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generated it will have a longer lifetime under relatively 
acidic conditions, due to less frequent interception by 
hydroxide ion. Whether alone or in concert, these cir­
cumstances with regard to 5 and 7 provide for greater 
probability of encountering and alkylating DNA and, in 
effect, represent a form of selective cross-linking. 

There are significant unanswered questions which must 
be addressed in connection with the biologically pertinent 
chemistry of 5, and our continued work in this area will 
employ, among other methods , mult inuclear N M R 
techniques. 
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( + )-Isobutaclamol: A Crystal lographic, 
Pharmacological , and Biochemical Study 

Sir: 

We have recently described1 the synthesis and some 
pharmacological properties of (±)-isobutaclamol (I), a 

(H3C),C 

I (isobutaclamol) 

HO 

II (butaclamol) 

compound having a neuroleptic profile virtually identical 
with tha t of (±)-butaclamol (II). 

The activity of (±)-butaclamol, both in vivo and in vitro, 
has been shown to reside exclusively in the (+)-3S,4aS,-
13bS enantiomer.2"4 Based on a proposed model of the 
central dopamine receptor,1 '5 we had predicted that 
(±)-isobutaclamol's neuroleptic activity resides solely in 
its 3S,4aS,13aS enantiomer. 

With respect to the stereochemistry of isobutaclamol at 
positions 3,4a, and 13a, no chemical evidence was available 
to aid in the assignment of relative configurations. 
However, assuming a requirement for identical molecular 
topographies in the rings B, C, D, and E regions of both 
butaclamol and isobutaclamol, the latter was assigned1 the 
4a,13a-trans and 3(OH),13a(H)-trans relative configura­
tions, shown in I, analogous to those found in butaclamol 
by crystallographic analysis.6 

The purpose of the present investigation was to assess 
the validity of these predictions by resolving (±)-iso-
butaclamol, examining some aspects of the neuroleptic 
profile of the enantiomers, and determining relative and 
absolute configurations by a crystallographic analysis. 
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Table I. Chemical, Pharmacological, and Biochemical Characteristics of Isobutaclamols 

compound mp, °C 
[a]25D>a 

deg abs confign 

antag of 
amphetamine 
stereotypy, 

mg/kgip: 
MEDb 

inhibn of 
3H]haloperidol 
binding:c,d 

IC,„, nM 

(±)-I-HCl 
(+)-l-HBrf 

(-)-!• HBtf 

279-280 (dec)e 

276-278 (dec) 
276-278 (dec) 

+ 222.8 
-221.6 

3S,4aS,13aS 
3R,4&R,13aR 

0.62 
0.31 

>25 

1.7 
0.8 
0% inhibn 

at 1000 nM 

° In a 2% solution in methanol. b Minimal effective dose. For details, see ref 1, 5, and 8. c For details of method, see 
ref 9. d Similar results are obtained using homogenized calf striatum and [3H]spiperone as radioligand. See ref 11. e See 
ref 1. f C2sH32BrNO. Analytical values for C, H, and N were within ± 0.4% of calculated values. 

Figure 1. A stereoscopic view of (+)-isobutaclamol in the determined absolute configuration, with 50% probability thermal ellipsoids. 

(±)-Isobutaclamol was resolved using (+)- and (-)-
tartaric acids, as described previously2 for the resolution 
of (±)-butaclamol. The (+)- and (-)-tartrate salts, obtained 
in 30.7 and 35.6% yields, respectively, were each crys­
tallized twice from methanol-ether mixtures and then 
converted to the free bases with concentrated ammonium 
hydroxide in the presence of benzene. The bases were 
treated with methanolic hydrogen bromide, and the salts 
were crystallized twice from methanol-ether mixtures to 
afford the pure (+)- and (-)-isobutaclamol hydrobromides, 
whose physical constants are collected in Table I. 

(+)-Isobutaclamol hydrobromide, in the form of colorless 
transparent prismatic crystals, was chosen for the X-ray 
analysis. The details of the structure determination are 
in press.7 A perspective view of the molecule in the de­
termined absolute configuration is presented in Figure 1. 

The isobutaclamol enantiomers were evaluated intra-
peritoneally for their ability to abolish (+)-amphet-
amine-induced stereotyped behavior in rats. Details of the 
protocol used have been described recently.1,5,8 The results, 
expressed as the minimal effective dose which antagonized 
amphetamine-induced stereotypy, are described in Table 
I. 

The isobutaclamol enantiomers and racemate were also 
investigated for their ability to inhibit the specific binding 
of [3H]haloperidol to homogenates of rat striatum. Details 
of the method used have been described recently.9 The 
results, expressed as the nanomolar concentration required 
to inhibit specific binding by 50% (IC50), are also shown 
in Table I. 

The results summarized in Table I show that all of the 
neuroleptic activity in vivo and in vitro of (±)-iso-
butaclamol resides in the (+) enantiomer. Figure 1 reveals 
that this enantiomer possesses the expected 3S,4aS, and 
13aS absolute configurations, as well as the assigned 
4a,13a-trans and 3(OH),13a(H)-trans relative configura­
tions.1 Ring B is seen to exist in its conformation B (C8 
and C13a hydrogens eclipsed), the conformation which we 
have proposed is adopted by (+)-butaclamol on interacting 
with the central dopamine receptor.2 In contrast, both the 
(±)-butaclamol and (+)-dexclamol salts exist in the crystal 

in their conformations A6 (II; C9 and C13b hydrogens ec­
lipsed), and it was necessary to propose that they converted 
to their conformations B on interaction with the dopamine 
receptor.2,6 

In contrast to (±)-butaclamol and (+)-dexclamol hy­
drobromides which exist in the crystal with transoid D,E 
ring fusions,6 (+)-isobutaclamol hydrobromide has a cisoid 
D,E fusion with the NH bond cis to the C4a hydrogen atom. 

We have suggested that at the receptor site(s) the bi­
ologically active butaclamol and isobutaclamol enantiomers 
exist predominantly in the deprotonated form.1 In this 
form the rings D,E cisoid and transoid species are readily 
interconvertible through nitrogen inversions. The receptor 
model we have proposed1,5 will accommodate only the 
transoid forms of butaclamol and isobutaclamol. The 
model also accommodates the rigid and semirigid dop­
amine receptor ligands (-)-apomorphine and (+)-octo-
clothepin, respectively, which have topographical features 
in common only with the transoid forms of butaclamol and 
isobutaclamol.10 Consequently, we suggest that it is the 
rings D,E transoid form of (+)-isobutaclamol which in­
teracts with the dopamine receptor(s). 
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A series of N-alkylated a-methyldopamine derivatives has been prepared for comparison of their biological effects 
with those of semirigid dopamine congeners derived from 2-aminotetralin systems. All of the a-methyldopamine 
derivatives were inert as dopaminergic agonists in a variety of animal assays, both centrally and peripherally, although 
certain compounds produced powerful and prolonged locomotor hyperactivity on intra-accumbens injection in mice, 
by indirect mechanism(s). A rationalization, based upon conformational analysis, is presented for the lack of direct 
dopaminergic agonist activity of a-methyldopamine derivatives. 

The pronounced dopaminergic 
reported1'2 for (±)-5,6-dihydroxy-

agonist activity 
(la) and 6,7-di-

la, R = R' = OH;R" = H 
lb, R=H;R ' = R" = 2-OH 

OH 

2, R, R' = combinations of H, CH3, C2H5, 
rc-C3H„ 2-C3H„ n-C4H9 

hydroxy-2-aminotetralins (lb) and their N-substituted 
derivatives prompted an investigation of central and 
peripheral effects in a variety of animal experimental 
models of an extended series of N-substituted congeners 
of (±)-a-methyldopamine 2 which, like the aminotetralins, 
bear the amino group on a secondary carbon, rather than 
on a primary carbon as in dopamine. 

Accounts of biological testing of a-methyldopamine, a 
few N-alkylated derivatives, and some ether derivatives 
have indicated that some of these compounds exhibit 
"epinephrine-like" activity,3 sympathomimetic effects,4 

^-adrenergic activity,5 possible stimulation of release-in­
hibiting a-adrenoceptors in renal hypertensive rats,6 weak 

positive inotropic effects,7 and CNS stimulant effects (via 
an indirect mechanism).8 However, the literature revealed 
only a few reports of investigation of dopamine-like effects 
of a-methyldopamine systems.9-11 Noteworthy among 
these is the reported inability of both enantiomers of 
a-methyldopamine to produce vasodilatation of the renal 
artery11 and the report9 of a lack of consistent activity 
spectrum in (±)-a-methyldopamine and its iV-methyl- and 
N,iV-dimethyl homologues in oxotremorine antagonism, 
reserpine antagonism, and hypothermia assays. 

Preparation of the compounds based on 2 involved 
reductive amination of 3,4-dimethoxyphenylacetone and, 
when appropriate, subsequent N-alkylation of the amine 
product. The Experimental Section describes repre­
sentative types of alkylation procedures employed for the 
target compounds which are listed in Table I. Spectral 
(IR and NMR) data on all intermediates and final com­
pounds were consistent with the proposed structures. 

Pharmacology. Results. None of the compounds 
inhibited the positive inotropic or chronotropic response 
induced by field stimulation of cat atria. Compounds 8, 
15, 9, 12, 2c, and 2e (Table I) increased heart rate and 
inotropic responses following field stimulation. The 
minimal effective dose for these compounds was 20 fig/L. 
Compounds 2f, 2i, and 2j increased resting heart rate in 
doses of 50 fig/L. With these agents there was no increase 
in the inotropic responses. The very weak inotropic re­
sponse reported by Tuttle and Mills7 for iV-isopropyl-
a-methyldopamine (2a) was not observed here. The in­
fluence of the compounds on heart rate and blood pressure 
was evaluated in ten dogs anesthetized with sodium 
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