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focus on the comparison of chemically similar analogues, 
where it is clear that a substantial subset of the atoms of 
one drug molecule match corresponding subsets in the 
other molecule. Distance geometry, of course, can treat 
such a situation, but it can also deal with chemically very 
dissimilar drugs, (ii) There is usually a tacit assumption 
that all the analogues bind in the same orientation at the 
receptor site, such that their corresponding atoms always 
occupy the same positions. In reality, however, drug 
molecules bind in whatever orientation and internal con­
formation will minimize the free energy of the drug-re­
ceptor-solvent system. The distance geometry calculation 
directly simulates this search for the most favorable 
binding mode, and rather similar compounds may bind 
quite differently, (iii) Other structural methods choose 
a particular "active conformation" for each analogue and 
base their relevant geometric and steric parameters on it 
alone. Our approach more realistically permits a flexible 
drug molecule to adopt whichever energetically reasonable 
conformation gives the best calculated binding, given the 
proposed site, (iv) Most methods presume that differences 
in binding are (to paraphrase Hopfinger24 in his discussion 
of his molecular shape analysis) a smoothly varying 
function of differences between analogues and, indeed, 
should be a linear combination of molecular differences. 

Granted, this is often the case; however distance geometry 
can also model instances where a small alteraton in 
chemical structure gives rise to a large difference in ac­
tivity, (v) Ordinarily, the drug molecules are the focus of 
attention, and the receptor site is described only secon­
darily in terms of the environment of bound ligands. Our 
approach, instead, devotes primary attention to building 
a tangible model of the site in terms of Cartesian coor­
dinates of the site points and empirically determined 
contributions to the free energy of binding from the in­
teraction between groups on ligands and site points. 

Clearly, each QSAR method has at least some sets of 
binding data for which it works well. We claim the dis­
tance geometry approach will account for the observations 
on any sort of binding study, although perhaps requiring 
more computational effort and adjustable parameters than 
other methods. In addition, we claim our method will give 
good results on more difficult data sets, where drugs are 
structurally diverse, where critical steric effects cause large 
differences in binding for small structural changes, and 
where different binding modes are implicated. 
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A pattern-recognition analysis using the ADAPT system was performed on a set of 9-anilinoacridine antitumor agents, 
to determine whether computer-generated descriptors could be used to separate active from inactive compounds. 
A training set of 213 compounds was chosen by random computer selection from a list of 776 structures. Maximal 
increase in life span at the LD10 dosage, a response which is difficult to model using traditional Hansch analysis, 
was used as the measure of biological activity. A set of 18 molecular descriptors, including fragment, substructure 
environment, and physicochemical property descriptors (molar refraction, partial electronic charge) was identified 
which could correctly classify 94% of the compounds in the training set (97% of active and 85% of inactive compounds). 
Eight of the inactive compounds that were misclassified contained amino substituents, suggesting a role for ionization. 
The weight vector that was obtained from the training set was applied to a prediction set of 50 compounds that 
were not included in the original analysis and to a set of 69 structures drawn from the recent literature. The prediction 
set results, ranging from 73 to 86% correct, were lower than those of the training set, but they clearly indicate that 
pattern-recognition techniques can be useful in the screening of proposed or already existing agents and especially 
useful for the identification of active compounds. 

Since the turn of the century, derivatives of acridine 
have been used as therapeutic agents, primarily for the 
control of malaria (quinacrine) and bacterial infections 
(proflavine and acriflavine). It has been established that 
the primary binding site for these compounds in vivo is 
DNA, by the intercalation mode. It is widely and rea­
sonably assumed that the observed biological effects result 
from this tight binding, although the detailed mechanism 
of action remains unknown.1,2 A similar attachment, 
leading to the insertion or deletion of bases, has been 
proposed to explain the mutagenic and carcinogenic po­
tential of acridine compounds.3 The mutagenic activity 
may result from stabilization of imperfect pairing caused 
by single-strand slippages of the DNA.4,5 
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The antitumor potential of acridine derivatives has also 
been recognized for some time. This activity may result 
from the fragmentation of DNA, which has recently been 
shown to occur in tumor cells.6 Despite much research 
in this area, from the earliest studies of antitumor, acri-
dines7,8 until the late 1960's, no definite structure-activity 
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Chart I. Substructures for Selected Environment 
Descriptors a 

I) X - N H , 

Figure 1. Computer-generated structure of 9-anilinoacridine. 
Binding to DNA is presumed to involve intercalation of the 
acridine moiety between adjacent base pairs, with the aniline ring 
lying in the minor groove of the DNA helix. 

relationships appeared, and no antitumor agents of clinical 
significance were developed. In 1971, Cain and co-workers 
embarked on the study of some 9-anilinoacridines as an­
titumor agents against intraperitoneally implanted L1210 
leukemia tumors in mice.9 Based on structural require­
ments for a number of bis(imidazole) and quaternary am­
monium heterocycles,10 these workers have since syn­
thesized and tested hundreds of acridine derivatives.11-21 

It is presumed that the mode of binding of these agents 
involves partial intercalation of the acridine moiety be­
tween adjacent base pairs of DNA, with the aniline ring 
positioned in the minor groove of the helix.21 This can 
easily be envisioned by examining the structure of the 
parent compound, 9-anilinoacridine (Figure 1). 

Many qualitative structure-activity principles have 
emerged from the research, and most of these have been 
substantiated by quantitative SAR analysis.16,21 Toxic and 
effective dosages of anilinoacridines have been shown to 
correlate well with electronic, steric, and lipophilic sub-
stituent parameters. In vivo studies have generally re­
vealed a significant correlation between toxicity and an­
titumor potency. However, a common measure of tumor 
cell selectivity, ILSmax (maximal percent increase in life 
span at a fixed level of toxicity), is usually found to be 
independent of toxicity.18 The aim of QSAR research on 
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Chem., 12, 199 (1969). 
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antitumor compounds should ideally be directed at the 
development of more selective rather than more potent 
(and thus more toxic) derivatives. Consequently, the 
prediction of selectivity is an important objective of such 
research. Many attempts to derive quantitative relation­
ships involving ILSmax, although sometimes satisfactory 
for small groups of homologous structures,16 have resulted 
in equations with explained variances (R2) of only 0.7 or 
lower, when a variety of types of compounds and sub­
stituents have been considered.18 

In such cases, inferences may still be drawn from sig­
nificant regression coefficients, but the relatively poor 
correlations are of little predictive value. It would be 
desirable to have some relationship that could, at the very 
least, separate active from inactive compounds (as indi­
cated by ILSmax). Pattern-recognition techniques are 
ideally suited to this purpose, and in the past they have 
been used successfully to solve QSAR problems that could 
not be handled by conventional regression analysis meth­
ods.22 We felt that the ADAPT system,23 combining the 
capabilities of structure entry, molecular descriptor gen­
eration, and pattern-recognition analysis, might prove more 
successful in the study of the 9-anilinoacridines. Accord­
ingly, we investigated a number of these compounds to try 
to relate tumor selectivity to molecular structure. This 
paper presents a summary of the results that were ob­
tained. 

Experimental Section 
Methodology. A list of 776 9-anilinoacridines was compiled, 

containing toxicity (LD10) and tumor selectivity (ILSmax at the 
LD10 dose) values.21 These compounds represented a majority 
of the structures that have been evaluated by Cain, Denny, and 
co-workers, and a wide variety of substituents and structural 
variants were present. A histogram of the ILS,^ values showed 
a large cluster of compounds at 25%, and the next major cluster 
appeared at 50%. A value of 35%, near the average of these, was 

(22) Bruce R. Kowalski, Ed., "Chemometrics: Theory and 
Application", American Chemical Society, Washington, DC 
1977; ACS Symp. Ser., no. 52 (1977). 

(23) Andrew J. Stuper, William E. Brugger, and Peter C. Jurs, 
"Computer Assisted Studies of Chemical Structure and Bio­
logical Function", Wiley-Interscience, New York, 1979. 
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chosen as the cutoff for inactive compounds. In the entire list, 
there were 555 tumor-active compounds (ILSmiUi greater than or 
equal to 35%) and 221 inactives. Using a random number gen­
erator, a selection of 220 compounds gave a worklist of 158 active 
and 62 inactive compounds. Seven 10-methylacridinium com­
pounds (five active, two inactive) were deleted from the sample, 
since some of the ADAPT programs do not support formally charged 
structures. The final training set of compounds thus contained 
153 active and 60 inactive compounds. The structures of these 
compounds, with corresponding ILSmax values, appear in Table 
I. 

The structures were entered into the ADAPT system, and four 
classes of descriptors were generated for use: (1) fragment de­
scriptors, (2) topological descriptors, (3) substructure environment 
descriptors, and (4) physicochemical property descriptors (Table 
II). A fifth class of descriptors, geometric in nature, and derived 
from three-dimensional structures of modeled compounds, can 
also be generated in ADAPT. The size and flexibility of the many 
substituents in the present data set made it difficult to obtain 
valid models by automatic calculation, so geometric descriptors 
were omitted from the present study. 

The fragment descriptors, which can be generated automati­
cally, include various atom, bond, and ring counts and molecular 
weight. The topological descriptors include all-path counts24 and 
a select number of molecular connectivity values.26 For envi­
ronment descriptors, the structures of misclassified compounds 
were periodically examined during the analysis, to identify sub-
structrual fragments that could be used to better classify the 
compounds (e.g., Chart I). The substructures were encoded using 
first-order molecular connectivity calculations, which consider 
both the given substructure and its immediate environment in 
the molecule.23 

The physicochemical descriptors that were generated included 
molar refractivity,26 Bondi molecular volume,27 the del-Re a 
electronic charges at various positions on the aniline and acridine 
rings,28 and the calculated log P values of the molecules.29 In­
itially, the log P descriptor showed a surprisingly low correlation 
with the £*• values of the compounds (R2 = 0.72). When cor­
rections were made for ionizable groups, this correlation became 
expectedly higher (R2 = 0.98). 

Before any given descriptor was entered into the pattern-
recognition analysis, the number of nonzero values was checked 
to see that it exceeded 10% of the total number of compounds 
and that nonzero values were present in both the active and 
inactive classes. Also, any descriptor was eliminated from con­
sideration if it showed a high multiple correlation with other 
descriptors already in the analysis (e.g., R2 greater than around 
0.95). Out of a total of 84 descriptors generated, only 49 were 
actually used in the analysis (Table II), and no more than 30 to 
35 descriptors were ever under consideration at the same time. 
All descriptors were autoscaled to zero mean and unit standard 
deviation for use in the pattern-recognition analysis. 

The variance method of feature selection,30 combined with the 
linear learning machine, was the primary technique used to select 
and reduce the number of descriptors. At any given step in the 
analysis, either the iterative least-squares31 or the adaptive 
least-squares32 learning machine was used to find the largest 
linearly separable subset of compounds that could be correctly 

(24) M. Randic, G. M. Brissey, R. B. Spencer, and C. L. Wilkins, 
Comput. Chem., 3, 5 (1979). 
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1976. 
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(28) G. del-Re, J. Chem. Soc, 4031 (1958). 
(29) J. T. Chou and Peter C. Jurs, J. Chem. Inf. Comput. Sci., 3, 

172 (1979). 
(30) G. S. Zander, A. J. Stuper, and P. C. Jurs, Anal. Chem., 47, 

1085 (1975). 
(31) Lucio Pietrantonio and Peter C. Jurs, Pattern Recognition, 4, 

391 (1972). 
(32) Ikuo Moriguchi, Katsuichiro Komatsu, and Yasuo Matsushita, 

J. Med. Chem., 23, 20 (1980). 

classified using the current set of descriptors. Then, using a 
holdout technique, between 15 and 30 randomly chosen training 
and prediction subsets of the linearly separable group of com­
pounds were generated. The learning machine was applied to 
each of these training sets until separation was achieved, gen­
erating 15 to 30 weight vectors. A mean weight vector was cal­
culated, and the variance of each coefficient was determined (cf. 
Table IV). The descriptor corresponding to the coefficient with 
the largest variance was deleted from the descriptor set, and the 
process was repeated. In this fashion, "noisy" descriptors, whose 
coefficients fluctuated from one training set to the next, were 
removed from the descriptor pool. 

This holdout method was also used to check the internal 
consistency of the descriptor sets. The weight vectors generated 
from the various training sets were used to predict the class 
membership of the prediction set compounds that were withheld. 
Each compound was withheld into only one of the prediction sets, 
and pooling the prediction set results gave a relatively unbiased 
estimate of the rate of misclassification for the given set of de­
scriptors. 

Resul ts and Discuss ion 
Using the methods described, a set of 18 descriptors was 

obtained which could correctly classify 200 (94%) of the 
compounds in the analysis. These descriptors appear in 
Table III, with substructures for the environment de­
scriptors in Chart I. A principal components analysis on 
the correlation matrix of these descriptors showed the first 
16 eigenvalues to be greater than 1.0, accounting for over 
99% of the variance. The first two of these eigenvalues 
(values 2.9 and 2.3) accounted for only 58% of the total 
variance. In such a case, projection plots of the points in 
the space of the eigenvectors cannot adequately represent 
the compounds in relation to each other, so this plot was 
not included here. The several significant eigenvalues arise 
because of the presence of the uncorrelated environment 
descriptors. The implication of a large number of signif­
icant eigenvalues is tha t the descriptors effectively span 
the entire space represented by the compounds.33 

Although they were selected solely for their ability to 
separate the active and inactive compounds, many of the 
descriptors in Table III can be explained in terms of what 
has been discovered about the mechanism of action of the 
9-anilinoacridines. For example, the number of rings has 
been shown to be a determinant of the strength of binding 
to DNA when comparing 9-anilinoacridines with amino-
acridine12 and with 4-aminoquinolines.17 Likewise, molar 
refraction, a measure of both volume and electronic po-
larizability, has recently appeared as a predictor variable 
in QSAR studies of the binding of derivatives of 4'-(9-
acridinylamino)methanesulfon-m-anisidide (m-AMSA) to 
DNA.1&~21 The partial charges at the 2'-, 3'-, and especially 
the 6'-aniline positions have been implicated in the in­
teraction of 9-anilinoacridines with polar groups in the 
minor groove of the DNA helix.13 The a charge at the 
6'-position was not retained as a descriptor. However, 
descriptor 18 (<r charge at the aniline 2'-position) clearly 
reflects the influence of substituents at the 1'-, 2'-, and 
3'-positions, which are the most commonly substituted 
ones. It is possible tha t the influence of 2'- and 3'-sub-
sti tuents on the a charge at the 6'-position could not be 
detected by the relatively simple del-Re method of calcu­
lation tha t was used. The electronic descriptors on the 
acridine ring (positions 2 and 3) also correspond to the 
most highly substituted positions. 

All the electronic descriptors were computed assuming 
a neutral charge on the molecules, which is probably not 
the case under physiological conditions.15 It has been 

(33) Arthur Cammarata and Govind K. Menon, J. Med. Chem., 19, 
739 (1976). 



Table I. Compounds in the Training Set 

R. 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11b 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

3-C2H5 

3-NC-2 
3-N02 
3-N02 

3-NHCH3-5-CH3 
3-NC-2-6-CH3 
3-NC-2 
4-CONH2 

3-1 
3-NHCOCH3-6-N02 

3-N02-5-CH3 

3-NHCOCH3-6-N02 
2-NH2-3-Cl 
3-NHCOCH3 
3-NH2 
3-N02-5-CH3 
2,6-(NH2)2 

4-CH3 
4-NH2 
3-N02-5-CH3 
2-NH2-3-Br-5-CH3 
3,4,5-(CH3)3 
3,4-(CH3)2 
3-NHCOCH3 
3-NHCOCH3 
3-N02-5-CH3 

3-N02 
4-OCH3 
3-NH2-5-CH3 
3-NO, 
3-OCH3 
4-(CH2)2CONH2 
4-OCH,CH,OH 

R2 

-CH2C02H 
(CH2)sC02H 

-NHCONH(p-C6H4-guanidyl) 
-NHS02(CH2 )3-guanidyl 
-NHS02(p-C6H4-N02) 
-NHCONH[p-C6H4-N(CH3)2] 
-NHCONH[p-C6H4-(CH2)4NH2] 
-NHCONH[p-C6H4-(CH2)5NH2 ] 
-NHS02CH3 
-NHS02CH3 

-NHS02(CH2)2NHCOCH2NH2 
-NHS02C2H5-3'-OCH3 
-(CH2)2C02H 
-NHS02CH3 
-NHS02(CH2)3-guanidyl 
-NHS02 [p-C6H4-NHCOCH3 ] 
-N(COCH3)S02CH3 
-NHS02CH3-2'-aza 
-NHS02CH3 
-NHS02CH3 
-NH(CO-/-C3H7)S02CH3 

-NHS02CH3 
-NHS02CH3 
-NHS02( CH2 )3-guanidyl 
-NHS02(p-C6H4-S02CH3) 
' -NHCONH [p-C6 H4-( CH2 )2C02 H ] 
-NH2-3'-OCH3 
-NHS02CH3-3-CH3 

-NHS02CH3 
-NHS02CH3 

-NHS02CH3-3'-OCH3 
-NHS02CH3-3'-OCH3 

-NHS02C2Hs 
-NHS02C3H, 
-NHS02CH3-3'-OCH3 
-NHS02CH3-3-OCH3 

-NHCONH,, 
-NHS02C4H9 

-NHS02CH3-3'-OCH3 
-NHS02CH3 

-NHS02(CH2)4-guanidyl 
-NHS02CH3 
-NHS02CH3-3'-OCH3 

'-NHS02CH3-3'-OCH3 

ILS m a x ' 

5'. 

4> 
HN 3' 

I 

5 1o * 
2 no. R, 

Active Compounds 
200 
200 
200 
200 
200 
170 
170 
170 
170 
170 
170 
166 
162 
160 
160 
151 
150 
141 
141 
140 
140 
134 
130 
129 
128 
125 
120 
120 
120 
120 
120 
118 
115 
115 
113 
111 
110 
110 
110 
110 
110 
107 
105 
105 

78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 b 

104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 

3-NHCH3 
4-CONHCH2CHOH( 
3,4-a-pyrido 

3-N02 

4-OC4H9 
4-OC4H9 
3-I-5-OCH3 
3-NH2-4,5-(CH3)2 

3-N02 

2-NH2 
3-N02 
4-aza 
4-CH3 
3-OCH3-5-CH3 

3-Cl-5-CH3 

3-N02 

3-1 

3-OH 
3-N02 

3-N02 
4-CH2N(CH3)2 

3-N02-5-CH3 
3-CH3-5-OCH3 

4,5-(CH3)2 
3-N02-5-CH3 
4-CONHC4H9 

3-N02 

3-N02-4-CH3 
3-NHCH3-4,5-(CH3). 
3-N02 

R, ILS„ 

l '-NHS02CH3-3' OCH3 83 
l'-NHS02CH3-3'-OCH3 83 
l'-NHS02CH3-3'-OCH3 83 
l'-(CH2)4CONH2 82 
l'-NHCONH[p-C6H4-CH2CH(NH2)C02H] 80 
l'-NHCONHtp-C6H4-(CH2)4C02H] 80 
l'-NHS02CH3-3'-OCH3 80 
l'-NHS02C3H7-3'-OCH3 80 
l '-NHS02CH3 80 
l'-NHS02CH3-3'-OCH3 80 
1'-NHS02(CH2)5NH2 80 
l '-NHS02C4H9 78 
l'-NHCO(p-C6H4-NH2) 76 
l'-NHS02CH3-3'-OCH3 76 
l'-NHSCXAH^-S'-OCH, 76 
l'-NHS02C2H5-3'-OCH3 76 
l '-NHS02CH3 75 
l '-(CH2)7C02H 75 
l '-(CH2)9C02H 75 
l'-NHS02CH3-3'-OC2Hs 75 
l'-NHS02CH3-3'-OCH3 75 
l '-NHS02C6H s 75 
l '-(CH2)6C02H 74 
l'-NHS02C6H13-3'-OCH3 74 
l'-NHS02CH3-3'-OCH3 74 
l'-CH=NNHCONH2 72 
l '-NHS02CH3 72 
l'-NHS02CH3-2'-aza 72 
l'-NHSOjCsH^-S'-OCH, 72 
l'-NHS02CH3-3'-OCH3 72 
l'-NHS02CH3-3'-OCH3 72 
l'-NHS02CH3-3'-OCH3 72 
1'-NHS02(CH2)4-NH2 72 
l'-N(COC2H5)S02CH3-3-OCH3 72 
l'-NHS02C3H7-3'-OCH3 71 
1'-N(CH2CH2)2NS02CH3 70 
l'-NHCOOCH2CH(OH)CH2OH 70 
l'-NHS02CH3-3'-CH3 70 
l '-NHS02CH3 70 
l '-NHS02CH3 70 
l '-NHS02CH3 69 
l'-NH2-3'-OCH3 66 
l '-NHS02C4H9 66 
l ' - N H S C C H ^ S ' - O C H , 66 



45 
46 
47 
48 
49 
50 
5 1 
52 
53 
54 
55 
56 
57 
58 
59 
60 
6 1 
62 
6 3 
64 
65 
66 
67 
6 8 
69 
70 
71 
72 
7 3 
74 
7 5 
76 
77 

3-NH2-6-OCH3 

2-NH2-6-I 

3-NH2 

4-NH2 

4-OC3H, 
3-NH2 

4-CONHCH2CH2OH 
3-NH2-5-OCH3 

3-I-5-OCH3 

3-C1 
2-NH2-3rBr 

3-N=NN(CH 3 )C 3H, 

4-CONHC4H9 

3-N0 2 

3-NHCOCH3 
3-CN 
4-CONH2 

3-N02-6-CH3 

2-NH2-3-CF3 

4-CONH2 

3-CH3 
4-OC2H5 

2,6-(NH2)2 

3-CH3 

3-NHCOCH3 

l ' - N H S 0 2 C H 3 

1' -NHS0 2 ( CH2 )2-NHCOCH3 

l ' -NHS0 2 (CH 2 ) 2 -NHCOCH 3 

l ' -NHS0 2 CH 3 -3 ' -OCH 3 

l ' - N H S 0 2 C H 3 

l ' - N H S 0 2 C H 3 

l ' - N ( C H 3 ) S 0 2 C H 3 

l ' -NHS0 2 CH 3 -3 ' -OCH 3 

l ' - N H S 0 2 C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' -NHS0 2 (p -C 6 H 4 -NH 2 ) 
l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' -CH 2 S0 2 NH(2-py r idy l ) 
l ' - N H S 0 2 C H 3 

l ' - (CH 2 ) 5 CONH 2 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' - S 0 2 ( C H 2 ) 3 N H 2 

l ' - N ( C O C 3 H 7 ) S 0 2 C H 3 

l ' -NHS0 2 CH 3 -3 ' -OCH 3 

I ' - N H S O J C . H J , - 3 - O C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' - C 0 2 H 
l ' -CH 3 

l ' -NHCOCH(C 2 H 5 ) 2 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' -NHS0 2 C 6 H 1 3 -3 ' -OCH 3 

l ' -NHCONH(p-C 6 H 4 -C0 2 H) 
l ' - N H S 0 2 C H 3 

l ' - N H S 0 2 C H 3 

l ' -NHS0 2 (CH 2 ) 2 -guan idy l 
l ' - N H S 0 2 C 2 H 5 

l ' - N H S 0 2 C 4 H 9 

1 0 5 
105 
1 0 5 
102 
100 
1 0 0 
100 
100 
100 
100 
100 

99 
99 
9 8 
9 8 
97 
9 5 
9 5 
9 5 
9 3 
9 3 
9 2 
9 0 
90 
90 
9 0 
87 
8 5 
8 5 
8 5 
8 5 
84 
8 3 

122 
1 2 3 
124 
125 
126 
127 
128 
129 
1 3 0 
1 3 1 
132 
1 3 3 
134 
135 
136 
137 
1 3 8 
139 
140 
1 4 1 b 

1 4 2 
1 4 3 
1 4 4 
1 4 5 
146 
147 
1 4 8 
149 
1 5 0 
1 5 1 
152 
1 5 3 b 

Inactive 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 b 
166 b 

167 
168 
169 b 

170 
171 
172 
1 7 3 

3-N0 2 

3-N0 2 

3-NH2 

3-N0 2 

3-N0 2 

1-OCH 3 

1' - C H = C H C 0 2 H - 3 ' -OCH3 

l ' - (CH 2 ) a CONH 2 

2 ' - (CH 2 ) 2 C0 2 H 
2'-OH 
3 ' - N 0 2 

3 ' -NHS0 2 CH 3 

3'-C(CH3)3 

3'-OCH 3 

3'-F 
I ' - N H , 
l ' - N H C 4 H 9 

l ' - N H C 3 H , 
l ' -N(C 2 H 5 ) 2 

l ' -N(CH 2 CH 2 ) 2 NCH 3 

l ' - N 0 2 

l ' - C H 2 N H 2 

l ' - C H 2 C H 2 N H 2 

l ' - C H , C H 2 N H 2 

l ' - (CH 2 ) 6 NH 2 

30 
27 
26 
2 5 
2 5 
2 5 
2 5 
25 
2 5 
25 
2 5 
25 
25 
25 
2 5 
25 
25 
25 
2 5 
2 5 

184 
185 
186 b 

187 b 

1 8 8 
189 
190 
1 9 1 b 

192 b 

1 9 3 
194 
195 
196 
197 
198 
199 
200 
2 0 1 b 

202 
2 0 3 

4-OCH 3 

3,6-(NH2)2 

3-NHCOCH3-6-Cl 
3-NHCOCH 3-4,5-(CH 3) 2 

3-N0 2 -5 ,6- (CH 3 ) 2 

3,6-(OCH 3 ) 2 

3-NH2 

4-CH3 

3-NH2 

2-OCH 3 -6-N0 2 

3-NH2 

3-NH2 

2-NH2 

4-CONH 2 

3-Cl-6-OCH3 

3-C1 
4-CH3 
1-NO, 
3-NHCOCH 3 

3-r-C3H7 

2,7-(NH 2) 2 

2-OCH3 

pounds 
2-C(CH3)3 

2-CONH2 

3-S0 2 CH 3 

2-OCH3-6-NH2 

2-OCH 3-6-NHCOCH 3 

2-OCH3-6-Cl 

4-CONH 2 

3-C1 

l ' - C H = C ( C N ) 2 

l ' - N ( C H 3 ) S 0 2 C H 3 

1' - N H S 0 2 C 4 H 9 - 3 ' -OCH3 
l ' - N H S 0 2 ( C H 2 ) 2 C O N ( C H 3 ) 2 

l ' - S 0 2 N H 2 

l ' - N H C O C H 3 

l ' - N H C O N H [ p - C 6 H 4 - ( C H 2 ) 5 C 0 2 H ] 
l ' - N H S O 2 0 H 3 

l ' - N H S 0 2 C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - C H 3 

l ' - N H S 0 2 C H 3 

l ' - S 0 2 N H C H 3 

l ' - N H S 0 2 C H 2 a 
l ' - N H S 0 2 ( p - C 6 H 4 - N H 2 ) 
l ' - N ( C O C 3 H , ) S 0 2 C H 3 

l ' - N H S 0 2 C H 3 

l ' - C O C H 3 

l ' - N H C 2 H s 

l ' - S O j N H C ^ , , 
l ' - O C H 3 - 2 ' - N H S 0 2 C H 3 

l ' - N H C O N ( C H 2 C H 2 ) 2 N C O O C 2 H 5 

l ' - N H S 0 2 C H 3 

l ' - N H S 0 2 C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

1' - N H S 0 2 ( p -C6 H 4 -NH 2 ) 
l ' - N ( C O C 4 H 9 ) S 0 2 C H 3 - 3 ' - O C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' - N H S 0 2 C 6 H 1 3 

l ' - N H S 0 2 C 5 H 1 7 - 3 ' - O C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' - N H S 0 2 C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' - N H S 0 2 C 6 H , 3 - 3 ' - O C H 3 

l ' - N H S 0 2 C H 3 

l ' - N H S 0 2 C H 3 

l ' - N H S 0 2 C H 3 - 3 ' - O C H 3 

l ' - N H S 0 2 C H ( C H 3 ) C O N H 2 

l ' - N H S 0 2 C H 2 C H 2 ( p - C 6 H 4 - N H 2 ) 
l ' - N H S 0 2 ( C H 2 ) 4 N H 2 - 3 ' - O C H 3 

l ' -NHS0 2 (CH 2 ) 4 -guan idy l 
l ' -NHS0 2 (CH 2 ) 4 -guan idy l 
l ' - N H S 0 2 ( C H 2 ) 2 N H C O ( C H 2 ) 2 N H 2 

2 ' -OCH 3 

3'-C2H5 

3 - O C 2 H 5 

l ' -NH 2 -2 ' -OCH 3 

l ' - N H C 6 H 1 3 

l ' - N H C O C H 2 C 6 H 5 

l ' -CH 2 N(CH 3 ) 2 
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Table II. Types of Descriptors Used in the Analyses 

I 
1 

a, 

"6 
V3 

0) 
Xi 

an 
c 

a 
s 
o 
a S o o 

0) 

> 
$> 
Be 

ca 
O 

type 

fragmentb 

substructure environment0 

partial charge at ring 
position d 

molecular connectivity 
calculated log Pe 

molar refractivity 
molecular volume f 
molecular path counts 8 

total 

number of 
descriptors 

gener­
ated 

18 
46 
11 

8 
1 
1 
1 
2 

84 

used" 

9 
23 
10 

3 
1 
1 
1 
1 

49 

final 
model 

2 
11 

3 

0 
0 
1 
0 
1 

18 
a Some descriptors were removed prior to the pattern-

recognition analysis, due to multiple correlations with 
other descriptors, or because of an insufficient number of 
nonzero values. b Including counts of various atom and 
bound types, rings, ring atoms, and molecular weight. 
c First-order molecular connectivity of a given substructure 
as imbedded in the total structure, including first neigh­
boring atoms.25 d Calculated by the del-Re method.28 

e Calculated by the fragment-additivity method of Leo.29 

^Bondi molecular volume at 0.75 X Van der Waals 
radius.27 ' See ref 24. 

reported, however, in structure-activity studies on a series 
of diaminoquinolines that similar correlations were ob­
tained, regardless of whether charged or uncharged mol­
ecules were assumed in the uncharge calculations.34 Pre­
sumably, the effects of substituents (which the <r-charge 
descriptors seem to be reflecting) would be similar on both 
charged and uncharged rings.14 

The substructure environment descriptors in Table III 
show a progression from quite simple to relatively complex 
substructures. Whenever a given substructure was iden­
tified more than once in a particular molecule, the average 
value of the imbedded molecular connectivity for the 
substructure was stored as the descriptor value. Due to 
a limited number of possible values, some of the environ­
ment descriptors became simply indicator variables. This 
is reminiscent of Free-Wilson analysis, which, however, 
was not feasible for this data set, due to the large number 
of substituents and positions that were occupied. 

Notable by its absence from Table III is the log P de­
scriptor. Lipophilicity has been found to correlate with 
other measures of antitumor activity for the 9-anilino-
acridines, when considering given structural types, or for 
homologous series of compounds. However, the relation­
ship between activity and lipophilic character has often 
been lost or reduced when moving to a larger, more het­
erogeneous group of structures.12,21 Thus, it is not sur­
prising that lipophilicity did not remain in the descriptor 
set, considering the varied assortment of compounds in the 
analysis. 

When the learning machine method was applied to the 
descriptors of Table III, it could correctly classify 149 of 
153 (97.4%) active compounds and 51 of 60 (85%) inactive 
compounds. An average weight vector derived from 
hold-ten-out samples is shown in Table IV, along with 
measures of variation and relative importance of the 
coefficients. The structures that were misclassified are 
indicated in Table I. Eight of the compounds that were 
misclassified (compounds 165,166,169,177,187,191,192, 
and 201) have ionizable amino groups attached to either 
the aniline or acridine rings. These compounds formed 

(34) George E. Bass, Donna R. Hudson, Jane E. Parker, and Wil­
liam P. Purcell, J. Med. Chem., 14, 275 (1971). 
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Table III. 

no. 

Final Subset of Descriptors 

active class 

descriptor" mean SD NNZ6 

inactive class 

mean SD NNZ 

highest R2 value 

simple c multiple d 

raw 
values 
(65) 

1 no. of S atoms 
2 no. of rings 
3 av no. of paths 

per a tom e 

4 molar refractivity 
5 environment SS 1 f 

6 environment SS 2 
7 environment SS 3 
8 environment SS 4 
9 environment SS 5 

10 environment SS 6 
11 environment SS 7 
12 environment SS 8 
13 environment SS 9 
14 environment SS 10 
15 environment SS 11 
16 charge position 2e 

17 charge position 3 
18 charge position 2' 

0.804 
4.137 

107.9 

120.5 
0.361 
0.452 
0.800 
0.358 
0.688 
0.482 
2.209 
3.351 
2.136 
4.097 
1.687 

-0.016 
0.028 

-0.019 

0.415 
0.345 

20.30 

12.53 
0.529 
0.824 
1.405 
0.745 
1.126 
0.934 
2.416 
2.206 
2.906 
3.416 
3.168 
0.034 
0.059 
0.027 

122 
153 
153 

153 
49 
36 
38 
29 
45 
33 
70 
113 
54 
91 
34 
153 
153 
153 

0.417 
4.100 

94.14 

109.2 
0.410 
0.246 
0.591 
0.188 
0.413 
0.276 
1.529 
1.567 
1.532 
6.221 
2.637 

-0.015 
-0.004 
-0.008 

0.530 
0.303 

18.98 

15.62 
0.545 
0.636 
1.263 
0.569 
0.854 
0.772 
2.268 
2.164 
2.680 
1.942 
3.627 
0.039 
0.048 
0.044 

24 
60 
60 

60 
22 

8 
11 

6 
12 

7 
19 
21 
15 
55 
21 
60 
60 
60 

0.745(12) 
0.612(3) 
0.707(4) 

0.707 (3) 
0.373(8) 
0.112(7) 
0.236 (4) 
0.373(5) 
0.616(10) 
0.616 (9) 
0.712(13) 
0.745 (1) 
0.712(11) 
0.138(12) 
0.247 (17) 
0.187 (8) 
0.247(15) 
0.021(15) 

0.797 
0.898 
0.953 

0.925 
0.596 
0.338 
0.663 
0.646 
0.706 
0.745 
0.857 
0.817 
0.870 
0.318 
0.572 
0.310 
0.449 
0.061 

1.0 
4.0 

115.71 

135.66 
1.142 
1.914 
3.386 
0.0 
1.559 
0.0 
0.0 
5.127 
0.0 
0.0 
0.0 

-0.031 
-0.029 
-0.008 

a Overall F statistic for between-group separation (based on Hotelling's T2) is 7.03 (18,194 df). b Number of nonzero 
values. c Highest R2 with any other single descriptor (descriptor number in parentheses). d Multiple squared correlation 
with all other descriptors in table. c Total number of paths in molecule (of all lengths)/total number of atoms (non-
hydrogen).24 f Substructures for environment descriptors in Chart I. s Partial a electronic charge calculated by del-Re 
method. See Table I for numbering convention. 

Table IV. Average Weight Vector0 

descriptor 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
constant 

coefficient 

0.169 
-0.172 

0.326 
-0.213 
-0.141 

0.033 
0.090 
0.457 
0.083 

-0.129 
0.224 
0.086 

-0.323 
-0.241 

0.128 
-0.142 

0.153 
-0.333 

0.361 

variance 

0.012 
0.002 
0.004 
0.010 
0.011 
0.044 
0.029 
0.003 
0.027 
0.017 
0.003 
0.061 
0.002 
0.017 
0.004 
0.016 
0.001 
0.018 
0.003 

rel con­
tribution b 

22.5 
14.8 
29.1 
16.9 
19.2 

9.4 
16.9 
23.5 
16.0 
14.1 
25.8 
17.8 
23.5 
20.7 
20.2 
12.7 
19.2 
16.0 

a Values represent the average of 20 weight vectors 
obtained using hold-ten-out samples drawn at random 
from the separable subset of 200 compounds (see text 
and Table I). Coefficients refer to autoscaled descriptors. 
b Overall percent misclassified when the given descriptor 
is removed from the weight vector. 

a cluster in the histogram of the discriminant scores. Aside 
from the presence of these amino groups, no single 
structural feature appears more than once among the 
misclassified compounds. Since amino groups also appear 
in many of the correctly classified compounds, various 
substructure environment descriptors that were designed 
to account for the amines did not improve the classification 
results for the amino analogues. 

Other workers have reported anomalous results for 
simple amine derivatives. In a recent paper relating 
frame-shift mutagenicity and DNA binding affinity of 
some AMSA derivatives, it was found that several un-
substituted and monosubstituted amino compounds lay 
outside a "mutagenic window" of DNA binding constant 
values, while still possessing antitumor activity.35 It is 

possible that amine groups (because of their ability to be 
protonated) are capable of altering the stereochemistry of 
binding of the acridines to DNA and, thus, affect the bi­
ological activity. The use of pKa values could conceivably 
correct for the amino compounds and improve the clas­
sification results. Although it is possible to predict the pKa 
values of 9-anilinoacridines using a substituent constants,21 

the quality of the predictions varies depending on the 
nature and location of the substituents. Because of this 
and because the emphasis in this study was on the use of 
computer-generated descriptors, pKa values were not used 
in the analyses. 

Throughout the analysis, there was a general tendency 
to misclassify a larger proportion of inactive compounds 
than active ones. Although this likely reflects to some 
extent the difference in class sizes, it may mean that the 
descriptor selection was not optimal for both classes. 
Alternatively, it may mean that the data constitute the 
"asymmetric" case of Wold and Dunn,36 especially since 
quadratic classification was able to reverse the tendency 
somewhat (Table V). 

Specific attempts at asymmetric classification did not 
achieve nearly the same overall classification success as 
the linear learning machine. For this reason, the learning 
machine methods were the primary classification tech­
niques that were used. The descriptor set of Table III may 
reflect this fact. Strictly for comparison purposes, a 
number of alternative pattern-recognition methods were 
applied to the data set using the descriptors of Table III. 
The results are in seen in Table V. Analyses were per­
formed on the full set of 213 compounds (set A in Table 
V) and on the linearly separable subset of 200 compounds 
(set B). Although the differences are not extreme, it is 
evident that those methods which emphasize class sepa­
ration (learning machines, Bayes linear, and Bayes quad­
ratic) give better classification for this set of descriptors 
than do the nonseparative methods (KNN, SIMCA). It 

(35) Lynnette R. Ferguson and Bruce C. Baguley, Mutat. Res., 82, 
31 (1981). 

(36) William J. Dunn III and Svante Wold, J. Med. Chem., 23, 595 
(1980). 
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Table V. Classification Results Using Various 
Pattern-Recognition Methods0 

% correctly classified 

method setb active inactive overall 

linear learning 
machine c 

Bayes linear d 

Bayes quadratic d 

K nearest 
neighbor e 

SIMCAf 
F criterion* 

SD criterion h 

A 
B 
A 
B 
A 
B 
A 
B 

A 
B 
A 
B 

97.4 
100.0 

81.1 
89.9 
84.9 
89.3 
85.6 
91.3 

79.1 
84.9 
88.2 
82.4 

85.0 
100.0 

83.3 
90.2 
91.7 
98.0 
65.0 
70.6 

66.7 
56.7 
56.7 
66.7 

93.9 
100.0 

81.7 
90.0 
86.9 
91.5 
79.8 
86.0 

75.6 
77.0 
79.3 
77.9 

a Using the descriptors of Table III. b Set A = entire 
set of 213 compounds. Set B = linearly separable set of 
200 compounds (Table I). c Including adaptive least-
squares32 and iterative least-squares learning machines. 
d Using equal prior probabilities. e Best overall results 
were obtained at 1 nearest neighbor. f Four-component 
models were used for each class. See ref 36. e Results 
based on smaller F ratio. h Results based on smaller 
standard deviation. 

is entirely possible that the situation could be reversed if 
a different set of descriptors were chosen. 

It is necessary if any classification study to validate the 
results. This can be accomplished by checking the internal 
consistency of the original-sample results using a holdout 
technique or by presenting a completely new prediction 
set to the weight vector. Both methods were followed in 
this research. 

As described under Methodology of the Experimental 
Section, the internal consistency of the data was evaluated 
by applying a hold-ten-out method to the subset of 200 
linearly separable compounds. An average predictive 
ability of 93% (95% active, 86% inactive) was achieved, 
which is comparable to the original-sample results. 

To further test the validity of the descriptors and the 
weight vector, we randomly chose an untested prediction 
set of 50 compounds (35 active, 15 inactive) from among 
the structures not originally included in the analysis. The 
structures of the prediction set compounds are seen in 
Table VI. The descriptors in Table III were generated 
for these compounds, and the values were autoscaled using 
the means and standard deviations of the original training 
set data. Then, the average weight vector of Table IV was 
applied to the prediction data. Of the active compounds, 
30 of 35 (86%) were correctly classified, while only 11 of 
15 (73%) inactive compounds could be correctly placed. 
This is 82% correct overall, which well exceeds the 58% 
that would be expected using random selection corrected 
for class sizes.37 When each of the individual weight 
vectors used to derive the average vector of Table IV was 
applied to the prediction compounds, essentially the same 
results were obtained (active, 24-26 compounds correctly 
classified; inactive, 11-12 correct). 

A second prediction set was drawn from two recently 
published papers.38,39 All the compounds reported in these 

(37) A purely random choice would classify only 50% of the com­
pounds correctly. Taking prior information about class sizes 
into account, one would expect to classify (35/50) x 35 + 
(15/50) X 15 = 29 of the compounds correctly, which is 58%. 

(38) Bruce C. Baguley, William A. Denny, Graham J. Atwell, and 
Bruce F. Cain, J. Med. Chem., 24, 170 (1981). 

(39) B. C. Baguley, W. A. Denny, and B. F. Cain, J. Med. Chem., 
24, 520 (1981). 

articles that do not appear in Tables I or VI were included, 
generating a list of 69 structures (45 active, 24 inactive).40 

When the weight vector of Table IV was applied to the 
autoscaled descriptors for these compounds, 77% were 
correctly classified (78% active, 75% inactive). These 
results are lower than those of bothe the training set and 
the previous prediction set, but they can still be considered 
significant improvements over chance prediction (55% in 
this case). It is possible that the reduced prediction rates 
arise because the compounds in the second prediction set 
are not highly representative of the previous training and 
prediction sets. All the structures in reference 38 are 
monosubstituted aniline compounds, while only 31% of 
the training set structures are of this type. The structures 
of ref 39 are all monosubstituted acridine derivatives of 
m-AMSA, but only 8% of the training set structures are 
of this type. A multivariate test for differences between 
the descriptor values of the second prediction set and those 
of the combined training and first prediction sets gave a 
significant F statistic (Hotelling T2, F18i313 = 6.7, p < 
0.001).41 Since the weight vector was derived for the 
training set structures, its use on descriptors whose means 
and variances differ much from those of the training set 
is analogous to extrapolating a regression line, and poorer 
prediction results might be anticipated. 

Although the weight vector of Table IV is less than 
optimal for the second prediction set, the descriptors that 
were selected are still useful for separating these com­
pounds. This was confirmed by retraining the weight 
vector using the 69 prediction structures alone. Only three 
of the compounds were misclassified (95% correct). Also, 
when the weight vector was trained using all 332 com­
pounds in the analysis, an average of 91% correct was 
obtained (94% active, 83% inactive). Taken all together, 
the prediction results suggest that in practice one could 
expect to correctly classify 75-90% of compounds tested, 
using the given descriptors. Feature selection and weight 
vector development using more or larger training sets 
would likely improve prediction results still further. 
Nevertheless, even the results obtained here must be 
considered encouraging. 

In this research, we chose to view tumor cell selectivity 
as an all or none response for the purpose of the study. 
Whether such a view of tumor selectivity is valid from a 
mechanistic standpoint was not important to the analysis, 
since our goal was the classification of the compounds and 
not the interpretation of the descriptors. The descriptors 
were selected on the basis of this viewpoint, and there is 
no particular reason why they should show any correlations 
with the quantitative ILSmax values. 

This was tested by regressing the 18 descriptors on the 
log ILSmax values. A multiple R of only 0.58 (.Fi8,i94 = 5.6) 
was obtained. Examining one subset of the compounds, 
92 methanesulfonanilides, we improved the R value to only 
0.70 in a 10-descriptor model. No further improvements 
could be obtained when all 49 valid descriptors were ex­
amined using forward and backward stepwise regression 
analyses. 

As a further test of a possible relationship with quan­
titative ILSmax, a three-class problem was created by 
placing the 26 most active compounds (ILSmM > 120%, 
determined from the distribution of the ILS,,^ values) into 
a separate class. The inherently multiclass techniques, 

(40) From ref 38: compounds 3, 4, 6, 12, 13, 15, 18-25, 27, 29-35, 
37-39, 41, 42, 44-46, 48, 49; from ref 39: compounds 3, 4, 6, 
12, 13, 15, 18-25, 27, 29-35, 37-39, 41, 42, 44-46, 48, 49. 

(41) Donald F. Morrison, "Multivariate Statistical Methods", 
McGraw-Hill, New York, 1976, pp 128-141. 
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Table VI. Prediction Set Compounds' 

no. 

214 
215 
216 
217 
218 
219 b 

220 b 

221" 
222 
223 
224 b 

225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 b 

240 
241 
242 
243 
244 
245 
246 
247 
248 

249 
250 
251 
252 b 

253 b 

254 
255 b 

256 
257 b 

258 
259 
260 b 

261 
262 
263 

R, 

4-OCH3CHOHCH2OH 

3-NH2 

3-NHCOCH3 

3-N=NN(C2H5)2 

3-CH3 
3-C2Hs 
3-Cl 
4-Br 
4-CONH2 
4-CONHC4H9 
4-CON(CH3)2 

3,4-(CH3)2 
3,5-(CH3)2 
3-NHCOCH3 
3-N02-6-OCH3 
4,5-(CH3)2 

3-NH2-5,6-(CH3)2 
3-N02-4,5-(CH3)2 
4-CH3 

3-NHCOCH3 

4-CH3 
3-N02-5-CH3 

3-N02 

3-N02 

4-CH3 

3-NHCH3 

R2 

Active Compounds 
l '-C02H 
1' -a -d-glucopyranosyl 
l'-(CH2)4C02H 
l'-CH=CH(p-C6H4-C02H) 
l'-NH2-3'-CH3 
2'-NH2 
l'-N(CH3)COCH3 

l'-NHCOCH2CH(CH3)2 
l'-NHCOC6H5 
l'-NH-NHCOOC2H5 
1' -NHCONH(p-Ce H4-CH2 CH2NH2) 
l'-N(COOCH3)S02CH3 
l'-NHS02CH3-3'-NH2 
l'-NHS02CH3-3'-OH 
l'-NHS02CH3-3'-OCH2CH2OH 
l'-NHS02CH3 

l'-NHS02CH3-3'-OCH3 
l'-NHS02CH3-3'-OCH3 
l'-NHS02C2H5-3'-OCH3 
l'-NHS02CH3-3'-OCH3 
l'-NHS02CH3-3'-CH3 
l '-NHS02C5Hn-3'-OCH3 
l'-NHS02CH3-3'-OCH3 

l'-NHS02CH3 
l '-NHS02CH3 
l '-NHS02CH3 
l '-NHS02CH3 
l'-NHS02C2Hs-3'-OCH3 

l '-NHS02CH3 
l'-NHS02CH3-3'-OCH3 
l'-NHS02C2Hs 
l'-NHS02(p-C6H4-C02H) 
l'-N(COC6H13)S02CH3 

l'-N(COC3H7)S02CH3 
l'-N(COC3H,)S02CH3 

Inactive Compounds 
3'-N(CH3)S02CH3 
3'-CH2C02H 
3'-CH=CHC02H 
l'-NH2 
l'-NH2-3'-OCH3 
l'-piperazino 
l'-CH2NH2 
l'-(CH2)6NH2 

l'-N(COCH2CH2COOC3H7)S02CH3-3'-OCH3 
3'-I 
l'-OCH(CH3)C02H 
l'-0(CH2)3C02H 
3'-NHCOCH3 
3'-S02NH2 
l'-C02H-3'-CH3 

I L S m a x 

170 
60 

187 
158 

76 
50 
50 

105 
115 

75 
170 
125 
105 

85 
67 
95 

168 
123 

95 
100 

68 
45 

123 
55 
70 
60 
60 
70 

110 
56 
65 

135 
100 

75 
85 

25 
25 
25 
30 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 

a See Table I for numbering conventions. 
Table IV. 

6 Misclassified using the descriptors of Table III and the weight vector of 

KNN, SIMCA, and adaptive least squares, were applied 
using the 18 descriptors of Table III. The overall classi­
fication results for this three-class problem were poorer 
than those obtained in the two-class analysis (KNN and 
SIMCA, 62-63% correct; ALS, 85% correct). However, 
the amount of overlap was found to be least between the 
inactive and the very active classes, as one might expect. 

These results illustrate the difference between model-
based approaches to SAR, exemplified by Hansch and 
Free-Wilson analyses, and the approach used in this re­
search. The descriptors that are useful in one method may 
not be optimal for another, although some overlap could 
exist. In addition, the ILS,^ values do not fulfill the usual 
requirements for QSAR analysis. They do not represent 
equimolar responses (they are instead equitoxic), and on 
a log scale they span a range of only 0.9 log unit. We feel 
that the more qualitative pattern-recognition approach 

that we followed here was a more suitable type of analysis 
for these data. 

Summary and Conclusions 
We have demonstrated the applicability of pattern-

recognition techniques, combined with the automatic 
generation of molecular descriptors, to the study of a 
number of 9-anilinoacridine antitumor agents. A set of 18 
descriptors was found that could separate inactive from 
active compounds. A number of simple amine derivatives 
were incorrectly classified as active compounds, and this 
indicated that perhaps pK& values might be useful as a 
descriptor to correct for these agents. When applied to 
prediction sets of compounds, the discriminant was able 
to distinguish active from inactive structures with some­
what poorer classification results. Unlike correlation 
methods, which attempt to predict and to draw structural 
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or mechanistic inferences from the regression coefficients, 
pattern-recognition techniques are mainly predictive in 
nature. Their utility lies in the screening of proposed or 
existing agents for activity. In this respect, the tendency 
tha t was consistently observed in this study, to correctly 
predict a greater proportion of active compounds than 
inactive ones, could be a benefit. It is clearly better to 
misclassify in favor of active derivatives, to avoid missing 
potentially beneficial agents. This tendency was seen to 
extend to the prediction sets as well. 

Recent studies with m-AMSA in phase II clinical trials 
have given both encouraging42 and disappointing43 results. 

(42) S. S. Legho, G. R. Blumenschein, A. U. Buzdar, G. N. Horto-
bagyi, and G. P. Bodey, Cancer Treat. Rep., 63, 1961 (1979). 

Thus, the search for a clinically effective agent in this series 
is not yet complete. Based on the results that have been 
presented here, it is reasonable to expect that pattern-
recognition techniques could play a useful role in the 
identification of active members in the future. 
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Structure-Activity Relationships in Potentially Hallucinogenic 
iV,JV-Dialkyltryptamines Substituted in the Benzene Moiety 

Toni B. Kline,1 Frederick Benington,* Richard D. Morin, and John M. Beaton 

Neurosciences Program and Department of Psychiatry, School of Medicine, University of Alabama in Birmingham, 
Birmingham, Alabama 35294. Received December 14, 1981 

A series of iV^V-dialkyltryptamines with methylthio or methylenedioxy substituents in the 4, 5, and 6 positions and 
methyl or isopropyl on the side-chain nitrogen has been synthesized. The behavioral pharmacology of these compounds 
showed them to possess Bovet-Gatti profiles characteristic of hallucinogens, and the 5-methylthio congener was 
the most potent. Binding studies at [3H]LSD and [3H]5-HT sites demonstrated that no single structural feature 
correlated with binding or behavioral changes and suggest a complex mode of action for these potential hallucinogenic 
agents. 

Reports tha t tryptamines other than 5-hydroxytrypt-
amine (5-HT) may be endogenous neuroregulatory agents,1 

complete with all appropriate biosynthetic and metabolic 
transformations,2 have led us to prepare a series of N,N-
dialkyltryptamines with novel substituents in the benzene 
moiety to be evaluated as hallucinogens. Recently reported 
methodologies in competitive binding studies3 and mea­
surement of behavior-disrupting activity in the rat make 
possible clearer distinction between behavioral and sero­
tonergic effects of the compounds examined in this study. 

Substi tuents, e.g., methoxy or hydroxy, in the 4, 5, or 
6 positions of iV^V-dimethyltryptamine induce significant 
changes in the neuropharmacological properties of these 
indolealkylamines.4 In order to constrain o-methoxy 
groups into planar conformation, 4,5-(methylenedioxy)-
iV,iV-dimethyltryptamine (1) and 5,6-(methylenedioxy)-
iV,iV-dimethyltryptamine (2) were synthesized, and the 
pharmacological properties of 1 and 2 were compared with 
those of the known 4-methoxy- (3), 5-methoxy- (4), and 
6-methoxy- (5) congeners.5 

Significant changes in the potencies of substituted 2-
phenylisopropylamines occurred when methylthio was 
substituted for methoxy.6 Thioanisole partially exists in 
a rotated conformation in which the x system of the aro­
matic ring overlaps with the d orbitals rather than with 
the lone-pair p lobe, which has a rotational energy barrier 
of 2.05 kcal/mol,7 slightly lower than most biological weak 
forces. It was therefore decided to synthesize the 4-, 5-, 

+ Department of Chemistry, State University of New York at 
Stony Brook, Stony Brook, New York 11794. 

Table I. Ring-Substituted 
iV,JV-Dialkylindole-3-glyoxal amides 

R R' mp, °C 

NR'2 

yield, 
formula0 

22a 
22b 
22c 
22d 
22e 
22f 

4,5-OCH20 
4,5-OCHjO 
5,6-OCH20 
5,6-OCH20 
4-SCH, 
4-SCH3 

CH3 

»-C,H, 
CH3 
j-C,H, 
CH3 
«-C,H, 

240-241 
260 dec 
217-220 
278-280 
163-164 
190-192 

77 
56 
79 
81 
43 
27 

C13HUN204 

C17H20N2O4 
C13H12N204 
C17H20N2O4 
C13H14N202S 
C17H22N202S 

a IR and NMR spectra were consistent with structures 
given; the dried products were not analyzed but were re­
duced without further purification. 

and 6-(methyltmo)-iV,iV-dimethyltrytamines (6-8) in order 
to examine the differences between isosteres. 

(1) S. T. Christian, R. Harrison, E. Quayle, J. Pagel, and J. Monti, 
Biochem. Med., 18,164 (1977); S. A. Barker, J. Monti, and S. 
T. Christian, in "International Review of Neurobiology", J. R. 
Smythies and R. J. Bradley, Eds., Academic Press, New York, 
1981, pp 83-110. 

(2) S. A. Barker, J. A. Monti, and S. T. Christian, Biochem. 
Pharmacol, 29, 1049 (1980). 

(3) S. Maayani, H. Weinstein, and J. P. Green, Fed. Proc, Fed. 
Am. Soc. Exp. Biol, 38, 376 (1979). 
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