25836). J.A.K. is a Camille and Henry Dreyfus Teacher-Scholar, and D.F.H. is a Procter and Gamble Fellow. Kurt W. Raack assisted in the preparation of diethylaminosulfur trifluoride (DAST). The binding affinity measurements to the uterine estrogen receptor were performed by Kathryn E. Carlson. The high-resolution mass spectrometry equipment used in this study was provided by a grant from the National Cancer Institute (CA 11388).

Aporphines. 31. Synthesis and Antitumor Activity of Aporphine Nitrogen Mustards^{1a}

John L. Neumeyer,* Felix E. Granchelli,^{1b} Crist N. Filer,^{1b} Albert H. Soloway,^{1c} and Say-Jong Law^{1d}

Department of Medicinal Chemistry, College of Pharmacy and Allied Health Professions, Northeastern University, Boston, Massachusetts 02115. Received February 27, 1980

A series of aporphine nitrogen mustards and their congeners (1b-g) has been prepared. N-[[Bis(2-chloroethyl)amino]acetyl]-2,11-dihyroxy-10-methoxynoraporphine (1b) and its mono- and diacetyl ester derivatives (1c-d) were prepared from N-(chloroacetyl)-2,11-diacetoxy-10-methoxynoraporphine (2). Reaction of 2 with diethanolamine under various conditions and different solvents resulted in the corresponding N-[[bis(2-hydroxyethyl)amino]acetyl] precursors, which were subsequently treated with SOCl₂ to yield the target compounds. N-(2-Choroethyl)norapocodeine (1e) was obtained from the chlorination of N-(2-hydroxyethyl)norapocodeine (9) with SOCl₂. Prolonging such treatment was found to result in the formation of N-[2-(chloroethoxy)ethyl]norapocodeine (1f) at the expense of 1e. N-[[[N-(2-Chloroethyl]carbamyl]oxy]ethyl]norapocodeine (1g) and its 11-(2-chloroethyl)carbamyl derivative (1h) were also prepared. All the double-armed aporphine amide nitrogen mustards (1b-d) were found to have antitumor activity. The single-armed aporphine nitrogen mustard (1e) was also active in P388 but the activity was less than that observed with 1b-d. The lead compound 1a was inactive in the LE1210 and P388 systems at the doses tested. Similarly, the two aporphine mustard congeners (1f,g) were also inactive in the P388 system. All the activity was observed in the intraperitoneally innoculated tumor systems.

In a continuing effort to design central nervous system (CNS) penetrating antitumor agents, our approach was the development of multiple-component drugs containing both CNS-penetrating moieties and antineoplastic functions. Thus, the overall drug structure may be viewed as a three-component compound incorporating the following structural features:

This approach has been used successfully by Driscoll² et al. who utilized the concept of attaching alkylating functions to such CNS-penetrating agents as the hydantoins,^{2a} phenothiazines,^{2b} and benzoquinones.^{2c,d} When we utilized the CNS-penetrating 3-amino-4-(p-aryl and alkyl)isoquinolines as the brain-penetrating moiety, incorporating a nitrogen mustard as the antineoplastic function,³ or when a bis(2-chloroethyl)aminoethyl moiety was attached directly to the nitrogen atom in 2,10,11-trimethoxynoraporphine⁴ (1a), inactive antitumor compounds resulted. We attributed such inactivity to the

- (3) C. N. Filer, F. E. Granchelli, A. H. Soloway, and J. L. Neumeyer, J. Med. Chem., 20, 1504 (1977).
- (4) F. E. Granchelli, A. H. Soloway, J. L. Neumeyer, and C. N. Filer, J. Org. Chem., 42, 2014 (1977).

1a (NSC 278462), $X = OCH_3$; $R^1 = CH_3$; $R = CH_2CH_2N(CH_2CH_2Cl)_2$ b (NSC 311484), X = OH; $R^1 = H$; $R = COCH_2N(CH_2CH_2Cl)_2$ c (NSC 294134), $X = OCOCH_3$; $R^1 = COCH_3$; $R = COCH_2N(CH_2CH_2Cl)_2$ d (NSC 279847), X = OH; $R^1 = COCH_3$; $R = COCH_2N(CH_2CH_2Cl)_2$ e (NSC 304688), X = H; $R^1 = H$; $R = CH_2CH_2Cl$ f (NSC 311483), X = H; $R^1 = H$; $R = CH_2CH_2Cl$ g (NSC 316161), X = H; $R^1 = H$; $R = CH_2CH_2CL_2Cl$ h (NSC 322369), X = H; $R^1 = CONHCH_2CH_2CL_2Cl$; $R = CH_2CH_2OCONHCH_2CH_2Cl$

apparent high lipophilic character of these compounds. Consequently, derivatives 1b-g were synthesized in an effort to increase the hydrophilicity of the molecule without sacrificing its potential CNS-penetrating properties. The structural modifications featuring (a) replacements of the 2- and 11-methoxy groups with H and OH or metabolically labile acetoxy groups, (b) attachment of the nitrogen mustard moiety to the aporphine nitrogen atom via an amide bond as opposed to the hydrocarbon chain existing in 1a, or (c) direct attachment of the chloroethyl group to the aporphine nitrogen atom led to antitumor activity of these compounds in one or several tumor systems.

We wish to report the synthesis of the active antitumor agents 1b-d as well as the antitumor activity of the single-armed mustard, 1e. The synthesis of 1e has been

 ⁽a) Presented at the 179th National Meeting of the American Chemical Society; see "Abstracts of Papers", 179th Meeting of the American Chemical Society, Houston, Texas, Mar 23-28, 1980, American Chemical Society, Washington, D.C., 1980, Abstr MEDI 63. (b) New England Nuclear Corp. (c) College of Pharmacy, Ohio State University. (d) Collaborative Research Corp.

^{(2) (}a) G. W. Peng, V. E. Marquez, and J. S. Driscoll, J. Med. Chem., 18, 846 (1975); (b) T. Hirata and J. S. Driscoll, J. Pharm. Sci., 65, 1699 (1976); (c) F. Chou, A. H. Khan, and J. S. Driscoll, J. Med. Chem., 19, 1302 (1976); (d) A. H. Khan and J. S. Driscoll, *ibid.*, 19, 313 (1976).

presented elsewhere.⁵ Additionally, the derivatives 1f-garising from the substitution of the chloroethyl side chain of 1e with chloroethoxyethyl or chloroethylcarbamylethyl moieties failed to demonstrate antitumor activity.

Chemistry. Careful treatment of the previously described⁴ N-(chloroacetyl) derivative 2 with diethanolamine in refluxing THF provided the diol 3 (Scheme I). Further treatment with $SOCl_2$ yielded the desired mustard 1c, which can rapidly give rise to 1b in the presence of methanol and HCl. It is noteworthy that refluxing the diacetoxy diol 3 in concentrated hydrochloric acid for several hours causes ring scission with concomitant deamidation and deacetylation resulting in near quantitative formation of the phenanthrene 4a. A similar scission of the nitrogen ring to give the phenanthrene analogue 4b was observed when 2 was treated with concentrated HCl.⁵ The preparation of 1d requires treating 2 with a twofold excess of diethanolamine at 90 °C to give the partial deacetylated intermediate 5. On steric grounds and on the basis of NMR interpretations it is postulated that deacetylation occurred at position 2 in preference to position 11. Treatment of 5, with SOCl₂ afforded 1d, which as in the deacylation of 1c will give rise to 1b in the presence of MeOH and HCl. Alternatively, 1b can be obtained from 6 by its reaction with thionyl chloride in acetonitrile. This latter structure is derived by treating 2 with a large excess of diethanolamine at 110 °C.

Alkylation of norcodeine (7) with bromoethanol yielded N-(hydroxyethyl)norcodeine (8). Acid-catalyzed rearrangement with neat methanesulfonic acid led to N-(hydroxyethyl)norapocodeine (9),⁵ which was converted to the mustard 1e by standard procedures. However, if stirring of 9 with SOCl₂ was prolonged overnight, 1f was generated as a side product at the expense of 1e. Compound 1g can be obtained by treating 9 with excess chloroethyl iso-

Table I. ¹³C NMR Spectrum of 1f^a

carbon assignment	chemical shift ^a (multiplicity)	
1	128.41 ^b	
2	129.04 ^b	
3	129.24 ^b	
4	27.27 (t)	
5	51.49 (t)	
6a	63.48 (d)	
7	32.78 (t)	
8	119.89 (d)	
9	111.88 (d)	
10	149.20 (s)	
11	146.00 (s)	
12	119.75 (s)	
13	127.00(s)	
14	129.66	
15	130.70	
16	134.06°	
17	43.97 (t)	
18	55.20 (t)	
19	65.94 (t)	
20	72.63 (t)	
21	65.94 (q)	

^a Chemical-shift values are expressed in parts per million downfield from internal $(CH_3)_4$ Si: s = singlet; d = doublet; t = triplet; q = quartet. ^b The aromatic resonances could not be rigorously assigned.

cyanate in refluxing THF. A side product, the dicarbamate 1h, was also generated (Scheme II). The structure of 1f was confirmed by high-resolution mass spectrometic data and by ¹H and ¹³C NMR spectral analysis (Table I). The

⁽⁵⁾ F. E. Granchelli, C. N. Filer, A. H. Soloway, and J. L. Neumeyer, J. Org. Chem., 45, 2275 (1980).

Scheme II

mass spectrum of 1f showed a molecular peak of m/e 373 and a P + 2 peak of one-third intensity, supporting a combination of C₂₁H₂₄NO₃Cl which is the empirical formula of 1f. Major fragments shown in the mass spectrum of 1f are shown in Scheme III. The elemental composition of the molecular ion and all fragment ions in the mass spectrum of 1f have been confirmed by HRMS ($M/\Delta M$ = 30 000). Similar fragmentation patterns giving rise to m/e 280 and a retro-Diels-Alder type of fragmentation giving rise to m/e 238 have been encountered in several other aporphine derivatives [e.g., 1e and N-(hydroxyethyl)norapomorphine⁶]. Physical and chemical data for all intermediates and target compounds are listed in Table II.

Antitumor Activity. Table III lists the antitumor activity of the aporphine derivatives evaluated in one or several tumor systems implanted intraperitoneally (ip) and intracerebrally (ic). The 2,10,11-trimethoxy derivative (1a, NSC 278462) was inactive in the LE1210 lymphoid leukemia (LE), ependymoblastoma (EM), and P388 lymphocytic leukemia (P388) assay systems using standard NCI protocols.^{7,8} The 2,11-dihydroxy-10-methoxyaporphine amide nitrogen mustard (1b, NSC 311484) had confirmatory activity⁹ in the ip inoculated P388 tumor system. Further studies in other tumor systems are still underway. The 2.11-diacetoxy-10-methoxyaporphine amide nitrogen mustard (1c, NSC 294134) showed activity in both P388 and B16 melanocarcinoma (B16) assays with reproducible activity down to the dose of 12.5 mg/kg in B16 and possibly lower in P388. The 2-hydroxy-11-acetoxy-10-methoxyaporphine amide nitrogen mustard (1d, NSC 279847), likewise, was found to be active in both ip inoculated P388 and B16 assays but failed to show confirmatory activity in LE1210 and ic inoculated EM and B16 tumor systems. The single-armed aporphine nitrogen mustard (1e, NSC 304688) showed only marginal but confirmatory activity in the P388 assay at a dose of 4.0 mg/kg. The derivatives of 1e, 1f (NSC 311483) and 1g

(6) J. L. Neumeyer, S.-J. Law, R. J. Baldessarini, and N. S. Kula, J. Med. Chem., 23, 594 (1980). **Physical and Chemical Data**

H.

Table

- (7) "Instruction 14, Screening Data Summary Interpretation and Outlines of Current Screen", Drug Evaluation Branch, Drug Research and Development Division of Cancer Treatment, National Cancer Institute (NCI), Bethesda, MD.
- (8) P. C. Merker, I. Wodinsky, and R. I. Geran, Cancer Chemother. Rep., 59, 729 (1975).
- (9) Compounds are considered active in vivo in this system if they exhibit activity (T/C) values equal to or greater than 125%.

	anal.	C, H, N C, H, Cl, N	C, H, CI, N	C, H, N	C, H, N	C, H, N	C, H, N	C, H, CI, N	C, H, CI, N	C, H, N	
	formula	$C_{23}H_{26}CI_2N_2O_4 \cdot HCI \cdot 2H_2O_7$ $C_{22}H_{22}CI_2N_2O_5 \cdot HCI \cdot H_2O_7$	Ċ,ĹH"ĊĽ,N,O,	ĊĹĤ"ĨĊĨŇŎ _ġ ĂĊĨ	C"H"CINO, HCI-0.5H,O	C"H"CIN, O₄·HCI·1.5H, O	C"H"CI,N,O, HCI-1.5H,O	C"H"N,O,HCI	C,H,CINO,	$C_{25}H_{30}N_2O_7O_7O_5H_2O_7O_7O_7O_7O_7O_7O_7O_7O_7O_7O_7O_7O_7O$	not optimized.
	mp, °C	165-170 145-155	115 - 119	212 - 215	202 - 205	185 - 188	178 - 182	160 - 170	110 - 115	105 - 115	hine (2) was n
r 	% yield ^a	10^{b}	50	32	40	23	22	47	43	06	oxynoraporp
CH ₃ O ^C H ₃ O ^C H ₃ O	R	COCH ₂ N(CH ₂ CH ₂ Cl) ₂ COCH ₂ N(CH ₂ CH ₂ Cl) ₂	COCH, N(CH, CH, CI),	CH _a CH _a Ci ¹	CH, CH, OCH, CH, CI	CH,CH,OCONHCH,CH,CI	CH, CH, OCONHCH, CH, CI	COĊH, Ň(CH, CH, OH),	COCH,CI	COCH ₁ N(CH ₂ CH ₂ OH) ₂	acetyl)-2,11-diacetoxy-10-meth
	R'	H COCH.	COCH	H Č	Н	Н	CONHCH, CH, CI	COCH,	COCH	COCH ₃	a the starting N-(chloro
	x	OH OCOCH.	HO	Н	Н	Н	Н	0COCH,	ococh	Ю	Dverall yield fro
	NSC no.	311484 294134	279847	304688	311483	316161	322369		272339	282453	last step. b C
	compd	1b 1c	1d	le	1f	lg	11	ი	5	ល	a Yield of

Scheme III

Table	III.	Antitumor	Activity ^a
Table .		Antitumor	ACTIVITY

 compd	NSC no.	schedule	dose, mg/kg	T/C ^b	compd	NSC no.	schedule	dose, mg/kg	T/Cb	
la	278462	LE (ip) ^c	100 50 25 12.5 6.85	87 101 101 98	1e	304688	P388 (ip)	16 8 4 16	$ 128 \\ 114 \\ 151 \\ 107 $	
		EM (ic) ^c	16	101			B16 (ip)	8	96 97	
		D 200 (:)	0 4	104			(- r)	84	97 91	
		r 386 (lp)	10 8 4	$113 \\ 127 \\ 106$			B16 (ic)	32 16 8	$103 \\ 106 \\ 102$	
1b	311484	P 388 (ip)	$\begin{array}{c} 25\\ 12.5\\ 6 25 \end{array}$	$ \begin{array}{r} 114 \\ 158 \\ 149 \end{array} $				4 2	106 100	
1c	294134	P 388 (ip)	3.13 50	145 130 95			C6 ^d (ip)	32 16 8	124 108 119	
			$25 \\ 12.5 \\ 6.25 \\ 3.13$	$185 \\ 170 \\ 150 \\ 138$			EM (ic)	4 4 2	107 104 99 96	
		B16	50 25 125	$170 \\ 150 \\ 150$				$0.5 \\ 0.25$	$100 \\ 105$	
			6.25 3.13 1.56	159 120 120	1f	311483	P 388 (ip)	$100 \\ 50 \\ 25 \\ 12.5$	104 101 107 99	
1 d	279847	LE (ip)	$\begin{array}{c}100\\50\\25\end{array}$		lg	316161	P 388 (ip)	$300 \\ 105 \\ 75$	105 99	
		P 388 (ip)	$50 \\ 25 \\ 12.5 \\ 6.25$	$130 \\ 168 \\ 174 \\ 143$				37.5 18.75 9.38	97 99 101	
		B16	$50 \\ 25 \\ 12.5$	$170 \\ 135 \\ 134$						
		EM (ic)	$50\\25\\12.5$	86 99 94						
		B16 (ic)	16 8	$102 \\ 111$						

^a Biological evaluations were performed by independent screeners under the auspices of the National Cancer Institute.⁷ ^b Activity is defined as a T/C value of ≥ 125 and was confirmed by two or more screeners. The results of one screener or average values are presented. ^c ip or ic in parentheses denotes intraperitoneally or intracerebrally implanted tumor. ^d Colon 26 tumor. (NSC 316161) were inactive in the P388 assay at the doses tested (Table III).

Discussion

The antitumor activity exhibited by the aporphine mustards **1b** e suggests that structural modifications which increase hydrophilic character will increase antitumor activity. Although none of the active compounds displayed the same effectiveness when tested with ic implanted tumors, it does not necessarily follow that these compounds failed to penetrate into the CNS. We have obtained evidence from closely related structures which indicate that such agents do indeed effectively penetrate the CNS.^{6,10}

The fact that both the mono- and diacetoxyaporphine mustards (1d and 1c) have the same order of activity as the phenolic derivative (1b) could reflect a fast in vivo hydrolysis of the acetates to their phenolic counterpart 1b. Both the HCl salt and the free base of 1c and 1d, respectively, have been found to undergo autohydrolysis on prolonged storage as monitored by TLC.¹¹ Baldessarini et al.¹² have made similar observations with O,O'-diacetylapomorphine.

The indispensability of the functional nitrogen mustard side chain in the aporphine series must be emphasized. Changes of activity are observed in replacing the doublearmed aporphine mustards with a single-armed derivative such as 1e to the inactive congeners 1f and 1g. If the bulk of the antitumor activity of the two-armed mustards (1bd) is due to lethal DNA cross-linking, then the effectiveness exhibited by the "one-armed" mustard 1e must be due to nonspecific toxicity. The lack of activity of 1g and 1h is thus expected, based on the fact that bioactivation would produce 2-chloroethylamine, a known inactive antitumor agent.

Previous studies have shown that the optimum log P value for CNS antitumor activity is about 2.^{2a} Log P values in the octanol-H₂O system were calculated from the experimentally measured log P value for nonmustard precursors, and the estimated lipophilic or hydrophilic contribution of other functional groups was either added or substracted.¹³ Thus, compound 1a was calculated to have a log P value of 5.74, whereas the active mustards 1d and 1e were calculated to have values of 4.11 and 3.29, respectively.¹⁴ These values would indicate that 1d and 1e would penetrate the CNS, whereas a log P value of 5.74 for 1a supports our conclusions that this compound is too lipophilic for CNS activity.

Experimental Section

General Methods. All melting points were taken on a Thomas-Hoover apparatus and are uncorrected. Analyses were performed by Galbraith Laboratories, Knoxville, Tenn. Thin-layer chromatography (TLC) was performed on precoated silica gel 13179, polyethylene terephthalate foils (Eastman Kodak, Rochester, N.Y.). Column chromatography was performed on silica gel (Baker, 5-3405, 60-200 mesh). The IR spectra were obtained with a Perkin-Elmer Model 700 or Beckman IR10 spectrophotometer. The NMR spectra were measured in CDCl₃ or CD₃S-OCD₃ or CD₃OD on a Varian T-60 spectrometer, and chemical shifts are reported in parts per million (δ) downfield from (CH₃)₄Si as internal standard. Mass spectra were determined on a 12-90-G Nuclide mass spectrometer. Optical rotations were obtained on a Perkin-Elmer polarimeter (Model 141).

6-[2-[Bis(2-hydroxyethyl)amino]acetyl]-2,11-diacetoxy-10-methoxynoraporphine (3). A mixture of 222 mg (0.5 mmol) of the N-(chloroacetyl) intermediate (2) prepared by the procedure of Granchelli et al.⁵ and 140 mg (1.33 mmol) of diethanolamine in 15 mL of dry THF was allowed to reflux overnight. The THF solution was decanted from a small amount of insoluble oil and evaporated to dryness. The residue was dissolved in 40 mL of $CHCl_3$, shaken with 3 × 30 mL of aqueous brine, dried, and evaporated to dryness to give 470 mg of product. The crude residue was dissolved in 20 mL of a mixture of Et₂O and CH₃OH (2:1), filtered through Celite, and acidified with ethereal HCl, yielding a near colorless precipitate. The product was filtered, washed with Et_2O , and dried, giving 130 mg (47%) of the diol 3·HCl: mp 160–170 °C; NMR (CDCl₃) δ 7.6 (d, 1 H, C₁ H), 6.75 (d, 1 H, C₃H), 6.95 (q, 2 H, C₈ H and C₉ H), 3.8 (s, 3 H, OCH₃), 2.7-3.8 (m, 17 H), 2.25 (d, 6 H, C(=O)CH₃); UV max (EtOH) 302 nm (log e 3.83), 269 (4.19); IR (CHCl₃) 3375 (br), 1760 (s), 1640 (s) cm⁻¹. Anal. $(C_{27}H_{32}N_2O_8 HCl)$ C, H, Cl, N.

6-[2-[Bis(2-Chloroethyl)amino]acetyl]-2,11-diacetoxy-10methoxynoraporphine Hydrochloride Monohydrate (1c). A solution of 1.2 g (2.3 mmol) of the diol (3) in 60 mL of dry CH₃CN was treated with 1.4 mL (2.4 g, 0.019 mol) of SOCl₂ and stirred at room temperature for 3 h. The solution was evaporated to dryness and fresh CH₃CN was distilled from the residue several times under vacuum. The residue was dissolved in a mixture of 20 mL of Et₂O and 10 mL of CH₃CN and acidified with ethereal HCl. The product crystallized out on addition of Et₂O and was filtered, washed with Et₂O, and dried to give 730 mg (54%) of 1c, mp 145–155 °C dec. Anal. (C₂₇H₃₂Cl₂N₂O₇·H₂O·HCl) C, H, Cl, N.

11-Acetoxy-6-[2-[bis(2-hydroxyethyl)amino]acetyl]-2hydroxy-10-methoxyaporphine Hemihydrate (5). A mixture of 1.51 g (14 mmol) of diethanolamine, 2.66 g (6 mmol) of the chloroacetylaporphine (2), 120 mL of dimethylacetamide, and 3.6 g (22 mmol) of pulverized KI was heated at 90 °C for 17 h. The solution was evaporated under reduced pressure, and the residue was stirred with 200 mL of H₂O at room temperature for 1 h, giving a gummy precipitate. The water phase was decanted and saved. The gum was dissolved in CHCl₃, and the CHCl₃ solution was washed with 5×75 mL of H₂O and 2×30 mL of brine. After drying, the solvent was removed under reduced pressure to give 0.87 g of a light tan solid, mp 105–115 °C. Anal. (C₂₅H₃₀N₂-O₇·0.5H₂O) C, H, N.

The decanted H_2O phase above was also extracted with CHCl₃, and the extract was washed with H_2O and brine. After drying, the solvent was removed under reduced pressure to give 2.2 g of additional product containing a small amount of dimethylacetamide: total yield 90%.

11-A cetoxy-6-[2-[bis(2-chloroethyl)amino]acetyl]-2hydroxy-10-methoxyaporphine Hemihydrate (1d). A solution of 2 g (3.9 mmol) of the diol (5) in 100 mL of dry CH₃CN was treated with 2 mL (3.3 g, 28 mmol) of SOCl₂ and stirred for 3 h at room temperature under N₂. The solution was evaporated under reduced pressure and CHCl₃ was distilled from the residue several times to remove traces of SOCl₂. The residue was crystallized from a mixture of 10 mL of 95% ethanol and 50 mL of ether. The crude product was then dissolved in a mixture of 50 mL of CHCl₃ and 50 mL of CH₃CN, and the organic solution was shaken with 10 mL of water. The dark aqueous phase was discarded, and the organic layer was dried (Na₂SO₄) and evaporated to give a residue which crystallized when triturated with ether. The product was filtered, washed with Et₂O, and dried, yielding 1.0 g (50%) of 1d, mp 115–119 °C dec. Anal. (C₂₅H₂₈Cl₂N₂O₅) C, H, Cl, N.

N-[[Bis(2-chloroethyl)amino]acetyl]-2,11-dihydroxy-10methoxynoraporphine Hydrochloride Dihydrate (1b). Method A. A mixture of 2 (13.3 g, 0.030 mol), diethanolamine (35.0 g, 0.33 mol), and KI (24.0 g, 0.145 mol) in 200 mL of DMA was heated at 110 °C for 24 h and then distilled under vacuum to remove most of the DMA. The pot residue was added with a mixture of 300 mL of H₂O and 200 mL of CHCl₃, stirred at room temperature for 1 h. While the aqueous layer was discarded, the organic layer and the solid precipitate were dried, evaporated,

⁽¹⁰⁾ B. Costall, D. H. Fortune, S.-J. Law, R. J. Naylor, J. L. Neumeyer, and V. Nohria, *Nature (London)*, 285, 571 (1980).

⁽¹¹⁾ Compounds 1b-d gave R_i values of 0.32, 0.57, and 0.41, respectively, in the solvent system CHCl₃-Et₂O (2:1).

⁽¹²⁾ R. J. Baldessarini, N. S. Kula, K. G. Walton, and R. J. Borgman, Biochem. Pharmacol., 26, 1749 (1977).

⁽¹³⁾ C. Hansch and A. Leo in "Substituent Constants for Correlation Analysis in Chemistry and Biology", Wiley, New York, 1979.

⁽¹⁴⁾ Personal communication from Professor C. Hansch and Dr. A. J. Leo.

and combined to give a brown solid (6; 10.5 g). The crude product was added with 200 mL of CH_3CN and treated with $SOCl_2$ (15.0 mL). The resulting mixture was stirred at room temperature for 4 h and evaporated to dryness. The residue was added with 100 mL of H₂O basified with NH₄OH and extracted with 10% MeOH in $CHCl_3$ (4 × 75 mL). The combined extracts were dried and evaporated to give a dark oil (3.0 g). The oily residue was chromatographed on a silica gel column packed and eluted with Et₂O-CHCl₃-MeOH (80:20:3) to give 1.2 g of pure compound 1b. The free base thus obtained was dissolved in a minimal amount of CH₃OH and diluted with anhydrous Et₂O up to the point when the solution started to cloud. A few drops of CH₃OH was then added to clear the solution. An excess of ethereal HCl was added to the solution until no further precipitation occurred. Filtration of the mixture gave 1.1 g (10%) of light pink solid: mp 165-170 °C; UV max (EtOH) 305 nm (log ϵ 3.87), 279 (4.09), 270 (4.08); $[\alpha]^{28}_{546}$ –266° (c 0.05, EtOH). Anal. (C₂₃H₂₆N₂O₄Cl₂·HCl·2H₂O) C, H.

Method B. A solution of 1d (1.7 g, 0.0034 mol) in 80 mL of CH₃OH and 48 mL of concentrated HCl was allowed to stand at room temperature for 16 h. The mixture was diluted with 150 mL of CHCl₃ and neutralized with aqueous NaHCO₃. The organic layer was separated and the aqueous phase extracted with another 50 mL of CHCl₃. The combined CHCl₃ solutions were dried and evaporated to dryness to give about 1.4 g of product. The product was dissolved in a mixture of 10 mL of CH₃OH and 30 mL of ether and acidified with ethereal HCl to give a gummy precipitate. Trituration with fresh ether gave a crystalline solid weighing 1.24 g (74%), mp 165–170 °C, and has the identical R_f as 1b obtained through method A.

N-(2-Chloroethyl)norapocodeine Hydrochloride (1e). A mixture of 9⁵ (13.24 g, 0.0425 mol) in 350 mL of CH₃CN was treated with SOCl₂ (20.0 g, 0.168 mol), and the reaction mixture was worked up in the same manner as previously described⁵ to give the free base of 1e (4.55 g, 32%) after column chromatography. The HCl salt was prepared in the usual manner, mp 212–215 °C. Anal. (C₁₉H₂₀NClO₂·HCl) C, H, N.

N-[2-(2-Chloroethoxy)ethyl]norapocodeine Hydrochloride **Hemihydrate (1f).** A solution of 9 (0.90 g, 2.9 mmol) and SOCl₂ (2.0 g, 16.8 mmol) in 25 mL of CH₃CN was stirred at room temperature for 20 h. The reaction mixture was evaporated to a residue, which was then added to 20 mL of H₂O, basified with NaHCO₃, and extracted with Et₂O (3 × 40 mL). The combined extracts were dried (Na₂SO₄) and evaporated to an oily residue. The residue was chromatographed on a silica gel column packed and eluted with Et₂O-petroleum ether (1:3) to give sequentially (a) compound 1e (0.15 g, 16%) and (b) compound 1f (0.45 g, 40%): NMR (CDCl₃) δ 2.40–4.0 [m, 19, H at C-4, C-5, C-6a, C-7, OCH₃, NCH₂CH₂OCH₂CH₂Cl, OH], 6.63–7.27 (m, 4, aromatic), 8.03–8.27 (dd, 1, aromatic); MS m/e 373 (M⁺), 100 (base); UV max (EtOH) 310 nm (log ϵ 3.81), 276 (4.38); $[\alpha]^{28}_{546}$ -40° (c 0.05, EtOH); for ¹³C NMR, see Table I. The HCl salt was prepared in the usual manner, mp 202–205 °C. Anal. (C $_{21}H_{24}ClNO_3 \cdot HCl \cdot 0.5H_2O)$ C, H, N.

N-[[[N'-(2-Chloroethyl)carbamyl]oxy]ethyl]norapocodeine (1g) and N-[[[N'-(2-Chloroethyl)carbamyl]oxy]ethyl]-10-methoxy-11-[(chloroethyl)carbamyl]aporphine (1h). A solution of 9 (1.01 g, 3.2 mmol) in 50 mL of THF was added dropwise via syringe to chloroethyl isocyanate (3.75 g, 35.5 mmol). The solution was further diluted with 25 mL of THF and allowed to reflux for 24 h. The reaction mixture was cooled and filtered to obtain a white solid (0.13 g, 13%), which was identified as the unreacted N-(hydroxyethyl)norapocodeine. The filtrate was evaporated to a residue, dissolved with 25 mL of 10% HCl, and washed with Et_2O (2 × 25 mL). The acidic aqueous layer was neutralized with NH₄OH and extracted with $CHCl_3$ (3 × 50 mL). The combined extracts were dried and evaporated to give a dark oil, which was chromatographed on a silica gel column packed and eluted with Et₂O-CHCl₃-MeOH (85:13.5:1.5) to give three fractions (I–III). Fraction I (1g; 0.27 g, 23%): UV max (EtOH) 300 nm (log ϵ 3.70), 275 (4.71); MS m/e 416 (M⁺), 266 (base); $[\alpha]^{28}_{546}$ -25° (c 0.06, EtOH). The HCl salt was prepared in the normal manner, mp 185-188 °C. Anal. (C22H25ClN2O4-HCl·1.5H₂O) C, H, N. Fractions II and III were also identified. Fraction II contained a mixture of 1g and 1h (0.35 g) and fraction III contained pure 1h (0.33 g, 22%); MS m/e 436 (M⁺), 266 (base); UV max (EtOH) 300 nm (log ϵ 3.46), 268 (4.15); $[\alpha]^{28}_{546}$ -9.7°. The HCl salt was prepared in the normal manner, mp 178-182 °C (softened at 80 °C). Anal. (C₂₅H₂₉Cl₂N₃O₅·HCl·1.5H₂O) C, H, N.

1-(Aminoethyl)-3,5-dihydroxy-6-methoxyphenanthrene Hydrochloride (4a). A solution of 3 (0.150 g, 0.31 mmol) in 3 mL of concentrated HCl was heated at 110–120 °C under N₂ for 20 min. The reaction mixture was cooled and filtered to give a pink solid, which was washed with cold concentrated HCl and Et₂O and dried in a dessicator at 40–50 °C, giving 50 mg (50%) of 4a·HCl: mp 240 °C dec; NMR (CDCl₃-Me₂SO-d₆) δ 2.75–370 (br signal, 4, CH₂CH₂N), 3.93 (s, 3, OCH₃), 7.0–7.90 (m, 7, aromatic H and phenolic OH), 8.10–8.90 (br signal, 3, NH₃⁺), 9.20 (d, 1, aromatic H at C-4); UV max (EtOH) 321 nm (log ϵ 4.19), 298 (4.17), 257 (4.70), 240 (4.55).

Acknowledgment. The help and encouragement of Mrs. Nancita Lomax and Dr. V. Narayanan are greatly appreciated. We also thank Dr. Paul Vouros for mass spectral interpretations, Dr. Catherine Costello (MIT) for the acquisition and interpretation of the high-resolution mass spectrum for 1f, Larry Thomas (NEN) for the ¹³C NMR spectrum of 1f, Professor C. Hansch and Dr. A. J. Leo for log P determinations, and Mallinckrodt, Inc., for generous samples of thebaine. This investigation was supported by the National Cancer Institute (NC 1-CM-53741).

Retinoic Acid Analogues. Synthesis and Potential as Cancer Chemopreventive Agents

Marcia I. Dawson,* Peter D. Hobbs, Karl Kuhlmann, Victor A. Fung, C. Tucker Helmes, and Wan-Ru Chao

Bio-Organic Chemistry Laboratory, SRI International, Menlo Park, California 94025. Received September 24, 1979

Analogues of retinoic acid have been synthesized as potential chemopreventive agents against epithelial cancer. Ethyl (E)-9-(2-norbornenyl)-3,7-dimethylnona-2,4,6,8-tetraenoate (9), (E)-3,7-dimethyl-9-(2-ethyl-6,6-dimethyl-1-cyclohexen-1-yl)nona-2,4,6,8-tetraenoic acid (25), and 2-(2'-methoxyethoxy)ethyl retinoate (26) displayed good activity in the inhibition of tumor promoter-induced mouse epidermal ornithine decarboxylase assay. (E)-1-(3-Acetoxy-phenyl)-4-methyl-6-(2,6,6-trimethyl-1-cyclohexen-1-yl)hexa-1,3,5-triene (34) had low activity. (E)-5-[2,6-Dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl]tetrazole (40) was inactive.

The progressive loss of the regulation of cellular differentiation by epithelial cells can result in cancer. Retinoic acid (1) and some of its analogues (retinoids) prevent the expression of these unfavorable cellular changes at a fundamental level. The mechanism by which chemoprevention of carcinogenesis occurs has not yet been estab-