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Table I. Effect of (-)-JV-(Chloroethyl)norapomorphine 
(NCA) on Dopamine-Sensitive Adenylate Cyclase 
in Rat Striatal Homogenates" 

preincubation 
concn, MM % stimulation 

NCA 

0 
10 
30 
75 
30 

0 

DA 

0 
0 
0 
0 
50 
50 

means ± SEM 

100.0 ± 4.1 
83.9 ± 6.3 
43.9 ± 4.5 

8.1 ± 1.3 
102.8 ± 5.3 

98.0 ± 6.9 

inhibn 

0 
16 
56 
92 
- 3 

2 
0 NCA-HC1 (lc-HCl) was preincubated for 10 min at 37 °C 
with homogenates of rat corpus striatum in a physiologic 
buffer, alone or with 50 MM DA added, and then washed 
free of the drugs. Washed tissue was then incubated with 
0, 50, or 200 iiM dopamine in the presence of excess ATP 
for 2.5 min at 37 °C, the level of cyclic AMP (cAMP) in 
the incubation mixture with vs. without DA was assayed 
by a protein-binding method,10 and the increase in cAMP 
levels due to DA was estimated for all conditions (n > 5 
replications). The typical basal level of production of 
cAMP without adding DA (mean ± SEM) was 1.21 ± 0.09 
pmol 2.5 min"1 (80 tig of tissue)"1 or (4 tig of protein)"1. 

We suggest that the process by which NCA inhibits 
DA-sensitive adenylate cyclase involves strong and possibly 
covalent bonding by receptor alkylation, analogous to the 
action of PBZ at the norepinephrine a receptor and other 
sites. Further support for the pharmacologic activity of 
NCA is provided by recent in vivo observations by Costall 
et al.11 They found in mouse and rat that (-)-NCA when 
administered peripherally or intrastriatally can produce 

selective, potent, and long-lasting (up to 5 days) behavioral 
and biochemical effects indicative of DA-receptor blockade. 
These observations and our present results lead us to 
conclude that the mechanism of action of this agent is 
uniquely different from the dopamine receptor blockade 
produced by such reversible, competitive, and relatively 
short-acting neuroleptic agents as the phenothiazines, 
butyrophenones, and their congeners. 
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In classification studies in which pattern-recognition methods are used to distinguish active compounds from inactive 
ones, a type of data structure which we call "asymmetric" can be observed. This type of data structure can be quite 
common and its occurrence can have a profound effect on the classification analysis outcome. The origin of asymmetric 
data structure and a strategy for obtaining meaningful classification results when it is observed are discussed and 
illustrated with an example of active and inactive antimalarial quinones. 

In recently reported SIMCA pattern-recognition studies 
of the classification of 4-nitroquinoline 1-oxides,1 polycyclic 
aromatic hydrocarbons,2 and N-nitroso compounds3 as 
carcinogens or noncarcinogens, we discovered what we term 
"asymmetric" data structure. This resulted from the 
carcinogens (active compounds) forming in descriptor 
space well-defined cluster(s), while the inactive compounds 
were more or less randomly distributed in the same data 

(1) W. J. Dunn III and S. Wold, J. Med. Chem., 21,1001 (1979). 
(2) B. Norden, U. Edlund, and S. Wold, Acta Chem. Scand., Ser. 

B, 32, 1 (1979). 
(3) W. J. Dunn III and S. Wold, Bioorg. Chem., accepted for 

publication. 

space. Such asymmetric data structures can be rather 
common in the application of classification methodology 
to the problem of predicting the type of biological response 
of a new or untested compound. This has an effect on the 
data analytical strategy used and can ruin the data analysis 
if not recognized. We discuss here the rationale for 
asymmetric structure-activity data illustrated by a recently 
observed example of this type of data structure. We also 
present a strategy and method for obtaining relevant 
classification results when asymmetric data structures are 
observed. 

Origin of Asymmetric Data Structure. Asymmetric 
data structures are primarily encountered in classification 
problems and will therefore be presented in a context 
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Table I. Data for Quinones 

no. 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

ho . 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

no. 

16 
17 
18 

compd 
type 

IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 

no. 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

compd 
type 

compd 
type 

II 
II 
III 

X 

N 
N 
N 
N 
N 
N 
N 
N 
CH 
N 
N 
N 
N 
N 
N 
N 

compd 
type 

V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 

2 

OH 
OH 
OH 
CI 
CH3 
H 
NH, 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 

OH 
OH 

3 

'•-C,H„ 
(CH,) , 
(CH,).< 
(•C,H„ 
i-C5Hn 

z'-CsHn 

'-C.H,, 
C10H21 

C10H2, 
(CH2)4< 

substituents 

^ 6 " l i 
3 6 H U 

• - ' 6 " l l 

( C H a ) 3 C 6 H n 

C,0H21 

(-C.H,, 
i'-CjH,, 
(CH,)3C6H„ 

2 

(CH,)3C6Hl3 

0 
0 
0 
0 
0 
0 
NC6H4 
NC6H3 

0 
NC6H„ 
NC6H4 
NH 
NC6H4 
NC6H3 

NC6H4 
NC6HS 

X 

N 
N 
N 
N 
CH 
CH 
CH 
CH 
CH 
CH 
CH 
CH 
CH 
CH 

Y 

-p-Cl 
-3,4-(CH3), 

-p-COOC,H5 
-P-OCH3 

-p-Cl 
-3,4-(CH3), 
-p-OCH3 

3 

H 
H 
CI 
CI 
H 
H 
CH3 
H 
H 
H 
H 
H 
H 
H 

6 

H 
H 
H 
H 
H 
H 
H 
OCH3 
H 
H 
OH 
Br 
CH3 
H 
H 

substituents 

3 

CiiH„ 

5 

7 

H 
H 
H 
H 
H 
H 
H 
H 
OCH3 
CI 
H 
H 
H 
CH3 
7,8-C4H4 

OH 
(CHjjCsH,, 
OH 

substituents 

Z 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 

OH 
(CH,)8C6HU 
OH 
OH 
OH 
NHC16H33 
NHC6H4-p-Cl 

-(CH,) 

NHC6H3-3,4-(CH3), 
CO(CH,),C6H 1 

NC6Hs-p-COOC,H5 
NH, 
NH-n-C4H9 
NH, 
NH, 
NHC6H4-p-OCH, 
NH, 

substituents 

N(CH,) 
NH, 
NHC6H( 
NHC6H 
NHC6Ht 

4 

CH3 

-p-CH3 

-p-OCH, 
N(C6HS)(CH,)3N(CH3), 
OH 
OC,Hs 
OCH,CH(CH3)C3H, 
0(CH,) CH3 
NH(CH,)4-c-C6Hu 
NH(CH2)4N(C,H5) 
N(C,H5 2 

NH(CH,)3N(C5Hn), 

6 

H 
4 ~ 

6 

C15H 
OH 

act. 

+ 
+ 
+ 
-
-
-
-
-
-
-
-
-
+ 
+ 
-

act. 

_ 
-
-

3 

31 

S(CH,)nCH3 
S(CH,)I3CH3 
S(CH,)I7CH, 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 

CH3 

H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 

act. 

-
-
-
-
+ 
+ 
-
-
-
-
+ 
+ 
+ 
+ 

logP 

3.87 
5.31 
7.81 
4.64 
4.69 
4.20 
4.37 
6.47 
6.47 
6.69 
4.64 
7.17 
4.26 
4.26 
6.63 

logP 

5.04 
5.93 
5.06 

act. 

+ 
+ 
+ 
+ 
+ 
-
-
-
-
-
-
-
-
-
-
-

logP 

1.50 
1.20 
1.50 
1.30 
1.90 
3.40 
0.20 
1.20 
3.38 
3.38 
6.11 
3.79 
3.28 
5.47 

ELUMO 
-0.384 
-0.384 
-0.384 
-0.339 
-0.330 
-0.327 
-0.420 
-0.399 
-0.397 
-0.387 
-0.399 
-0.386 
-0.385 
-0.385 
-0.310 

-ELUMO 

-0.328 
-0.277 
-0.350 

logP £LUMO 
7.50 -0.378 
6.50 -0.375 
6.62 -0.353 
8.62 -0 .353 
9.62 -0.353 
7.80 -0.415 
5.60 -0.249 
5.60 -0.258 
4.10 -0.463 
4.50 -0.114 
1.50 -0.278 
1.50 -0.295 
2.50 -0.260 
2.50 -0.258 
4.50 -0.268 
1.50 -0.257 

£ L U M O 

-0.409 
-0.407 
-0.403 
-0.399 
--0.412 
-0.409 
-0.534 
-0.388 
-0.388 
-0.388 
-0.422 
-0.422 
-0.422 
-0.422 

applicable to such problems. In the pattern-recognition 
approach to structure-activity studies, compounds in 
different classes are described by structural variables 
(descriptors) which are assumed to determine the type and 
level of pharmacological activity of the compounds in the 
classes. Such data (compounds and their descriptors) are 
represented in matrix form in Figure 1. The asymmetric 
case is most often encountered when two classes, the active 
and inactive compounds, are specified. 

If the descriptors for the compounds of the members of 
the active class are represented graphically in the data 
space as in Figure 2a (here shown in three dimensions), 
ideally the class will be represented by a well-defined 

cluster. The inactive compounds are also graphed in the 
same space. If the number of inactive compounds is small 
(~2-3), a well-defined cluster will not be obvious. It is 
also possible, if the number of inactives is large (>6), that 
they will be randomly scattered around the active class. 
The latter case is shown in Figure 2b. In both cases the 
result is the same; i.e., no mathematical description of the 
inactive class is possible. We call this result asymmetric 
structure,4 which can result from a number of factors but 
is primarily due to the testing strategy. In tests designed 

(4) A more descriptive term is "embedded structure", Dr. H. 
Wold, Upsala University, personal communication. 
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Figure 1. Data matrix for a pattern-recognition classification 
problem. 
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Figure 2. Three-dimensional data spaces: (a) a class of active 
compounds with well-defined structure; (b) the same class with 
inactive compounds randomly distributed around the actives. In 
practice, the number of dimensions is larger than three, but such 
spaces are difficult to visualize. 

to determine if compounds are active at a particular re­
ceptor, only the response of that receptor is monitored and 
only those substances with rather rigid structural re­
quirements will cause an observable response. 

From the work of Hansch5 we know tha t from a class 
of structurally similar substances the level of biological 
activity of the members of the class can be a regular and 
well-behaved function of structurally related parameters. 
In this view, the structure-activity system (active principal: 
biological system) can be considered in terms of control 
theory.6 As long as structural variation within the series 
is not drastic, the system will respond predictably, but any 
drastic change in structure may result in a discontinuity 
of the structure-activity relationship and inactivity will 
result. This corresponds in Figure 2b to moving far away 
from the active class in any one of the M dimensions in 
descriptor space. 

Methods of Classif ication 

To obtain a successful classification result in cases with 
asymmetric data structures, the method of analysis must be able 
to distinguish the well-defined class from the one with no structure. 
A number of methods are commonly used in chemical classification 
studies: the linear learning machine (LLM),7 linear discriminant 
analysis (LDA),8 the k nearest neighbor (KNN),9 and the recently 
developed SIMCA10 method. The two former methods are so-

(5) C. Hansch, Ace. Chem. Res., 2, 232 (1967). 
(6) O. I. Elgerd, "Control Systems Theory", McGraw-Hill, New 

York, 1967. 
(7) P. C. Jurs and T. L. Isenhour, "Chemical Applications of 

Pattern Recognition", Wiley-Interscience, New York, 1967. 
(8) Y. C. Martin, "Quantitative Drug Design", Marcel Dekker, 

New York, 1978. 
(9) B. R. Kowalski, in "Computers in Chemical and Biochemical 

Research", Vol. 2, C. E. Klopfenstein and C. L. Wilkens, Eds., 
Academic Press, New York, 1974. 
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Table II. Statistical Data for the Quinones 

no. RSDa 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

0.71 
0.24 
0.58 
1.70 
2.00 
2.20 
0.46 
0.56 
0.50 
0.29 
0.04 
0.42 
0.56 
0.56 
1.90 
1.90 
3.00 
1.30 
0.31 
0.10 
0.68 
0.02 
0.30 
1.40 
3.90 
3.70 
1.60 
8.10 
4.50 
4.00 
4.60 
4.70 
3.70 
5.00 
0.79 
0.95 
0.96 
1.10 
0.58 
0.17 
2.30 
1.50 
0.76 
0.76 
1.10 
0.32 
0.16 
0.87 

-0.37 
0.14 
0.92 
1.14 
1.41 
1.34 

-1 .21 
0.06 
0.12 
0.47 

-0.54 
0.66 

-0.27 
-0.27 

2.61 
1.58 
3.30 
0.97 
0.99 
0.75 
1.40 
2.06 
2.39 
0.05 
3.98 
3.7 3 

-2.50 
7.40 
1.82 
1.35 
2.65 
2.71 
3.06 
2.41 

-1.85 
-1.89 
-1 .68 
-1 .63 
-1.80 
-1.22 
-5.77 
-1.36 
-0 .64 
-0 .64 
-0.70 
-1.46 
-1 .63 
-0 .91 

a RSD (residual standard deviation) for class = 0.57. 

called hyperplane methods, which obtain the equation for a plane 
or hyperplane in data space which is inserted between two classes 
in a separation problem. This discriminant function can be used 
to classify an unknown or untested object by determining on which 
side of the hyperplane this object lies. From Figure 2b it is obvious 
that such methods cannot be used in classification problems in 
which embedded structures are found. No meaningful hyperplane 
can be inverted between the classes. Also, since they are regression 
methods, they require that in the initial stages of the analysis,11 

the number of compounds be four to five times the number of 
descriptors. This is not possible in cases where the number of 
compounds in a class is only four or five. The KNN method 
classifies an object on the basis of the identity of its two nearest 
neighbors. Therefore, this method can be used to obtain clas­
sification results in cases with asymmetric data structures, but 
it suffers from the inability to obtain results beyond classification.12 

SIMCA encloses the well-structured class in a region of space, 
and is therefore the most obvious method to use in problems with 

(10) S. Wold, Pattern Recognition, 8, 127 (1976). 
(11) J. G. Topliss and R. P. Edwards, J. Med. Chem., 22, 1238 

(1979). 
(12) C. Albano, W. J. Dunn III, U. Edlund, E. Johansson, B. Nor-

den, M. Sjostrom, and S. Wold, Anal. Chim. Acta, 103, 429 
(1978). 
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Figure 3. Graphic display of quinone data before regularization: (A) active compounds; (O) inactive compounds. 

asymmetric data structures. With SIMCA, an area or volume 
element in descriptor space is defined in which the probability 
of finding the active compounds is the highest. Compounds 
outside of this region are expected to be nonmembers of this class. 
An advantage of this approach is that the size of the inactive class 
can be very small, e.g., two or three compounds, and meaningful 
classification results can still be obtained. 

Example. Recently, a study was reported in which an obvious 
relationship between physical properties and drug class was 
recognized for naphthoquinones as active or inactive against 
Plasmodium berghei, one of the parasites responsible for malaria.13 

However, LDA or quadratic discriminant analysis were not able 
to separate the classes.14 The structures of the compounds are 
given below and a total of 48 compounds are included. 

IV 

The antimalarial response is thought to be due to their ability 
to compete with coenzyme Q and disrupt mitochondrial electron 
transport.16 It has been proposed that in order to be active, 
quinones must be passively transported to the site of action where 
reduction occurs.16 Hence, proper transport properties and re­
duction potential are required for activity. These properties were 
modeled by the 1-octanol/water partition coefficient and the 
energy of the lowest unoccupied molecular orbital, £LUMO> re­
spectively.13 The compounds and their activities and data (log 

(13) Y. C. Martin, T. M. Bustard, and K. R. Lynn, J. Med. Chem., 
16, 1089 (1973); Y. C. Martin, "Quantitative Drug Design", 
Marcel Dekker, New York, 1978, p 106. 

(14) Y. C. Martin and G. Chao, private communication. 
(15) J. D. Turnbull, G. L. Biagi, A. J. Merala, and K. D. Cornwell, 

Biochem. Pharmacol, 20, 1383 (1971). 

P and £LUMO) a r e given in Table I. 
This is a two variable problem and, therefore, can be presented 

in graphic form (Figure 3). In this figure it can be seen that the 
active compounds fall on or near a straight line, while the inactives 
are scattered randomly in the space around this line. This is a 
very clear exhibition of embedded structure, and we use it to 
illustrate problems inherent in classification studies where such 
data are observed. 

The Basis of Classification with the SIMCA Method. The 
methodology on which SIMCA is based assumes that the regularity 
within the data for a class, such as that shown in Figure 3, can 
be approximated by a principal components model, eq 1. Here 

mt + £ biaUak + eik 
0 = 1 

(1) 

Yik is the observed value of variable i for the feth object, m, is the 
mean value of variable i in the class, and A is the number of 
component or product terms in the model. Associated with each 
product term is a variable specific vector, b^, and a compound 
specific vector, U&. The difference between Y& and the calculated 
value is the residual, eik. 

Since the problem is a two variable one, it can be used to 
visualize how SIMCA actually classifies. These steps are sum­
marized as follows: (1) First the data are adjusted to zero mean 
and unit variance. This gives each variable equal weight in the 
analysis. (2) The data for the active class are fitted to a similarity 
model. In this case, the model has one component and is 
graphically represented by a straight line. (3) The residuals for 
the objects in the training set are then calculated. From these 
a standard deviation for the class can be obtained. Classification 
of the training-set compounds is done by comparing their standard 
deviations with that of the class. If inside the standard deviation 
for the class, an object is classified as being a member of that class; 
if outside, the compound is classified as being a nonmember of 
the class. (4) The unknown or test set compounds are classified. 
Since a standard deviation above and below the model defines 
an area of descriptor space, an unknown compound can then be 
classified as being a member of the class if it falls in this area. 
Those compounds outside the area are nonmembers of the class. 
These operations were carried out on the data in Table I, and 
the statistical data for the analysis are given in Table II. 

Results 
From the standard deviations for the active compounds 

it can be seen that 9/16 fall within 1 standard deviation 
for the class (0.57), and all lie within 2 standard deviations. 
Compound 45 is the one with poorest fit to the similarity 
model with a standard deviation of 1.10. This puts it on 
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the "edge" of the region where those compounds expected 
to have antimalarial activity are to be found. 

Of the inactive compounds, some are classified to be 
active. These are 7-12, which are false positives. 

Discussion 
Asymmetric data structures discovered in recent struc­

ture-activity studies1"3 seem to be rather common. They 
can be expected in classification studies in which a class 
of active compounds is analyzed together with a nonactive 
class. Such structures can result mainly from the existence 
in the analysis of one of two factors: (1) an inactive class 
which contains too few members to obtain a statistically 
significant mathematical description of the class or (2) an 
inactive class which contains no systematic structure. In 
the former case, the number of compounds in a class must 
be at least five to justify a similarity model with one 
component (A = 1). The second case is illustrated well 
by the quinone data in this report. The number of inactive 
compounds is 32, and there is no apparent structure in 
their data while there is obvious structure in the data for 
the active class. 

This is the second paper in a series on a novel method 
for deducing quantitative structure-activity relationships 
(QSAR) for drugs. We treat the following idealized 
problem: (i) binding is observed to occur on a single site 
of a pure receptor protein (or other macromolecule); (ii) 
each ligand has a well-determined chemical structure and 
stereochemistry but may be flexible due to rotation about 
single bonds; (iii) no chemical modification of the ligands 
occurs during the binding experiment, although the con­
formation of the ligand may change upon binding to ac­
comodate the binding site; (iv) the free energy of such a 
conformational change is small compared to the free energy 
of binding; (v) the experimentally determined free energy 
of binding is given and is approximately the sum of the 
"interaction energies" for all "contacts" between parts of 
the ligand molecule and parts of the receptor site; (vi) the 
site itself may be slightly flexible, although no major 
conformational changes are permitted, and the energetic 
cost of any deformation is negligible. The previous paper 
in this series2 explained how the series of ligands may each 

(1) This work was supported by grants from the National Re­
source for Computation in Chemistry under a grant from the 
National Science Foundation and the U.S. Department of 
Energy (Contract W-7405-ENG-48) and by the National Sci­
ence Foundation directly under Grant PCM78-05468. We are 
also grateful for the use of the UCSF Computer Graphics 
Laboratory (NIH RR 1081). 

It is also obvious from Figure 3 that classification 
methods which rely on the insertion of a plane or hyper-
plane between the classes in order to separate the classes 
will fail if asymmetric or embedded structures are in the 
data. For this reason, LDA could not separate the active 
antimalarials from the inactive compounds; likewise, the 
LLM would also fail to separate the two classes. The KNN 
method, which classified an object on the basis of its 
nearest neighbors, can be expected to give good classifi­
cation results. 

While SIMCA can be expected to give good results in 
such classifications, the interpretation of the results must 
be carefully made. The result of classifying a new com­
pound in the active class means that the compound is a 
member of that class and its residual standard deviation 
is a measure of the probability of this assignment. Com­
pounds within 1 standard deviation have the highest 
probability of being a class member. Compounds with 
larger standard deviations, but within 2 such deviations, 
will have lower probabilities of being class members. 
Larger standard deviations than this suggest that the new 
compound is a "nonmember" of the class. 

be represented as a collection of points corresponding to 
atoms or small groups of atoms, and the conformational 
flexibility can be treated as upper and lower bounds on 
the distances between all pairs of points making up the 
ligand. Similarly, the binding site was represented as 
points positioned rigidly in space with respect to each 
other. The site points are best thought of as corresponding 
in the real site to the locations of pockets of various types 
or in some cases as the positions of steric blocking groups. 
The interaction energies between ligand points of the 
various types and the site points of their types are given 
as entries in an energy table. It is through this table that 
a certain type of site point may be characterized as being 
a hydrogen bond donor, or a small pocket accomodating 
ethyl groups or less, etc. The first paper went on to outline 
computer algorithms for finding the energetically most 
favorable but still geometrically allowed binding mode for 
each ligand in the data set. The binding mode consists 
of specifying which ligand points are to coincide with which 
site points. The calculated binding free energy for a given 
mode is taken to be the sum of the interaction energies 
for each coincidence (or "contact"). 

In the present work, all of the above has remained the 
same, and the interested reader is urged to read ref 2 for 
more detail. The major shortcoming of the method so far 

(2) G. M. Crippen, J. Med. Chem., 22, 988 (1979). 
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Extensions are presented for the distance geometry approach to rationalizing ligand binding data. These are algorithms 
to (i) detect when homologues are not binding with the same orientation in the binding site although they are chemically 
similar; (ii) deduce what the binding site's size and shape must be; and (iii) calculate the optimal set of interaction 
energies between parts of the site and parts of the ligand molecules. This improved methodology is tested on a 
set of 68 quinazoline inhibitors of S. faecium dihydrofolate reductase. Results are discussed and compared with 
the Hansch method of QSAR, and an improved inhibitor is predicted. 
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