X 

X 

X 
X 
X 
X 

X 

X 

c 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 
X 
X 
X 

X 

X 

d 

X 

X 
X 

X 
X 
X 
X 

X 

X 

X 
X 
X 
X 
X 

e 

X 
X 
X 
X 

X 

X 
X 
X 
X 
X 

X 

X 
X 
X 
X 

f 

X 

X 

X 

X 
X 

X 

X 

g 

X 

X 
X 
X 
X 

X 

X 

X 

X 

h 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

F 
* 20,140 

6.01 
5.88 
5.87 
5.49 
5.49 
9.26 
9.01 
8.98 
8.86 
8.07 
8.45 
7.89 
7.69 
7.54 
7.24 
9.18 
8.67 
8.57 
8.56 
8.49 
5.81 
5.68 
5.48 
5.45 
5.27 

a Note that there are many nearly equivalent models for 
each index, but selection of the four most significant 
variables is easy. 

Just as is the case in regression analysis, it is often found 
in discriminant analysis that a number of combinations 
of a given set of variables will show equal or nearly equal 
levels of significance. This is illustrated in Table V, which 
shows the five best five-variable subsets for each of the 
indices. In each case, it is seen that there is virtually no 
choice to be made among the various subsets. However, 
it is easy to identify the four most significant variables as 
being those which occur most frequently in the table. In 
each case, the best four-variable subset selected in this 
manner corresponds exactly to the subset selected by the 
stepwise procedure. All this points to the validity of the 
stepwise selection procedures in the SPSS and BMDP dis­
criminant analysis programs. 

Classification by Discriminant Analysis. The 
concept of a discriminant function as the linear combi­
nation of a set of variables which best differentiates be­
tween two groups was first developed by Fisher.40 Clas­
sification into one or the other of these groups can be 
performed on the basis of the value the discriminant 
function assumes for a given observation. In the case of 
several groups, classification can be made on the basis of 
so-called discriminant scores. This is termed linear 
classification, and the assumption is made that the 
within-groups dispersion is the same for all the groups. 
This is the type of classification procedure that is used in 
most discriminant analysis programs. 

If the within-groups covariance matrices are not assumed 
to be equal, a quadratic classification procedure will often 
produce better results. Some discriminant analysis pro­
grams, such as the MULTDIS and SAS programs,41 can 
perform true quadratic classification. Simply including 
all squared and cross-product terms in a linear discri­
minant function, although it results in an expression which 
resembles the quadratic discriminant function, will not give 
true quadratic classification results. There are, however, 
a class of so-called "quadric" discriminant functions which 
can be obtained by the input of squared and cross-product 



Classification of Drugs by Discriminant Analysis 

Table VI. Linear Test-Space Classification Results" 

% correct 

index variables ordinary Lachenbruch 

MR 
A 
MC0 
MC, 
MC„ 

a, c, e, h 
b, c, e, h 
a, d, e, h 
a, b, c, h 
a, d, e, h 

52.9 
64.7 
68.6 
78.4 
68.6 

49.0 
58.8 
60.8 
70.6 
64.7 

0 Results were obtained in the space of the best four-
variable subset for each of the indices. The position 
variables used are shown for each index. Results were ob­
tained using standardized variables with BMDP7M. 

terms into a linear learning machine.10 These functions 
are obtained by nonparametric pattern-recognition 
methods, and they do not have any direct relationship to 
the quadratic discriminant function. 

Test Space Classification. When the classification 
process is performed in the space of the original variables, 
it is termed test space classification. The BMDP7M and 
BMD07M programs perform this type of classification. 
Table VI shows the linear classification results obtained 
using the best four-variable subset for each of the indices. 
These results were obtained using the BMDP7M program, 
which has the option of classifying according to the La­
chenbruch holdout or "jackknife" procedure.42 This allows 
the classification of each observation on the basis of 
discriminant scores calculated using the other (N-l) ob­
servations. This reduces the bias caused by classifying an 
observation according to rules which have been derived 
from that observation, and the method seems to be the 
best compromise for small sample sizes. 

The results in Table VI were obtained by assuming 
equal prior probabilities for each of the groups. Speci­
fication of prior probabilities is necessary, since the actual 
classification procedure follows a Bayes rule.3 It was found 
in each case examined that the use of equal priors gave 
classification results which were as good as, or better than, 
those obtained using prior probabilities based on observed 
group membership, which is another commonly used 
technique. The use of equal priors reduces the linear 
classification problem to a simple minimum distance 
classifier. The results in Table VI indicate that the MCX 
index is capable of differentiating better among the various 
therapeutic classes than are the other indices. 

Using the MCX index as an example, it was found in 
general that a large amount of overlap existed between the 
anticholinergics and the antihistamines, while the anti­
depressants and the antiparkinsonian drugs, because of 
the homogeneity in their structures, tended to be classified 
correctly. Some specific examples of misclassification 
could easily be rationalized, such as the classification of 
cyproheptadiene, a tricyclic antihistamine, as an antide­
pressant or the classification of the phenothiazine anal­
gesic, levoprome, as an antihistamine. The specific linear 
classification results are shown in the third column of 
Table I. 

Piecewise Linear Classification. One can take ad­
vantage of prior knowledge about group membership to 
construct what amounts to several short discriminant 
function segments in the immediate neighborhood of each 
observation. These have been termed piecewise linear 
discriminant functions.10 A common pattern-recognition 
technique which simulates piecewise linear functions is the 
K nearest-neighbor (KNN) method.43 This method, which 
can easily by implemented for sample sizes up to a few 
hundred, classifies an observation according to the class 
to which a majority of its K nearest neighbors in space 
belong. The value of K may range from 1 to any number, 
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Figure 2. Structures of the compounds in the test set. 

but values below 10 are commonly used. 
In practice, the simplest approach to KNN classification 

is to prepare a distance matrix which contains the Eu­
clidean distance between each point and every other point.7 

For each observation, this matrix is scanned to find the 
K nearest neighbors to that observation. A "vote" is taken 
among the neighbors, and the observation in question is 
classified according to the majority outcome. In the case 
of a tie, the observation can be classified into the group 
showing the smallest aggregate distance from the obser­
vation. 

It was felt that it would be interesting to compare the 
five descriptor indices with each other, with respect to 
performance in a simple KNN classification. Accordingly, 
for each of the descriptor indices, the 51 compounds were 
subjected to two KNN classifications. First, results were 
obtained using all eight of the position variables. Then, 
similar results were generated using the best four-variable 
subset used previously for the discriminant analyses. For 
all eight variables, the classification results were virtually 
the same for each of the indices, for values of K up to 10. 
Between 60 and 70% were correctly classified in each case. 
When only the four most discriminating variables were 
used, the MCX index was clearly superior to the others, in 
terms of correct classifications. This is shown in Figure 
3, which plots the percent correct classification vs. the 
number of nearest neighbors used in the analysis. 
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Table VII. Derivation of the Canonical Discriminant 
Functions Which Maximize W"'B for the MCt Index 

8 

Figure 3. K nearest-neighbor classification results for each of 
the indices. The best four-variable subset was used in a simple 
KNN classification process using the values of K indicated. The 
results for K = 2 are, by definition, the same as those for K = 
1. The indices used were molar refraction (•), A (•), MC0 (O), 
MC?! (A), and MC„ (A). For this set of compounds, the MCt index 
uniformly gives better classification results for any values of K 
greater than 1. 

Reduced Space Classification. An alternative in­
terpretation of the term discriminant function can be 
derived from the eigenvalues and eigenvectors of the 
matrix formed by dividing the between-groups sum of 
squares matrix B by the within-groups sum of squares 
matrix W. The eigenvalues of this W_1B matrix, like those 
derived in a principal component analysis, account for the 
variance represented by the sum of the diagonal elements, 
or trace, of W_1B. The elements of the associated ei­
genvectors, when appropriately normalized, are considered 
the coefficients of another form of discriminant function. 
In fact, they define the linear combinations of the variables 
which best differentiate among all the groups, rather than 
just a given pair of groups. Using standardized variables, 
it is found that the magnitude of the coefficient of a given 
variable in such a linear combination is proportional to the 
contribution of the variable to the between-groups vari­
ation. 

Some authors prefer to term these linear combinations 
the canonical discriminant functions.32 For k groups and 
p variables, a maximum of k - 1 or p functions can be 
derived, whichever is smaller. The canonical discriminant 
functions are most useful for reducing the dimensionality 
of the data and for graphical presentation. The space of 
the canonical discriminant functions is termed the reduced 
discriminant space, and classification can be performed 
in this space, just as in the space of the original variables. 
Using all the canonical discriminant functions gives linear 
classification results which are identical to the results 
obtained in the test space.17 It is often found that not all 
the canonical functions are statistically significant. Re­
ducing the number of functions will sometimes result in 
poorer classification results, but it reduces the compu­
tations necessary and it makes the points easier to visu­
alize. 

Unlike the BMDP7M program, which performs linear 
classification in the test space, the SPSS discriminant 
program performs classification in the reduced space of 
the canonical discriminant functions. Table VII sum­
marizes the canonical discriminant functions that were 
derived for the MCX index, using the variables a, b, c, and 
h. Since the variables were initially standardized, the raw 
and the standardized discriminant function coefficients 
were the same. 

For the MC^ index, the first three canonical discriminant 
functions account for over 96% of the between-groups 

variable 
a 
b 
c 
h 

eigenvalue 
% of trace of W-'B 
Wilk's \ 
% signif 
group centroids in 

reduced space 
analgesics 
antidepressants 
antihistamines 
anticholinergics 
antiparkinsonians 

1 

2.098 
0.425 

-0.393 
0.609 
3.534 

73.9 
0.083 
0.0 

0.356 
4.439 
0.061 

-1.447 
-1.103 

funct 

2 

-0.161 
-0.563 
-0.192 
-1.270 

0.843 
17.6 

0.376 
0.0 

-1.650 
0.664 
0.527 
0.403 
0.252 

ion 

3 

-0 .511 
0.124 

-1.114 
-0.205 

0.276 
5.8 
0.694 
0.2 

-0.004 
-0.361 

0.707 
-0.520 

0.548 

4 

0.237 
0.977 
0.060 

-0.316 
0.130 
2.7 
0.885 
1.8 

-0.046 
0.158 

-0.384 
-0.069 

0.826 

Figure 4. Plot of the design set compounds in the space of the 
first three canonical discriminant functions of the variables a, 
b, c, and h using the MCx index. Multiple observations at a single 
point are not shown, and the enclosed regions are only ap­
proximations of the within-groups dispersions. The groups are 
analgesics (A), antidepressants (D), antihistamines (H), anti­
cholinergics (C), and antiparkinsonians (P). 

variation in the data. A plot of the compounds of Table 
I in the space of these canonical discriminant functions 
is seen in Figure 4. Approximate dispersions of the groups 
are also shown. The group centroids lie at the centers of 
these dispersions. For linear classification, the boundary 
between any two groups is simply the plane perpendicular 
to the line segment joining the centroids of the two groups. 
Points on one side of the plane are classified into one group 
and those on the other side into the second group. For 
each of the five descriptor indices, it was found that the 
first three canonical discriminant functions accounted for 
over 95% of the between-groups variance. Ordinary linear 
classification in reduced three-space gave the classification 
results shown in the first column of Table VIII. 

Quadratic Classification. An examination of Figure 
4 suggests that the various therapeutic classes, at least for 
the MCj index, are not dispersed to the same degree in 
space; that is, their within-groups covariance matrices are 
not equal. In such a case, the optimal classification 
procedure is by a quadratic discriminant function.12 This 
requires the inversion of the within-groups matrices. For 



Classification of Drugs by Discriminant Analysis Journal of Medicinal Chemistry, 1979, Vol. 22, No. 5 471 

Table VIII. Reduced Space Classification Results Using 
the Three Most Significant Discriminant Functions" 

Table IX. Quadratic Reduced Space Classification 
Results for Test Compounds" 

% correct 

index linear quadratic 

MR 
A 
MC0 
MC, 
MC„ 

52.9 
66.7 
64.7 
70.6 
66.7 

60.8 
76.4 
74.5 
82.4 
70.5 

° Linear results were obtained using the SPSS discrimin­
ant program; quadratic results were obtained using 
MULTDIS. 

each of the indices in this study, using the original 
four-variable subsets, there was at least one therapeutic 
category for which the inverse of the covariance matrix was 
not defined, due to zero variance of one or more of the 
variables (Table III). Consequently, quadratic classifi­
cation could not be performed in the space of the original 
variables. 

It was found, however, that nonzero covariance matrices 
could be obtained in the space of the first three canonical 
discriminant functions. When quadratic classification was 
performed in this reduced space, using the MULTDIS 
program, the results shown in the second column of Table 
VIII were obtained. As expected, there is improvement 
in the classification results for each of the indices. The 
specific classification results for the MCX index are shown 
in the fourth column of Table I. The best results were 
obtained using the MCX index, which is consistent with all 
the other classification results. 

Validation of the Results. It is common practice in 
classification problems to validate the classification 
equations or the discriminant functions by classifying a 
test set of observations. This test set may be a subset of 
the original design or learning set or it may include 
completely new compounds. It was decided to use both 
of these approaches in validating the quadratic reduced 
space classification procedure for the MCj index, since this 
was the classification method which gave the best results 
using the design set of compounds. 

Random sampling of all the compounds in the design 
set was performed using a random-number generator. A 
sample set of ten observations was selected, without re­
placement, from the full set of 51 compounds. The sample 
so obtained was subjected to the same quadratic classifier 
which generated the results in Table VIII. This procedure 
was repeated five times. This gave classification results 
of 7/10, 8/10, 8/10, 6/10, and 9/10 correct, which average 
to 76%. This is comparable to the quadratic result noted 
in Table VIII for the MCX index. 

A test set of ten compounds not included in the original 
analysis was selected. The structures and position as­
signments of these compounds are shown in Figure 2. A 
quadratic classification using the first three discriminant 
functions of the MCi values at positions a, b, c, and h gave 
the results shown in Table IX. It is seen that only six of 
the ten were correctly classified, for the misclassified 
compounds, the second most likely group was the correct 
group in only one of the four instances. These results 
indicate that the quadratic classifier which was used, 
although it was the best for the design set of compounds, 
was not necessarily optimal for more general use. 

Conclusions. It is clear that discriminant analysis can 
be used for the multigroup classification of drugs into 
therapeutic categories, based on structural features. 
Furthermore, fragment molecular connectivity values, and 
in particular first-order molecular connectivity terms, have 
been shown to perform better as descriptors of molecular 

compoundb 

meclizine 
melitracin 
parapenzolate 
clemizole 
dihexylverine 
aminocarbo-

fluorene 
nefopam 
amoxapine 
ethoheptazine 
phenindamine 

true 
class 

H 
D 
C 
C 
H 
C 

A 
D 
A 
H 

highest 

H 
D 
C 
H* 
C* 
C 

H* 
D 
C* 
H 

probable class0 

C 
H 
P 
C 
P 
P 

C 
H 
P 
C 

P 
A 
A 
P 
A 
A 

P 
A 
A 
P 

A 
P 
H 
A 
H 
D 

A 
P 
H 
A 

lowest 

D 
C 
D 
D 
D 
H 

D 
C 
D 
D 

0 The first three canonical discriminant functions of 
the positions a, b, c, and h, using the MC, index, were 
used. Equal prior probabilities of group membership 
were assumed. b Structures are shown in Figure 2; group 
codes are as before. c Asterisks indicate misclassifications. 

features when applied to a particular classification problem 
than relative molar refraction values. Other results, ob­
tained with steroids and phenylethylamines, have con­
firmed this conclusion.44 Indeed, it is likely that classi­
fication problems may well be one of the more appropriate 
uses of molecular connectivity indices, since the values are 
derived directly from the structures of the molecules they 
represent. 

Some shortcomings of the approach used in this report 
should be addressed. Foremost, of course, is the method 
of assigning the variable positions on the molecules. 
Although some data handling programs, like the PROPHET 
system,45 are capable of accepting and manipulating 
structural, rather than numerical, input, such systems are 
not yet widely available. The classical approaches to 
quantitative medicinal chemistry have evolved around 
decision-theoretic processes in which the variables have 
always been assigned, either directly or indirectly, by the 
researcher. The problem of superimposing a chemical 
structure on a given pattern is part of the essence of 
medicinal chemistry. The eventual solution of this 
problem by computer methods is far from trivial; it may 
in fact require the use of so-called syntactic methods of 
pattern recongnition.46 Until this problem can be effi­
ciently resolved it is likely that the experience and intuition 
of the researcher will have to guide the assignment of 
positions on the molecules. No attempt was made in the 
course of this work to change or to optimize the initial 
assignments once they were made. 

Of course, an alternative to assigning specific position 
variables would be to use whole-molecule molecular 
connectivity values as variables. This approach was not 
used here, since it was desired to compare the discrimi­
nating power of molecular connectivity indices directly 
with that of molar refraction values. The use of whole-
molecule values would allow consideration of higher order 
path, cluster, and chain terms as separate variables. This 
would give a wide variety of values with which to work. 
Since the cost of calculating higher order connectivity 
terms increases with order, these terms would be logical 
candidates for sequential pattern-recognition techniques 
in which the ease or cost of measurement of the variable 
is considered, as well as the information it contains.47 

One characteristic which parametric and nonparametric 
classification procedures share alike, especially if the design 
set is small, is a strong dependence on the data. This is 
evidenced by the relatively poor performance of the 
quadratic classifier on a completely new test set of 
compounds. This does not reduce the validity of the 
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method, especially with regards to comparing the indices 
as to discriminatory power. As the design set grows in size, 
provided the assumption holds that there exists a sys­
tematic relationship between the therapeutic category and 
the variables being used, classification results for test 
compounds would be expected to improve. 

The compounds in this study, though they spanned a 
wide variety of therapeutic classes, were fairly similar in 
structure; most were diphenylmethyl-based compounds. 
Also, the therapeutic categories were highly simplified, and 
much overlap existed. Although it was clear that some of 
this overlap was reflected in the classification results, no 
systematic study of this phenomenon was performed. Such 
a study could serve as further validation of any classifi­
cation technique, especially if the calculated order of 
classification (e.g., Table IX) matched to some extent the 
observed order of therapeutic usefulness. Similarly, a 
potential exists for identifying possible side effects, 
provided such side effects are related to the structural 
variables selected. 

Finally, the use of a statistical classification procedure 
like discriminant analysis invites a comparison with 
nonstatistical method of pattern recognition. The single 
nonstatistical method used in this report, the KNN 
analysis, produced classification results which were not 
very different from those obtained using discriminant 
analysis. This may not be true for other data sets, or even 
for other pattern-recognition techniques when applied to 
the compounds studied here. It does seem that the use 
of molecular connectivity indices in pattern-recognition 
research is worthy of greater attention. 
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