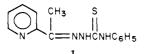
CA-10914 from the National Institutes of Health, and 780014 from the Alabama affiliate of the American Heart Association.

### **References and Notes**

- J. I. DeGraw, J. P. Marsh, Jr., E. M. Acton, O. P. Crews, C. W. Mosher, A. N. Fujiwara, and L. Goodman, J. Org. Chem., 30, 3404 (1965).
- (2) L. Goodman, J. I. DeGraw, R. L. Kisliuk, M. Friedkin, E. J. Pastore, E. J. Crawford, L. T. Plante, A. Nahas, J. F. Morningstar, Jr., G. Kowk, L. Wilson, E. F. Donovan, and J. Ratzan, J. Am. Chem. Soc., 86, 308 (1964).
- (3) R. L. Kisliuk and Y. Gaumont, Chem. Biol. Pteridines, Proc. Int. Symp., 4th, 1969, 357 (1970).
- (4) P. C. Crusberg, R. Leary, and R. L. Kisliuk, J. Biol. Chem., 245, 5292 (1970).
- (5) L. C. Mishra, A. S. Parmer, and J. A. R. Mead, Proc. Am. Assoc. Cancer Res., 11, 57 (1970).
- (6) J. A. R. Mead, A. Goldin, R. L. Kisliuk, M. Friedkin, L. Plante, E. J. Crawford, and G. Kowk, *Cancer Res.*, 26, 2374 (1966).
- (7) M. G. Nair and P. T. Campbell, J. Med. Chem., 19, 825 (1976).
- (8) M. G. Nair, P. C. O'Neal, C. M. Baugh, R. L. Kisliuk, Y. Gaumont, and M. Rodman, J. Med. Chem., 21, 673 (1978).
- (9) H. R. Hornbeak and M. G. Nair, Mol. Pharmacol., 14, 299 (1978).
- (10) J. I. DeGraw, R. L. Kisliuk, C. M. Baugh, and M. G. Nair, J. Med. Chem., 17, 522 (1974).

- M. G. Nair, P. T. Campbell, and C. M. Baugh, J. Org. Chem., 40, 1745 (1975).
- (12) M. G. Nair, P. T. Campbell, E. Braverman, and C. M. Baugh, *Tetrahedron Lett.*, **31**, 2745 (1975).
- (13) G. F. Hennion and F. P. Kupiecki, J. Org. Chem., 18, 1601 (1953).
- (14) W. E. Bachmann and W. S. Strive, Org. React., 1, 38 (1942).
- (15) S. Y. Chen and M. G. Nair, J. Org. Chem., 43, 4143 (1978).
- (16) Y. H. Kim, Y. Gaumont, R. L. Kisliuk, and H. G. Mautner, J. Med. Chem., 18, 776 (1975).
- (17) C. M. Baugh and E. Shaw, J. Org. Chem., 29, 3610 (1964).
- (18) E. I. Fairburn, B. J. Magerlein, L. Stubberfield, E. Stapert, and D. I. Weisblat, J. Am. Chem. Soc., 76, 676 (1954).
- (19) E. L. R. Stokstad, B. L. Hutchings, J. H. Mowat, J. H. Boothe, C. W. Waller, R. B. Angier, J. Semb, and Y. Stubbarow, J. Am. Chem. Soc., 70, 7 (1948).
- (20) M. Chaykovsky, A. Rosowsky, N. Papathanosopoulos, K. N. Chen, E. J. Modest, R. L. Kisliuk, and Y. Gaumount, J. Med. Chem., 17, 1212 (1974).
- (21) A. J. Wahba and M. Friedkin, J. Biol. Chem., 237, 3794 (1962).
- (22) R. L. Blakley, Biochem. J., 65, 331 (1957).
- (23) R. L. Kisliuk, D. Strumpf, Y. Gaumont, R. P. Leary, and L. Plante, J. Med. Chem., 20, 1531 (1977).
- (24) A molecular ion having an m/e value of 404 had been inadvertently reported for this compound in the previous paper.<sup>15</sup>

# 2-Acetylpyridine Thiosemicarbazones. 1. A New Class of Potential Antimalarial Agents<sup>1</sup>


Daniel L. Klayman,\* Joseph F. Bartosevich, T. Scott Griffin, Carl J. Mason, and John P. Scovill

Walter Reed Army Institute of Research, Division of Experimental Therapeutics, Washington, D.C. 20012. Received January 8, 1979

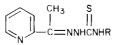
Based on the antimalarial properties observed for 2-acetylpyridine 4-phenyl-3-thiosemicarbazone (1), an extensive series of related thiosemicarbazones was prepared and tested against *Plasmodium berghei* in mice. Screening results indicated that the presence of the 2-pyridylethylidene group was critical and that certain phenyl, benzyl, phenethyl, or cycloalkyl groups at  $N^4$  of the thiosemicarbazone moiety also contribute to antimalarial activity.

Thiosemicarbazones, a class of compounds possessing a wide spectrum of medicinal properties, have been studied for activity against tuberculosis,<sup>2</sup> leprosy,<sup>3</sup> bacterial<sup>4</sup> and viral<sup>5</sup> infections, psoriasis,<sup>6</sup> rheumatism,<sup>7</sup> trypanosomiasis,<sup>8</sup> and coccidiosis.<sup>9</sup> In the past few years, thiosemicarbazones derived from 2-formylpyridine and related aldehydes have been of great interest because of their reported antineoplastic action.<sup>10</sup>

Among the thousands of compounds submitted for antimalarial screening by numerous contributors to the Division of Experimental Therapeutics have been several hundred thiosemicarbazides and thiosemicarbazones. Virtually all were devoid of activity, including the wellknown tuberculostat, *p*-acetamidobenzaldehyde 3-thiosemicarbazone (Thiacetazone, Tibione). One thiosemicarbazone, however, namely, 2-acetylpyridine 4-phenyl-3-thiosemicarbazone (1),<sup>11</sup> attracted our attention because



it showed activity in our primary screen. It was decided


to exploit this interesting lead by ascertaining the molecular features essential for activity and utilizing them to develop a new class of antimalarial agents.

The influence on biological action was observed when the structure of 1 was modified as follows: (1) the thiocarbonyl group was replaced by a carbonyl group; (2) the pyridine moiety was replaced by another heterocyclic, aromatic, or cycloaliphatic ring system; (3) the point of attachment of the ethylidene group to the pyridine ring was changed to the 3 and 4 positions; (4) the methyl of the ethylidene group was replaced by other alkyls or hydrogen; (5) the phenyl ring at the terminal (N<sup>4</sup>) position of the thiosemicarbazone was replaced by various substituted phenyls, other cyclic structures, and various so-called antimalarial aliphatic side chains.

This paper is one of the first to report on thiosemicarbazones possessing antimalarial activity.<sup>12</sup> In it, we limit our discussion to those compounds which are monosubstituted at  $N^4$  of the thiosemicarbazone moiety.

Additional reports are in preparation which are devoted to related 2-acetylpyridine thiosemicarbazones that are disubstituted at  $N^4$  and also to the antibacterial properties of this general class of compounds.

This article not subject to U.S. Copyright. Published 1979 by the American Chemical Society



|              |                                                                                                                       |                      |                                                                                                                | synth                     | vield.    | recryst                              | :     | increase | in mean surv | time and no. of cure | s at $dosage^a$ |
|--------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------------------------------|-------|----------|--------------|----------------------|-----------------|
| n <b>o</b> . | R                                                                                                                     | mp, °C               | formula                                                                                                        | $meth^b$                  | %         | solvent                              | 40    | 80       | 160          | 320                  | 640             |
| 1            | C <sub>6</sub> H <sub>5</sub>                                                                                         | 182-183 <sup>c</sup> | C <sub>14</sub> H <sub>14</sub> N <sub>4</sub> S                                                               | $\mathbf{A}^d$            | 88        | EtOH                                 | 3.1   | 4.7      | 11.1A        | T(1/5), C(1/5)       | T(2/5), C(2/5)  |
| 2            | 2-FC <sub>6</sub> H <sub>4</sub>                                                                                      | 152 - 153            | C <sub>14</sub> H <sub>13</sub> FN <sub>4</sub> S                                                              | В                         | 11        | MeOH                                 | 0.0   | 2.6      | 6.8A         | C(3/5)               |                 |
| 3            | 3-FC,H                                                                                                                | 159-160              | C <sub>14</sub> H <sub>13</sub> FN <sub>4</sub> S                                                              | Α                         | 25        | CH <sub>3</sub> CN                   | 4.4   | 5.8      | 6.6A         | C(3/5)               | C(4/5)          |
| 4            | $4 - FC_6 H_4$                                                                                                        | 168-169              | C <sub>14</sub> H <sub>13</sub> FN <sub>4</sub> S                                                              | В                         | 47        | EtOH                                 | 1.3   | 3.7      | 3.9          | 7.7 Å                | T(1/5)          |
| 5            | 2-ClC <sub>6</sub> H <sub>4</sub>                                                                                     | 154 - 156            | $C_{14}H_{13}CIN_{4}S$                                                                                         | В                         | <b>28</b> | EtOH                                 | 0.5   | 0.5      | 2.3          | 6.1 A                | 8.1 A           |
| 6            | 3-ClC <sub>6</sub> H <sub>4</sub>                                                                                     | 138139               | $C_{14}H_{13}CIN_{4}S$                                                                                         | $\mathbf{A}^{e}$          | 64        | EtOH                                 | 0.3   | 0.3      | 2.5          | 5.1                  | 7.1 A           |
| 7            | 4-ClC <sub>6</sub> H <sub>4</sub>                                                                                     | 158-160              | $\mathbf{C}_{14}^{\dagger}\mathbf{H}_{13}^{\dagger}\mathbf{CIN}_{4}\mathbf{S}$                                 | В                         | 64        | EtOH                                 | 0.5   | 1.5      | 1.7          | 4.3                  | 8.3 A           |
| 8            | $2-BrC_6H_4$                                                                                                          | 152 - 154            | $C_{14}H_{13}BrN_4S$                                                                                           | В                         | 61        | EtOH                                 | 0.1   |          | 0.5          |                      | 0.9             |
| 9            | 3-BrC <sub>6</sub> H <sub>4</sub>                                                                                     | 144 - 148            | $C_{14}H_{13}BrN_{4}S$                                                                                         | B                         | 49        | EtOH                                 | 0.1   |          | 0.3          |                      | 0.9             |
| 10           | $4 - BrC_6H_4$                                                                                                        | 189-190              | $C_{14}H_{13}BrN_4S$                                                                                           | $\mathbf{A}^{f}$          | 80        | CH <sub>3</sub> CN                   | 0.3   |          | 0.3          |                      | 0.5             |
| 11           | $2, 3-Cl_2C_6H_3$                                                                                                     | $186 - 189^{q}$      | $C_{14}H_{12}Cl_2N_4S$                                                                                         | В                         | <b>25</b> | CH <sub>3</sub> CN-CHCl <sub>3</sub> | - 0.2 |          | 0.2          |                      | 0.6             |
| 12           | $2,4-Cl_2C_6H_3$                                                                                                      | 180-181              | $C_{14}H_{12}Cl_2N_4S$                                                                                         | $\mathbf{A}^{\mathbf{g}}$ | 57        | EtOH                                 | 0.1   |          | 0.3          |                      | 0.7             |
| 13           | $2,5-Cl_2C_6H_3$                                                                                                      | 143-144              | $C_{14}H_{12}Cl_2N_4S$                                                                                         | В                         | <b>32</b> | EtOH                                 | - 0.1 |          | 0.1          |                      | 0.1             |
| 14           | 2,6-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                                                                     | $214-218^{q}$        | $C_{14}H_{12}Cl_2N_4S$                                                                                         | В                         | 50        | CH <sub>3</sub> CN                   | 0.1   |          | 0.9          |                      | 0.1             |
| 15           | 3,4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                                                                     | 158 - 160            | $C_{14}H_{12}Cl_2N_4S$                                                                                         | Α                         | 25        | EtOH                                 | 0.5   |          | 0.5          |                      | 0.5             |
| 16           | 3,5-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                                                                     | 164-166              | $C_{14}H_{12}Cl_2N_4S$                                                                                         | В                         | <b>25</b> | EtOH                                 | - 0.2 |          | -0.2         |                      | 0.0             |
| 17           | 2,3,4-Cl <sub>3</sub> C <sub>6</sub> H <sub>2</sub>                                                                   | $204 - 205^{q}$      | $C_{14}H_{11}Cl_{3}N_{4}S$                                                                                     | Α                         | 30        | CHCl <sub>3</sub>                    | 0.1   |          | 0.1          |                      | - 0.3           |
| 18           | 2,4,5-Cl <sub>3</sub> C <sub>6</sub> H                                                                                | 168-169              | $C_{14}H_{11}Cl_3N_4S$                                                                                         | В                         | 19        | EtOH                                 | ~0.3  |          | 0.1          |                      | - 0.1           |
| 19           | $2 - O_2 NC_6 H_4$                                                                                                    | 146-149              | $\mathbf{C}_{14}\mathbf{H}_{13}\mathbf{N}_{5}\mathbf{O}_{2}\mathbf{S}$                                         | В                         | 14        | EtOH                                 | 0.1   | 0.1      | 0.9          | 5.7                  | 4.5             |
| 20           | 3-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub>                                                                       | 179-181              | $C_{14}H_{13}N_{5}O_{3}S$                                                                                      | В                         | 19        | CH <sub>3</sub> CN                   | 0.1   |          | - 0.3        |                      | -0.1            |
| 21           | $4-O_2NC_6H_4$                                                                                                        | 193-195              | $\mathbf{C}_{14}^{\dagger}\mathbf{H}_{13}^{\dagger}\mathbf{N}_{5}^{\dagger}\mathbf{O}_{2}^{\dagger}\mathbf{S}$ | В                         | 50        | EtOH                                 | 0.1   |          | 0.1          |                      | 0.5             |
| <b>22</b>    | $2 - CH_3C_6H_4$                                                                                                      | 164-166              | $C_{15}H_{16}N_{4}S$                                                                                           | В                         | 53        | EtOH                                 | 0.1   | 0.5      | 0.9          | 5.1                  | 9.9 A           |
| 23           | 3-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                                                                       | 149-150              | $C_{15}H_{16}N_{4}S$                                                                                           | В                         | 39        | EtOH                                 | 0.4   | 3.0      | 7.4          | 10.3, C(2/5)         | C(4/5)          |
| <b>24</b>    | $4-CH_{3}C_{6}H_{4}$                                                                                                  | 160-161              | $C_{15}H_{16}N_4S$                                                                                             | В                         | 38        | EtOH                                 | 0.3   | 2.1      | 4.5          | C(3/5)               | C(4/5)          |
| 25           | $2,6-Me_2C_6H_3$                                                                                                      | 205 - 208            | $C_{16}H_{18}N_4S$                                                                                             | В                         | 66        | EtOH                                 | 0.4   | 0.4      | 2.0          | 5.8                  | 11.4 A          |
| 26           | $2 - \text{EtC}_6 H_4$                                                                                                | 157 - 159            | C <sub>14</sub> H <sub>12</sub> N <sub>4</sub> S                                                               | В                         | 55        | EtOH                                 | 0.3   | 0.3      | 0.7          | 3.1                  | 5.1             |
| 27           | $4-\text{EtC}_{6}H_{4}$                                                                                               | 182-184              | $C_{16}H_{18}N_4S$                                                                                             | B                         | 79        | EtOH                                 | 0.3   | 1.5      | 2.1          | 3.1                  | 5.7             |
| 28           | $4-(CH_3)_2CHC_6H_4$                                                                                                  | 168 - 171            | $C_{17}H_{20}N_{4}S$                                                                                           | $\mathbf{A}^{h}$          | 81        | CH <sub>3</sub> CN                   | 0.5   | 1.9      | 2.1          | 5.9                  | 5.5             |
| 29           | $4 - BuC_6H_4$                                                                                                        | 148-149              | $C_{18}H_{22}N_{4}S$                                                                                           | В                         | 61        | EtOH                                 | 0.3   |          | 3.9          |                      | 9.9 A, T(3/5)   |
| 30           | 2-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                                                                      | 173 - 175            | $\mathbf{C}_{15}^{10}\mathbf{H}_{16}^{10}\mathbf{N}_{4}\mathbf{OS}$                                            | В                         | 54        | EtOH                                 | 0.1   | 0.4      | 2.0          | 4.6                  | 6.6 A           |
| 31           | 3-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                                                                      | 138 - 140            | $C_{15}H_{16}N_4OS$                                                                                            | В                         | 16        | EtOH                                 | 0.3   | 0.4      | 8.1 A        | 4.3, C(2/5)          | 9.6, C(2/5)     |
| 32           | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                                                                      | 175 - 176            | $C_{15}H_{16}N_4OS$                                                                                            | В                         | 70        | EtOH                                 | 2.1   |          | 9.7 A        |                      | 1.7             |
| 33           | 4-HOC <sub>6</sub> H <sub>4</sub>                                                                                     | $210-211^{q}$        | $C_{14}H_{14}N_4OS$                                                                                            | В                         | 30        | EtOH-CHCl <sub>3</sub>               | 0.1   |          | 0.3          |                      | 0.6, T(2/5)     |
| 34           | 4-C <sub>2</sub> H <sub>5</sub> OCOC <sub>6</sub> H <sub>4</sub>                                                      | 159-160              | $C_{17}H_{18}N_4O_2S$                                                                                          | Α                         | 25        | EtOH                                 | 0.3   |          | 0.3          |                      | 0.6, T(2/5)     |
| 35           | $p-C_6H_4SO_2C_6H_4-p$                                                                                                | 228 - 231            | $C_{28}H_{26}N_6O_2S_3$                                                                                        | в                         | 80        | r                                    | 0.1   |          | 0.1          |                      | 0.3             |
| 36           | 3-[(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> -<br>NHCH <sub>2</sub> ]-4-<br>OHC <sub>6</sub> H <sub>3</sub> ·2HCl | $200^q$              | $C_{1,2}H_{2,7}CI_2N_5OS \cdot H_2O$                                                                           | В                         | 45        | MeOH-Et <sub>2</sub> O               | 2.0   | 5.6      | 8.8 A        | T(5/5)               |                 |
| 37           | $C_6H_5CH_2$                                                                                                          | 141-143              | $C_{15}H_{16}N_{4}S$                                                                                           | В                         | 38        | EtOH                                 | 0.5   |          | 3.7          |                      | 10.6 A, T(2/5)  |
| 38           | 3-FC/H/CH                                                                                                             | 157-159              | C <sub>15</sub> H <sub>15</sub> FN <sub>4</sub> S                                                              | в                         | 72        | CH <sub>3</sub> CN                   | 0.4   | 1.4      | 3.4          | 5.8                  | 9.4 A           |
| 39           | $2-ClC_6H_4CH_2$                                                                                                      | 172-174              | $C_{15}H_{15}\Gamma H_4 S$<br>$C_{15}H_{15}CIN_4 S$                                                            | B                         | 50        | EtOH                                 | 0.3   | *. *     | 0.3          | 0.0                  | 1.9             |
|              |                                                                                                                       | • = = •              | 15154                                                                                                          |                           |           |                                      |       |          |              |                      |                 |

| 40<br>41<br>42 | 3-ClC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub><br>4-ClC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub><br>2,4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH <sub>3</sub> | 160-162<br>158-160<br>152-155 | $C_{15}H_{15}CIN_{4}S$<br>$C_{15}H_{15}CIN_{4}S$<br>$C_{15}H_{15}CIN_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B<br>B<br>B                 | 48<br>64<br>37  | EtOH<br>EtOH<br>EtOH                 | 0.5<br>0.4 | $\begin{array}{c} 0.0 \\ 0.5 \end{array}$ | $1.6 \\ 2.1 \\ 1.0$ | 0.0<br>4.3   | -0.4<br>6.9 A<br>2.0 |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|--------------------------------------|------------|-------------------------------------------|---------------------|--------------|----------------------|
| 42             | $2,4-Cl_2C_6H_3CH_2$<br>3,4-Cl_2C_6H_3CH_                                                                                                                                   | 152-155                       | $\begin{array}{c} C_{15}H_{14}Cl_2N_4S\\ C_{15}H_{14}Cl_2N_4S \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В                           | 37              | EtOH                                 | 0.4        |                                           | 0.5                 |              | 0.1                  |
| 44             | $2-CH_{3}C_{6}H_{4}CH_{2}$                                                                                                                                                  | 152-154                       | $C_{15}H_{14}O_{2}H_{4}O_{2}O_{4}O_{15}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_{16}O_$ | B                           | 48              | EtOH                                 | 0.1        | 2.5                                       | 5.9, C(1/5)         | 7.7, C(1/5)  | 8.9, C(3/5)          |
| 45             | $3-CH_{3}C_{6}H_{4}CH_{2}$                                                                                                                                                  | 143-144                       | $C_{16}H_{18}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B                           | $\frac{40}{22}$ | EtOH                                 | 0.1        | 2.0                                       | 0.7                 | 1.1, 0(1/5)  | 6.5                  |
| 46             | $4-CH_3C_6H_4CH_2$                                                                                                                                                          | 149-150                       | $C_{16}H_{18}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B                           | $14^{22}$       | МеОН                                 | 0.1        | 1.7                                       | 4.3                 | 5.7          | 0.0                  |
| 47             | 3,4-Me,C,H,CH,                                                                                                                                                              | 153-154                       | $C_{17}H_{20}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B                           | 60              | МеОН                                 | 0.3        | 1                                         | 0.1                 | 0.1          | 2.1                  |
| 48             | 2,4-Me <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH <sub>2</sub>                                                                                                           | 148-149                       | $C_{17}H_{20}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B                           | 65              | МеОН                                 | 0.5        | 0.1                                       | 3.1                 | 6.1 A        | 8.9 A                |
| 49             | 2-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>3</sub>                                                                                                            | 120-123                       | $C_{16}H_{18}N_4OS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B                           | 28              | EtOH                                 | 0.1        | 0.3                                       | 1.3                 | 3.5          | 6.9 A                |
| 50             | 3-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>3</sub>                                                                                                            | 115-117                       | $C_{16}H_{18}N_4OS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B                           | $\overline{22}$ | EtOH                                 | 0.3        | 0.3                                       | 0.9                 | 4.5          | 5.9                  |
| 51             | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>1</sub>                                                                                                            | 134-136                       | $C_{16}H_{18}N_4OS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B                           | $\frac{-}{44}$  | EtOH                                 | 0.3        | 1.7                                       | 2.9                 | 5.9, T(1/5)  | 7.9 A, T(3/5)        |
| <b>52</b>      | C,H,CH,CH,                                                                                                                                                                  | 134 - 135                     | $C_{16}H_{18}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\overline{\mathbf{A}}^{i}$ | 63              | CH <sub>3</sub> CN                   | - 0.2      | 0.6                                       | 2.0                 | 6.6 A        | 8.8, $C(3/5)$        |
| 53             | 4-FC <sub>6</sub> H₄CHĆH3                                                                                                                                                   | 118-120                       | C <sub>16</sub> H <sub>17</sub> FN <sub>4</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ā                           | 76              | EtOH                                 | 1.1        | 5,5                                       | 8.5 A               | 5.2, C(1/5)  | T(4/5)               |
| 54             | $(C_6H_5)_3C$                                                                                                                                                               | 179-180                       | $C_{27}H_{24}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{A}^{j}$            | <b>23</b>       | CH <sub>3</sub> CN                   | 0.1        |                                           | 0.1                 | , , , ,      | 0.1                  |
| 55             | cyclohexyl                                                                                                                                                                  | 156                           | $C_{14}H_{20}N_4S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathbf{A}^{k}$            | 72              | EtŐH                                 | 3.9        | 3.9                                       | 9.6, C(2/5)         | 10.4, C(3/5) | C(2/5), T(3/5)       |
| <b>5</b> 6     | cyclooctyl                                                                                                                                                                  | 134-135                       | $C_{16}H_{22}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                           | 52              | MeOH                                 | 1.1        | 1.2                                       | 3,4                 | 4.8          | 10.7 Å, T(1/5)       |
| 57             | 1-adamantyl                                                                                                                                                                 | 165.5 - 167                   | $C_{18}H_{24}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{A}^{l}$            | 71              | EtOH                                 | 0.7        | 1.1                                       | 3.7                 | 8.5 A        | 9.2, C(1/5)          |
| 58             | 2-pyridyl                                                                                                                                                                   | 185 - 187                     | $C_{13}H_{13}N_{5}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A <sup>m</sup>              | 34              | EtOH                                 | 1.5        | 2.7                                       | 4.5                 | 6.5 A        | 8.1 A                |
| 59             | 3-pyridyl                                                                                                                                                                   | $174.5 - 176^q$               | $C_{13}H_{13}N_5S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Α                           | 72              | EtOH                                 | 0.3        |                                           | 0.5                 |              | 1.3                  |
| 60             | 4-pyridyl                                                                                                                                                                   | 153 - 155                     | $C_{13}H_{13}N_{5}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | в                           | 31              | EtOH                                 | 0.1        |                                           | 0.3                 |              | 0.9, T(2/5)          |
| 61             | 2-picolyl                                                                                                                                                                   | 141 - 145                     | $C_{14}H_{15}N_{5}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                           | 39              | EtOH                                 | 0.1        |                                           | 0.3                 |              | 0.9, T(3/5)          |
| 62             | 3-picolyl                                                                                                                                                                   | 149-151                       | $C_{14}H_{15}N_5S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | в                           | 60              | EtOH                                 | 0.1        |                                           | 0.3                 |              | 0.6, T(2/5)          |
| 63             | 4-picolyl                                                                                                                                                                   | 155 - 158                     | $C_{14}H_{15}N_5S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В                           | 45              | EtOH                                 | 0.3        |                                           | 0.4, T(1/5)         |              | 0.0, T(2/5)          |
| 64             | 6-MeO-3-                                                                                                                                                                    | $194^{q}$                     | C <sub>13</sub> H <sub>14</sub> N <sub>6</sub> OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | в                           | 33              | EtOH                                 | 0.1        |                                           | 0.1                 |              | 0.2, T(2/5)          |
|                | pyridazinyl                                                                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                 |                                      |            |                                           |                     |              |                      |
| 65             | 6-MeO-4-Me-8-                                                                                                                                                               | $236^{q}$                     | C <sub>19</sub> H <sub>19</sub> N <sub>5</sub> OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                           | <b>27</b>       | EtOH                                 | 0,1        |                                           | 0.1                 |              | 0.3                  |
|                | quinolyl                                                                                                                                                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                 |                                      |            |                                           |                     |              |                      |
| 66             | 9-acridyl                                                                                                                                                                   | $196-200^{q}$                 | $C_{21}H_{17}N_{5}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                           | 30              | r                                    | 0.3        |                                           | 0.3                 |              | 0.5                  |
| 67             | -CH <sub>2</sub> CH <sub>2</sub> -                                                                                                                                          | 214-216                       | $C_{18}H_{22}N_8S_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A <sup>n</sup>              | 53              | r                                    | 0.1        |                                           | 0.1                 |              | 0.1                  |
| 68             | HOCH <sub>2</sub> CH <sub>2</sub>                                                                                                                                           | 130-133                       | $C_{10}H_{14}N_4OS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | в                           | <b>23</b>       | EtOH                                 | 0.3        |                                           | 0.5                 |              | T(5/5)               |
| 69             | CH <sub>2</sub> =CHCH <sub>2</sub>                                                                                                                                          | 107-108                       | $C_{11}H_{14}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ao                          | <b>74</b>       | MeOH                                 | 0.5        | 2.3                                       | 3,1                 | 3.0          | T(5/5)               |
| 70             | C <sub>2</sub> H <sub>5</sub> OCOCH <sub>2</sub>                                                                                                                            | 143-144                       | $C_{12}H_{16}N_4O_2S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Α                           | 87              | EtOH                                 | 0.1        |                                           | 0.1                 |              | 0.3                  |
| 71             | 1,1,3,3-Me₄Bu                                                                                                                                                               | 143 - 144                     | $C_{16}H_{26}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Α                           | 49              | MeOH                                 | 1.1        | 1.3                                       | 0.9                 | 2.9          | 8.7 A                |
| 72             | $(C_2H_5)_2N(CH_2)_3$ -<br>CH(CH_3)·2HBr                                                                                                                                    | 200-201 <sup>q</sup>          | $C_{17}H_{31}Br_{2}N_{5}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В                           | 30              | MeOH-Et <sub>2</sub> O               | 0.3        |                                           | T(1/5)              |              | T(5/5)               |
| 73             | (CH <sub>3</sub> )₂NCH(CH <sub>3</sub> )-<br>CH <sub>3</sub> ·HBr                                                                                                           | $161 - 162^q$                 | $C_{13}H_{22}BrN_{5}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Α                           | 44              | CH <sub>3</sub> CN-Et <sub>2</sub> O | 0.1        |                                           | T(4/5)              |              | T(5/5)               |
| 74             | $(C_2H_5)_2NCH_2$                                                                                                                                                           | $231^q$                       | $C_{14}H_{25}Br_{2}N_{5}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α                           | 76              | MeOH-CH <sub>3</sub> CN              | 0.3        |                                           | 0.5                 | T(5/5)       | T(5/5)               |
| 75             | CH₂·2HBr<br>H                                                                                                                                                               | 158-160 <sup>p</sup>          | $C_8H_{10}N_4S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | А                           | 87              | EtOH                                 | T(5/5)     |                                           | T(5/5)              |              | T(5/5)               |

<sup>a</sup> Time in days and dosage in mg/kg. Abbreviations used are: A, active; C, cure; T, toxic. These terms are defined in the Biological Method paragraph given under the Experimental Section. <sup>b</sup> See Experimental Section for details. Method A: the reaction of a 4-substituted 3-thiosemicarbazide with 2-acetylpyridine. Superscripts in this column refer to precursor thiosemicarbazides. An "A" lacking a superscript indicates that the thiosemicarbazide was not in the literature and is reported by us in Table IV. Method B: the reaction of II with an amine. Yields are given for the final step and have not been optimized. <sup>c</sup> Mp 187-189 °C, ref 13; thiosemicarbazide, mp 141 °C, ref 14. <sup>d</sup> Method C: the reaction of 2-acetylpyridine hydrazone with an isothiocyanate (phenyl) gave a 94% yield. <sup>e</sup> Mp 120 °C, ref 15. <sup>f</sup> Mp 189 °C, ref 16. <sup>g</sup> Mp 218 °C, ref 17. <sup>h</sup> Mp 96 °C, ref 16. <sup>i</sup> Mp 114-115 °C, ref 19. <sup>j</sup> Mp 165-166 °C dec, ref 19. <sup>k</sup> Mp 146-147 °C, ref 19. <sup>l</sup> Mp 212.5-213 °C, ref 20. <sup>m</sup> Mp 194 °C, ref 14. <sup>n</sup> Mp 225 °C, ref 21. <sup>o</sup> Mp 96.5-97 °C, ref 22. <sup>p</sup> Mp 158-160 °C, ref 23. <sup>q</sup> Decomposition. <sup>r</sup> Washed with EtOH.

Table II. Antimalarial Activity of Thiosemicarbazones Derived from 2-Propionylpyridine against *Plasmodium berghei* in Mice

|     |                                                                  |           |                                                                                         | yield,         | recryst            | in  |     |     | a surv time<br>at dosage <sup>a</sup> |       |
|-----|------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------|----------------|--------------------|-----|-----|-----|---------------------------------------|-------|
| no. | R                                                                | mp, °C    | formula                                                                                 | % <sup>b</sup> | solvent            | 40  | 80  | 160 | 320                                   | 640   |
| 76  | C <sub>6</sub> H <sub>5</sub>                                    | 137       | C <sub>15</sub> H <sub>16</sub> N₄S                                                     | $32^c$         | CH <sub>3</sub> CN | 0.0 | 1,2 | 2,6 | C(1/5)                                | C(1/5 |
| 77  | 2-ClC <sub>6</sub> H <sub>4</sub>                                | 163 - 164 | C <sub>15</sub> H <sub>15</sub> ClN <sub>4</sub> S                                      | $63^d$         | CH <sub>3</sub> CN | 0.1 |     | 0.1 | ,                                     | 0.3   |
| 78  | 3-ClC <sub>6</sub> H <sub>4</sub>                                | 140 - 142 | $C_{15}H_{15}CIN_{4}S$                                                                  | $20^e$         | EtŐH               | 0.3 |     | 0,3 |                                       | 0.5   |
| 79  | $4-ClC_{6}H_{4}$                                                 | 128-129   | C <sub>1</sub> <sup>S</sup> H <sub>1</sub> <sup>S</sup> ClN <sub>4</sub> <sup>S</sup> S | $56^{f}$       | EtOH               | 0.3 |     | 0.7 |                                       | 1.1   |
| 80  | 4-BrC <sub>6</sub> H <sub>4</sub>                                | 115 - 116 | C <sub>1</sub> , H <sub>1</sub> , BrN <sub>4</sub> S                                    | $40^{g}$       | CH <sub>3</sub> CN | 0.3 |     | 0.3 |                                       | 0.7   |
| 81  | $4-O_{2}NC_{6}H_{4}$                                             | 166       | $\mathbf{C}_{15}\mathbf{H}_{15}\mathbf{N}_{5}\mathbf{O}_{2}\mathbf{S}$                  | $45^{h}$       | EtŐH               | 0.1 |     | 0.1 |                                       | 0.3   |
| 82  | 4-C <sub>2</sub> H <sub>5</sub> OCOC <sub>6</sub> H <sub>4</sub> | 189       | $C_{18}H_{20}N_{4}O_{2}S$                                                               | 82             | EtOH               | 0.3 |     | 0.5 |                                       | 0,5   |
| 83  | $(C_6H_5)_3C$                                                    | 188-190   | $C_{28}^{10}H_{26}^{20}N_{4}S^{2}$                                                      | $60^i$         | CHCl <sub>2</sub>  | 0.1 |     | 0.1 |                                       | 0.3   |
| 84  | 1-adamantyl                                                      | 152 - 153 | C <sub>19</sub> H <sub>26</sub> N <sub>4</sub> S                                        | $67^{j}$       | CH <sub>3</sub> CN |     | 0.3 | 3.7 | 6.3 A                                 | 9.1 A |
| 85  | C <sub>2</sub> H <sub>5</sub> OCOČH,                             | 145-146   | $C_{13}H_{18}N_{4}O_{2}S$                                                               | <b>74</b>      | MeOH               | 0.3 |     | 0.3 |                                       | 0.5   |

C<sub>2</sub>H<sub>5</sub> S<sub>11</sub>

<sup>a</sup> Time in days and dosage in mg/kg. Abbreviations used are: A, active; C, cure. These terms are defined in the Biological Method paragraph given under the Experimental Section. <sup>b</sup>All compounds were made by method A. Superscripts in this column refer to precursor thiosemicarbazides. New thiosemicarbazides are given in Table IV. <sup>c</sup> Mp 141 °C, ref 14. <sup>d</sup> Mp 130-131 °C, ref 15. <sup>e</sup> Mp 120 °C, ref 15. <sup>f</sup> Mp 187-188 °C, ref 15. <sup>g</sup> Mp 189 °C, ref 16. <sup>h</sup> Mp 190 °C, ref 17. <sup>i</sup> Mp 165-166 °C dec, ref 19. <sup>j</sup> Mp 212.5-213 °C, ref 20.

**Biological Results.** Replacement of the thiocarbonyl group of 1 by a carbonyl gave compound 161 which was devoid of antimalarial activity, providing an indication of the essentiality of the sulfur atom in this class of compounds.

A number of thiosemicarbazones were prepared in which a wide variety of aromatic and heterocyclic aldehydes and ketones were used to form the alkylidene portion of the molecule. It became evident from the test data (cf. Tables I-III) that none of the aldehydes or ketones except 2acetylpyridine (and to some extent, 2-propionylpyridine) would impart antimalarial activity. In some instances, the N<sup>4</sup> position of the thiosemicarbazone was substituted with a so-called antimalarial side chain (e.g., **36**, **72**-**74** and **145**-**158**). This approach failed, however, even when the thiosemicarbazones were derived from 2-acetylpyridine as in **72** and **74**.

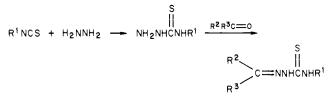
In an attempt to confirm the optimum point of attachment of the ethylidene group to the pyridine ring, three active 2-pyridylethylidene thiosemicarbazones,  $R = C_6H_5$  (1), 2-pyridyl (58), adamantyl (57), were prepared also as their 3- (86, 112, and 131, respectively) and 4-pyridylethylidene (87, 113, and 132, respectively) isomers. All 3- and 4-pyridyl compounds were found to be totally inactive.

Replacement of the ethylidene function of 1 by methylidene, to give compounds analogous to the type being studied for antileukemic<sup>10</sup> properties, destroyed activity (cf. 88, 104, and 123). A propylidene group, on the other hand, appeared only to diminish activity in analogous compounds and in no case transformed an inactive compound into an active one (cf. Table II). Use of di-2-pyridinylmethanone as a precursor (114 and 133) abolished activity.

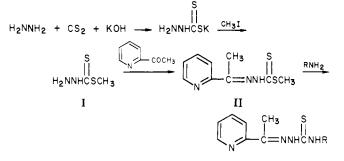
Keeping the 1-(2-pyridylethylidene) 3-thiosemicarbazone portion of 1 constant, the nature of the phenyl group at N<sup>4</sup> was modified by placement of one, two, or three substituents about the ring. Of the monofluorophenyl compounds, the 2 and 3 substituted (2 and 3) were curative at a fairly high dose of 320 mg/kg, whereas the 4fluorophenyl (4) only slightly prolonged the life of the test animals at this dose level. All the monochlorophenyl derivatives (5–7) were active at 640 mg/kg. The three isomeric bromophenyl (11–16), trichlorophenyl (17 and 18), and the three isomeric nitrophenyl compounds (19-21).

Of the other substituted phenyls, 3- and 4-tolyl (23 and 24, respectively) were curative at the next to highest level, whereas only minimal activity was seen when the substituent was 2-tolyl (22), 2,6-dimethyl (25), 4-butyl (29), or 2- and 4-methoxy (30 and 32).

Of the group of benzyl derivatives tested, benzyl itself (37) and 4-chlorobenzyl (41) showed only slight activity at the highest test level of 640 mg/kg. The 2,4-dimethylbenzyl compound 48 was marginally active at the next lower dose and the best of the benzyl group, 2-methyl (44), gave cures at 160 mg/kg. Extension of the methylene side chain to give the phenethyl derivative **52** gave some enhanced activity over the benzyl compound. Further extension of the chain was not pursued in this study.


Not only was the cyclohexyl derivative 55 the most effective of the three cycloaliphatics (55–57) prepared and, in fact, in the entire series, but it was also one of the few compounds in the present group to be curative at the 160 mg/kg level.

Of the heterocycles (mainly pyridyl and picolyl) placed in the N<sup>4</sup> of the thiosemicarbazone moiety, only 2-pyridyl (58) imparted antimalarial activity. The latter was, however, only marginally active. The "dapsone" derivative 35 was disappointingly inactive, as were all the precursor thiosemicarbazides which were tested.


It was concluded, therefore, that the critical structural feature for a thiosemicarbazone exhibiting antimalarial activity is the 2-pyridylethylidene moiety. At N<sup>4</sup>, the presence of an unsubstituted phenyl ring yields a more effective compound than when the phenyl ring is substituted. Some  $N^4$ -benzyl and -phenethyl compounds are also active, as are some cycloaliphatics such as adamantyl and, especially, cyclohexyl. N<sup>4</sup>-Substitution by linear aliphatics or heterocyclics, on the other hand, contributes little or nothing to the antimalarial activity of the 2acetylpyridine thiosemicarbazones. Because our experience with 2-propionylpyridine derivatives is still limited, no conclusion can be reached as yet regarding their therapeutic utility. Preliminary work indicates that substitution of a methyl group on  $N^2$  serves to diminish antimalarial activity.

Expansion of the 2-acetylpyridine thiosemicarbazone series to include compounds in which  $N^4$  is disubstituted

Scheme I



Scheme II



Scheme III

is now in progress. The early results from this study suggest that this type of structural modification serves to improve antimalarial activity.

**Chemistry.** The thiosemicarbazones reported herein were made by one of three routes.

Method A consisted of condensation of a thiosemicarbazide, prepared from an aryl, aralkyl, or alkyl isothiocyanate and hydrazine, with an aldehyde or ketone (Scheme I). Table IV presents the properties of previously unreported thiosemicarbazides made in the course of applying this method.

Method B, employed exclusively for the preparation of 2-acetylpyridine thiosemicarbazones, involved the condensation of 2-acetylpyridine with methyl hydrazinecarbodithioate (I) to form methyl 3-[1-(2-pyridyl)ethylidene]hydrazinecarbodithioate (II). The S-methyl group of the latter compound, upon displacement by an amine, formed the desired thiosemicarbazone (Scheme II). Through the use of the common intermediate II and readily available amines it was possible to form most of the compounds given in Table I in essentially a one-step reaction. As might be expected, the rate of the displacement reaction roughly paralleled the basicity of the amine, the weaker ones sometimes requiring ca. a 24-h reflux time.

Method C, an alternative preparative technique studied during the latter part of this study, involved the condensation of an isothiocyanate with the hydrazone of 2-acetylpyridine (III) (Scheme III).

The semicarbazone required for this investigation was made by the reaction of phenyl isocyanate with 2acetylpyridine hydrazone.

#### **Experimental Section**

Melting points were taken on a Fisher-Johns hot stage interfaced with a Bailey Instruments BAT-8 digital thermometer. Infrared spectra were run as KBr pellets on a Perkin-Elmer 283 or a Beckman IR-5 spectrometer. NMR spectra were run on a Varian T60-A spectrometer using Me<sub>4</sub>Si as an internal standard. Microanalyses were performed by the Baron Consulting Co. and Spang Microanalytical Laboratory. Satisfactory elemental analyses ( $\pm 0.4\%$  of calculated values) were obtained for all compounds, except where noted otherwise.

Thiosemicarbazones. Method A. Equimolar quantities of a 4-substituted 3-thiosemicarbazide and an aldehyde or a ketone in MeOH were heated on a steam bath for 1-3 h and, in some instances, up to 16 h. The reaction mixture was cooled and the thiosemicarbazone which separated from solution was collected and recrystallized.

Method B. Methyl Hydrazinecarbodithioate (I).<sup>25</sup> To a cooled solution of 198 g (3.0 mol) of KOH (quantity adjusted for 85% purity) in 240 mL of water and 200 mL of 2-propanol was added 171 mL (3.0 mol) of 85% hydrazine hydrate. Ice-cooled carbon disulfide (182 mL, 229 g, 3.0 mol) was added dropwise to the stirred solution, which was maintained at <10 °C over about 100 min. The bright-yellow mixture was stirred for an additional 1 h, after which ice-cooled iodomethane<sup>26</sup> (187 mL, 426 g, 3.0 mol) was added dropwise over a 2-h period. As the MeI was added the color of the mixture diminished in intensity and gradually became white. Stirring was continued for an additional 90 min, and the white precipitate was collected with the aid of a filter dam, washed with ice-cold water, and again collected. The crude product was recrystallized from  $CH_2Cl_2$  to give 185 g (50%) of colorless prisms of methyl hydrazinecarbodithioate: mp 81-83 °C (lit. mp 82 °C,<sup>25</sup> 80-82 °Č<sup>27</sup>); IR 3275, 3200 (br), 1510, 1155, 1010, 945 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  2.65 (s, 3 H, SCH<sub>3</sub>).

Methyl 3-[1-(2-pyridyl)ethylidene]hydrazinecarbodithioate (II). Methyl hydrazinecarbodithioate (I; 213.6 g, 1.74 mol) and 212.0 g (1.75 mol) of 2-acetylpyridine in 500 mL of 2-PrOH were mechanically stirred. The reaction mixture turned yellow as the I dissolved and then the yellow product began to precipitate. The reaction mixture was stirred for an additional 2 h and cooled overnight. The crystals were collected, washed with cold 2-PrOH, and air-dried to yield 370 g (94%) of II, mp 126-129 °C (lit.<sup>27</sup> mp 131-132.5 °C). The compound was used without further purification: IR 3170, 1490, 1470, 1440, 1280, 1070, 780 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  2.42 (s, 3 H), 2.43 (s, 3 H), 2.65 (s, 3 H, SCH<sub>3</sub>), 2.67 (s, 3 H, SCH<sub>3</sub>), 7.10-8.77 (m, 4 H); TLC  $R_f$ 0.67-0.70 (silica gel, CH<sub>3</sub>OH).

2-Acetylpyridine Thiosemicarbazones. To 2.4 g (0.02 mol) of II dissolved in 50 mL of either warm MeOH or EtOH<sup>28</sup> was added 0.02 mol of amine. The solution was heated under reflux until the evolution of methyl mercaptan almost completely ceased. Methyl mercaptan was detected by the yellow color it imparts to moistened Pb(OAc)<sub>2</sub> paper placed at the mouth of the reflux condenser. Reaction times were about 8 h; however, weakly basic amines required up to 24 h. The resultant thiosemicarbazones frequently crystallized from the hot solution as the reaction progressed. The more soluble thiosemicarbazones, however, separated from solution only after cooling.

See Table V for a listing of the important peaks found in the IR spectra and Table VI for a correlation of NMR spectra of representative members of this group of compounds.<sup>29</sup>

Method C. Typical Procedure. To a solution of 1.35 g (0.01 mol) of 2-acetylpyridine hydrazone<sup>30</sup> in 4 mL of CH<sub>3</sub>CN was added 1.35 g of phenyl isothiocyanate, resulting in a mildly exothermic reaction. The solution was heated for 0.5 h at ~60 °C and cooled, causing crystallization of 1. The IR spectrum was identical with that obtained from 1 made by methods A and B.

2-Acetylpyridine 4-Phenylsemicarbazone (161). To a solution of 1.35 g (0.01 mol) of 2-acetylpyridine hydrazone in 5 mL of CH<sub>3</sub>CN was added dropwise 1.2 g (0.01 mol) of phenyl isocyanate. An exothermic reaction began immediately and crystals separated. The white product was collected from the cooled reaction mixture, affording 2.3 g (92%) of 2-acetylpyridine 4-phenylsemicarbazone, mp 170-173 °C. An analytical sample, mp 171-173 °C, was prepared by recrystallization from CH<sub>3</sub>CN. Anal. (C<sub>14</sub>H<sub>14</sub>N<sub>4</sub>O) C, H, N.

**Biological Method.** The compounds described herein were tested at the Leo Rane Laboratory, University of Miami, Miami, FL, against a drug-sensitive strain of *Plasmodium berghei* (strain KBG 173) in mice. Young ICR/HA Swiss mice, ranging in weight from 18 to 22 g, are administered intraperitoneally a standard inoculum of plasmodia. The latter consists of 0.5 mL of a 1:100 dilution of heparinized heart's blood containing  $4 \times 10^7$  cells, a minimum of 90% of which are parasitized. The cells are drawn from donor mice which had been infected 1 week earlier with

|  | g Derivatives of 2-Acetylpyridine and 2-Propionylpyridine) | (Excluding | ghei in Mice | Plasmodium be | Inactive against | Thiosemicarbazones [ | Table III. |
|--|------------------------------------------------------------|------------|--------------|---------------|------------------|----------------------|------------|
|--|------------------------------------------------------------|------------|--------------|---------------|------------------|----------------------|------------|

| S                                                    |
|------------------------------------------------------|
| H                                                    |
| R <sup>3</sup> R <sup>2</sup> C=NNHCNHR <sup>1</sup> |

| no. | R'                                | <b>R</b> <sup>2</sup>              | <b>R</b> <sup>3</sup>                                | mp, °C                                 | formula                                                                                                                                                                                                                                                                                                                                                                                            | synth<br>meth <sup>a</sup> | yield, <sup>b</sup><br>% | recryst<br>solvent |
|-----|-----------------------------------|------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|--------------------|
| 86  | C <sub>6</sub> H <sub>5</sub>     | CH <sub>3</sub>                    | 3-pyridyl                                            | 177-178                                | $C_{14}H_{14}N_4S$                                                                                                                                                                                                                                                                                                                                                                                 | Α                          | 35                       | EtOH               |
| 87  | C <sub>6</sub> H <sub>5</sub>     | CH                                 | 4-pyridyl                                            | 193.5-195                              | $C_{14}H_{14}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                               | Α                          | 63                       | MeOH               |
| 88  | $\mathbf{C}_{6}\mathbf{H}_{5}$    | Н                                  | 2-pyridyl                                            | 196–199 <sup>c</sup>                   | $C_{13}H_{13}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                               |                            |                          |                    |
| 89  | $4 - ClC_6H_4$                    | Н                                  | $4 - FC_6 H_4$                                       | 174 - 175                              | C <sub>14</sub> H <sub>11</sub> ClFN <sub>3</sub> S                                                                                                                                                                                                                                                                                                                                                | Α                          | 56                       | CH <sub>3</sub> CN |
| 90  | 4-CIC, H                          | Н                                  | 2,6-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>    | 210-211                                | $C_{14}H_{10}Cl_3N_3S$                                                                                                                                                                                                                                                                                                                                                                             | Α                          | 78                       | CH <sub>3</sub> CN |
| 91  | $4 - ClC_6H_4$                    | Н                                  | 4-CH <sub>3</sub> ÕČ <sub>6</sub> H <sub>4</sub>     | 192-193                                | C <sub>15</sub> H <sub>14</sub> ClN <sub>3</sub> OS                                                                                                                                                                                                                                                                                                                                                | Α                          | 74                       | CH <sub>3</sub> CN |
| 92  | $4 - \text{ClC}_6 H_4$            | Н                                  | 3,4-(MeO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> | 203-204.5                              | $C_{16}H_{16}CIN_{3}O_{2}S$                                                                                                                                                                                                                                                                                                                                                                        | Α                          | 77                       | CH <sub>3</sub> CN |
| 93  | 4-ClC <sub>6</sub> H <sub>4</sub> | Н                                  | 3,4-OCH <sub>2</sub> OC <sub>6</sub> H <sub>3</sub>  | 210-211                                | $C_{15}H_{12}CIN_{3}O_{2}S$                                                                                                                                                                                                                                                                                                                                                                        | Α                          | 70                       | CHCl <sub>3</sub>  |
| 94  | $4-ClC_{6}H_{4}$                  | Н                                  | $4-(CH_3)_2NC_5H_4$                                  | 204-206                                | $C_{16}H_{17}CIN_4S$                                                                                                                                                                                                                                                                                                                                                                               | Α                          | 91                       | CH <sub>3</sub> CN |
| 95  | $4-ClC_{6}H_{4}$                  | Н                                  | 5-O,N-2-furyl                                        | 203-204                                | C <sub>11</sub> H <sub>9</sub> N <sub>5</sub> O <sub>3</sub> S                                                                                                                                                                                                                                                                                                                                     | Α                          | 90                       | CH <sub>3</sub> CN |
| 96  | $4-ClC_{6}H_{4}$                  | Н                                  | $C_{6}H_{5}CH = CH$ (trans)                          | 199-200                                | $C_{16}H_{14}CIN_{3}S$                                                                                                                                                                                                                                                                                                                                                                             | Α                          | 90                       | CH <sub>3</sub> CN |
| 97  | $4-ClC_{6}H_{4}$                  | CH <sub>3</sub>                    | 3,4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>    | 186-188                                | $C_{15}H_{12}Cl_{3}N_{3}S$                                                                                                                                                                                                                                                                                                                                                                         | Α                          | 65                       | CH <sub>3</sub> CN |
| 98  | 4-ClC <sub>6</sub> H <sub>4</sub> | CH                                 | $4 - BrC_6 H_4$                                      | 194-195                                | C <sub>15</sub> H <sub>13</sub> BrClN <sub>3</sub> S                                                                                                                                                                                                                                                                                                                                               | Α                          | 30                       | CH <sub>3</sub> CN |
| 99  | 2-pyridyl                         | Н                                  | C <sub>6</sub> H <sub>5</sub>                        | 148-150                                | $C_{13}H_{12}N_4S$                                                                                                                                                                                                                                                                                                                                                                                 | Α                          | $46^d$                   | CH <sub>3</sub> CN |
| 100 | 2-pyridyl                         | Н                                  | 4-FC <sub>6</sub> H <sub>4</sub>                     | 160-161                                | C <sub>13</sub> H <sub>11</sub> FN₄S                                                                                                                                                                                                                                                                                                                                                               | A                          | 33                       | CH <sub>3</sub> CN |
| 101 | 2-pyridyl                         | Н                                  | 2,6-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>    | 185-186                                | $C_{13}H_{10}Cl_2N_4S$                                                                                                                                                                                                                                                                                                                                                                             | Α                          | 27                       | CH <sub>3</sub> OH |
| 102 | 2-pyridyl                         | Н                                  | 3,4-Me <sub>2</sub> OC <sub>6</sub> H <sub>3</sub>   | 205-206                                | $\mathbf{C}_{15}\mathbf{H}_{16}\mathbf{N}_{4}\mathbf{O}_{2}\mathbf{S}$                                                                                                                                                                                                                                                                                                                             | Α                          | 67                       | CH <sub>3</sub> CN |
| 103 | 2-pyridyl                         | Н                                  | 3,4-OCH,OC,H3                                        | 195-197                                | $C_{14}H_{12}N_4O_2S$                                                                                                                                                                                                                                                                                                                                                                              | Α                          | 49                       | CH <sub>3</sub> CN |
| 104 | 2-pyridyl                         | Н                                  | 2-pyridyl                                            | 189-191                                | C <sub>14</sub> H <sub>12</sub> H <sub>4</sub> O <sub>2</sub> D<br>C <sub>12</sub> H <sub>1</sub> N <sub>5</sub> S<br>C <sub>12</sub> H <sub>1</sub> N <sub>5</sub> S<br>C <sub>12</sub> H <sub>1</sub> N <sub>5</sub> S<br>C <sub>14</sub> H <sub>14</sub> N <sub>4</sub> S <sub>2</sub><br>C <sub>15</sub> H <sub>13</sub> N <sub>5</sub> S<br>C <sub>14</sub> H <sub>13</sub> FN <sub>4</sub> S | A                          | 58                       | CH <sub>3</sub> CN |
| 105 | 2-pyridyl                         | Н                                  | 4-pyridyl                                            | 193-194                                | C. H. N.S                                                                                                                                                                                                                                                                                                                                                                                          | Ā                          | 77                       | CH <sub>1</sub> CN |
| 106 | 2-pyridyl                         | Н                                  | 2-thienyl                                            | 170-171                                | $\mathbf{C}_{1}$ $\mathbf{H}_{1}$ $\mathbf{N}_{1}$ $\mathbf{S}_{2}$                                                                                                                                                                                                                                                                                                                                | Ā                          | 38                       | CH <sub>3</sub> CN |
| 107 | 2-pyridyl                         | Н                                  | 3-indolyl                                            | 179-181                                | C. H. N.S                                                                                                                                                                                                                                                                                                                                                                                          | A                          | 44                       | CH <sub>3</sub> CN |
| 108 | 2-pyridyl                         | CH <sub>3</sub>                    | $4 - FC_6H_4$                                        | 203-204                                | C.H.FN.S                                                                                                                                                                                                                                                                                                                                                                                           | Â                          | 62                       | CH <sub>3</sub> CN |
| 109 | 2-pyridyl                         | CH <sub>3</sub>                    | 4-CIC <sub>6</sub> H <sub>4</sub>                    | 192-193                                | $C_{14}H_{13}CIN_4S$                                                                                                                                                                                                                                                                                                                                                                               | Â                          | 50                       | EtOH               |
| 110 | 2-pyridyl                         | CH <sub>3</sub>                    | $4-\operatorname{BrC}_{6}H_{4}$                      | 213-214                                | $C_{14}H_{13}BrN_{4}S$                                                                                                                                                                                                                                                                                                                                                                             | Ă                          | 70                       | СН <sub>3</sub> ОН |
| 111 | 2-pyridyl                         | CH <sub>3</sub>                    | 1-adamantyl                                          | 192-193                                | $C_{18}H_{24}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                               | Â                          | 37                       | CH <sub>3</sub> CN |
| 112 | 2-pyridyl                         | CH <sub>3</sub>                    | 3-pyridyl                                            | 207-209                                | C. H. N.S                                                                                                                                                                                                                                                                                                                                                                                          | Ā                          | 48                       | EtOH               |
| 113 | 2-pyridyl                         | CH <sub>3</sub>                    | 4-pyridyl                                            | 209-211                                | $\mathbf{C}_{13}^{12}\mathbf{H}_{13}^{12}\mathbf{N}_{5}^{13}\mathbf{S}\\\mathbf{C}_{13}\mathbf{H}_{13}\mathbf{N}_{5}\mathbf{S}$                                                                                                                                                                                                                                                                    | Â                          | 66                       | CH <sub>3</sub> CN |
| 114 | 2-pyridyl                         | 2-pyridyl                          | 2-pyridyl                                            | 150-153                                | C <sub>17</sub> H <sub>14</sub> N <sub>6</sub> S                                                                                                                                                                                                                                                                                                                                                   | Α                          | 53                       | CHCI,              |
| 115 | 3-pyridyl                         | н                                  | C,H,                                                 | 182-183                                | $C_{13}H_{12}N_4S$                                                                                                                                                                                                                                                                                                                                                                                 | Λ                          | $64^e$                   | EtOH               |
| 116 | 3-pyridyl                         | Н                                  | 4-FC <sub>6</sub> H <sub>4</sub>                     | $191 - 192^{h}$                        | $C_{13}H_{11}FN_4S$                                                                                                                                                                                                                                                                                                                                                                                | Ā                          | 80                       | EtOH               |
| 117 | 3-pyridyl                         | Н                                  | 3,4-OCH <sub>2</sub> OC <sub>6</sub> H <sub>3</sub>  | 206-207                                | $C_{14}H_{12}N_4O_2S$                                                                                                                                                                                                                                                                                                                                                                              | A                          | 81                       | МеОН               |
| 118 | 4-pyridyl                         | CH <sub>3</sub>                    | $C_6H_5$                                             | 153-155                                | $C_{14} + 1_{12} + 4_{4} + 0_{2} = 0$                                                                                                                                                                                                                                                                                                                                                              | B                          | 27                       | EtOH               |
| 119 | 1-adamantyl                       | H                                  | 4-FC <sub>6</sub> H <sub>4</sub>                     | $207-208^{h}$                          | $C_{14}H_{14}H_{3}N_{4}S$<br>$C_{18}H_{22}FN_{3}S$                                                                                                                                                                                                                                                                                                                                                 | Ă                          | $\overline{85}^{f}$      | i                  |
| 120 | 1-adamantyl                       | H                                  | $2,6-Cl_2C_6H_3$                                     | 233-234                                | $C_{18}H_{21}Cl_2N_3S$                                                                                                                                                                                                                                                                                                                                                                             | Â                          | 35                       | EtOH               |
| 121 | 1-adamantyl                       | Ĥ                                  | 4-CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub>     | 215                                    | $C_{19}H_{25}N_{3}OS$                                                                                                                                                                                                                                                                                                                                                                              | Ā                          | 89                       | EtOH               |
| 122 | 1-adamantyl                       | Ĥ                                  | $3,4-(MeO)_2C_6H_3$                                  | 193-194                                | C H N O S                                                                                                                                                                                                                                                                                                                                                                                          | Â                          | 49                       | EtOH               |
| 123 | 1-adamantyl                       | Ĥ                                  | 2-pyridyl                                            | $196-198^{h}$                          | $C_{20}^{10}H_{27}^{23}N_{3}^{3}O_{2}S$<br>$C_{17}H_{22}N_{4}S$                                                                                                                                                                                                                                                                                                                                    | A                          | 79                       | EtOH               |
| 123 | 1-adamantyl                       | H                                  | 4-pyridyl                                            | 215-216                                | $C_{17}H_{22}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                               | Â                          | 72                       | EtOH               |
| 125 | 1-adamantyl                       | CH <sub>3</sub>                    | $C_6H_5$                                             | 195-198 <sup>h</sup>                   | $C_{19}H_{25}N_{3}S$                                                                                                                                                                                                                                                                                                                                                                               | Â                          | 61                       | i                  |
| 126 | 1-adamantyl                       | CH <sub>3</sub>                    | 4-FC <sub>6</sub> H <sub>4</sub>                     | 216                                    | $C_{19}H_{24}FN_{3}S$                                                                                                                                                                                                                                                                                                                                                                              | A                          | 65                       | ÉtOH               |
| 120 | 1-adamantyl                       | CH <sub>3</sub><br>CH <sub>3</sub> | $4 - ClC_6H_4$                                       | 210<br>$212-215^{h}$                   | $C_{19}H_{24}CIN_{3}S$<br>$C_{19}H_{24}CIN_{3}S$                                                                                                                                                                                                                                                                                                                                                   | A                          | 57                       | EtOH               |
| 121 | 1-adamantyl                       | CH <sub>3</sub>                    | $3.4-Cl_{2}C_{4}H_{3}$                               | 212-213                                | $C_{19}H_{23}CI_{2}N_{3}S$                                                                                                                                                                                                                                                                                                                                                                         | A                          | 19                       | EtOH               |
| 120 | 1-adamantyl                       | CH <sub>3</sub><br>CH <sub>3</sub> | $4-\operatorname{BrC}_6\operatorname{H}_4$           | 228-230                                | $C_{19}H_{23}C_{12}H_{3}S$<br>$C_{19}H_{24}BrN_{3}S$                                                                                                                                                                                                                                                                                                                                               | A                          | 19<br>54                 | МеОН               |
|     | -                                 | CH <sub>3</sub><br>CH <sub>3</sub> |                                                      |                                        | $C_{19}H_{24}BH_{3}S$<br>$C_{23}H_{35}N_{3}S$                                                                                                                                                                                                                                                                                                                                                      |                            |                          |                    |
| 130 | 1-adamantyl                       |                                    | 1-adamantyl                                          | $208.5 - 210.5^{h}$<br>$192 - 195^{h}$ |                                                                                                                                                                                                                                                                                                                                                                                                    | A                          | 52                       | EtOH               |
| 131 | 1-adamantyl                       | CH <sub>3</sub>                    | 3-pyridyl                                            |                                        | $C_{18}H_{24}N_4S$                                                                                                                                                                                                                                                                                                                                                                                 | A                          | 45                       | i<br>Biou          |
| 132 | 1-adamantyl                       | CH <sub>3</sub>                    | 4-pyridyl                                            | $215-216^{h}$                          | $C_{18}H_{24}N_{4}S$                                                                                                                                                                                                                                                                                                                                                                               | Α                          | 63                       | EtOH               |

| ier                                      |  |
|------------------------------------------|--|
| -MeOH<br>Et <sub>2</sub> O<br>ner<br>ner |  |
| -Et <sub>2</sub> O                       |  |
| -Et <sub>2</sub> O<br>-Et <sub>2</sub> O |  |
| Et <sub>2</sub> O                        |  |
|                                          |  |

2-Acetylpyridine Thiosemicarbazones

| I-adamantyl                                                               | 2-pyridyl                     | 2-pyridyl                                        | 244"                 | $C_{22}H_{25}N_{5}S$                                                             | Α      | 79                                      | EtOH                                             |  |
|---------------------------------------------------------------------------|-------------------------------|--------------------------------------------------|----------------------|----------------------------------------------------------------------------------|--------|-----------------------------------------|--------------------------------------------------|--|
| $(C_2H_5)_2N(CH_2)_3CH(CH_3)$                                             | H                             | $2,6-Cl_2C_6H_3$                                 | 83-84                | $C_{17}H_{26}Cl_2N_4S$                                                           | Α      | $26^e$                                  | pet. ether                                       |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3)$                                             | Н                             | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | 123 - 124            | $C_{18}H_{30}N_4OS$                                                              | В      | 38                                      | Et <sub>2</sub> O                                |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3)\cdot HBr$                                    | Н                             | 4-pyridyl                                        | 201-203              | $C_{16}H_{28}BrN_{5}S$                                                           | В      | 44                                      | CH <sub>3</sub> CN-MeOH                          |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3) \cdot HBr$                                   | Н                             | 5-O <sub>2</sub> N-2-furyl                       | 177–178 <sup>h</sup> | $C_{15}H_{26}BrN_5O_3S$                                                          | Α      | 69                                      | MeOH-Et <sub>2</sub> O                           |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3)$                                             | CH <sub>3</sub>               | $C_6H_5$                                         | 64-66                | $C_{18}H_{30}N_4S$                                                               | В      | 21                                      | pet. ether                                       |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3)$                                             | CH <sub>3</sub>               | 4-FC <sub>6</sub> H <sub>4</sub>                 | 74                   | $C_{18}H_{29}FN_{4}S$                                                            | В      | 82                                      | pet. ether                                       |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3)\cdot 2HBr$                                   | CH <sub>3</sub>               | 3-pyridyl                                        | $169 - 170^{h}$      | $\mathbf{C}_{17}\mathbf{H}_{31}\mathbf{B}\mathbf{r}_{2}\mathbf{N}_{5}\mathbf{S}$ | Α      | 50                                      | CH <sub>3</sub> CN                               |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3) \cdot 2HBr$                                  | CH <sub>3</sub>               | 4-pyridyl                                        | $173 - 176^{h}$      | $C_{17}H_{31}Br_2N_5S$                                                           | Α      | 40                                      | CH <sub>3</sub> CN-Et <sub>2</sub> O             |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3) \cdot HBr$                                   | CH <sub>3</sub>               | 1-adamantyl                                      | 212-213              | $C_{22}H_{41}BrN_{4}S$                                                           | Α      | 80                                      | EtOH                                             |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3)$ ·HBr                                        | 9-fl                          | luorenylidene                                    | 179-180 <sup>h</sup> | $C_{23}H_{31}BrN_{4}S$                                                           | Α      | 77                                      | Me <sub>2</sub> CO-Et <sub>2</sub> O             |  |
| $(C_2H_5)_2N(CH_2)_3CH(CH_3)\cdot HBr$                                    |                               | lamantylidene                                    | $171 - 172^{h}$      | $C_{20}H_{37}BrN_{4}S$                                                           | Α      | 32                                      | CH <sub>3</sub> CN-Et <sub>2</sub> O             |  |
| $(CH_3)$ , NCH $(CH_3)$ CH,                                               | Н                             | $2,6-Cl_2C_6H_3$                                 | 178-179              | $C_{13}H_{18}Cl_2N_4S$                                                           | Α      | $80^e$                                  | CH <sub>3</sub> CN                               |  |
| $(CH_3)_2 NCH(CH_3)CH_2 \cdot HBr$                                        | Н                             | 4-pyridyl                                        | 219-221 <sup>h</sup> | $C_{12}H_{20}BrN_5S$                                                             | Α      | 76                                      | MeOH-Et <sub>2</sub> O                           |  |
| (CH <sub>3</sub> ) <sub>2</sub> NCH(CH <sub>3</sub> )CH <sub>2</sub> ·HBr | Н                             | 5-O,N-2-furyl                                    | $212^{h}$            | $\mathbf{C}_{11}\mathbf{H}_{18}\mathbf{BrN}_{5}\mathbf{O}_{3}\mathbf{S}$         | Α      | 83                                      | MeOH                                             |  |
| $(C_2H_5)_2NCH_2CH_2 \cdot HBr$                                           | Н                             | C <sub>6</sub> H <sub>5</sub>                    | 158                  | $C_{14}H_{23}BrN_{4}S$                                                           | В      | $22^e$                                  | CH <sub>3</sub> CN                               |  |
| $(C_2H_5)_2NCH_2CH_2 \cdot HBr$                                           | Н                             | 4-FC <sub>6</sub> H₄                             | 194-195              | $C_{14}H_{22}BrFN_{4}S$                                                          | Α      | 98                                      | 2-PrOH-Et <sub>2</sub> O                         |  |
| $(C_2H_5)_2NCH_2CH_2$                                                     | Н                             | $2, 6-Cl_2C_6H_4$                                | 150-151              | $C_{14}H_{20}Cl_2N_4S$                                                           | Α      | 71                                      | CH <sub>3</sub> CN                               |  |
| $(C_2H_5)_2NCH_2CH_2 \cdot HBr$                                           | Н                             | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | 183–184 <sup>h</sup> | C <sub>15</sub> H <sub>25</sub> BrN <sub>4</sub> OS                              | Α      | 42                                      | CH <sub>3</sub> CN-C <sub>6</sub> H <sub>6</sub> |  |
| (CIL) NCH CH, HP.                                                         |                               |                                                  | 010 010h             | C U D-N O S                                                                      | ٨      | 46                                      | EtOH                                             |  |
| $(C_2H_5)_2NCH_2CH_2 \cdot HBr$                                           | H                             | $3,4-OCH_2OC_6H_3$                               | $218-219^{h}$        | $C_{15}H_{23}BrN_4O_2S$                                                          | A      | $\begin{array}{c} 46 \\ 56 \end{array}$ | CH <sub>3</sub> CN                               |  |
| $(C_2H_5)_2NCH_2CH_2$                                                     | H                             | 4-pyridyl                                        | 125-126              | $C_{13}H_{21}N_{5}S$                                                             | A<br>A |                                         | $CH_3CN$ - $Et_2O$                               |  |
| $(C_2H_5)_2NCH_2CH_2$                                                     | H                             | 6-CH <sub>3</sub> O-4-quinolyl                   | 129-130              | $C_{18}H_{25}N_5OS$                                                              |        | 80<br>26                                | 2-PrOH-MeOH                                      |  |
| $(C_2H_5)_2NCH_2CH_2 \cdot 2HBr$                                          | CH <sub>3</sub>               | 3-pyridyl                                        | $215-216^{h}$        | $C_{14}H_{25}Br_2N_5S$                                                           | A<br>A | 26<br>78                                | 2-PrOH-Et <sub>2</sub> O                         |  |
| $(C_2H_5)_2NCH_2CH_2 \cdot 2HBr$                                          | CH <sub>3</sub>               | 4-pyridyl                                        | $191 - 192^{h}$      | $C_{14}H_{25}Br_2N_5S$                                                           |        |                                         |                                                  |  |
| $(C_2H_5)_2NCH_2CH_2 \cdot HBr$                                           | C <sub>6</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>5</sub>                    | 173-174              | $C_{20}H_{27}BrN_{4}S$                                                           | B      | 53                                      | $MeOH-Et_2O$                                     |  |
| $(C_2H_5)_2NCH_2CH_2 \cdot HBr$                                           |                               | luorenylidene                                    | 145-146              | $C_{20}H_{25}BrN_4S$                                                             | A      | 68<br>97                                | Me <sub>2</sub> CO-Et <sub>2</sub> O             |  |
| bis(2-pyridyl)                                                            |                               | idinediethylidene                                | 224                  | $C_{21}H_{21}N_9S_2$                                                             | A      | 3724                                    | CH <sub>3</sub> CN                               |  |
| bis(1-adamantyl)                                                          |                               | idinediethylidene                                | 255-260 <sup>h</sup> | $C_{31}H_{43}N_7S_2$                                                             | A<br>C |                                         | CHCl <sub>3</sub>                                |  |
| C <sub>6</sub> H <sub>5</sub>                                             | CH <sub>3</sub>               | 2-pyridyl                                        | 171 - 173            | $C_{14}H_{14}N_4O$                                                               | U      | 55 <sup>g</sup>                         | EtOH                                             |  |

OHNG

70

.

F+OH

011h

<sup>a</sup> See Experimental Section for details. <sup>b</sup> Yields have not been optimized. <sup>c</sup> Lit. mp 196-199 °C, ref 24. Submitted for testing by Dr. Frederic A. French. <sup>d</sup> Thiosemicarbazide, ref 14. <sup>e</sup> Thiosemicarbazide, see Table IV. <sup>f</sup> Thiosemicarbazide, ref 20. <sup>g</sup> Details of the preparation of this semicarbazone are given under the Experimental Section. <sup>h</sup> Decomposition. <sup>i</sup> Washed with EtOH.

Table IV. 4-Substituted 3-Thiosemicarbazides

9 minidad

133

134

135

136137

138

139

140

141 142

143

144 145

146

147

148

149 150

151

152

153

154

155

156 157

158 159

160

161

1-adamantyl

9 munided

|     |                           | H <sub>2</sub> NNHCN                                             | нк              |             |                                                                        |                               |
|-----|---------------------------|------------------------------------------------------------------|-----------------|-------------|------------------------------------------------------------------------|-------------------------------|
| no. | used in synth<br>of compd | R                                                                | mp, °C          | yield,<br>% | formula                                                                | recryst<br>solvent            |
| 163 | 3                         | 3-FC <sub>6</sub> H <sub>4</sub>                                 | 164-166         | 91          | C <sub>7</sub> H <sub>8</sub> FN <sub>3</sub> S                        | CH <sub>3</sub> CN            |
| 164 | 15                        | 3,4-Cl,C,H,                                                      | 174 - 176       | 91          | C <sub>7</sub> H <sub>7</sub> Cl <sub>7</sub> N <sub>3</sub> S         | CH <sub>3</sub> CN            |
| 165 | 17                        | 2,3,4-Čl <sub>3</sub> C <sub>6</sub> H,                          | $164 - 168^{c}$ | 83          | C <sub>7</sub> H <sub>6</sub> Cl <sub>3</sub> N <sub>3</sub> S         | CH <sub>3</sub> CN            |
| 166 | 34, 82                    | 4-C <sub>2</sub> H <sub>5</sub> OCOC <sub>6</sub> H <sub>4</sub> | 137             | $85^a$      | $\mathbf{C}_{10}\mathbf{H}_{13}\mathbf{N}_{3}\mathbf{O}_{2}\mathbf{S}$ | MeŌH                          |
| 167 | 53                        | 4-FC <sub>6</sub> H <sub>4</sub> CHCH <sub>3</sub>               | 108-109         | 53          | C <sub>0</sub> H <sub>1</sub> ,FN <sub>3</sub> S                       | CH <sub>3</sub> CN            |
| 168 | 59, 115-117               | 3-pyridyl                                                        | $162 - 163^{c}$ | 94          | C, H, N, S                                                             | MeOH                          |
| 169 | 70, 85                    | C,H,OCOCH,                                                       | $168 - 169^{c}$ | 88          | C <sub>5</sub> H <sub>1</sub> N <sub>3</sub> O <sub>5</sub> S          | CH <sub>3</sub> CN            |
| 170 | 71                        | 1,1,3,3-Me₄Bu                                                    | 98              | $92^{b}$    | $C_9H_{21}N_3S$                                                        | $C_6 \tilde{H}_{12}$          |
| 171 | 72, 134 - 144             | $(\dot{C}, \dot{H}_{s}), N(\dot{C}H_{s}), CH(CH_{s}) \cdot HBr$  | 137 - 139       | 94          | $\mathbf{C}_{10}\mathbf{H}_{25}\mathbf{BrN}_{4}\mathbf{S}$             | CH₃ĈN                         |
| 172 | 73, 145-147               | (CH <sub>3</sub> ),NCH(CH <sub>3</sub> )CH,                      | 104-105         | 76          | C <sub>6</sub> H <sub>16</sub> N <sub>4</sub> S                        | C <sub>6</sub> H <sub>6</sub> |
| 173 | 74, 148-158               | $(C_2H_5)_2NCH_2CH_2$                                            | 83-83.5         | 63          | C <sub>7</sub> H <sub>18</sub> N <sub>4</sub> S                        | C <sub>6</sub> H <sub>6</sub> |

<sup>a</sup> Anal. Calcd: S, 13.40. Found: 12.93. <sup>b</sup> Anal. Calcd: C, 53.16. Found: 53.63. <sup>c</sup> Decomposition.

Plasmodium berghei. All the untreated infected animals, which serve as controls, die after 6-8 days and with a mean survival time of 6.2 days. Every compound is tested at several dose levels. At each level, the candidate drug is given subcutaneously in a single dose as a peanut oil suspension to five mice 72 h after they are infected. The compounds are judged to be "toxic" if the infected mice die before the 6th day, i.e., before the time when the untreated mice begin to die; "active" if the mean survival time of the mice is at least doubled; and "curative" if the mice survive 60 days postinfection. Details of the test procedure were given by Osdene, Russell, and Rane.<sup>31</sup>

Acknowledgment. We thank David H. Jun, Robert L. Runkle, and Dr. Thomas S. Woods for synthesizing several of the compounds reported here and Dr. Thomas R. Sweeney and Col. Craig J. Canfield for interest and encouragement throughout this investigation. We are also grateful to Col. David E. Davidson for useful discussions regarding the biological data.

Supplementary Material Available: Table V, infrared spectral correlation of 2-acetylpyridine 4-monosubstituted 3thiosemicarbazones in KBr pellets, and Table VI, NMR spectral correlation of 2-acetylpyridine 4-monosubstituted 3-thiosemicarbazones and related compounds in CDCl<sub>3</sub> solution (2 pages). Ordering information is given on any current masthead page.

#### **R**eferences and Notes

- (1) This is contribution no. 1529 to the Army Research Program on Malaria.
- (2) G. Domagk, R. Behnisch, F. Mietzsch, and H. Schmidt. Naturwissenschaften, 33, 315 (1946); D. J. Drain, C. L. Goodacre, and D. E. Seymour, J. Pharm. Pharmacol., 1, 784 (1949); R. Protivinsky, Antibiot. Chemother. (Basel), 17, 101 (1971); W. H. Wagner and E. Winkelmann, Arzneim.-Forsch., 22, 1713 (1972).
- (3) A. Lewis and R. G. Shepherd in "Medicinal Chemistry", A. Burger, Ed., Wiley, New York, 1970, p 431.
- (4) P. Malatesta, G. P. Accinelli, and G. Quaglia, Ann. Chim. (Rome), 49, 397 (1959); Chem. Abstr., 53, 19942 (1959); J. Kolančy, N. Štimac, B. Sajko, B. Balenović, and B. Urbas. Arh. Kem., 26, 71 (1954).
- (5) J. C. Logan, M. P. Fox, J. H. Morgan, A. M. Makohon, and C. J. Pfau, J. Gen. Virol., 28, 271 (1975); R. L. Thompson, S. A. Minton, Jr., J. E. Officer, and G. H. Hitchings, J. Immunol., 70, 229 (1953); D. H. Jones, R. Slack, S. Squires, and K. R. H. Wooldridge, J. Med. Chem., 8, 676 (1965); E. Winkelmann and H. Rolly, Arzneim.-Forsch., 22, 1704 (1972).
- (6) A. Kaminski, Prensa Med. Argent., 40, 1263 (1953).
- (7) L. Heilmeyer, Klin. Wochenschr., 28, 254 (1950); French Patent 5536 (1967); Chem. Abstr., 71, 42301v (1969).
- (8) H. R. Wilson, G. R. Revankar, and R. L. Tolman, J. Med. Chem., 17, 760 (1974).
- (9) E. Winkelmann, W.-H. Wagner, and H. Wirth, Arzneim.-Forsch., 27, 950 (1977).

- (10) R. W. Brockman, J. R. Thomson, M. J. Bell, and H. E. Skipper, Cancer Res., 16, 167 (1956); A. Giner-Sorolla, M. McCravey, J. Longley-Cook, and J. H. Burchenal, J. Med. Chem., 16, 984 (1973); K. C. Agrawal, A. J. Lin, B. A. Booth, J. R. Wheaton, and A. C. Sartorelli, J. Med. Chem., 17, 631 (1974); K. C. Agrawal, B. A. Booth, S. M. DeNuzzo, and A. C. Sartorelli, J. Med. Chem., 18, 368 (1975); W. J. Dunn and E. M. Hodnett, Eur. J. Med. Chem., Chim. Ther., 12, 113 (1977); L.-F. Lin, S.-J. Lee, and C. T. Chen, Heterocycles, 7, 347 (1977).
- (11) The currently acceptable Chemical Abstracts name for this compound is N-phenyl-2-[1-(2-pyridinyl)ethylidene]hydrazinecarbothioamide.
- (12) In a paper published without experimental details in Nature (London), 206, 1340 (1965), P. A. Barrett et al. said that gly oxal dithiosemicarbazone and, to a lesser extent, other  $\alpha\text{-dithiosemicarbazones}$  showed activity against Plasmodiumgallinaceum in the chick. The former compound was inactive in our screen.
- (13) M. T. Martinez Aguilar, J. M. Cano Pavon, and F. Pino, Anal. Chim. Acta, 90, 335 (1977).
- (14) J. Klarer and R. Behnisch, German Patent 832891 (1952); Chem. Abstr., 47, 3342 (1953).
- (15) M. Tišler, Croat. Chem. Acta, 27, 147 (1956); Chem. Abstr., 51. 12016h (1957)
- (16) P. C. Guha and H. P. Ray, J. Am. Chem. Soc., 47, 385 (1925).
- (17) E. Lieber and J. Ramachandran, Can. J. Chem., 37, 101 (1959)
- (18) E. Hoggarth. J. Chem. Soc., 1579 (1950).
- (19) K. A. Jensen, U. Anthoni, B. Kägi, C. Larsen, and C. T. Pedersen, Acta Chem. Scand., 22, 1 (1968). (20) S. Sallay and S. J. Childress, U.S. Patent 3 406 180 (1968);
- Chem. Abstr., 70, 11223w (1969).
- (21) E. Lieber and R. Slutkin, J. Org. Chem., 27, 2214 (1962).
- (22) E. Lieber, C. N. Pillai, and R. D. Hite, Can. J. Chem., 35, 832 (1957).
- (23) F. E. Anderson, C. J. Duca, and J. V. Scudi, J. Am. Chem. Sec., 73, 4967 (1951).
- (24) P. Hemmerich, B. Prijs, and H. Erlenmeyer, Helv. Chim. Acta, 41, 2058 (1958).
- (25) Based on the method of L. F. Audrieth, E. S. Scott, and P. S. Kippur, J. Org. Chem., 19, 733 (1954).
- (26) An equimolar quantity of dimethyl sulfate could be substituted satisfactory for iodomethane. These alkylating agents should be handled with care as both have been implicated as carcinogens.
- (27) J. Korosi, Ger. Offen. 1934809 (1970); Chem. Abstr., 72, 160334s (1970).
- (28) MeOH appeared to be the superior medium for aliphatic amines and EtOH for aromatic amines.
- (29) See the paragraph at the end of this paper regarding supplementary material.
- (30) T. S. Gardner, F. A. Smith, E. Wenis, and J. Lee, J. Org. Chem., 21, 530 (1956).
- (31) T. S. Osdene, P. B. Russell, and L. Rane, J. Med. Chem., 10.431 (1967).

## **Analogues of Methotrexate**

John A. Montgomery,\* James R. Piper, Robert D. Elliott, Carroll Temple, Jr., Eugene C. Roberts,<sup>1</sup> and Y. F. Shealy

Kettering-Meyer Laboratory, Southern Research Institute, Birmingham, Alabama 35205. Received January 15, 1979

Analogues of methotrexate (MTX) were prepared by alkylation of side-chain precursors with 6-(bromomethyl)-2,4-pteridinediamine followed, where necessary, by saponification of the intermediate esters and, in two cases, by electrophilic substitution reactions in the pyridine ring portion of 3-deazamethotrexate. Effects of the various modifications on their ability to inhibit dihydrofolate reductase, cytotoxicity, and activity against L1210 leukemia in mice were examined in light of recent findings concerning active transport of MTX and related compounds and the binding features of the MTX-dihydrofolate reductase complex.

Methotrexate (MTX, 1) is perhaps the most useful antimetabolite presently employed in the treatment of cancer.<sup>2</sup> but attempts to improve the clinical activity of this agent by congener synthesis have not been successful.