Me). Anal. $(C_{21}H_{25}N\cdot HCl)$ C, H, N, Cl.

Compound 8c: NMR identical with 2c except for δ 6.05 (dt, J = 10 and 2 × 6.5 Hz, (Z)-CH₂CH=CH), 5.67 (dt, J = 10 and 2 × 1.5 Hz, (Z)-CH=CHC=), 3.4 (dd, J = 6.5 and 1.5 Hz, NCH₂CH=); MS, m/e 291.

(E, E)-N-Methyl-N-2,4-nonadienyl-1-naphthalenemethanamine (2). A solution of (E,E)-2,4-nonadienal (20 g, 127 mmol) and 1-naphthalenemethanamine (20.4 g, 127 mmol) in benzene was boiled in a Dean-Stark apparatus until the calculated amount of water had separated. After removal of solvent, the Schiff base was taken up in methanol, treated with solid NaBH₄ (4,8 g, 127 mmol) in several portions at 40 °C, and stirred for 1 h at this temperature. This reaction mixture was used directly for reductive methylation¹⁷ following the procedure of Sondengam.¹⁸ Aqueous 35% formaldehyde solution (57 mL, 636 mmol) was added and the reaction mixture refluxed for 1 h. The mixture was then treated under ice cooling with solid NaBH₄ (24 g, 636 mmol) in several portions and stirred at room temperature overnight. After concentration, the residue was partitioned between aqueous NaHCO₃ solution and ethyl acetate and the organic phase dried and concentrated. The crude 7 (37.2 g, quant) thus obtained was shown by TLC and NMR to be of about 80% purity. Chromatography (toluene/ethyl acetate = 9/1) over silica furnished pure 2 (25 g, 67%) as a colorless oil: NMR for NCH_2 -(E)-CH_a=CH_b·(E)-CH_y=CH_bCH₂, 6.18 (H_b), 6.08 (H_y), 5.72 (H_a), $\begin{array}{l} (E) \in \operatorname{CH}_{a}^{-} \odot \operatorname{H}_{b}^{+}(E) = 6.75 \ \operatorname{Hz}, \ J_{\mathrm{H}_{a}\mathrm{H}_{b}} = 14.5 \ \operatorname{Hz}, \ J_{\mathrm{H}_{a}\mathrm{CH}_{2}} = 1.2 \ \operatorname{Hz}, \\ J_{\mathrm{H}_{b}\mathrm{H}_{a}} = 10.3 \ \operatorname{Hz}, \ J_{\mathrm{H}_{c}\mathrm{H}_{2}} = 14.5 \ \operatorname{Hz}, \ J_{\mathrm{H}_{a}\mathrm{CH}_{2}} = 1.35 \ \operatorname{Hz}, \ J_{\mathrm{H}_{b}\mathrm{CH}_{2}} = 6.9 \\ \mathrm{Hz}; \ 3.87 \ (\mathrm{s}, \ \mathrm{Ar} \ \mathrm{CH}_{2}\mathrm{N}), \ 3.13 \ (\mathrm{dd}, \ \mathrm{NCH}_{2}\mathrm{CH}_{2}\mathrm{H}), \ 1.9\text{-}2.2 \ (\mathrm{m}, = \mathrm{CCH}_{2}\mathrm{)}. \end{array}$ Anal. (C₂₁H₂₇N) C, H, N.

(E)-N-Methyl-N-4-nonen-2-ynyl-1-naphthalenemethanamine (9a) and Its Z Isomer 9b. 3-Octen-1-yne¹⁹ (3.2 g, 15.8

- (18) Sondengam, B. L.; Hentchoya Hémo, J.; Charles, G. Tetrahedron Lett. 1973, 3, 261.
- (19) Pages 109, 125 in ref 16.

mmol, E/Z = 1:2), N-methyl-1-naphthalenemethanamine (2.7 g, 15.8 mmol), paraformaldehyde (0.47 g, 15.8 mmol), and CuCl (0.16 g, 1.58 mmol) were reacted as described for the preparation of **3a** by Mannich condensation. By chromatography (hexane/butyl acetate = 10/1) of the crude reaction mixture the stereoisomers could be separated. Z isomer **9b** (1.58 g, 34%, DC R_f 0.46, oil) was isolated first, followed by a 1:1 mixture of **9a** and **9b** (1.72 g, 37%) and a pure sample of **9a** (0.19 g, 4%, DC R_f 0.42, oil).

Compound 9a: NMR δ 6.22 (dt, J = 16 and 2×7 Hz, (E)-CH=CHCH₂), 5.58 (dm, J = 16 Hz, =C-(E)-CH=CH), 4.0 (s, Ar CH₂N), 3.44 (d, J = 1.5 Hz, NCH₂C=), 2.38 (s, NCH₃), 2.0–2.3 (m, =CCH₂); mp (hydrochloride) 103–106 °C. Anal. (C₂₁H₂₅-N·HCl) C, H, N, Cl.

Compound 9b: NMR identical with 8a except for δ 5.95 (dt, J = 11 and 7 Hz, (Z)-CH=CHCH₂), 5.55 (dm, J = 11 Hz, \equiv C-(Z)-CH=CH), 3.49 (d, J = 1.5 Hz, NCH₂C \equiv), 2.2-2.5 (m, =CCH₂).

Acknowledgment. We thank W. Granitzer, I. Leitner, A. Pruckner, and S. Roth for competent technical assistance, Dr. G. Schulz for the interpretation of NMR spectra, and Dr. G. Seidl for HPLC and GC analyses. We also thank Drs. M. Grassberger, N. Ryder, A. Stephen, and H. Vyplel for critical comments and their help in the preparation of the manuscript.

Registry No. 2, 92525-78-5; 3a, 92525-79-6; 3a-HCl, 92525-80-9; 3b, 78628-65-6; 4a, 91161-71-6; 4b, 78628-64-5; 4b-HCl, 78628-66-7; 4c, 92525-81-0; 5a, 92525-82-1; 5b, 92525-83-2; 6a, 78629-20-6; 6b, 67978-48-7; 6c, 78629-22-8; (E)-7a, 78629-21-7; (Z)-7a, 78629-19-3; (E)-7b, 67978-51-2; (Z)-7b, 67978-52-3; (E)-7c, 78629-28-4; (Z)-7c, 78629-29-5; 8a, 78628-81-6; 8b, 78628-73-6; 8c, 78628-85-0; 9a, 92525-84-3; 9b, 92525-85-4; R₁NHCH₃, 14489-75-9; R₁N(CH₃)-CH₂C=CH, 2321-99-5; R₁NH₂, 118-31-0; t-BuC=CCH, 4911-56-2; n-BuC=CH, 1119-64-8; t-BuC=CH, 917-92-0; C-H₂=CHCHO, 107-02-8; n-BuC=CH, 693-02-7; sec-BuC=CH, 922-59-8; (E,E)-n-BuCH=CHCH=CHCHO, 5910-87-2; (E)-n-BuCH=CHC=CH, 42104-42-7; (Z)-n-BuCH=CHC=CH, 42091-89-4.

Pyridonecarboxylic Acids as Antibacterial Agents. 4.¹ Synthesis and Antibacterial Activity of 7-(3-Amino-1-pyrrolidinyl)-1-ethyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic Acid and Its Analogues

Hiroshi Egawa, Teruyuki Miyamoto, Akira Minamida, Yoshiro Nishimura, Hidetsugu Okada, Hitoshi Uno, and Jun-ichi Matsumoto*

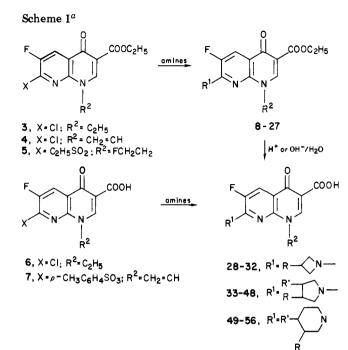
Research Laboratories, Dainippon Pharmaceutical Co., Ltd., Enoki 33-94, Suita, Osaka, 564, Japan. Received April 9, 1984

The title compounds (28-56) with an amino- and/or hydroxy-substituted cyclic amino group at C-7 were prepared with 1-substituted 7-chloro-, 7-(ethylsulfonyl)-, and 7-(tosyloxy)-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids and their ethyl esters (3-7) with cyclic amines such as 3-aminopyrrolidine. The N-1 substituent includes ethyl, vinyl, and 2-fluoroethyl groups. As a result of in vitro and in vivo antibacterial screenings, three compounds, 1-ethyl- and 1-vinyl-7-(3-amino-1-pyrrolidinyl)-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids (33a and 33b) and 1-vinyl-7-[3-(methylamino)-1-pyrrolidinyl] analogue 34b, were found to be more active than enoxacin (2) and to be worthy of further biological study. Structure-activity relationships are discussed.

As exemplified by pipemidic acid (1),² we showed first that a piperazinyl group was of much importance for the improvement of antibacterial activity and pharmacokinetic properties of a class of pyridonecarboxylic acid antibacterial agents. During the last few years, several analogues having both fluoro and piperazinyl groups in their molecules were reported successively;^{3,4} their antibacterial activities are noticeably much more potent and broader than

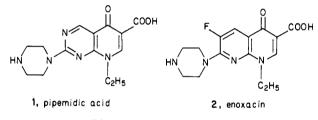
(4) Matsumoto, J.; Miyamoto, T.; Minamida, A.; Nishimura, Y.; Egawa, H.; Nishimura, H. J. Med. Chem. 1984, 27, 292.

0022-2623/84/1827-1543\$01.50/0 © 1984 American Chemical Society


⁽¹⁷⁾ For a new modification of reductive methylation using salts of phosphorus acid as reducing agent, see: Loibner, H.; Pruckner, A., Stütz, A. Tetrahedron Lett. 1984, 2535.

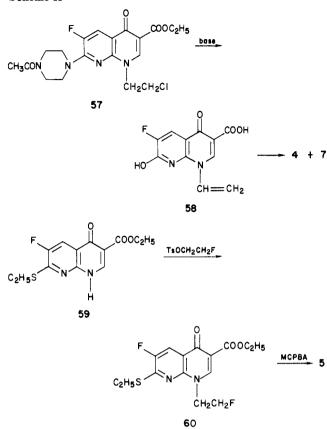
Paper 3: Matsumoto, J.; Miyamoto, T.; Minamida, A.; Nishimura, Y.; Egawa, H.; Nishimura, H. J. Heterocycl. Chem., 1984, 21, 673.

⁽²⁾ Matsumoto, J.; Minami, S. J. Med. Chem. 1975, 18, 74.


⁽³⁾ Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. J. Med. Chem. 1980, 23, 1358. Goueffon, Y.; Montay, G.; Roquet, F.; Pesson, M. C. R. Hebd. Seances Acad. Sci. 1981, 37. Grohe, K.; Zieiler, H.; Metzger, K. G. German Offen. 3 033 157, 1982; Chem. Abstr. 1982, 97, 55790u. Hayakawa, I.; Hiramitsu, T. European Patent Appl. 47005, 1982; Chem. Abstr. 1982, 97, 55821b.

Egawa et al.

^a For 28-56: a, $\mathbb{R}^2 = \mathbb{C}_2\mathbb{H}_3$; b, $\mathbb{R}^2 = \mathbb{C}\mathbb{H}_2=\mathbb{C}\mathbb{H}$; c, $\mathbb{R}^2 = \mathbb{F}\mathbb{C}\mathbb{H}_2\mathbb{C}\mathbb{H}_2$; see Table II for R and R'.


those of the precedents⁵ in this class. One of them, enoxacin (2, originally called AT-2266), was described in

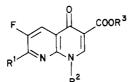
previous papers.^{1,4} Our next effort in this area was mainly directed at a search for analogues with a substituent that might cause a greater enhancement in activity than the piperazinyl group. Amino-substituted alicyclic amino groups such as 3-aminopyrrolidinyl or 3-aminoazetidinyl may be expected to offer such an enhancement of activity since the physicochemical properties of these groups seem to be generally similar to those of the piperazinyl group. The present paper deals with a synthesis of 1-substituted 6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids (28–56) with an amino- and/or hydroxy-substituted alicyclic amino group at C-7 and includes a discussion of structure-activity relationships of these compounds.

Chemistry. The main routes utilized for the preparation of the carboxylic acids 28-56 are shown in Scheme I. Upon treatment of ethyl 1,7-disubstituted 6-fluoro-1,4dihydro-4-oxo-1,8-naphthyridine-3-carboxylates 3, 4, and 5 with an appropriate amine (method A), the displacement reaction proceeded regioselectively at C-7 to give the corresponding esters 8-27. The esters were then hydrolyzed under either acidic (method B) or alkaline (method C) conditions, giving the corresponding carboxylic acids. Displacement of the 7-chloro and 7-tosyloxy groups of 6 and 7, respectively, by an amine (method D) gave the carboxylic acids 31a, 32a, 38a,b, 40a, 42a, 44a, 46a, 52a, 54a, and 56a.

Acylation of 33a,b,c, 34b,c, 46a, and 52a with acetic anhydride, trifluoroacetic anhydride, or a formic acidScheme II

formamide mixture (method E) gave the corresponding acyl compounds **39a,b**, **40b,c**, **41a**, **42b,c**, **47a**, and **53a**. Alkaline hydrolysis of **42a** gave **34a** (method F). Reductive N-methylation of **34c** with a mixture of formic acid and 37% formalin (method G) afforded 7-[3-(dimethylamino)-1-pyrrolidinyl] derivative **38c**. The compounds prepared thus by the methods A–G are summarized in Table II.

Among the starting compounds (3-5 and 7), 3 was prepared by esterification of the carboxylic acid 6, which had previously been reported,⁴ and 4, 5, and 7 were derived as shown in Scheme II. Thus, alkaline treatment of the 1-(2-chloroethyl) derivative 57,⁴ followed by chlorination of the 7-hydroxy-1-vinyl derivative 58 and successive treatment with ethanol, afforded the 7-chloro-1-vinyl compound 4. Tosylation of 58 gave 7-(tosyloxy)-1-vinyl analogue 7. Compound 5 was derived from 59¹ by treatment with 2-fluoroethyl tosylate, followed by oxidation of the resultant 1-(2-fluoroethyl) derivative 60 with mchloroperbenzoic acid; the site of alkylation in this case was assigned on the basis of ¹³C NMR spectral analysis.


Biological Results and Discussion

The results of the in vitro antibacterial activity for compounds prepared in the present study against Grampositive (*Staphylococcus aureus* 209P JC-1) and Gramnegative bacteria (*Escherichia coli* NIHJ JC-2 and *Pseudomonas aeruginosa* Tsuchijima) are summarized in Table II. The data for enoxacin (2) are included for comparison.

It is noteworthy that the replacement of the piperazinyl group at C-7 of 2 by the 3-aminopyrrolidinyl group (33a) causes an enhancement in activity against all the bacteria tested. The replacement of the 3-aminopyrrolidinyl ring by a larger membered ring, such as 3- and 4-aminopiperidine (49a and 50a), results in a retention or increase in activity against *S. aureus*, whereas it causes a decrease in activity against *P. aeruginosa*. On the contrary, the

⁽⁵⁾ For example, see: Albrecht, R. Prog. Drug Res. 1977, 21, 9.

Table I. 1,7-Disubstituted 6-Fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic Acids

no.	R ¹	R²	R ³	mp, °C	recrystn solvent	yield,ª %	formula ^b
3	Cl	C ₂ H ₅	C ₂ H ₅	191-194	AcOEt	96	C ₁₃ H ₁₂ ClFN ₂ O ₃
4	CI	CH ₂ =CH	C_2H_5	150-151	AcOEt	77	C ₁₃ H ₁₀ ClFN ₂ O ₃
5	$C_2H_5SO_2$	FCH ₂ CH ₂	C_2H_5	176-178	EtOH	74	$C_{15}H_{16}F_2N_2O_5S$
7	$p-CH_3C_6H_4SO_3$	CH₂=⊂H	H	190-192	EtOH-CHCl ₃	62	$C_{18}H_{13}FN_2O_6S$
8	3-CH ₃ CONH-1-azet ^c	C₂H₅	C_2H_5	229-230	EtOH	63	$C_{18}H_{21}FN_4O_4$
9	3-CF ₃ CONH-1-azet	CH₂=⊂CH	$\tilde{C_2H_5}$	251 - 253	EtOHCHCl ₃	75	$C_{18}H_{16}F_4N_4O_4$
10	3-morpholino-1-azet	$C_2 \tilde{H_5}$	$\tilde{C_2H_5}$	195-196	MeCN	90	$C_{20}H_{25}FN_4O_4$
11	3-HO-1-azet	$\tilde{C_2H_5}$	C_2H_5	265 - 268	EtOH-CHCl ₃	97	$C_{16}H_{18}FN_3O_4$
12	3-CH ₃ CONH-1-pyr ^d	$\tilde{C_2H_5}$	C_2H_5	267 - 270	EtOH-CHCl ₃	90	$C_{19}H_{23}FN_4O_4$
13	3-CF ₃ CONH-1-pyr	$CH_2 = CH$	$\tilde{C_2H_5}$	280 - 282	EtOH-CHCl ₃	92	$C_{19}H_{18}F_4N_4O_4$
14	3-CH ₃ CONH-1-pyr	FCH_2CH_2	$\tilde{C_2H_5}$	269 - 270	EtOH-CHCl ₃	73	$C_{19}H_{22}F_2N_4O_4$
15	3-CF ₃ CON(CH ₃)-1-pyr	CH ₂ —CH	$\tilde{C_2H_5}$	160-161	AcOEt-(<i>i</i> -Pr) ₂ O	73	$C_{20}H_{20}F_4N_4O_4$
16	3-CH ₃ CON(CH ₃)-1-pyr	FCH_2CH_2	$\tilde{C_2H_5}$	227 - 229	EtOH-CHCl ₃	80	$C_{20}H_{24}F_2N_4O_4$
17	3-CH ₃ CON(C ₂ H ₅)-1-pyr	C_2H_5	$\tilde{C_2H_5}$	205 - 206	EtOH	92	$C_{21}H_{27}FN_4O_4$
18	3-CH ₃ CON(CH ₂ CF ₃)-1-pyr	$\tilde{C_2H_5}$	$\tilde{C_2H_5}$	226 - 228	EtOH	81	$C_{21}H_{24}F_4N_4O_4$
19	3-CF ₃ CON(CH ₂ CF ₃)-1-pyr	$CH_2 = CH$	C_2H_5	138-140	$AcOEt-Et_2O$	89	$C_{19}H_{19}F_7N_4O_3$
20	3-CH ₃ CON(C ₃ H ₇)-1-pyr	$C_2 H_5$	C_2H_5	180181	EtOH-AcOEt	76	$C_{22}H_{29}FN_4O_4$
21	3-CH ₃ CONHN(COCH ₃)-1-pyr	C_2H_5	C_2H_5	277 - 279	EtOH-CHCl ₃	82	$C_{21}H_{26}FN_5O_5$
22	3-CH ₃ CONH-4-CH ₃ COO-1-pyr	C_2H_5	C_2H_5	254 - 255	EtOH	77	$C_{21}H_{25}FN_4O_6$
23	3-Cl-1-pyr	C_2H_5	C_2H_5	207 - 208	EtOH	90	C ₁₇ H ₁₉ ClFN ₃ O ₃
24	3-CH ₃ CONH-piper ^e	C_2H_5	C_2H_5	202 - 203	EtOH	90	$C_{20}H_{25}FN_4O_4 \cdot 1/_2H_2O$
25	4-CH ₃ CONH-piper	C_2H_5	C_2H_5	195-196	EtOH-MeCN	90	$C_{20}H_{25}FN_4O_4$
26	4-C ₆ H ₅ CONH-piper	C_2H_5	C_2H_5	246 - 247	EtOH-CHCl ₃	86	$C_{25}H_{27}FN_4O_4$
27	3-HO-piper	C_2H_5	C_2H_5	189-190	EtOH	81	C ₁₈ H ₂₂ FN ₃ O ₄ ·1/ ₅ H ₂ O

^a Yields are of purified products by method A except for 3-5 and 7 and are not maximal. ^b All compounds were analyzed for C, H, N and where present Cl, F, and S; analytical results were within $\pm 0.4\%$ of theoretical values. ^cAzetidinyl = azet. ^dPyrrolidinyl = pyr. ^ePiperidinyl = piper.

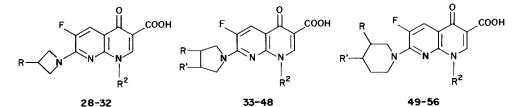
replacement by a smaller ring such as 3-aminoazetidine (28a) shows the same level of activity as that of 2 against all the organisms.

The replacement of the amino group of 28a, 33a, 49a, and 50a by a hydroxyl group (giving 30a, 46a, 55a, and 56a, respectively) causes a significant decrease in Gram-negative activity compared with the corresponding amino-substituted compounds. Alkylation or formylation of the hydroxyl group (giving 31a, 32a, and 47a) reduces furthermore the activity against Gram-negative bacteria.

Compounds 52a and 53a, which have a methylene group between the amino group and the piperadinyl ring, are less active than 50a. Compound 54a with a carbamoyl group is also inferior to 49a.

Introduction of an alkyl group such as a methyl, ethyl, 2,2,2-trifluoroethyl, or propyl group to the amino nitrogen atom on the pyrrolidinyl ring of 33a (giving 34a-37a) reduces generally the activity against the organisms in this order. The dimethylamino compound 38a shows activity similar to that of the ethylamino congener 35a.

Acylation of the amino group on the pyrrolidinyl ring, giving **39a-42a** (see Table II), results in a decrease in activity. The decrease is greater with Gram-negative activity than with Gram-positive activity.


Compounds 43a and 48a with a hydrazino and chloro group, respectively, on the pyrrolidinyl ring are comparable to 33a in activity against Gram-positive bacteria, whereas they are much less active against Gram-negative organisms, particularly *P. aeruginosa*.

When the N-1 substituent is varied while the C-7 substituent is kept constant as the most active 3-aminopyrrolidinyl group, introduction of a vinyl group (33b) influences markedly the antibacterial activity. Thus, the vinyl group significantly enhances Gram-negative activity without a decrease of Gram-positive activity. On the other hand, introduction of a fluoroethyl group (33c) reduces Gram-positive activity, whereas Gram-negative activity remains unchanged. Either alkylation or acylation of compounds 33b,c (giving 34b,c-42b,c) causes a decrease in activity. This is consistent with the case of the same modification of the 1-ethyl compound 33a as discussed above.

In each comparison between the ethyl compounds (series a) and their vinyl analogues (series b) of 28, 33, 34, 36, 38–40, and 42, the vinyl group enhances Gram-negative activity, whereas it reduces Gram-positive activity; this relationship is in agreement with that observed in our previous works.^{2,4} The fluoroethyl group shows a tendency to enhance Gram-negative activity and to reduce Gram-positive activity (compare 33a, 34a, 38a, 40a, and 42a with 33c, 34c, 38c, 40c, and 42c, respectively).

Thus, the 10 compounds 28a,b, 33a-c, 34a-c, 46a, and 50a, being equal or superior to 2 in the in vitro antibacterial activity, were tested with oral administration upon systemic infections due to S. aureus 50774, E. coli P-5101, and P. aeruginosa 12 in mice. The results are listed in Table III, which includes, for reference, the minimal inhibitory concentration (MIC) against the organisms employed.

The therapeutic efficacies of 28a, 34a, 46a, and 50a are obviously inferior to those of 2. Compounds 28b, 33a-c, and 34a,b compare very favorably with 2. Of much interest are 33a,b and 34b, which are much more efficient than 2, particularly against staphylococcal and pseudomonal infections. In conclusion, the 3-aminopyrrolidinyl group proved to be equivalent to or more efficient than the piperazinyl group. In variation of the N-1 substituent of 28a, 33a, and 34a, the vinyl group causes an outstanding increase in efficacy on all the infections tested, whereas the 2-fluoroethyl group tends to reduce the efficacy in general. Table II. 1,7-Disubstituted 6-Fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic Acids and Their in Vitro Antibacterial Activity

min inhibitory concn^d $\mu g/mL$ method^a vield.^b recrystn (starting S. aureus E. coli P. aeruginosa R R′ \mathbb{R}^2 mp, °C solvent material) % formula 209P JC-1 NIHJ JC-2 Tsuchijima no. 2e 0.78 0.20.78 28a H₂N C_2H_5 266-269 NaOH-AcONH₄^f C (8) 38 C₁₄H₁₅FN₄O₃ 0.78 0.1 0.78 dec C (9) 28b H₂N $CH_2 = CH$ 250-255 NaOH-AcOHf 63 C14H13FN4O3 1.560.10.39 dec 29a O(CH₂CH₂)₂N C_2H_5 260-262 MeCN-CHCl₃ C (10) 86 C₁₈H₂₁FN₄O₄ 1.566.2550 30a HO C_2H_5 284-286 DMF C (11) 91 C14H14FN3O4 0.78 0.78 3.13 CH₃O C₀H₅ 233-235 MeCN 48 C₁₅H₁₆FN₃O₄ 31a D (6) 0.78 3.136.25 $C_2 H_2 O$ C_2H_5 32a 201-203 MeCN 77 C16H18FN3O4 D (6) 0.78 3.132533a H_2N Η C_2H_5 272-290 EtOH-H₂O B (12) 84 C₁₅H₁₇FN₄O₃·HCl 0.2 0.1 0.39 dec 33b H₂N Н CH2=CH 253-257 NaOH-AcOH7 C (13) C₁₅H₁₅FN₄O₃ 83 0.20.025 0.2 33c H₂N Η FCH₂CH₂ 251-255 HCl-NH₄OH^f B (14) 73 $C_{15}H_{16}F_2N_4O_3$ 0.39 0.1 0.39 CH₃NH C₁₆H₁₉FN₄O₃ Η 242-245 NaOH-AcONH 34a C_2H_5 F (42a) 710.39 0.2 1.56 CH₃NH CH2=CH 265-267 NaOH-AcOH 34b Н C (15) 87 C₁₆H₁₇FN₄O₃ 0.1 0.78 0.78 dec Η FCH₂CH₂ 243-245 HCl-NH₄OH^f 34c CH₃NH B (16) 65 $C_{16}H_{18}F_{2}N_{4}O_{3}$ 0.78 0.2 0.78 C₂H₅NH Н >290 EtOH-H₂O B (17) C17H21FN4O3 HCl 35a C_2H_5 82 0.78 0.78 3.13dec 36a CF₃CH₂NH Η C_2H_5 203-204 EtOH B (18) 67 $C_{17}H_{18}F_4N_4O_3$ 0.78 1.5650 CF₃CH₂NH Н CH2=CH 183-185 MeCN 36b C (19) 87 $C_{17}H_{16}F_4N_4O_3$ 6.25100 1.5637a C₃H₇NH Η C_2H_5 268-269 H₂O B (20) 91 C₁₈H₂₃FN₄O₃·HCl·³/₂H₂O 6.25 >100 25dec 38a $(CH_3)_2N$ Η C_2H_5 234-236 MeCN-CHCl₃ D (6) 84 C₁₇H₂₁FN₄O₃ 0.78 6.251.56 $(CH_3)_2N$ CH₆=CH 199-201 EtOH-CHCl₉ C₁₇H₁₉FN₄O₃ 38b Η D (7) 86 3.13 0.39 3.13 $(CH_3)_2N$ $C_{17}H_{20}F_2N_4O_3$ 38c Η FCH₂CH₂ 247-249 EtOH-CHCl₃ G (34c) 45 0.780.2 6.25 OHCNH Η C_2H_5 285-286 HCOOH-Me₉CO E (33a) C₁₆H₁₇FN₄O₄ 39a 81 0.78 0.783.13 39b OHCNH Н CH₂=CH 287-289 DMF E (33b) 78 C₁₆H₁₅FN₄O₄ 0.78 0.39 3.13 CH₃CONH Н $C_{2}H_{5}$ 283-284 DMF-EtOH C17H19FN4O4 40a D (6) 97 0.786.256.25CH₃CONH Н CH2=CH 287-289 DMF 40b E (33b) 88 C17H17FN4O4 0.7812.51.56dec FCH₂CH₂ 40c CH₃CONH Н 294-297 DMF-EtOH E (33c) 74 $C_{17}H_{18}F_2N_4O_4$ 1.56 1.562541a CF₃CONH 290-292 CF₃COOH-H₂O Η C_2H_5 E (33a) 79 C17H16F4N4O4 0.78 1.566.25 42a CH₃CON(CH₃) H C_2H_5 287-289 DMF D (6) 98 C₁₈H₂₁FN₄O₄ 0.78 6.25 2542b CH₃CON(CH₃) H CH__CH 274-275 DMF-EtOH E (34b) 89 C₁₈H₁₉FN₄O₄ 251.56 3.13 CH₃CON(CH₃) **42c** Η FCH₂CH₂ 291-294 DMF E (34c) 42 $C_{18}H_{20}F_2N_4O_4$ 250.39 1.56C₁₅H₁₈FN₅O₃·HCl·¹/₅H₂O H₂NNH Η C_2H_5 249-250 EtOH-H₂O B (21) 43a 84 0.39 1.5612.5H₂NCONH Η C_2H_5 266-267 DMF-EtOH 44a D (6) 91 C16H18FN5O4 6.253.132545a H₂N HO C_2H_5 280-285 EtOH-H₂O B (22) 96 C₁₅H₁₇FN₄O₄·HCl 1.56 1.563.13dec 46a HO Η C_2H_5 291-293 DMF-EtOH D (6) 79 C₁₅H₁₆FN₃O₄ 0.39 0.78 0.78 OHCO C_2H_5 C₁₆H₁₆FN₃O₅ 47a Η 234-236 EtOH-CHCl₃ E (46a) 74 0.39 1.563.1348a Cl Η C_2H_5 274-275 EtOH-CHCl_a C (23) 87 C₁₅H₁₅ClFN₃O₃ 0.20.39 12.5

Egawa et al.

						4	
6.25 1.56	>100	17.9 25	3 23	25	6.25	in: see ref	
0.78 0.2	1.55	1.56	2.5	3.13	3.13	· Enoxac	
	-		-			ection	
0.78 0.2	1.56	0.78	6.25	1.56	0.78	rimental S	
C ₁₆ H ₁₉ FN₄O ₃ · ¹ / ₂ H ₂ O C ₁₆ H ₁₆ FN₄O ₃	C ₂₃ H ₂₅ FN ₄ O ₄	CITH2IF N403'H20 C.,H.,FN.O.	C ₁₇ H ₁₉ FN ₄ O ₄	CleH ₁₈ FN ₃ O ₄	C ₁₆ H ₁₈ FN ₃ O ₄	in Table I. ^d See the Expe	Prsa.
61 74	68	23	96	33	68	tnotes	vice v
B (24) B (25)	B (26)	E (52a)	D (6)	C (27)	D (6)	. he See foo	the base or
169–170 EtOH 268–272 HCl–AcONa ^f	287-288 AcOH	267–268 EtOH-CHCl	>300 DMF	208-209 EtOH	217-218 EtOH-CHCl ₃	l in the Experimental Section	he acid and subsequently with
C ₂ H5 C2H5	C ₂ H ²	C,H,	C_2H_5	C_2H_5	C_2H_5	described	ent with tl
${ m H}_{ m N}$	C ₆ H ₅ CONH H NCH	CH,CONHCH,	н ́	Н	OH	ters refer to the method descri	precipitation on treatment wi
49a H ₂ N 50a H			54a H ₂ NCO		56a H	" Capital letter	'Purified by repr

Table III. Oral Efficacy on Systemic In	nfectionsa
---	------------

	ED ₅₀ ^{,b} min inhibitory concn ^c				
no.	S. aureus 50774	<i>E. coli</i> P-5101	P. aeruginosa 12		
2	10.0 (0.78)	1.8 (0.1)	9.0 (0.78)		
28a	8.8 (0.78)	4.1 (0.1)	12.5 (0.78)		
25b	5.3 (0.78)	1.3 (0.05)	4.4 (0.78)		
33a	3.0 (0.39)	1.7 (0.1)	3.7 (0.78)		
33b	1.6 (0.39)	0.72 (0.05)	1.6(0.2)		
33c	4.6 (0.39)	2.8 (0.1)	6.3 (0.39)		
34a	4.8 (0.78)	1.4(0.2)	6.5 (0.78)		
34b	1.6 (0.78)	2.0 (0.2)	3.7 (0.78)		
34c	15 (0.78)	2.8 (0.1)	19.3 (0.78)		
46a	5.5 (0.39)	6.8 (0.39)	42 (3.13)		
50a	>25 (0.78)	6.3 (0.39)	16.2 (1.56)		

^aFor experimental details, see ref 4. Challenge dose (cells per mouse); 5×10^8 for *S. aureus*, 9×10^6 for *E. coli*, and 4×10^3 for *P. aeruginosa.* ^bIn milligram per kilogram. ^cIn microgram per milliliter.

Compounds 28b, 33a–c, and 34a–c exhibit weak oral acute toxicity in mice, all being >2000 mg/kg of the median lethal dose (LD₅₀).

These findings indicate that 1-ethyl- and 1-vinyl-7-(3amino-1-pyrrolidinyl)-6-fluoro-1,4-dihydro-4-oxo-1,8naphthyridine-3-carboxylic acids (**33a** and **33b**) and 1vinyl-7-[3-(methylamino)-1-pyrrolidinyl] analogue **34b** are worth further biological evaluation as possible potent antibacterial agents.

Experimental Section

Chemistry. All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded on a Hitachi Model 215 spectrophotometer. ¹H NMR spectra were taken at 60 or 100 MHz on either a Varian EM-360A or HA-100 spectrometer and ¹³C NMR spectra were obtained with a Varian FT-80A spectrometer with Me₄Si as an internal standard. Mass spectra were recorded on a Hitachi RMU-6L spectrometer. IR, NMR, and mass spectra were obtained on all compounds and were consistent with assigned structures. Elemental analyses are indicated only by symbols of the elements; analytical results were within $\pm 0.4\%$ of theoretical values.

Ethyl 7-Chloro-1-ethyl-6-fluoro-1,4-dihydro-4-oxo-1,8naphthyridine-3-carboxylate (3). To a stirred suspension containing 24.9 g (0.092 mol) of 7-chloro-1-ethyl-6-fluoro-1,4dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid (6),⁴ 19 mL of NEt₃, and 200 mL of CHCl₃ was added portionwise 11 mL of ethyl chlorocarbonate, while the temperature was maintained at 5-10 °C under ice-cooling. After the mixture was stirred for 30 min at the same temperature, 50 mL of EtOH was added. The reaction mixture was allowed to stir for 4 h at room temperature and concentrated to dryness in vacuo. After addition of 50 mL of EtOH, the precipitate was collected by filtration and recrystallized from AcOEt to give 26.6 g (96%) of 3.

Ethyl 7-Chloro-6-fluoro-1,4-dihydro-4-oxo-1-vinyl-1,8naphthyridine-3-carboxylate (4). A mixture containing 20.0 g (0.08 mol) of 6-fluoro-1,4-dihydro-7-hydroxy-4-oxo-1-vinyl-1,8-naphthyridine-3-carboxylic acid (58) and 60 mL of POCl₃ was heated at 115 °C for 6 min. The excess of POCl₃ was vaporated in vacuo and 150 mL of CHCl₃ was added to the residue. After addition of 30 mL of EtOH, the mixture was allowed to stir at 40 °C for 30 min and cooled and then 100 mL of water was added. The organic phase was separated, dried over Na₂SO₄, and evaporated in vacuo. The residue was crystallized from a mixture of AcOEt and Et₂O to give 18.2 g (77%) of 4.

Ethyl 7-(Ethylsulfonyl)-6-fluoro-1-(2-fluoroethyl)-1,4dihydro-4-oxo-1,8-naphthyridine-3-carboxylate (5). To a mixture containing 24.0 g (0.07 mol) of ethyl 7-(ethylthio)-6fluoro-1-(2-fluoroethyl)-1,4-dihydro-4-oxo-1,8-naphthyridine-3carboxylate (60) and 200 mL of CHCl₃ was added 24.1 g (0.14 mol) of *m*-chloroperbenzoic acid under ice-cooling. The mixture was allowed to stir at room temperature for 2 h. After addition of 10% Na₂CO₃, the organic phase was separated and dried over K_2CO_3 , and the solvent was evaporated in vacuo. The residue was crystallized from EtOH to give 19.4 g (74%) of 5.

6-Fluoro-1,4-dihydro-4-oxo-7-(tosyloxy)-1-vinyl-1,8naphthyridine-3-carboxylic Acid (7). A mixture containing 2.5 g (0.01 mol) of 58, 3.8 g (0.02 mol) of tosyl chloride, 1.4 g (0.01 mol) of K_2CO_3 , and 20 mL of MeCN was heated to reflux for 4 h. After filtration, the filtrate was concentrated to dryness in vacuo. The residue was chromatographed on silica gel with CHCl₃. The solid resulting from the main fraction was crystallized from a mixture of EtOH and CHCl₃ to give 2.5 g (62%) of 7.

Ethyl 1,7-Disubstituted 6-Fluoro-1,4-dihydro-4-oxo-1,8naphthyridine-3-carboxylates (8-27) (Table I). Method A. A mixture containing 0.01 mol of an ester (3-5), 0.015 mol of an appropriate amine, 1.5 mL of NEt₃, and 40 mL of EtOH was heated to reflux for 0.5-4 h and concentrated to dryness in vacuo. After addition of 80 mL of water, the residue was filtered off or extracted with CHCl₃. The extract was washed with water and dried over Na₂SO₄. The solvent was evaporated in vacuo. The resulting solid was crystallized from an appropriate solvent to give 8-27.

1,7-Disubstituted 6-Fluoro-1,4-dihydro-4-oxo-1,8naphthyridine-3-carboxylic Acids (28-56) (Table II). Method B. A mixture containing 0.01 mol of an ester (12, 14, 16-18, 20-22, or 24-26), and 20% HCl was heated to reflux for 3-10 h and then concentrated to dryness in vacuo. The resulting solid was filtered off and washed with EtOH. Recrystallization from the solvent given in Table II gave the corresponding compound (33a, 35a-37a, 43a, 45a, or 51a). Neutralization of the filtrate with aqueous ammonia afforded 33c, 34c, 49a, or 50a.

Method C. A stirred suspension containing 0.01 mol of an ester (8-11, 13, 15, 19, 23, or 27), 40 mL of 5-10% NaOH, and 5-10 mL of EtOH was heated at 60-100 °C for 0.5-2 h, allowed to cool, and adjusted to pH 6-7 with 30% AcOH. The resulting solid was filtered off, washed with water, and recrystallized from an appropriate solvent to give the corresponding carboxylic acid (28a,b, 29a, 30a, 33b, 34b, 36b, 48a, or 55a).

Method D. A stirred suspension containing 0.01 mol of 6 or 7, 0.015 mol of an amine, 3 mL of NEt_3 , and 50 mL of a solvent (EtOH, MeCN, or DMF) was heated at 100–110 °C for 1–4 h. The reaction mixture was concentrated to dryness in vacuo. The residue was taken up in 3% AcOH, and the solution was adjusted to pH 6–7. The resulting solid was filtered off, washed with water, and recrystallized from an appropriate solvent to give 31a, 32a, 38a,b, 40a, 42a, 44a, 46a, 52a, 54a, or 56a.

Method E. A mixture containing 0.01 mol of 33a-c, 34b,c, 46a, or 52a and an acylating agent [formic acid (30 mL)-formamide (10 mL), acetic anhydride (10 mL)-acetic acid (30 mL), or trifluoroacetic anhydride (30 mL)] was heated at 100-110 °C for 1-3 h with stirring. The reaction mixture was concentrated to dryness in vacuo. The residue was triturated with water or EtOH. The resulting solid was filtered off and recrystallized from an appropriate solvent to give the corresponding acyl compound (39a,b, 40b,c, 41a, 42b,c, 47a, or 53a).

Method F. A solution of 7-[3-(N-methylacetamido)-1pyrrolidinyl]-1-ethyl-6-fluoro-1,4-dihydro-4-oxo-1,8naphthyridine-3-carboxylic acid (42a) (3.0 g, 0.08 mol) in 75 mL of 10% NaOH was heated to reflux for 4 h, allowed to cool, and adjusted to pH 6-7 with AcOH. The resulting solid was filtered off, washed with water, and taken up in 25 mL of 2% NaOH. The solution was neutralized with 10% AcOH to give 1.9 g (71%) of 34a.

Method G. A mixture containing 1.9 g (0.0054 mol) of 6fluoro-1-(2-fluoroethyl)-1,4-dihydro-7-[3-(methylamino)-1pyrrolidinyl]-4-oxo-1,8-naphthyridine-3-carboxylic acid (34c), 4 mL of 37% formalin, and 6 mL of formic acid was heated at 100-110 °C for 8 h with stirring. The reaction mixture was concentrated to dryness in vacuo. The residue was taken up in 10 mL of water. The mixture was adjusted to pH 8-9 with an aqueous ammonia. The resulting solid was filtered off, washed with water, and recrystallized from a mixture of $CHCl_3$ and EtOH to give 0.9 g (45%) of 38c.

6-Fluoro-1,4-dihydro-7-hydroxy-4-oxo-1-vinyl-1,8naphthyridine-3-carboxylic Acid (58). To a stirred mixture containing 42.5 g (0.10 mol) of ethyl 7-(4-acetyl-1-piperazinyl)-1-(2-chloroethyl)-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylate (57)⁴ and 300 mL of EtOH was added a solution of KOH (16.8 g, 0.30 mol) in 300 mL of EtOH. The mixture was heated to reflux for 2 h. After addition of 500 mL of 20% NaOH, the mixture was heated at 120 °C for 18 h, during which period the EtOH was removed gradually by distillation. The resulting precipitate was filtered off, washed with 10% NaOH, and dissolved in a mixture of water (250 mL) and AcOH (25 mL). The solution was treated with charcoal and acidified with concentrated HCl to give 21.2 g (85%) of 58. Recrystallization from a mixture of EtOH and CHCl₃ gave an analytical sample, mp 256–259 °C. Anal. (C₁₁H₇FN₂O₄) C, H, F, N.

Ethyl 7-(Ethylthio)-6-fluoro-1-(2-fluoroethyl)-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylate (60). A mixture containing 25.0 g (0.085 mol) of ethyl 7-(ethylthio)-6-fluoro-1,4dihydro-4-oxo-1,8-naphthyridine-3-carboxylate (59),¹ 15.2 g (0.11 mol) of K₂CO₃, and 250 mL of DMF was heated at 65 °C for 1 h with stirring. To this mixture was added 24.0 g (0.11 mol) of 2-fluoroethyl tosylate. The resulting mixture was heated at 100-105 °C for 1.5 h with stirring and then filtered to remove insoluble materials. The filtrate was concentrated to dryness in vacuo. The residue was taken up in a mixture of water (150 mL) and CHCl₃ (250 mL). The organic phase was separated, washed with water, and dried over Na₂SO₄. The CHCl₃ was evaporated in vacuo and the residue was crystallized from AcOEt to give 27.8 g (96%) of 60. Recrystallization from a mixture of AcOEt and CH₂Cl₂ gave an analytical sample, mp 174-175 °C. Anal. (C₁₅- $H_{16}F_2N_2O_3S)$ C, H, N, S.

Biological Screenings. The in vitro antibacterial activity, in vivo efficacy on systemic infections, and acute toxicity were tested by the same methods reported in a previous paper.⁴ Acute toxicity tests for 28a, 46a, and 50a were not performed.

Acknowledgment. We are grateful to Drs. M. Shimizu and H. Nishimura for their encouragement throughout this work. Thanks are also due to Dr. S. Nakamura for the biological testing and members of the analytical section of these laboratories for elemental analyses and spectral measurements.

Registry No. 3, 79286-86-5; 4, 84424-07-7; 5, 84445-11-4; 6, 79286-73-0; 7, 92242-26-7; 8, 92242-27-8; 9, 92242-28-9; 10, 92242-29-0; 11, 92242-30-3; 12, 79286-93-4; 13, 84424-08-8; 14, 84424-23-7; 15, 84424-14-6; 16, 84445-12-5; 17, 92242-31-4; 18, 92242-32-5; 19, 92242-33-6; 20, 92242-34-7; 21, 92242-35-8; 22, 92242-36-9; 23, 92242-37-0; 24, 92242-38-1; 25, 92242-39-2; 26, 92242-40-5; 27, 92242-41-6; 28a, 91188-14-6; 28b, 92242-25-6; 29a, 92242-42-7; 30a, 92242-43-8; 31a, 92242-44-9; 32a, 92242-45-0; 33a, 79286-76-3; 33a.HCl, 79286-76-3; 33b, 84424-09-9; 33c, 84424-24-8; 34a, 79286-81-0; 34b, 84424-13-5; 34c, 84424-25-9; 35a, 92242-70-1; 35a.HCl, 92242-46-1; 36a, 92242-47-2; 36b, 92242-48-3; 37a, 92242-71-2; 37a.HCl, 79286-85-4; 38a, 92242-49-4; 38b, 92242-50-7; 38c, 84424-26-0; 39a, 92242-51-8; 39b, 92242-52-9; 40a, 79286-75-2; 40b, 92242-53-0; 40c, 92242-54-1; 41a, 92242-55-2; 42a, 79286-80-9; 42b, 92242-56-3; 42c, 92242-57-4; 43a, 92242-72-3; 43a-HCl, 92242-58-5; 44a, 92242-59-6; 45a, 92242-73-4; 45a-HCl, 92242-60-9; 46a, 74274-61-6; 47a, 92242-61-0; 48a, 92242-62-1; 49a, 92242-63-2; 50a, 92242-64-3; 51a, 92242-65-4; 52a, 91188-09-9; 53a, 92242-66-5; 54a, 92242-67-6; 55a, 92242-68-7; 56a, 92242-69-8; 57, 87939-15-9; 58, 84424-27-1; 59, 84424-21-5; 60, 84424-22-6; TSO(CH₂)₂F, 383-50-6.