Fluorometric Assay of Angiotensin Converting Enzyme. Materials. Porcine plasma converting enzyme was purchased from Miles Laboratories, IL. Hippurylhistidylleucine, histidylleucine, and 0 -phthaldehyde was obtained from Sigma Chemical Co., St, Louis, MO. Angiotensin I was supplied by Bachem Fine Chemicals, Marina Del Rey, CA. All chemicals used were reagent grade.
Enzyme Assay. ${ }^{25}$ The enzyme activity was measured by the fluorometric determination of histidylleucine, a product of the enzyme reaction. The substrate used was either hippurylhistidylleucine or angiotensin I. The concentration ranges were 2.6×10^{-4} to $2.04 \times 10^{-3} \mathrm{M}$ and 1.1×10^{-4} to $1.4 \times 10^{-3} \mathrm{M}$ for hippurylhistidylleucine and angiotensin I, respectively. The assay was carried out by mixing $10 \mu \mathrm{~L}$ of phosphate buffer $(0.1 \mathrm{M}, \mathrm{pH}$ 7.6 , containing 0.3 M NaCl) containing the testing inhibitor with substrate dissolved in $10 \mu \mathrm{~L}$ of phosphate buffer. Then, 1 mg of porcine plasma converting enzyme in $50 \mu \mathrm{~L}$ of buffer was added. The mixture was incubated at $37^{\circ} \mathrm{C}$ for 90 min with constant shaking, and the reaction was stopped by adding $50 \mu \mathrm{~L}$ of 10% TCA. The samples were then diluted with 0.7 mL of water, followed by 0.4 mL of 2 N NaOH . To the alkalized mixture, 0.1 mL of 1% (w/v) o-phthaldehyde in methanol was added. After exactly $4 \mathrm{~min}, 0.2 \mathrm{~mL}$ of 6 N HCl was added. The contents of all tubes were thoroughly mixed after each addition. The samples were then centrifuged at 10000 g for 10 min and the fluorescence of the supernatant was measured with exitation at 365 nm and emission at 495 nm on an Aminco Bowman fluorometer. The fluorescent product of histidylleucine with 0 -phthaldehyde is not stable in alkaline solution but is stabilized upon acidification. The fluorescence of the acidified solution is stable up to 1 h , so all readings should be made within $1 \mathrm{~h} .{ }^{26}$ Each sample was run in duplicate and an average of the two readings obtained was calculated.
A standard curve of histidylleucine was always prepared with each assay by mixing various amounts of histidylleucine with 1 mg of enzyme in $70 \mu \mathrm{~L}$ of phosphate buffer. The tubes containing the standards were treated exactly as those containing the samples.
A reagent blank containing all reagents but no substrate was also run for each assay.

Test for the Effect of Inhibitors. For testing the effect of inhibitors on angiotensin converting enzyme, two assays were run in parallel. One contained the substrate ($1-2 \mathrm{mM}$), enzyme (1 mg), and various concentrations ($1 \mathrm{nM}-10 \mathrm{mM}$) of an inhibitor; the other contained only the substrate and enzyme. The assay conditions were the same as described above. The product formed with an inhibitor relative to that without an inhibitor was cal-
(25) B. S. Tsai and M. J. Peach, J. Med. Chem., 18, 1180 (1975).
(26) Y. Piquilloud, A. Reinharz, and M. Roth, Biochim. Biophys. Acta, 206, 136 (1970).
culated to give the percent of inhibition. By plotting the percent of inhibition vs. various concentrations of an inhibitor, the I_{50} was obtained.

For determination of the K_{i} of an inhibitor, the enzyme assay was carried out as described above using various concentrations of substrate with and without an inhibitor. When hippurylhistidylleucine was used as substrate, the concentrations were 2 $\times 10^{-4}$ to $2.1 \times 10^{-3} \mathrm{M}$. When angiotensin I was used as substrate, the concentrations were 1.1×10^{-4} to $1.4 \times 10^{-3} \mathrm{M}$. The K_{i} determinations for 1 and 20 were performed using Hip-His-Leu as substrate at two different inhibitor concentrations (0.52 and $0.39 \mu \mathrm{M}$ for 1 and 0.14 and $0.08 \mu \mathrm{M}$ for 20). By using the Mi-chaelis-Menten equation ${ }^{27}$ and double-reciprocal plot, ${ }^{28}$ the amount of product formed at each substrate concentration with and without the inhibitor can be graphed and the K_{m} and K_{i} can be calculated.

Guinea Pig Ileum Assay. Male guinea pigs weighing 200 g were sacrificed. The ileum was isolated from each animal and a $10-\mathrm{cm}$ segment nearest to the caecum junction was discarded. A $2-3 \mathrm{~cm}$ segment was suspended in a tissue bath filled with a modified Krebs solution at $37^{\circ} \mathrm{C}$ and bubbled with $95 \% \mathrm{O}_{2}-5 \%$ CO_{2}. The contractions were monitored with a transducer (Grass FT 0.03) in the presence of a 1-g load. A polygraph (Grass Model 7D) was used to record the contractions.

After equilibration, uniform contractions were observed at $10-\mathrm{min}$ intervals after adding angiotensin $\mathrm{I}(25 \mathrm{ng} / \mathrm{mL})$. In order to test the inhibitory activity $\left(\mathrm{IC}_{50}\right)$ of a drug, the method described by Rubin ${ }^{12.29}$ was used. Each drug was kept in the bath 2 min before adding angiotensin I. After each drug test, the ileum was washed three times with Krebs solution, allowed to rest 8 min , and then tested again.

The Krebs solution had the following composition, $\mathrm{mM}: \mathrm{NaCl}$, $118 ; \mathrm{KCl}, 4.75 ; \mathrm{NaHCO}_{3}, 25 ; \mathrm{KH}_{2} \mathrm{PO}_{4}, 1.19 ; \mathrm{MgSO}_{4}, 1.20 ; \mathrm{CaCl}_{2}$, 2.54; glucose, 11.

Acknowledgment. We thank the Heart, Lung, and Blood division of the National Institutes of Health who (Grant HL 19538) provided the funds for this work. Our appreciation is also extended to Lewis Cary and Dr. David Thomas for NMR and mass spectral results, respectively. We thank Dr. Joseph DeGraw for helpful discussions on various aspects of this work.
(27) L. Michaelis and M. L. Menten, Biochem. Z., 49, 333 (1913).
(28) I. H. Segel, in "Biochemical Calculations", 2nd ed, Wiley, New York, 1976, p 250.
(29) B. Rubin, E. H. O'Keefe, D. G. Kotler, D. A. DeMaio, and D. W. Cushman, Fed. Proc., Fed. Am. Soc. Exp. Biol., 34, 770 (1975).

Antihypertensive 5,6-Diarylpyridazin-3-ones ${ }^{1}$

Russell Buchman, James A. Scozzie, Zaven S. Ariyan, Richard D. Heilman, Donna J. Rippin, W. J. Pyne, Larry J. Powers,*

Diamond Shamrock Corporation, T. R. Evans Research Center, Painesuille, Ohio 44077
and Richard J. Matthews
Pharmakon Laboratories, Scranton, Pennsylvania 18510. Received December 17, 1979
The synthesis of a series of 5,6 -diarylpyridazinones is described. Some members of this series display an antihypertensive effect in both the spontaneously hypertensive rat (SHR) model and the deoxycorticosteroid (DOCA) model of hypertension. The most potent compounds in the series have halogen substituents on the 5,6 -diphenyl rings, a β-substituted alkyl group at the 2 position of the ring, and an acetyl or cyano substituent at the 4 position.

There have been previous reports of antihypertensive agents which contain a pyridazinone ring system. These
compounds can be classified into three groups. One series, hydrazino-substituted pyridazines, is probably related to

Table I. Pyridazinones

no.	R_{4}	X	 $\mathrm{mp},{ }^{\circ} \mathrm{C}$	- ${ }_{\text {colvent }}$	$\begin{gathered} \% \\ \text { yield } \end{gathered}$	method	formula
1	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	290-292 ${ }^{\text {a }}$	MeCN	30	A	$\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
2	CN	$4-\mathrm{CH}_{3}$	287-289	MeCN	40	A	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$
3	CN	$3,4-\mathrm{Cl}_{2}$	236-237	$\mathrm{C}_{6} \mathrm{H}_{6}$	37	A	$\mathrm{C}_{1} \mathrm{H}_{7} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}$
4	CN	$4-\mathrm{Br}$	262-264	MeCN	49	A	$\mathrm{C}_{1} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}$
5	$\mathrm{C}_{6} \mathrm{H}_{5}$	4 - CH_{3}	282-284	MeCN	48	A	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
6	$2-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	H	264-267	MeCN-MeOH	28	A	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
7	$\mathrm{CH}_{3} \mathrm{CO}$	$4-\mathrm{Cl}$	269-271	MeCN	20	A	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
8	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	256-258	$\mathrm{MeCN}-\mathrm{MeOH}$	35	B	$\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$
9	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	268-270	MeOH	25	A	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}$
10	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	228-230	MeCN	43	A	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}$
11	$4-\mathrm{BrC} \mathrm{C}_{4}$	H	278-280	MeCN	36	A	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}$
12	2,5-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	H	240-242	$\mathrm{MeOH}-\mathrm{EtOAc}$	35	A	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$
13	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	H	265-267	MeOH	31	A	$\mathrm{C}_{23} \mathrm{H}_{1}{ }_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
14	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2}$	H	254-256	EtOH	34	A	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
15	$3,4,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3}-\mathrm{C}_{6} \mathrm{H}_{2}$	$4-\mathrm{Cl}$	248-251	MeCN	21	B	$\mathrm{C}_{25}^{25} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$
16	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCO}$	$4-\mathrm{Cl}$	241-242	EtOH	17	C	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}^{4}$
17	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}$	$4-\mathrm{Cl}$	209-211	MeCN	14	C	$\mathrm{C}_{20} \mathrm{H}_{16}{ }^{\circ} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
18	$\mathrm{CH}_{3} \mathrm{CO}$	$4-\mathrm{CH}_{3} \mathrm{O}$	239-242	MeCN	13	D	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$
19	$\mathrm{CH}_{3} \mathrm{CO}$	${ }_{4}^{4-\mathrm{F}}$	278-281 ${ }^{\text {b }}$	MeCN	34	D	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
20	$\mathrm{CH}_{3} \mathrm{CO}$	H	232-234 ${ }^{\text {b }}$			A	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
21	CN	2 Cl	263-264			A	$\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$
22	CN	${ }^{4-\mathrm{Cl}}$	271-272	EtOH	50	A	$\mathrm{C}_{1}{ }^{1} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$
23	$\mathrm{CH}_{3} \mathrm{CNNH}_{2}$ COOH	${ }_{4}^{\mathrm{H}} \mathrm{Cl}$	264-266 ${ }^{\text {278-279 }}$	MeOH	30	c	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$
24	COOH	$4-\mathrm{Cl}$	278-279 ${ }^{\text {d }}$		50	c	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$

${ }^{a}$ Lit. ${ }^{8} \mathrm{mp} 272-273^{\circ} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) .{ }^{b}$ Lit. $.^{8} \mathrm{mp} 232-233^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{c}$ See Experimental Section. ${ }^{d}$ Lit. ${ }^{8} \mathrm{mp} 274{ }^{\circ} \mathrm{C}$ dec (EtOH).
hydralazine in activity. ${ }^{2 a-c}$ A second group of antihypertensive pyridazinones, which have a 3 -amino- 2 hydroxypropyloxy substituent, ${ }^{3}$ probably act as β-blocking agents. Finally, there have been reports of 4,5 -dihydropyridazinones that have antihypertensive activity, although they have no classical hypotensive pharmacophore. ${ }^{4 a-\mathrm{c}}$ In addition, Nannini ${ }^{5}$ has recently reported a series of 5,6diphenylpyridazinones with analgetic and antiinflammatory activity. We now report the synthesis of a series of 5,6-diarylpyridazinones which are active in several models of hypertension in the rat.

Our interest in this area was initiated by the observation that compound 88 lowers blood pressure of the spontaneously hypertensive rat (SHR). The objective of our project was to explore the structure-activity relationships of substituents at the $\mathrm{N}-2$, the 5,6 -diaryl, and the 4 positions.
(1) Presented in part before the Division of Medicinal Chemistry at the 180th National Meeting of the American Chemical Society. See "Abstracts of Papers", 180th National Meeting of the American Chemical Society, San Francisco, Calif., Aug 1980, American Chemical Society, Washington, D.C., 1980, Abstr MEDI 50.
(2) (a) C. DePonti, U. Bardi, and M. Marchetti, Arzneim.-Forsch., 26, 2089 (1976); (b) F. Parravicini, G. Scarpitta, L. Dorigotti, and G. Pifferi, Farmaco, Ed. Sci., 34, 299 (1979); (c) R. Pellegrini and G. Abbondati, ibid., 32, 19 (1977).
(3) SmithKline Corp., U.S. Patent 4011321 (1977).
(4) (a) W. V. Curran and A. Ross, J. Med. Chem., 17, 273 (1974); (b) F. J. McEvoy and G. R. Allen, Jr., ibid., 17, 281 (1974); (c) J. L. Grace, R. Z. Gussin, L. M. Luchuck, L. Ellenbogen, and P. S. Chan, Pharmacologist, 18, 187 (1976).
(5) G. Nannini, G. Biasoli, E. Perrone, A. Forgione, A. Buttinoni, and M. Ferrari, Eur. J. Med. Chem., 14, 53 (1979).

Scheme I

Chemistry. The synthetic route used to generate the 5,6 -diarylpyridazinones is essentially that reported by Schmidt and Druey. ${ }^{\text {6a,b }}$ (Scheme I). The pyridazinone ring system is generated by either the condensation of a substituted acetic acid ester with a benzil monohydrazone or the condensation of a hydrazide with a benzil. The

[^0]Table II. 2-Substituted Pyridazinones

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline no. \& \(\mathrm{R}_{2}\) \& \(\mathrm{R}_{4}\) \& X \& \begin{tabular}{l}
 \\
\(\mathrm{mp},{ }^{\circ} \mathrm{C}\)
\end{tabular} \& \(R_{2}\)

solvent \& \% yield \& synth method \& formula

\hline 25 \& CH_{3} \& $\mathrm{CH}_{3} \mathrm{CO}$ \& H \& 151-152 ${ }^{\text {a }}$ \& MeOH \& 15 \& E \& C

\hline 26 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $4-\mathrm{CH}_{3} \mathrm{CONHC}_{6} \mathrm{H}_{4}$ \& $4-\mathrm{Cl}$ \& 283-284 \& MeOH \& 47 \& E \& $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$

\hline 27 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 191-193 \& MeOH \& 68 \& E \& $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 28 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{C}_{6} \mathrm{H}_{5}$ \& $4-\mathrm{CH}_{3}$ \& 192-194 \& EtOAc \& 91 \& E \& $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$

\hline 29 \& $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ \& CN \& $4-\mathrm{Cl}$ \& 115-117 \& EtOAc \& 17 \& F \& $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$

\hline 30 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$ \& H \& 176-177 \& MeOH \& 50 \& E \& $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 31 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $2-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ \& H \& 197-199 \& EtOAc \& 66 \& E \& $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 32 \& $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$ \& $\mathrm{C}_{6} \mathrm{H}_{5}$ \& H \& 171-173 \& CHCl_{3} \& 44 \& b \& $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$

\hline 33 \& $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$ \& CN \& $4-\mathrm{Cl}$ \& 163-165 \& $\mathrm{CHCl}_{3}-\mathrm{CCl}_{4}$ \& 29 \& b \& $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$

\hline 34 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $2-\mathrm{C}_{10} \mathrm{H}_{7}{ }^{\text {c }}$ \& H \& 197-199 \& EtOAc \& 42 \& E \& $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$

\hline 35 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& CN \& 4-F \& 212-215 \& EtOAc \& 62 \& E \& $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$

\hline 36 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& CN \& $3,4-\mathrm{Cl}_{2}$ \& 198-202 \& $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ \& 26 \& E \& $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}_{4}$

\hline 37 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $3-\mathrm{ClC}_{6} \mathrm{H}_{4}$ \& H \& 153-155 \& $\mathrm{C}_{6} \mathrm{H}_{12}$-EtOAc \& 71 \& E \& $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2}$

\hline 38 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $3-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ \& H \& 139-142 \& EtOAc \& 71 \& E \& $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 39 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ \& $\stackrel{\mathrm{H}}{ }$ \& 188-191 \& $\mathrm{C}_{6} \mathrm{H}_{6}$ \& 45 \& E \& $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$

\hline 40 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $2,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ \& H \& 211-214 \& $\mathrm{C}_{6} \mathrm{H}_{6}$ \& 36 \& E \& $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$

\hline 41 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $3,4 \cdot\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ \& H \& 164-167 \& $\mathrm{C}_{6} \mathrm{H}_{12}$-EtOAc \& 31 \& E \& $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$

\hline 42 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{CH}_{3} \mathrm{CHOH}$ \& H \& 130-133 \& $\mathrm{C}_{6} \mathrm{H}_{14}$ - EtOAc \& 60 \& b \& $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 43 \& $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOCC}_{2} \mathrm{H}_{5}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& H \& 88-91 \& $\mathrm{C}_{6} \mathrm{H}_{12}$-EtOAc \& 71 \& F \& $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$

\hline 44 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{COOC}_{2} \mathrm{H}_{3}$ \& $4-\mathrm{Cl}$ \& 142-143 \& $\mathrm{CCl}_{4}-\mathrm{C}_{6} \mathrm{H}_{12}$ \& 48 \& E \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$

\hline 45 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $4-\mathrm{BrC}_{6} \mathrm{H}_{4}$ \& H \& 184-187 \& EtOAc \& 72 \& E \& $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2}$

\hline 46 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ \& H \& 150-153 \& $\mathrm{C}_{6} \mathrm{H}_{12}$-EtOAc \& 70 \& E \& $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 47 \& $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& H \& 170-172 \& MeCN \& 53 \& b \& $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$

\hline 48 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 149-151 \& EtOH- $\mathrm{H}_{2} \mathrm{O}$ \& 50 \& E \& $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 49 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCO}$ \& $4-\mathrm{Cl}$ \& 135-136 \& $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ \& 75 \& E \& $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 50 \& $\mathrm{CH}_{2} \mathrm{CHOHCH}_{3}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 162-164 \& $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{C}_{6} \mathrm{H}_{12}$ \& 50 \& F \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 51 \& $\mathrm{CH}_{2} \mathrm{COCH}_{3}$ \& $\mathrm{CN}^{\text {c }}$ \& $4-\mathrm{Cl}$ \& 160-162 \& i-ProH \& 60 \& F \& $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$

\hline 52 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$ \& CN \& $4-\mathrm{Cl}$ \& 172-175 \& $\mathrm{C}_{6} \mathrm{H}_{6}$ \& 45 \& b \& $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}$

\hline 53 \& $\xrightarrow\left[\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}_{2} \mathrm{OH}\right]{ }\right.$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& $190-192$
$177-178$ \& $\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{C}_{6} \mathrm{H}_{6}$ \& 53
77 \& F \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 55 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& COOH \& $4-\mathrm{Cl}$ \& 245 dec \& ${ }_{\text {MeCN }}$ \& 83 \& b \& $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$

\hline 56 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 178-180 \& MeCN \& 58 \& b \& $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$

\hline 57 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$ \& $4-\mathrm{Cl}$ \& $$
\begin{gathered}
154-157 \\
\operatorname{dec}
\end{gathered}
$$ \& EtOAc-EtOH \& 35 \& E \& $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl}$

\hline 58 \& CH_{3} \& CN \& H \& 219-220 ${ }^{\text {d }}$ \& $\mathrm{C}_{6} \mathrm{H}_{6}$ \& 50 \& F \& $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$

\hline 59 \& $\mathrm{CH}_{2} \mathrm{COOH}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 225-226 \& \& 45 \& $\stackrel{\square}{\text { b }}$ \& $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$

\hline 60 \& $\mathrm{CH}_{2} \mathrm{COOOCH}_{3}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 160-162 \& $i-\mathrm{PrOH}$ \& 41 \& F \& $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$

\hline 61 \& $\mathrm{CH}_{2} \mathrm{COCH}_{3}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 173-175 \& $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ \& 49 \& F \& $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 62 \& $$
\begin{gathered}
\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NCH}- \\
\left(\mathrm{CH}_{3}\right)_{2}
\end{gathered}
$$ \& CN \& $4-\mathrm{Cl}$ \& 212-213 \& EtOAc-MeOH \& 5 \& b \& $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{HCl}$

\hline 63 \& $$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{CHOHCH}_{2}- \\
& \mathrm{NHCH}\left(\mathrm{CH}_{3}\right)_{2}
\end{aligned}
$$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 208-210 \& EtOAc \& 11 \& b \& $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl}$

\hline 64 \& $$
\underset{\mathrm{Cl}}{\mathrm{CH}_{2} \mathrm{CHOHCH}_{2}-}
$$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 157-158 \& $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{C}_{6} \mathrm{H}_{12}$ \& 10 \& b \& $\mathrm{C}_{21} \mathrm{H}_{1} 7 \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 65 \& $\mathrm{CH}_{2} \mathrm{CHOCH}_{2}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 128-129 \& $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{C}_{6} \mathrm{H}_{12}$ \& 10 \& F \& $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 66 \& $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 153-156 \& EtOAc-C ${ }_{6} \mathrm{H}_{12}$ \& 30 \& F \& $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3}^{2} \mathrm{O}_{2}$

\hline 67
68 \& $\mathrm{CH}_{2} \mathrm{COOCH}_{3}$ \& $\mathrm{CN}^{\text {ch }}$ \& $4-\mathrm{Cl}$ \& 148-151 \& $\mathrm{CHCl}_{3}-\mathrm{C}_{6} \mathrm{H}_{12}$ \& 20 \& $\mathrm{F}^{\mathbf{F}}{ }^{\text {e,f }}$ \& $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$

\hline 68 \& $\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{N}-\mathrm{PHTH}$
$\mathrm{CH}=\mathrm{CH}$ \& $\mathrm{CH}_{3} \mathrm{CO}$
CH
CO \& $\stackrel{4-\mathrm{Cl}}{4-\mathrm{Cl}}$ \& $185-186$

$145-148$ \& $$
\begin{aligned}
& \mathrm{MeCN} \\
& \mathrm{MeCN}
\end{aligned}
$$ \& 64

36 \& $\mathrm{F}^{\text {e,f }}$ \& $\mathrm{C}_{\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}}^{\mathrm{C}_{20} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}}$

\hline 70 \& $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$ \& $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 128-131 \& CCl_{4} \& 25 \& F \& $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 71 \& $\mathrm{CH}_{2} \mathrm{CONH}_{2}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 228-230 \& MeCN \& 91 \& F \& $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$

\hline 72 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{I}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 163-165 \& MeOH \& 49 \& $\stackrel{\text { b }}{ }$ \& $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{IN}_{2} \mathrm{O}_{2}$

\hline 73 \& $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOCC}_{2} \mathrm{H}_{5}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 100-103 \& $\mathrm{C}_{6} \mathrm{H}_{6}$-pet. ether \& 55 \& F \& $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$

\hline 74 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{C}_{6} \mathrm{H}_{5}$ \& $4-\mathrm{Cl}$ \& 179-180 \& $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ \& 77 \& E \& $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$

\hline 75 \& $$
\begin{gathered}
\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NC}_{5}- \\
\mathrm{H}_{5}^{+} \mathrm{Cl}^{-}
\end{gathered}
$$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& 4-HO \& 300 \& $\mathrm{MeOH}-\mathrm{EtOAc}$ \& 52 \& b \& $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{4}$

\hline 76 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& 4-HO \& 235-237 \& $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ \& 26 \& - \& $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$

\hline 77
78 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}$ \& 175-178 \& 95\% Etor \& 85 \& E \& $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$

\hline 78 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$
$\mathrm{CH}_{2} \mathrm{CH}_{3}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{CH}_{3} \mathrm{O}$ \& $146-148$
$149-151$ \& $\underbrace{\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{EtOAc}}_{i \text {-Proh }}$ \& 86
77 \& $\underset{\mathrm{F}}{\mathrm{E}}$ \& $\mathrm{C}_{22} \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$

\hline 80 \& $\mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{CH}_{3} \mathrm{O}$ \& 99-103 \& $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{CHCl}_{3}$ \& 43 \& F \& ${ }^{\mathrm{C}_{24}^{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~N}_{2}}$

\hline 81
82 \& ${ }_{\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{F}$ \& 171-174 \& $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{CHCl}_{3}$ \& 45 \& $\stackrel{\mathrm{E}}{\mathrm{F}}$ e \& $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline 82
83 \& ${ }_{\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{3}}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& ${ }_{4}^{4-\mathrm{Cl}}$ \& $127-128$
$136-138$ \& $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ \& 26 \& $\mathrm{F}^{\mathbf{F}}$ \& $\mathrm{C}_{21} \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NO}_{2} \mathrm{O}_{3}$

\hline 84 \& $\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{N}-\mathrm{PHTH}$ \& $\mathrm{CH}_{3} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 192-193 \& 95\% EtOH \& 89 \& F^{f} \& $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$

\hline 85 \& $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ \& $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}$ \& $4-\mathrm{Cl}$ \& 157-158 \& $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ \& 67 \& E \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$

\hline
\end{tabular}

Table II (Continued)

no.	R_{2}	R	X	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	solvent	\% y ield	synth method	formula
86	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	189 dec	MeOH	25	E	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$
87	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	CN	$4-\mathrm{CH}_{3} \mathrm{O}$	193-194	EtOH	25	F	$\mathrm{C}_{21}^{24} \mathrm{H}_{20}^{20} \mathrm{~N}_{2}^{2} \mathrm{O}_{2}^{2}$
88	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	CN	$4-\mathrm{Cl}$	122-123	$\mathrm{C}_{6} \mathrm{H}_{6}$-pet. ether	61	E	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
89	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	CN	$2-\mathrm{Cl}$	182-183	$\mathrm{C}_{6} \mathrm{H}_{6}$-pet. ether	81	E	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
90	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{CO}$	H	126-128	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{C}_{6} \mathrm{H}_{14}$	69	E	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$

${ }^{a}$ Lit. ${ }^{8} \mathrm{mp} 158-159{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{b}$ See Experimental Section. ${ }^{c}$ 2-Naphthyl. ${ }^{d}$ Lit. ${ }^{8} \mathrm{mp} 211-212{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{e}$ Tosylate used as alkylating agent. ${ }^{f} \mathrm{PHTH}=$ phthalimido.

Table III. 2-[2-(Alkyl(acyl)amino)ethyl]pyridazinones

no.	R		 solvent	$\begin{gathered} \% \\ \text { yield } \end{gathered}$	synth method	formula
91		149-150	$\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CHCl}_{3}$	63	F	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
92	$\mathrm{c}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$	194-198	EtOH- $\mathrm{H}_{2} \mathrm{O}$	27	F	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$
93	$\mathrm{NH}_{2} \cdot \mathrm{HBr}$	160-162	$95 \% \mathrm{EtOH}$	30	a	$\mathrm{C}_{20} \mathrm{H}_{1} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
94	$\mathrm{c}-\mathrm{NC}_{5} \mathrm{H}_{10}$	155-157	$i-\mathrm{PrOH}$	27	F	$\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
95	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \cdot \mathrm{HCl}$	253-255	95\% EtOH	40	$\stackrel{a}{\text { a }}$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
96	$\mathrm{c}-\mathrm{NC}_{4} \mathrm{H}_{8}$	184-186	$95 \% \mathrm{EtOH}$	34	F	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
97	$\mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	191-193	$i-\mathrm{PrOH}$	9	a	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
98	$\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{I}^{-}$	192-200	$n-\mathrm{PrOH}$	57	a	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{IN}_{3} \mathrm{O}_{2}$
99	NHCOCH_{3}	154-157	EtOAc-pet. ether	43	a	$\mathrm{C}_{22} \mathrm{H}_{1} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$
100	$\mathrm{NHCH}\left(\mathrm{CH}_{3}\right)_{2}$	135-138	i - PrOH	33	a	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
101	NHCO $\mathrm{c}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~N}-\mathrm{CO}_{2} \mathrm{CH}_{2}$	$161-163$ $129-131$	EtOAc n-heptane		$\stackrel{a}{\text { F }}$	$\mathrm{C}_{24}^{\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}}$

${ }^{a}$ See Experimental Section.
second route has the advantage of being one step shorter; however, it cannot be used to generate 4 -acylpyridazinones. The synthesis and chemistry of pyridazinones have been the subject of two reviews. ${ }^{7, b}$
The synthesis of the 5,6 -bis(4 -chlorophenyl)pyridazinone, 7 , did not prove to be as straightforward as expected. Although the synthesis of 20 , the analogue with no substituents on the 5,6 -phenyl rings, by method A (see Experimental Section) proceeds in good yield, ${ }^{8}$ the condensation of ethyl acetoacetate and p, p^{\prime}-dichlorobenzil monohydrazone by the same method gave a complex mixture of products.

Systematic modification of the reaction conditions used to generate 1 revealed that cleaner reactions resulted if alkoxide was not used as a catalyst. It was found that the reaction could be forced to completion by azeotropic removal of the water and alcohol formed during the reaction (method D). Further investigation revealed that 7 and related pyridazinones could be formed in acceptable yields by heating the monohydrazone and acetoacetic acid ester in refluxing $\mathrm{Me}_{2} \mathrm{SO}($ method C$)$ without catalyst. This method proved not to be suitable for large-scale (kilogram) reactions, as increasing the concentration (from 0.7 to 2.6 M) of the monohydrazone decreased (from 63 to 35%) the yield of the product.

The pyridazinones could be alkylated in good yield with a variety of electrophilic reagents. The alkylations were

[^1]conveniently carried out in DMF using potassium carbonate (method F) or potassium hydroxide (method E) as the catalyst. No significant amount of O-alkylated product was observed in these reactions.

In order to synthesize pyridazinones with phenolic substituents on the 5,6-diphenyl rings, the solvolysis of N -substituted pyridazinones with ether substituents on the 5,6 -diaryl rings was investigated. Fusion of the p-methoxy analogue 78 with pyridine hydrochloride did cleave the methyl ethers but also led to the displacement of the 2hydroxyl substituent to give the 2-pyridinium ethyl analogue 75. An attempt to hydrolyze the methyl ethers of 78 with 48% hydrogen bromide gave a mixture of six components, which were not identified. The phenolic analogue 76 was successfully synthesized by hydrolysis of the 5,6-bis[(benzyloxy)phenyl]pyridazinone, 77, with hydrogen bromide in acetic acid. ${ }^{9}$

The 2-(2-chloroethyl) derivatives can be obtained in good yield by reaction of the corresponding 2 -hydroxyethyl analogues with either thionyl chloride or phosphorous oxychloride (Scheme II). An attempt to displace the chloride of 56 with potassium phthalimide gave only the N-vinyl compound 69 . The N-vinyl compound could also be obtained in good yield by reaction of the 2-chloroethyl analogue 56 with potassium carbonate in DMF. The phthalimide, 68, was obtained (Scheme II) by reaction of
(9) p, p^{\prime}-(Benzyloxy)benzil ($\mathrm{mp} 127-129^{\circ} \mathrm{C}$) was obtained by alkylation of p, p^{\prime}-hydroxybenzil [H. Gilman and H.S. Broadbent, J. Am. Chem. Soc., 70, 2619 (1948) and N. J. Lenard, R. T. Rapola, H. L. Herzog, and E. R. Blout, ibid., 71, 2997 (1949)] with benzyl bromide.

Table IV. Antihypertensive Activity. SHR Model

$\operatorname{compd}^{\text {a }}$	po dose, mg/kg	av blood pressure, ${ }^{a} \mathrm{mmHg}$					
		predose	$4 \mathrm{~h} \mathrm{PD}{ }^{\text {b }} 1$	$24 \mathrm{~h} \mathrm{PD}{ }^{\text {b }} 1$	$4 \mathrm{hPD}^{\text {b }} 2$	$24 \mathrm{hPD}^{6} 2$ heart rate ${ }^{\text {c }}$	
22	100	205	$171{ }^{\text {d }}$	$177^{\text {d }}$	$173^{\text {d }}$	$175^{\text {d }}$	0
27	100	218	$173^{\text {d }}$	185	$174{ }^{\text {d }}$	193	$+$
	30	213	200	192	$164{ }^{\text {d }}$	206	+
	10	202	187	203	191	197	+
33	100	215	202	204	175^{d}	$180{ }^{\text {d }}$	0
53	100	212	186	$174{ }^{\text {d }}$	191	201	0
57	100	223	$184{ }^{\text {d }}$	199	$188{ }^{\text {d }}$	208	$+$
62	100	220	218	206	209	$173^{\text {d }}$	
73	100	196	192	$174{ }^{\text {d }}$	188	181	0
81	100	186	$138{ }^{\text {d }}$	160	166	180	0
82	100	186	$142^{\text {d }}$	$148{ }^{\text {d }}$	$144{ }^{\text {d }}$	158	0
86	100	200	$173{ }^{\text {d }}$	187	$176{ }^{\text {d }}$	188	$+$
90	75	200	181	$163{ }^{\text {d }}$	$164{ }^{\text {d }}$	176	0
91	100	201	182	179	$155^{\text {d }}$	$144{ }^{\text {d }}$	0
	30	199	182	164	167	193	0
92	100	239	230	$201{ }^{\text {d }}$	$199{ }^{\text {d }}$	222	0
	100	201	$140^{\text {d }}$	$161{ }^{\text {d }}$	$146^{\text {d }}$	$177{ }^{\text {d }}$	0
93	25	194	184	$162{ }^{\text {d }}$	177	183	0
94	100	192	180	$163{ }^{\text {d }}$	165	176	0
95	100	205	200	$170{ }^{\text {d }}$	$160^{\text {d }}$	$184{ }^{\text {d }}$	+
96	100	192	$155^{\text {d }}$	$138{ }^{\text {d }}$	$142^{\text {d }}$	$146{ }^{\text {d }}$	0
	30	212	200	$187{ }^{\text {d }}$	191	199	0
	10	208	205	204	202	207	-
97	100	209	203	$158{ }^{\text {d }}$	$134{ }^{\text {d }}$	$164^{\text {d }}$	0
	30	211	201	196	$190{ }^{\text {d }}$	198	0
	10	210	214	208	205	209	0
99	100	220	$149{ }^{\text {d }}$	146	$136{ }^{\text {d }}$	$145^{\text {d }}$	
100	100	216	211	181	$143^{\text {d }}$	176	0
102	100	200	186	182	151^{d}	183	0
α-Me-Dopa	100	178	$161{ }^{\text {d }}$	174	$155{ }^{\text {d }}$	166	
guanethidine	50	187	$154{ }^{\text {d }}$	$166^{\text {d }}$	$138{ }^{\text {d }}$	$146{ }^{\text {d }}$	

${ }^{a}$ Compounds $1-15,17-19,23-26,28-32,34-52,54-56,58-60,63-72,74-80,83-85,87-89,98$, and 101 were tested po at $100 \mathrm{mg} / \mathrm{kg}$ and gave no significant $(p=<0.05)$ lowering of blood pressure; compound 20 was tested at $0.50 \mathrm{mg} / \mathrm{kg}$ po and compound 21 at $15 \mathrm{mg} / \mathrm{kg}$. Neither of these compounds caused a significant lowering of blood pressure. Compounds 16 and 61 were not screened due to lack of sufficient sample. ${ }^{b} \mathrm{PD}=$ postdose. ${ }^{c}+=$ increased heart rate, $-=$ decreased heart rate, $0=$ no significant change in heart rate. ${ }^{d}$ Indicates that level of significance $p=<0.05$.

Scheme II

7 with N-(2-tosylethyl)phthalimide or N-(2-bromoethyl)phthalimide. Hydrolysis of 68 with hydrogen bromide and acetic acid provided the 2 -amino analogue 93. The free base of 93 on trituration with acetone yielded the 2 -isopropylidene analogue 97 , which was reduced to the 2 -isopropylamine 100.
Biological Activity. The effect of the compounds on the blood pressure of the spontaneously hypertensive rat (SHR) is shown in Table IV. Two of the more active
compounds were evaluated in the deoxycortiosteroid acetate (DOCA) hypertensive model. As shown in Table V, these compounds lowered the blood pressure of the DOCA rat. Compound 27 was also evaluated in the normotensive rat. No hypotensive effect was observed. In the SHR model the hypotensive effect was usually accompanied by a significant increase in heart rate. An exception to this is the majority of the 2-(alkyl(acyl)amino)ethyl analogues (91-97, 99, 100, and 102). With the exception of compound 95, the compounds in this subseries either had no effect on heart rate or caused a decrease in heart rate. While some of these compounds (96,97 , and 99) caused a greater drop in blood pressure at $100 \mathrm{mg} / \mathrm{kg}$ than 27 , this greater efficacy was not observed at lower doses.

The following observations can be made about the effects of structural variation at the ring positions. The R_{2} position does not need to be substituted to have an active antihypertensive compound; however, the compounds which were most potent have a heteroatom two carbons removed from the pyridazinone ring. These active analogues and the substituent present in each are 27 and 53 $(\mathrm{OH}), 91$ and analogues (amine), $82\left(\mathrm{OCH}_{3}\right)$, and 71 (amide). A separate group of active antihypertensive agents contained a 4-butyric acid residue at the R_{2} position (29, 33, and 73). It is interesting to note that compounds which have an acetamide residue at $R_{2}(71)$ or a substituent which contains both an alkyl and oxygen function β to the pyridazinone ring (50 and 61) have significantly increased acute toxicity.

At the R_{4} position the acetyl group was of prime interest. Increasing the size of the acyl function (30, 48, 49, and 85) decreases activity. A 4,5,6-triphenyl analogue (86) does

Table V. Antihypertensive Activity. DOCA (D) and Normotensive (N) Models

compd	po dose, $\mathrm{mg} / \mathrm{kg}$	model	av blood pressure, mmHg				
			predose	4 h PD 1	24 h PD 1	4 h PD 2	24 h PD 2
88	10	D	194	181	184	178	180
88	25	D	208	$168^{\text {a }}$	178	$157{ }^{\text {a }}$	180
88	50	D	200	$165^{\text {a }}$	171^{a}	$156{ }^{\text {a }}$	$168{ }^{\text {a }}$
88	100	D	200	$157{ }^{\text {a }}$	$158{ }^{\text {a }}$	$145^{\text {a }}$	$152^{\text {a }}$
27	10	D	224	191	192	188	210
27	25	D	235	$194{ }^{\text {a }}$	$191{ }^{\text {a }}$	$188^{\text {a }}$	$208{ }^{\text {a }}$
27	50	D	224	$171{ }^{\text {a }}$	$184{ }^{\text {a }}$	$182^{\text {a }}$	$213^{\text {a }}$
27	100	D	222	169^{a}	178^{a}	$164^{\text {a }}$	195
27	100	N	125	123	125	127	130
guanethidine	25	D	194	163^{a}	181	$163^{\text {a }}$	183

${ }^{a}$ Indicates that level of significance $p=<0.05$.
have moderate activity, but evaluation of several analogues which have substituted phenyl groups on the 4 position failed to substantially increase activity.

The substitution of Cl or F at the 4^{\prime} position of the aryl rings at the 5 and 6 positions of the pyridazinone ring enhanced activity relative to the unsubstituted analogues. Analogues with alkyl groups on the 5,6-diaryl rings were usually active but not as active as the corresponding halo derivatives. Substitution of alkoxy analogues on these rings generally lowered antihypertensive activity.

Experimental Section

Elemental analyses were performed by the Central Analytical Department of Diamond Shamrock or by Galbraith Laboratories, Knoxville, Tenn. All analyses (C, H, and N) are within $\pm 0.4 \%$ of the calculated values. Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Structural assignments are supported by IR, NMR and, where necessary, by mass spectra. Homogeneity of all compounds was evaluated prior to submission of the compounds for biological evaluation by silica gel TLC. The yields listed in the table represent the first crop obtained from the recrystallization and, therefore, represent a low estimate of the overall yield.

Method A. EtOH, dried by distillation from $\mathrm{Mg} / \mathrm{I}_{2}$, was added to a dry flask (N_{2} atmosphere) containing clean Na (1.1 equiv). After the Na reacted, the acetic acid ester (1.1 equiv) was added dropwise to the cold $\left(0-5{ }^{\circ} \mathrm{C}\right)$ alkoxide solution. The benzil monohydrazone (1 equiv) was then added as a solid. After heating the reaction mixture at reflux for 3 h , it was cooled and poured into 1 N HCl . The resulting precipitate was separated by filtration and washed with water. The product was air-dried and recrystallized.

Method B. The benzil monohydrazone (1 equiv), acetic acid ester (1 equiv), and potassium tert-butoxide (1.1 equiv) were slurried in i - PrOH , and the solution was heated at reflux for 2 h . The reaction mixture was then cooled and poured into 1 N HCl . After filtration of the mixture, the precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$, air-dried, and recrystallized.

Method C. $\mathrm{Me}_{2} \mathrm{SO}(1.3 \mathrm{~L} / \mathrm{mol})$ was heated to reflux and the bis (p-chlorobenzil) monohydrazone (1 equiv) was added. A stream of N_{2} was passed over the solution during the course of the reaction. The acylacetic acid ester (4 equiv) was added, and the reaction was maintained at $175^{\circ} \mathrm{C}$ for 1.25 h . After the reaction was diluted by pouring onto ice ($3 \times$ volume increase), toluene ($2.6 \mathrm{~L} / \mathrm{mol}$) was added and the slurry stirred. The suspension was filtered and the residue was washed with MeOH , toluene, and petroleum ether.

Method D. The benzil monohydrazone (1 equiv) and xylene ($600 \mathrm{~mL} / \mathrm{mol}$) were stirred while the mixture was heated rapidly to $120^{\circ} \mathrm{C}$. The acylacetic acid ester (1.35 equiv) was added rapidly, followed immediately by pyridine (1.1 equiv). The reaction mixture was heated at reflux for 2.5 h , during which time $\mathrm{H}_{2} \mathrm{O}$ was collected by azeotrope in a Dean-Stark trap. The reaction was cooled, and the resulting precipitate was washed with xylene and air-dried.

Method E. The pyridazinone (1 equiv) was dissolved in DMF ($4 \mathrm{~mL} / \mathrm{mmol}$) and ethylene carbonate (1.1 equiv) was added. KOH (0.01 equiv) was added and the flask was placed in an oil
bath ($110-120^{\circ} \mathrm{C}$) until CO_{2} evolution ceased (ca. 3.5 h). The reaction mixture was cooled and diluted with 3 volumes of $\mathrm{H}_{2} \mathrm{O}$ to give a precipitate, which was separated, washed with $\mathrm{H}_{2} \mathrm{O}$, and recrystallized.

Method \mathbf{F}. The pyridazinone (1 equiv) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1 equiv) were slurried with DMF ($4.0 \mathrm{~mL} / \mathrm{mmol}$). The alkyl halide (1.1 equiv) was added and the flask immersed in an oil bath $\left(80-100^{\circ} \mathrm{C}\right)$ for 3 h . The reaction mixture was cooled and diluted with 3 volumes of $\mathrm{H}_{2} \mathrm{O}$. The resulting precipitate was separated, washed with $\mathrm{H}_{2} \mathrm{O}$, and recrystallized after air-drying.

4-Acetyl-5,6-diphenyl-2H-pyridazin-3-one Hydrazone (23). Compound 20 ($5.0 \mathrm{~g}, 0.017 \mathrm{~mol}$) was dissolved in 100 mL of absolute EtOH . Eighty-five percent hydrazine hydrate ($1.2 \mathrm{~g}, 0.02$ $\mathrm{mol})$ was added, and the reaction mixture was heated at reflux for 3 h . When the mixture cooled, a white precipitate formed which was separated by filtration and recrystallized from MeOH .

Carboxylic Acid Derivatives 24, 32, 33, 47, and 59. The carboxylic acid ester (1 equiv) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (4 equiv) were heated at reflux in $75 \% \mathrm{EtOH}$ ($6 \mathrm{~mL} / \mathrm{mmol}$) for 8 h . The solvent was removed from the reaction mixture, and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The aqueous layer was washed two times with EtOAc and then acidified with $37 \% \mathrm{HCl}$. The resulting precipitate was separated by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$, air-dried, and recrystallized.

2-(2-Hydroxyethyl)-4-(1-hydroxyethyl)-5,6-diphenyl-2H-pyridazin-3-one (42). Compound 90 ($10.65 \mathrm{~g}, 0.03 \mathrm{~mol}$) was stirred in $\mathrm{EtOH}(200 \mathrm{~mL})$, and $\mathrm{NaBH}_{4}(0.28 \mathrm{~g}, 0.0075 \mathrm{~mol})$ was added as a solid. The reaction was allowed to stir for 5 h at 20 ${ }^{\circ} \mathrm{C}$ and the solvent was removed. The residue was dissolved in EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$. After the organic layer was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), the solvent was removed in vacuo. The residual oil was crystallized by trituration with hexane and recrystallized from EtOAc/hexane.

2-(2-Chloroethyl)pyridazinones (52 and 56). The 2-(2hydroxyethyl) pyridazinone (1 equiv; 88 or 27) was dissolved in dioxane (60 mL) and POCl_{3} (1.3 equiv) was added. Upon addition of pyridine (1.2 equiv), the reaction mixture became homogeneous. After 4 h at $20^{\circ} \mathrm{C}, 1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ was added to give a precipitate, which was separated, washed with 1 N HCl , and recrystallized from MeCN.

2-(2-Hydroxyethyl)-5,6-bis (4-chlorophenyl)-2H-pyridazin-3-one (54). Compound 55 ($10 \mathrm{~g}, 0.025 \mathrm{~mol}$) was added to refluxing decahydronaphthalene. After heating at reflux for 6 h , the reaction mixture was cooled and diluted with petroleum ether. The resulting precipitate was separated and recrystallized from $\mathrm{C}_{6} \mathrm{H}_{6}$.

2-(2-Hydroxyethyl)-5,6-bis(4-chlorophenyl)-3-oxo-pyridazin-4-ylcarboxylic Acid (55). Compound 44 was dissolved in absolute EtOH ($6 \mathrm{~mL} / \mathrm{mmol}$). Following addition of KOH (1.1 equiv), the reaction mixture was placed on a steam bath. When the solvent had evaporated, the residue was dissolved in warm $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL} / \mathrm{mmol})$ and filtered. The filtrate was acidified with $37 \% \mathrm{HCl}$, and the resulting precipitate was separated by filtration, air-dried, and recrystallized.

2-(Isopropylamino)-Substituted Analogues (62 and 63). The 2-alkylchloropyridazinone was heated at reflux for 18 h in isopropylamine. The excess amine was removed in vacuo and the residue dissolved in $\mathrm{Et}_{2} \mathrm{O}$. The resulting solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The addition of $17 \% \mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}(\mathbf{w} / \mathrm{w})$
to the $\mathrm{Et}_{2} \mathrm{O}$ solution gave a precipitate which was recrystallized from $\mathrm{MeOH} / \mathrm{EtOAc}$ after decanting the $\mathrm{Et}_{2} \mathrm{O}$.

Reaction of 7 with Epichlorohydrin. Compound 7 (50 g , $0.14 \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~g})$, and epichlorohydrin (12 mL) were allowed to react in DMF (200 mL) at $80^{\circ} \mathrm{C}$ for 2 h . The cooled reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(700 \mathrm{~mL})$ and the slurry was extracted with EtOAc. The EtOAc solution was washed with a saturated NaCl solution and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The solvent was removed to give a residual oil (55 g). An aliquot (12 g) of this oil was dissolved in $20 \% \mathrm{EtOAc} / \mathrm{CHCl}_{3}$, and the solution was chromatographed on dry column silica gel ($80-\mathrm{mm}$ tubing $\times 1.2$ m). The column was eluted with 2 L of $20 \% \mathrm{EtOAc} / \mathrm{CHCl}_{3}$, and the UV-absorbing region was cut into 2 -in. segments. The segments were extracted with MeCN and analyzed on silica gel plates ($\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 1: 1$ as developing solvent). Fractions $2-4$ were combined and the solvent removed. The residue was recrystallized from hexane to give 65. The solvent was removed from fraction 7 to give a residue which was recrystallized from cyclohexane $/ \mathrm{C}_{6} \mathrm{H}_{6}$ to give 64.

4-Acetyl-5,6-bis(4-chlorophenyl)-2-vinyl-2 H -pyridazin-3one (69). Compound $56(8.86 \mathrm{~g}, 0.02 \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3.0 \mathrm{~g}, 0.022$ $\mathrm{mol})$, and potassium phthalimide $(4.07 \mathrm{~g}, 0.022 \mathrm{~mol})$ were stirred in DMF (60 mL) at $50^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was cooled and diluted with 1 N NaOH , and the resulting suspension was extracted with EtOAc. The solvent was evaporated from the organic layer in vacuo, and the residue was recrystallized from MeCN .

4-Acetyl-5,6-bis(4-chlorophenyl)-2-(2-iodoethyl)-2H-pyridazin-3-one (72). Compound $56(15.0 \mathrm{~g}, 0.035 \mathrm{~mol})$ and NaI ($15.9 \mathrm{~g}, 0.1 \mathrm{~mol}$) were heated at reflux in $\mathrm{Me}_{2} \mathrm{CO}$ for 36 h . The reaction mixture was cooled and the solvent removed in vacuo to give a tan solid which was recrystallized.

1-[2-[4-Acetyl-5,6-bis(4-hydroxyphenyl)-3-oxo-2H-pyridazin-2-yl]ethyl]pyridinium Chloride (75). Compound $78(14 \mathrm{~g}, 0.04 \mathrm{~mol})$ and pyridine hydrochloride (42 g) were mixed in an argon atmosphere. The flask was placed in an oil bath (215 ${ }^{\circ} \mathrm{C}$) for 0.5 h . After cooling, the reaction mixture was poured into $1 \mathrm{~N} \mathrm{HCl}(250 \mathrm{~mL})$. This gave initially a dark solution in which a precipitate formed. The precipitate was separated by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$, and recrystallized.

4-Acetyl-5,6-bis(4-hydroxyphenyl)-2-(2-hydroxyethyl)$2 H$-pyridazin- 3 -one (76). Compound 77 ($5.46 \mathrm{~g}, 0.010 \mathrm{~mol}$), 48% $\mathrm{HBr}(25 \mathrm{~mL})$, and glacial $\mathrm{AcOH}(25 \mathrm{~mL})$ were heated on a steam bath for 25 min . The orange solution was evaporated in vacuo to a foam, which was applied to a dry column of silica gel and eluted with $\mathrm{EtOAc} / \mathrm{CHCl}_{3}$ (4:1). Fractions containing material having $R_{f} 0.4$ were eluted with EtOAc. The extract was evaporated in vacuo to a yellow foam, which was triturated with 95% $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O} /$ petroleum ether to give a tan crystalline solid (1.5 g). On recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ a tan crystalline material, which retained an indeterminant amount of solvent of recrystallization, was obtained. The product was dried under high vacuum at $150^{\circ} \mathrm{C}$ for 3 days to give 0.96 g of product.

4-Acetyl-5,6-bis(4-chlorophenyl)-2-(2-aminoethyl)-2H-pyridazin-3-one Hydrobromide (93). Compound 68 (16.1 g , $0.03 \mathrm{~mol})$, glacial $\mathrm{AcOH}(100 \mathrm{~mL})$, and $48 \% \mathrm{HBr}(50 \mathrm{~mL})$ were combined and stirred under reflux for 16 h . Since TLC [silica gel; toluene $/ \mathrm{EtOAc} / \mathrm{HCO}_{2} \mathrm{H}$ ($15: 10: 1$)] showed the presence of the phthalimide, additional $48 \% \mathrm{HBr}(50 \mathrm{~mL})$ was added and refluxing continued for 4 h . Then another portion of $48 \% \mathrm{HBr}$ (50 mL) was added and refluxing continued for an additional 4 h. The reaction mixture was allowed to stand at $20^{\circ} \mathrm{C}$ for 15 h and then evaporated in vacuo. The orange semisolid residue was triturated with anhydrous $\mathrm{Me}_{2} \mathrm{CO}$ and filtered. The air-dried solid was recrystallized from $95 \% \mathrm{EtOH}$ following treatment with charcoal. The solid obtained was recrystallized three times from $95 \% \mathrm{EtOH}$ and air-dried to give 4.7 g of product.

4-Acetyl-5,6-bis (4-chlorophenyl)-2-[2-(dimethylamino)-ethyl]-2H-pyridazin-3-one Hydrochloride (95). To a stirred, warm solution of $91(7.0 \mathrm{~g}, 0.016 \mathrm{~mol})$ and anhydrous $\mathrm{Me}_{2} \mathrm{CO}(30$ $\mathrm{mL})$ was added $37 \% \mathrm{HCl}(2 \mathrm{~mL})$ in one portion. A white crystalline solid separated immediately. The mixture was cooled (0 ${ }^{\circ} \mathrm{C}$) and filtered, and the solid obtained was washed with anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and air-dried. The product (6.6 g) was recrystallized twice from $95 \% \mathrm{EtOH}$ and air-dried to give 3.1 g of $\mathbf{9 5}$.

4-Acetyl-5,6-bis(4-chlorophenyl)-2-[2-(trimethylamino)-ethyl]-2 \boldsymbol{H}-pyridazin-3-one Iodide (98). A mixture of 91 (16.0 $\mathrm{g}, 0.037 \mathrm{~mol})$ and $\mathrm{MeI}(100 \mathrm{~mL}, 228.0 \mathrm{~g}, 1.61 \mathrm{~mol})$ was stirred for 18 h at $20^{\circ} \mathrm{C}$. The resulting suspension was filtered and the solid was washed with anhydrous $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The solid was then recrystallized from n-PrOH to give 13.2 g of 98 .

4-Acetyl-5,6-bis (4-chlorophenyl)-2-[2-(isopropylidene-amino)ethyl]-2 \boldsymbol{H}-pyridazin-3-one (97). The crude free amine, 4-acetyl-5,6-bis(4-chlorophenyl)-2-(2-aminoethyl)-2H-pyridazin3 -one, was triturated with $\mathrm{Me}_{2} \mathrm{CO}$. The solid which separated was collected by filtration and air-dried. The solid obtained was recrystallized from MeCN to give an orange crystalline material, which was applied to a dry column of silica gel and eluted with $\mathrm{CHCl}_{3} / \mathrm{Me}_{2} \mathrm{CO}$ (1:1). Fractions containing product ($R_{f} 0.4$) were eluted with $\mathrm{Me}_{2} \mathrm{CO}$ and evaporated in vacuo to a yellow semisolid. Trituration with $\mathrm{Et}_{2} \mathrm{O}$ gave a solid which was separated by filtration and air-dried. This yellow powder was recrystallized from $i-\mathrm{PrOH}$ and air-dried to give a yellow crystalline solid.

4-Acetyl-5,6-bis(4-chlorophenyl)-2-[2-(isopropylamino)-ethyl]-2H-pyridazin-3-one (100). To a stirred solution of 97 ($16.0 \mathrm{~g}, 0.036 \mathrm{~mol}$) and anhydrous $\mathrm{MeOH}(1 \mathrm{~L})$ was added 1 N $\mathrm{HCl}(10 \mathrm{~mL})$. The pH of the resulting solution was ca. 5. $\mathrm{NaBH}_{3} \mathrm{CN}(1.6 \mathrm{~g}, 0.025 \mathrm{~mol})$ was added in one portion, and the resulting solution was stirred at $20^{\circ} \mathrm{C}$ for 2 h . Since TLC [silica gel; $\mathrm{EtOAc} / \mathrm{MeOH}$ (9:1)] indicated starting material was present, an additional amount of $\mathrm{NaBH}_{3} \mathrm{CN}(0.80 \mathrm{~g}, 0.0125 \mathrm{~mol})$ was added. Stirring was continued for 2 h , and then another portion of $\mathrm{NaBH}_{3} \mathrm{CN}(0.80 \mathrm{~g}, 0.0125 \mathrm{~mol})$ was added. After an additional 2 h of stirring at $20^{\circ} \mathrm{C}$, the solution was evaporated in vacuo. The residue was dissolved in CHCl_{3}, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times)$, dried $\left(\mathrm{CaSO}_{4}\right)$, and evaporated in vacuo. The residue was chromatographed on a dry silica gel column and eluted with $\mathrm{EtOAc} / \mathrm{MeOH}$ (1:1). Fractions containing product were eluted with $\mathrm{Me}_{2} \mathrm{CO}$ and evaporated in vacuo, and the residue was dissolved in CHCl_{3}. The solution was dried $\left(\mathrm{CaSO}_{4}\right)$ and concentrated in vacuo to a syrup, which began to crystallize on standing. The syrup was dissolved in hot $i-\mathrm{PrOH}$ and allowed to cool. The yellow crystalline material which separated was collected by filtration and air-dried (3.5 g). A second crop was obtained from the mother liquors (3.0 g). The two crops were combined and dissolved in i - $\mathrm{PrOH}, \mathrm{H}_{2} \mathrm{O}$ was added, and the solution was allowed to stand at $20^{\circ} \mathrm{C}$ for 18 h . The supernatant was decanted from the small amount of yellow crystalline solid which separated and was evaporated in vacuo to a tan amorphous solid. The solid was dried under vacuum at $80^{\circ} \mathrm{C}$ overnight to give 5.3 g of product.

Acylation of 4-Acetyl-5,6-bis(4-chlorophenyl)-2-(2-aminoethyl)-2 H -pyridazin-3-one (99 and 101). Compound 93 was dissolved in warm $\mathrm{H}_{2} \mathrm{O}$, and the pH of the solution adjusted to ca. 10 with 1 N NaOH . The resulting mixture was extracted with CHCl_{3}. The combined CHCl_{3} extracts were dried $\left(\mathrm{CaSO}_{4}\right)$ and evaporated in vacuo to a brown syrup. This crude free amine was used without further purification.

To a stirred $\left(0^{\circ} \mathrm{C}\right)$ solution of 0.05 mol of the crude amine and 150 mL of pyridine was added, dropwise, 0.05 mol of the required acylating agent. When the addition was complete, the cooling bath was removed and the mixture was allowed to stir at $20^{\circ} \mathrm{C}$ for 18 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3} (99) or EtOAc (101). The organic extract was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo. The resulting residue was either recrystallized (99) or chromatographed on a dry silica gel column with $\mathrm{CHCl}_{3} / \mathrm{EtOAc}$ (2:1) and then recrystallized (101).

Antihypertensive SHR Rat Assay. Spontaneously hypertensive rats, 12 to 16 weeks of age, were used in this assay. Systolic blood pressure was determined by the tail cuff method, utilizing capacitance transducers for the detection of pressure, an aneroid manometer for measuring pressure, and an oscilloscope for visualizing the disappearance and/or appearance of the pressure pulse. Heart rate was measured by a biotachometer. Groups of five rats having systolic blood pressure of 170 mmHg or greater were chosen, and the test compound was administered at 100 $\mathrm{mg} / \mathrm{kg}$ po as a solution or suspension in 0.25% methylcellulose (MC) at a volume of $5 \mathrm{~mL} / \mathrm{kg}$. One group served as the control and received the vehicle. Four and twenty-four hours after dosing, systolic blood pressure and heart rate were recorded. A second dose of compound was administered, and blood pressure and heart rate were determined at 4 and 24 h after the second dose.

The systolic blood pressures and heart rates were compared to predose "control" values statistically using the Student's t test. Compounds having a level of significance $p=<0.05$ are regarded as active.

Antihypertensive DOCA Rat Assay. Sprague-Dawley male rate weighing $90-100 \mathrm{~g}$ were used in this assay. Deoxycorticosterone acetate (DOCA) was administered subcutaneously at a dose of $100 \mathrm{mg} /$ rat per day for 5 days a week for 3 weeks. One percent saline was provided ad libitum for the 3 -week period. Tap water was substituted for the 1% saline at the end of the treatment period.

Systolic blood pressure were determined by the tail cuff method, utilizing capacitance transducers for the detection of pressure,
an aneroid manometer for measuring pressure, and an oscilloscope for visualizing the disappearance and/or appearance of the pressure pulse. Groups of five rats having systolic blood pressure of 170 mmHg or greater were chosen, and the test compound was administered at $100 \mathrm{mg} / \mathrm{kg}$ po as a solution or suspension in 0.25% methylcellulose (MC) at a volume of $5 \mathrm{~mL} / \mathrm{kg}$. One group served as the control and received the vehicle. Systolic blood pressures were recorded prior to dosing and again 4 h after drug. If a significant hypotensive effect was obtained at 4 h posttreatment, the pressure was again measured at 24 h posttreatment.

The 0 - and 4 -h postdose systolic blood pressures were compared statistically using the Student's t test. Compounds having a level of significance $p=<0.05$ were regarded as active.

Synthesis and Antihypertensive Activity of 5-Amino-2-pyridinecarboxylic Acid Derivatives

Neville Finch,* Thomas R. Campbell, Charles W. Gemenden, and Henry J. Povalski
Research Department, Pharmaceuticals Division, CIBA-GEIGY Corporation, Summit, New Jersey 07901. Received June 12, 1980

Abstract

The synthesis of various substituted 5 -amino-2-pyridinecarboxylic acids and their derivatives is described by three general methods: (1) reductive alkylation of methyl 5 -amino-2-pyridinecarboxylates (2) and subsequent hydrolysis; (2) alkylation of the urethane (9), followed by hydrolysis; and (3) selective NaBH_{4} reduction of the appropriate amide of (2), followed by hydrolysis. A more specific process was used for the 5 -(phenylamino) compound, i.e., nucleophilic displacement of nitrite from methyl 5 -nitro-2-pyridinecarboxylate by sodioformanilide and subsequent hydrolysis. Many of these 2-pyridinecarboxylic acid derivatives were potent antihypertensive agents in the spontaneously hypertensive rat (SHR). Optimization of structural parameters for this activity yielded compounds 54, 55, 34, 65, and 22, which were selected for further study in the renal hypertensive dog (RHD). Based on these studies, one compound, 5 -[(4-fluorobenzyl)amino]-2-pyridinecarboxylic acid (65), was selected for preclinical toxicity evaluation. Based on the toxicological findings, it was decided not to pursue compound 65 clinically.

The reasons for our interest in vasodilators were described previously. ${ }^{1}$ Fusaric acid, 5-butylpicolinic acid, is still actively studied as such, both preclinically ${ }^{2}$ and clinically. ${ }^{3}$ Synthesis of analogues in attempts to improve the profile continue. ${ }^{4}$

Our earlier efforts to improve on fusaric acid by studying 5 -thio-2-pyridinecarboxylic acid derivatives were unsuccessful. ${ }^{1}$ The more interesting compounds based on SHR (spontaneously hypertensive rat) data lacked sufficient efficacy in the RHD (renal hypertensive dog). We now describe compounds of the fusaric acid type, 5 -amino-2pyridinecarboxylic acids, which show good efficacy in both SHR and RHD models.

Chemistry. A very limited amount of work has been done with 5 -amino-2-pyridinecarboxylic acids. Only the parent compound ${ }^{5,6}$ and its 5 -(dimethylamino) ${ }^{5}$ and a few N-acyl derivatives have been described. ${ }^{7}$

We developed four methods to provide access to a broad range of substituted 5 -amino-2-pyridinecarboxylic acids. For the most important structural types, i.e., substituted 5-(benzylamino)-2-pyridinecarboxylic acids, two of these methods were principally used. One is the reduction of the Schiff base from an aromatic aldehyde and methyl 5 -amino-2-pyridinecarboxylate with sodium borohydride, followed by hydrolysis (Scheme I). The other method is
(1) N. Finch, T. R. Campbell, C. W. Gemenden, M. J. Antonaccio, and H. J. Povalski, J. Med. Chem., 21, 1269 (1978).
(2) L. Piesche, H. Hilse, and P. Oehme, Pharmazie, 34, 332 (1979).
(3) M. Miyahara, H. Miyazake, H. Takayama, and Y. Minatogawa, Jpn. Circ. J., 41, 1161 (1977).
(4) H. Yamanaka, M. Mizugaki, M. Sagi, and K. Edo, Heterocycles, 12, 1323 (1979).
(5) L. W. Deady, R. A. Shanks, A. D. Campbell, and S. Y. Chooi, Aust. J. Chem., 24, 385 (1971).
(6) J. Delarge, Pharm. Acta Helv., 44, 637 (1969).
(7) G. H. Cooper and R. L. Rickard, J. Chem. Soc. C, 3257 (1971).

Scheme I

Scheme II

the alkylation of the urethane derived from the Curtius reaction on ethyl 5-carboxy-2-pyridinecarboxylate, followed by hydrolysis (Scheme II). For other structural types,

[^0]: (6) (a) P. Schmidt and J. Druey, Helv. Chim. Acta, 37, 1467 (1954); (b) P. Schmidt and J. Druey, Helv. Chim. Acta, 37, 134 (1954).

[^1]: (7) (a) J. W. Mason and D. L. Aldous, Chem. Heterocycl. Compd., 28, 23 (1973); (b) M. Tisler and B. Stanovnik, Adv. Heterocycl. Chem., 9, 211 (1968).
 (8) Ciba Pharmaceutical Products, U.S. Patent 2839532 (1958).

