Karen Bergstrom, and Bryan Roberts with the bioassays. We are indebted to Jasmine Fazzari and Sandra Williams for amino acid analyses. The authors thank Diane Nagami and Tai-Yin Yang for performing the $\mathrm{p} K_{\mathrm{a}}$ determinations and Ram Tahilramani for prep-HPLC purification of one of the analogues. The encouragement and advice of Dr. John Moffatt is gratefully acknowledged.

Registry No. 1a, 88549-09-1; 1b, 88549-10-4; 1c, 88549-11-5; 1d, 88549-12-6; 1f, 88562-94-1; 2a, 81440-37-1; 2b, 88549-13-7; 2c, 88549-14-8; 2d, 88549-15-9; 2e, 81440-40-6; 2f, 88549-16-0; 3a,

81440-45-1; 3b-HOAc, 88549-18-2; 3c-HOAc, 88549-20-6; 3d, 88549-21-7; 3e, 81440-41-7; 3f. ${ }^{1} /{ }_{2}$ HOAc, 88549-23-9; 4a, 81440-44-0; 4b, 88549-24-0; 4c, 88562-95-2; 4d, 88562-96-3; 4e, 81440-42-8; 4f, 88562-97-4; 5, 81440-38-2; 6.HOAc, 88549-25-1; 7, 81440-47-3; 8, 88562-98-5; 9, 88562-99-6; 10, 88563-00-2; 11, 88563-01-3; 12, 88563-02-4; 13, 88563-03-5; 14, 88563-04-6; 15, 88563-05-7; 16, 88563-06-8; o-phenylenediamine, 95-54-5; 2,3-naphthalenediamine, 771-97-1; 4,5-dimethyl-1,2-benzenediamine, 3171-45-7; 4,5-di-chloro-1,2-benzenediamine, 5348-42-5; o-hydroxyaniline, 95-55-6; acid chloride of α-benzyl N-(benzyloxycarbonyl)-D-aspartate, 75626-73-2; α-benzyl N-(benzyloxycarbonyl-D-asparate, 81440-35-9; o-aminophenyl disulfide, 1141-88-4.

Tri- and Tetrapeptide Analogues of Kinins as Potential Renal Vasodilators

Francis R. Pfeiffer, ${ }^{*, \dagger}$ Pamela A. Chambers, ${ }^{\dagger}$ Eileen E. Hilbert, ${ }^{\dagger}$ Paul W. Woodward, ${ }^{\ddagger}$ and Dennis M. Ackerman ${ }^{\ddagger}$
Medicinal Chemistry and Pharmacology, Research and Development Division, Smith Kline \& French Laboratories, Philadelphia, Pennsylvania 19101. Received July 15, 1983

Abstract

Tri- and tetrapeptide analogues were synthesized and evaluated as renal vasodilators. These peptides were prepared by standard coupling reactions, which also provided good yields with hindered α-methyl amino acid derivatives. Preliminary evidence of renal vasodilator activity was determined in anesthetized dogs by measuring the effects on renal blood flow and calculating the accompanying changes in renal vascular resistance. The most potent compounds contained, in their basic structure, the L-prolyl-DL- α-methylphenylalanyl-L-arginine and L-prolyl-DL- α-methyl-phenylalanylglycyl-L-proline arrays. Substitution on the N-terminal proline with 4-phenylbutyryl and 4-(4hydroxyphenyl)butyryl side chains produced enhanced renal vasodilator activity and, in certain cases, selectivity for the renal vasculature.

The renal vasodilator activity of the selective peripheral dopamine agonist 6 -chloro- 7,8 -dihydroxy-1-(4-hydroxy-phenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SK\&F 82526) was described in an earlier report. ${ }^{1}$ This compound is being evaluated clinically and should prove to be an important agent in furthering our understanding of the importance of renal blood flow (RBF) in essential hypertension. ${ }^{2}$ Another goal of our research effort was the discovery of other selective renal vasodilators not having a dopaminergic mechanism or component of vasodilatation. Compounds as diverse as acetylcholine, histamine, prostaglandins, captopril, isoproterenol, and theophylline are reported to be vasodilatory. ${ }^{3}$ Peptides exemplified by bradykinin, eledoisin, substance P and secretin produce vasodilatation. ${ }^{3 i 4}$ The vasodilator peptides seemed to offer viable opportunities for development of novel and specific vasodilators. Bradykinin, eledoisin, and substance P have as a common feature a phenylalanine as the fifth amino acid from the carboxy terminus, which might suggest possible structural importance to overall activity, perhaps by way of binding and/or recognition. When bradykinin, i.e., Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg, was tested in our anesthetized dog protocol used to screen for intrinsic renal vasodilator activity, it exhibited, at an intravenous (iv) infusion dose of 0.1 to $30 \mu \mathrm{~g} /(\mathrm{kg} \mathrm{min})$, an average maximum decrease in renal vascular resistance (RVR) of 67%. Although bradykinin showed a dose-related decrease in RVR resulting in enhanced RBF, bradykinin produced nonselective vasodilatation and a substantial decrease in systemic arterial blood pressure-a typical kinin response. A carboxy-terminal pentapeptide fragment of bradykinin, Phe-Ser-Pro-Phe-Arg (36), was marginally effective in the dog protocol as a renal vasodilator but showed a cardiovascular profile different from that of bradykinin (see Structure-Activity Relationships). Encouraged by the biological difference of the pentapeptide fragment and the

[^0]renal vasodilator activity displayed by a terminal tripeptide fragment analogue of Pro-Phe-Arg, i.e., $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$-Pro-Phe-Arg- $\mathrm{NHC}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}-p$, a compound used to assay for kallikrein activity, it was decided to focus on the struc-ture-activity relationships (SAR) of bradykinin fragments
(1) Weinstock, J.; Wilson, J. W.; Ladd, D. L.; Brush, C. K.; Pfeiffer, F. R.; Kuo, G. Y.; Holden, K. G.; Yim, N. C. F.; Hahn, R. A.; Wardell, Jr., J. R.; Tobia, A. J.; Setler, P. E.; Sarau, H. M.; Ridley, P. A. J. Med. Chem. 1980, 23, 973.
(2) (a) Ackerman, D. M.; Weinstock, J.; Wiebelhaus, V. D.; Berkowitz, B. Drug Dev. Res. 1982, 2, 283. (b) Ackerman, D. M.; Blumberg, A. L.; McCafferty, J. P., Sherman, S. S.; Weinstock, J.; Kaiser, C.; Berkowitz, B. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1983, 42, 186. (c) Coleman, T. G.; Guyton, A. C.; Young, D. B.; DeClue, J. W.; Norman, R. A., Jr.; Manning, Jr., R. D. Clin. Exp. Pharmacol. Physiol. 1975, 2, 571.
(3) (a) Itskovitz, H. D.; Campbell, W. B. Proc. Soc. Exp. Biol. Med. 1976, 153, 161. (b) McGiff, J. C. Clin. Sci. 1980, 59, 105s. (c) Antonaccio, M. J.; Cushman, D. W. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1981, 40, 2275. (d) McGiff, J. C.; Wang, P. Y-K; ACS Symp. Ser. 1978, 83, p 1. (e) Levinsky, N. G. Circ. Res. 1979, 44, 441. (f) Carriere, S. Can. J. Physiol. Pharmacol. 1975, 53, 1. (g) Zimmerman, B. G.; Wong, P. C.; Kounenis, G. K.; Kraft, E. J. Am. J. Physiol. 1982, 243. Heart Circ. Physiol. 1982, 12, H277, and references cited therein. (h) Nasjletti, A.; Colina-Chouriv, J.; McGiff, J. C. Acta Physiol. Latinoam. 1974, 24, 587. (i) Fadem, S. Z.; Hernandez-Llamas, G.; Patak, R. V.; Rosenblatt, S. G.; Lifschitz, M. D.; Stein, J. H. J. Clin. Invest. 1982, 69, 604. (j) Williams, G. H.; Hollenberg, N. K. N. Engl. J. Med. 1977, 297, 184. (i) Nasjletti, A.; ColinaChourio, J.; McGiff, J. C. Circ. Res. 1975, 37, 59. (j) Mills, I. M. Nephron 1979, 23, 61. (k) Flamenbaum, W.; Cagnon, J.; Ramwell, P. Am. J. Physiol. 1979, 237, F433. (1) Bicking, J. B.; Bock, M. G.; Cragoe, E. J.; DiPardo, R. M.; Gould, N. P.; Holtz, W. J.; Lee, T.-J.; Robb, C. M.; Smith, R. L.; Springer, J. P.; Blaine, E. H. J. Med. Chem. 1983, 26, 342.
(4) (a) Erdos, E. G.; Back, N.; Sicuteri, F. Eds. "Hypotensive Peptides"; Springer-Verlag: Berlin, 1966. (b) Tenner, Jr., T. E.; Yang, J. K.; Schimizu, M.; Pang, P. K. T. Peptides 1980 , 1, 285. (c) McGiff, J. C. Med. Clin. North Am. 1968, 52, 263. (d) Barraclough, M. A.; Mills, I. M. Clin. Sci. 1965, 28, 69. (e) McGiff, J. C.; Itskovitz, H. D.; Terragno, N. A. Clin. Sci. Mol. Med. 1975, 49, 125.
and analogues. Some background SAR for intact bradykinin derivatives and analogues ${ }^{5}$ and fragments were reported. The biological actions of the bradykinin fragments showed several orders of magnitude of diminished potency relative to the nonapeptide parent. ${ }^{5 c, 6}$ The reported peptides or fragments were not tested for renal vasodilator activity. In this report the synthesis and renal vasodilator activity of certain tri- and tetrapeptide analogues are reported.

Chemistry. Compounds related to the tripeptide Pro-Phe-Arg (24), the blocked derivative 31, and the pentapeptide Phe-Ser-Pro-Phe-Arg (36) are listed in Tables I-III. The amide bonds were routinely prepared by using DCC with either HOSu or HOBt. ${ }^{7}$ The intermediates 1 and 2 were prepared from N -carbobenzoxy-Lproline (Scheme I, A) as precursors to the tripeptide analogues 24, 26, 27, 29, and 30. Compounds $32-35$ were designed as derivatives of 31 and were prepared from the N -acylated acids 3-5 (Scheme I, B). The alcohols 6 and 7 were oxidized to the intermediate aldehydes with oxalyl chloride in dimethyl sulfoxide, ${ }^{8}$ and reductive amination with sodium cyanoborohydride ${ }^{\theta}$ and a protected L-arginine, followed by deblocking, afforded the dihydro derivatives 25 and 28 (Scheme I, C).

The 4-phenylacyl derivatives listed in Table II are related to 36 and were derived from the acids $8-10$ (Scheme II, A). The L-phenylalanyl (37), the D-phenylalanyl (38), and the DL- α-methylphenylalanyl (41) analogues were prepared from 9. 3-Aminopropylamides 39 and 43 were synthesized from 11 and 12 , respectively. Analogue 47 was prepared from 12 and L-proline benzyl ester. Compounds 40 and 42 were obtained from an alternative coupling sequence involving the protected dipeptide 13 and using the acids 8 and 10 (Scheme II, B). The 3,4-dimethoxyphenylalanyl derivative 45 was synthesized from the intermediate acid 14 (Scheme II, C). Compound 14 was obtained from the coupling of DL- α-methyl-3,4-dimethoxyphenylalanine methyl ester and 9. Dihydro analogue 46 was prepared by the two-step reaction sequence described for 25 and 28 (Scheme II, D). The intermediate alcohol 15 was synthesized from 9 and DL-2-amino-2-methyl-3-phenylpropanol, which was prepared from diborane reduction of DL- α-methylphenylalanine. N-(1-Adamantylacetyl)-L-proline (16) was converted to 44 by a route using the arginine analogue 13 , followed by basic hydrolysis of the arginyl methyl ester and catalytic hydrogenolysis of the nitro group blocking the guanidino moiety (Scheme II, E).
(5) (a) Stewart, J. M. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1968, 27, 63. (b) Schröder, E. Handb. Exp. Pharmacol. 1970, 25, 324. (c) Regoli, D.; Barabe, J. J. Pharmacol. Rev. 1980, 32, 1, and references cited therein. (d) Schröder, E.; Hempel, R. Experimentia. 1964, 20, 529 . (e) Innis, R. B.; Manning, D. C.; Stewart, J. M.; Snyder, S. H. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 2630.
(6) (a) Suzuki, K.; Abiko, T.; Endo, N. Chem. Pharm. Bull. 1969, 17, 1671. (b) Suzuki, K.; Abiko, T.; Endo, N.; Kameyama, T.; Sasaki, K.; Nabeshima, J. Jpn. J. Pharmacol. 1969, 19, 325. (c) Okada, Y.; Tuchiya, Y.; Yagyu, M.; Kozawa, S.; Kariya, K. Neuropharmacol. 1977, 16, 381. (d) Back, N.; Sicuteri, F. Adv. Exp. Med. Biol. 1972, 21, 26.
(7) Abbreviations used are: DCC, dicyclohexylcarbodiimide; HOBt, 1-hydroxybenzotriazole; HOSu, N-hydroxysuccinimide; NEM, N-ethylmorpholine; THF, tetrahydrofuran; DMF, dimethylformamide; Cbz, carbobenzoxy; Boc, tert-butoxycarbonyl.
(8) Mancuso, A. J.; Huang, S.; Swern, D. J. Org. Chem. 1978, 43, 2480.
(9) Borch, R. F.; Berstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.

Scheme I. Synthesis of Tripeptide Analogues ${ }^{a}$

$$
\begin{aligned}
& 6, \mathrm{R}=\mathrm{H} \\
& 7, \mathrm{R}=\mathrm{CH}_{3}
\end{aligned}
$$

Abstract

${ }^{a}$ Reagents: (a) DCC-HOBt-NEM; (b) L- and D$\mathrm{H}_{2} \mathrm{NC}(\mathrm{R})\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{COOCH}_{3} \cdot \mathrm{HCl}$; (c) aqueous 2.5 N $\mathrm{NaOH}-\mathrm{MeOH}$; (d) N^{ω}-nitro-L-arginine methyl ester hydrochloride; (e) $10 \% \mathrm{Pd} / \mathrm{C}_{-1} \mathrm{H}_{2}-\mathrm{EtOH}-\mathrm{HOAc}$; (f) $\mathrm{H}_{2} \mathrm{~N}-$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHCbz} \cdot \mathrm{HCl}$; (g) $10 \% \mathrm{Pd} / \mathrm{C}-\mathrm{H}_{2}-\mathrm{EtOH}$; (h) L-proline benzyl ester hydrochloride; (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$-pyridine; (j) Lphenylalanine benzyl ester hydrochloride; (k) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-$ COCl-pyridine; (1) L-and DL- $\mathrm{H}_{2} \mathrm{NC}(\mathrm{R})\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{OH}$; (m) $\mathrm{ClCOCOCl}-\mathrm{Me}_{2} \mathrm{SO}_{2}-\mathrm{Et}_{3} \mathrm{~N}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ (n) $\mathrm{NaCNBH}_{3}-$ MeOH ; (o) DCC-HOSu-THF; (p) $5 \% \mathrm{Pd} / \mathrm{BaSO}_{4}-\mathrm{EtOH}-$ HOAc.

4-(4-Hydroxyphenyl)butyryl derivatives listed in Table III are related to tri- and tetrapeptide analogues of 36. Acid 17 was used as a general intermediate and was prepared by DCC-HOBt condensation of 4-(4-hydroxyphenyl)butyric acid with L-proline benzyl ester, followed by hydrogenolysis (Scheme III, A). Compounds 48 and 49 were prepared from 18, the DL- α-methyl-3,4-dimethoxyphenylalanyl analogues 50 and 51 were obtained from 19, and the DL- α-methyltyrosyl derivatives 52 and 53 were prepared from 20. Compound 58 was synthesized from methyl 6 -aminocaproate and 18. The glycylproline analogues $54-57$ were prepared by amination of the acids 18 and 20-22 with glycyl-L-proline benzyl ester and un-

Scheme II. Synthesis of Tetrapeptide Analogues ${ }^{a}$

$\xrightarrow{c(f), d, e,(h)}$

$8, n=2$
11, $\mathrm{R}=\mathrm{H}$
$9, n=3$
$12, \mathrm{R}=\mathrm{CH}_{3}$
10, $n=4$

13
(C) $9 \xrightarrow{f, m, n}$

(D)

15

16
${ }^{a}$ Reagents: (a) L-proline benzyl ester hydrochloridepyridine or NEM; (b) $10 \% \mathrm{Pd} / \mathrm{C}-\mathrm{H}_{2}-\mathrm{EtOH}$; (c) DCC-HOSu-THF; (d) D-and L-phenylalanine benzyl ester and DL- α-methylphenylalanine methyl ester; (e) $10 \% \mathrm{Pd} / \mathrm{C}-$ $\mathrm{H}_{2}-\mathrm{EtOH}$; (f) DCC-HOBt-NEM; (g) N^{ω}-nitro-L-arginine methyl ester hydrochloride; (h) aqueous $2.5 \mathrm{~N} \mathrm{NaOH}-$ MeOH ; (i) $10 \% \mathrm{Pd} / \mathrm{C}$ or $5 \% \mathrm{Pd} / \mathrm{BaSO}_{4}-\mathrm{H}_{2}-\mathrm{EtOH}-\mathrm{HOAc}$; (j) $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHCbz} \cdot \mathrm{HCl} ;(\mathrm{k})$ di-tert-butyl dicarbonate$\mathrm{Et}_{3} \mathrm{~N}$-DMF; (1) TFA-1,3-dimethoxybenzene; (m) DL- α -methyl-3,4-dimethoxyphenylalanine methyl ester hydrochloride; (n) 1-adamantaneacetic acid; (o) $\mathrm{NH}_{2} \mathrm{C}-$ $\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{OH}$; (p) $\mathrm{ClCOCOCl}-\mathrm{Me}_{2} \mathrm{SO}-\mathrm{Et}_{3} \mathrm{~N}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (q) ${ }^{\mathrm{NaCNBH}}{ }_{3}-\mathrm{MeOH}$; (r) L-arginine.

Scheme III. Routes to 4-Hydroxyphenylbutyryl (HPB)
Tetrapeptide Derivatives ${ }^{a}$

${ }^{a}$ Reagents: (a) DCC-HOBt-NEM; (b) L-proline benzyl ester hydrochloride; (c) $10 \% \mathrm{Pd} / \mathrm{C}-\mathrm{H}_{2}-\mathrm{EtOH}$; (d) $\mathrm{DL} \cdot \alpha-$ methylphenylalanine, DL- α-methyl-3,4-dimethoxyphenylalanine and DL- α-methyltyrosine as the methyl ester hydrochlorides; (e) aqueous $2.5 \mathrm{~N} \mathrm{NaOH}-\mathrm{MeOH}$; (f) N^{ω} -nitro-L-arginine methyl ester hydrochloride; (g) $5 \% \mathrm{Pd} /$ $\mathrm{BaSO}_{4}-\mathrm{H}_{2}-\mathrm{EtOH}-\mathrm{HOAc}$; (h) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHCbz} \cdot \mathrm{HCl}$; (i) L and D -phenylalanine benzyl ester hydrochloride; (j) glycyl-L-proline benzyl ester; (k) 4-hydroxyphenylbutyric acid; (1) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOCH}_{3} \cdot \mathrm{HCl}$.
masking of the free acid via hydrogenolysis. The tetrahydroisoquinoline analogues 59 and 60 were prepared from the N-[4-(4-hydroxyphenyl)butyryl] derivative 23, which was synthesized from L-3-carbethoxy-1,2,3,4-tetrahydroisoquinoline. ${ }^{10}$

Structure-Activity Relationships. The biological activities of the peptide analogues are summarized in Tables I-IV. Renal vasodilator activity was determined in anesthetized dogs ($7-17 \mathrm{~kg}$) by techniques previously described. ${ }^{1,11-13}$ The primary screen provided data (Tables I-III) on RBF, RVR, heart rate (HR), and mean arterial blood pressure (MABP). The RVR was calculated as the ratio of the MABP to mean RBF. Some of the most active compounds uncovered in this series in the primary renal vasodilator screen were subsequently studied in a secondary protocol as described earlier, ${ }^{11}$ and the results are shown in Table IV. These cumulative dose-response data
(10) (a) Julian, P. L.; Karpel, W. J.; Magnani, A.; Meyer, E. W. J. Am. Chem. Soc. 1948, 70, 180. (b) Archer, S. J. Org. Chem. 1951, 16, 430
(11) Pfeiffer, F. R.; Wilson, J. W.; Weinstock, J.; Kuo, G. Y.; Chambers, P. A.; Holden, K. G.; Hahn, R. A.; Wardell, Jr., J. R.; Tobia, A. J.; Setler, P. E.; Sarau, H. J. Med. Chem. 1982, 25, 352.
(12) Pendleton, R. G.; Samler, L.; Kaiser, C.; Ridley, P. T. Eur. J. Pharmacol. 1978, 51, 19.
(13) Hahn, R. A.; Wardel, Jr., J. R. J. Cardiovasc. Pharmacol. 1980, 2, 583.
"
in

Table II. 4-Phenylbutyryl Tripeptide Analogues

relative to those reported in Table I. Compound 37 showed statistically significant increases in RBF in three dogs, but the D-Phe isomer 38 and the α-MePhe derivative 41 were inactive in this test. Compound 39 did not show significant activity, but the amine 43 exhibited statistically significant activity in two dogs. The amide 40 , with a shortened side chain, and the longer tetramethylene isomer 42 , were inactive in this protocol. The 1-adamantylacetyl derivative 44 was active in two dogs, indicating that different hydrophobic groups might be tolerated on the amino terminus. The 3,4-dimethoxyphenyl derivative 45 exhibited good activity, as did the dihydro analogue 46. The diprolyl compound 47 was inactive in this test. The data in Table II suggest that relatively potent renal vasodilators can be obtained from tripeptides substituted with the 4 -phenylbutyryl side chain on the proline at the amino terminus.
It can be seen in Table III that a large percentage of the tri- and tetrapeptide derivatives exhibited significant activity. All the compounds are N-[4-(4-hydroxyphenyl)butyryl] (HPB) analogues. The 4-hydroxyphenyl group on compounds 48-60 imparted, generally, enhanced activity over the unsubstituted phenyl analogues shown in Table II. The tripeptide derivative 48, i.e., HPB-Pro- α -MePhe-Arg, the 3,4-dimethoxyphenyl analogue 50 and the α-methyltyrosyl analogue 52 were good renal vasodilators in the dog protocol, with 50 showing the best activity of these three analogues. Compounds 50 and 51 have somewhat similar structures; both have the 3,4 -dimeth-oxy-substituted phenyl groups but differ in the amide group linked to the α-methyl-3,4-dimethoxyphenylalanyl segment, and 50 and 51 each exhibit good activity. Compounds 49,51 , and 53 contain the (3 -aminopropyl)amino group and each was active in at least two dogs. This group was also on the carboxy terminus of 26 and 43 , which displayed significant activity. The tetrapeptides 54-57 have the terminal Gly-Pro group. The d-Phe analogue 55, the α-methyl derivative 56, and the α-methyltyrosyl analogue 57 exhibited statistically significant activity. The 6 -aminocaproate derivative 58 was marginally active on accumulative dosing. The 1,2,3,4-tetrahydroisoquinolines 59 and 60 were not active in this protocol and are examples of "cyclic" phenylalanyl derivatives.

In Table IV are listed the renal vasodilator activity and selectivity ratios for some of the more active analogues tabulated in Tables I-III. The nonapeptide bradykinin was tested in four dogs and exhibited an RVR $E D_{15}$ of 2.8 $\mu \mathrm{g} / \mathrm{kg}$ and an average maximum decrease in RVR of 67%. The ratios of IVR, MABP, and HR vs. RVR ED ${ }_{15}$ indicate little or no selectivity for the renal vasculature. The blocked tripeptide 31, having the Pro-Phe-Arg array, was not as active as bradykinin and also showed unfavorable selectivity ratios. In contrast, the pentapeptide 36 exhibited an RVR ED_{15} of $5.2 \mu \mathrm{~g} / \mathrm{kg}$, more than half the potency relative to bradykinin, and large selectivity ratios, suggesting selective renal vasodilator activity. The adamantyl derivative 44 showed a modest RVR ED_{15} of 72 $\mu \mathrm{g} / \mathrm{kg}$ but was not selective either for the renal or iliac vascular beds. Compound 50 exhibited a good average maximum decrease in RVR of 31% but was one of the least potent compounds tested in this assay. Although the tyrosyl derivative 52 showed selectivity of renal vasodilation vs. MABP and HR, the average maximum decrease in RVR was only 16%. Compound 56 exhibited selectivity for the renal vasculature equivalent to 36, and the RVR $E D_{15}$ and average maximum decrease in RVR were in the same range as 36. Compound 57 showed a maximum decrease in RVR of 13% in three dogs, but this change was not statistically significant.

55^{q}

56^{e}
57^{l}

58^{e}

59

1

3	0	2	-2
30	-1	0	-1
300	-1	-1	-1
accumulative effect: ${ }^{m}$	RBF $+55 *$,	RVR	-32^{*}

1

$$
\text { accumulative effect: }{ }^{m} \mathrm{RBF}+55^{*} \text {, RVR }-32^{*}
$$

1
-2
-1
$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{7}{ }^{h}$
120-128
-38

3 -5 17* -18*
$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7}{ }^{r}$
115-117
-78.9
30
300
-5
$-9 *$ 16* $-21 *$
$\stackrel{6}{6}$
300

2

3	-2	4	-6	-7
30	1	0.5	-0.5	0
300	3	9^{*}	-5.9	-1.

$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{8}{ }^{\mathrm{s}}$
117-122

1

3	0	1	-1	-4
30	2	-4	5	-
300	1	5	-4	-6
accumulative effect:				

-4
-2
-6
$\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{h}$
75-77
-62
accumulative effect. $m \mathrm{RBF}+12^{*}$, RVR
-6

1

3	-1	7	-6	1
30	1	2	-1	0
300	-2	-12	11	0

60

3	-2	3	-6	1
30	-1	6	-6	-2
300	-2	5	-6	-1

-8.5^{p}
$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot \mathrm{HCl}^{t} \quad 142-145 \quad-12.7$
${ }^{a}$ See footnote a in Table I for test elaboration. ${ }^{b}$ Amino acids have the L configuration, except where noted. ${ }^{c}$ Number of dogs. d All compounds were analyzed for C , H and N ; results obtained were within $\pm 0.4 \%$ of the theoretical values, and exceptions are noted. e DL- α-methylphenylalanyl derivative. f Calculated for 1.5 mol of HOAc and 1 mol of $\mathrm{H}_{2} \mathrm{O}, \mathrm{N}$: calcd, 11.96; found, 11.28. ${ }^{\mathrm{g}}\left(\mathrm{c} 1.5\right.$, aqueous MeOH). ${ }^{h}$ Calculated for 0.5 of $\mathrm{H}_{2} \mathrm{O}$. ${ }^{i}$ DL- α-methyl-3, 4 -dimethoxyphenylalanyl derivative. ${ }^{j}$ Calculated for 1.5 mol of HOAc and 3 mol of $\mathrm{H}_{2} \mathrm{O}$; N : calcd, 10.52 ; found, 9.92 . ${ }^{k}$ Calculated for 0.75 mol of $\mathrm{H}_{2} \mathrm{O}$. $l_{\text {DL- } \alpha-m e t h y l t y r o s y l ~ d e r i v a t i v e . ~}^{m}$ Change (percent) from initial baseline control values after cumulative dosing. n Calculated for 1 mol of HOAc and 1 mol of EtOH. or Calculated for 0.25 mol of H, O. p ($c 1$, H O O). q D-Phenylalanyl derivative. ${ }^{r}$ Calculated for 1 mol of $\mathrm{H}_{2} \mathrm{O}, \mathrm{N}$: calcd, 9.17 ; found, 8.74 . s Calculated for 1 mol of $\mathrm{EtOH}, \mathrm{N}$: calcd, 8.56 ; found, 8.03 . $\mathrm{t}_{\mathrm{Cl}} \mathrm{Calculated} \mathrm{for} 1 \mathrm{~mol}$ of HOAc .

Table IV. Renal Vasodilator Activity ${ }^{a}$

compd	$\underset{\mu \mathrm{g} / \mathrm{kg}, \mathrm{iv}}{\mathrm{RVR} \mathrm{ED}_{15}}$	$\begin{gathered} \text { av } \max \% \\ \text { decrease in } R V R \end{gathered}$	$\begin{aligned} & \text { IVR ED } \text { RV }_{30} \\ & \text { RVR }_{15} \end{aligned}$	$\begin{gathered} \text { MABP ED }_{20} / \\ \text { RVR ED } \end{gathered}$	$\begin{aligned} & \mathrm{HR} \mathrm{ED}_{20} / \\ & \text { RVR ED }_{15} \end{aligned}$
31	297 (3)	20	>20	-4	>20
36	5.2 (2)	21	>1158	>1158	>1158
44	72 (3)	19	0	>84	>84
50	506 (3)	31	>12	>12	>12
52	45.5 (2)	16	<9	>1665	>1665
56	$4.9(3)^{c}$	20	>1226	>1226	>1226
57	$(3)^{d}$	13			
bradykinin ${ }^{e}$	2.8 (4)	67	$+25$	-7	$+8$

${ }^{a}$ See ref 1 and 11 for details of methodology for determining RVR ED ${ }_{1 s}$, average maximum percent decrease in RVR, and the selectivity ratios $E D_{15}$ relative to iliac vascular resistant (IVR), mean arterial blood pressure (MABP), and heart rate (HR). The following changes were determined to be the minimum necessary for statistical significance ($p=0.95$): RVR, 16%; MABP, $\pm 6 \%$; IVR, $\pm 24 \% ; \mathrm{HR}, \pm 9 \%{ }^{\quad}{ }^{b}$ Number of dogs used in test in parentheses. compound showed a fair amount of variability on testing in the mongrel dogs. ${ }^{d}$ Selectivity not calculated, since average maximum percent decrease in RVR was 13 . e Tested as the acetate (2.5 mol) and pentahydrate.

Figure 1. Changes in renal blood flow (RBF) and renal vascular resistance (RVR) in three anesthetized dogs with 51. The dogs were infused according to the standard protocol, starting with a $5-\mathrm{min}$ iv infusion at $0.1 \mu \mathrm{~g} /(\mathrm{kg} \min)$. Each dose was infused for 5 min to give a total cumulative dose of $2025 \mu \mathrm{~g} / \mathrm{kg}$. Time (in minutes) is after total dose (see Structure-Activity Relationship section).

In Figures 1 and 2 are shown the results of longer term cumulative effects on RBF and RVR for compounds 51 and 55. The dogs were infused according to the standard protocol, starting with a $5-\mathrm{min}$ infusion at $0.1 \mu \mathrm{~g} /(\mathrm{kg} \mathrm{min})$ and increasing the dose in threefold increments to 270 $\mu \mathrm{g} /(\mathrm{kg} \mathrm{min})$. Each dose was infused for 5 min to give a total cumulative dose of $2025 \mu \mathrm{~g} / \mathrm{kg}$ during 45 min . The dogs were monitored for an additional 120 min after drug administration. In Figure 1, the data for 51, the 3aminopropyl amide, are shown. The RBF was increased a mean of $8 \%(n=3)$ at the end of the infusion, reached a maximum increase of $57 \% 80 \mathrm{~min}$ after drug administration, and fell to $36 \% 120 \mathrm{~min}$ following drug administration; the RVR decreased a maximum of $30 \% 80 \mathrm{~min}$ following drug administration and $24 \% 120 \mathrm{~min}$ following drug administration. In Figure 2, the RBF for compound 55 , the D-Phe analogue, is shown to advance from an increase of $15 \%(n=3)$ at the end of the infusion to a 76% increase at 120 min following drug administration; the RVR decreased from 8% at the end of the infusion to a 32% decrease at 120 min following drug administration. These data show that two different types of analogues in this series exhibited extended duration of significant renal vasodilatation. The data in Table IV provide evidence
confirming that tri- and tetrapeptide fragments of bradykinin that are suitably modified provided compounds with equal or greater potency as renal vasodilators with greatly enhanced selectivity for the renal vasculature. A summary of the renal vasodilator data implies that (1) certain derivatized fragments of the carboxy terminus of bradykinin, i.e., Pro-Phe-Arg, are vasodilatory in the anesthetized dog, (2) tripeptide analogues having a 4 phenylbutyryl side chain on the N -terminal proline provide enhanced activity relative to the unsubstituted derivatives, (3) the 4-(4-hydroxyphenyl)butyryl group added to certain tri- and tetrapeptide derivatives gave compounds that were the best renal vasodilators of the series, and (4) arrays of Pro-Phe-Gly-Pro incorporating α-methylphenylalanine were active variants. Some of these compounds were characterized by their ability to provide selective renal vasodilatation, and the biological data reveal diverse profiles for these analogues, suggesting that more potent compounds might be obtained with a greater selectivity for the renal vasculature.

Experimental Section

All compounds were routinely checked by IR, NMR, TLC, and mass spectroscopy. Infrared spectra were run as Nujol mulls on

Figure 2. Changes in renal blood flow (RBF) and renal vascular resistance (RVR) in three anesthetized dogs with 55. See Figure 1 for protocol. The total cumulative dose was $2025 \mu \mathrm{~g} / \mathrm{kg}$, and the time (in minutes) is after total dose.
a Perkin-Elmer Infracord Model 137. Proton magnetic spectra were determined on Perkin-Elmer R24 and Varian EM 360 instruments using $\mathrm{Me}_{4} \mathrm{Si}$ as reference. TLC's were run on Uniplate silica gel plates, $250 \mu \mathrm{~m}$ (Analtech, Inc., Newark, DE); the following solvent systems were used for TLC: A, $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; $\mathrm{B}, 7 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{C}, 10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{D}, 20 \mathrm{~mL}$ of 3:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ with 10 drops of concentrated $\mathrm{NH}_{4} \mathrm{OH} ; \mathrm{E}, 20$ mL of $2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ with 10 drops of concentrated $\mathrm{NH}_{4} \mathrm{OH}$; F, 63:31:6 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$-concentrated $\mathrm{NH}_{4} \mathrm{OH} ; \mathrm{G}, 1: 1$ EtOAccyclohexane. Mass spectra were obtained on Hitachi Perkin-Elmer RMN-6E and Varian MAT CH-5 DF spectrometers using fielddesorption (FD) and chemical-ionization (CI) techniques. Melting points were determined by using a Thomas-Hoover Unimelt capillary apparatus and are uncorrected. Column chromatography was carried out on Merck silica gel 60 (MC/B, Cincinnati, OH). N-Carbobenzoxy-L-proline, N^{ω}-nitro-L-arginine methyl ester hydrochloride, and D-phenylalanine methyl ester hydrochloride were purchased from Vega Biochemicals, Tucson, AZ. L-Phenylalanine methyl ester hydrochloride, DL- α-methyltyrosine methyl ester hydrochloride, 1-adamantaneacetic acid, 4-(4-methoxyphenyl)butyric acid, L-2-amino-3-phenyl-1-propanol, phenylacetic acid, 3 -phenylpropionic acid, 4-phenylbutyric acid, and 5-phenylvaleric acid were purchased from Aldrich Chemical Co., Milwaukee, WI. Di-tert-butyl dicarbonate was obtained from Fluka Chemical Corp., Hauppauge, NY. DL- α-Methylphenylalanine methyl ester hydrochloride and DL- α-methyl-3,4-dimethoxyphenylalanine methyl ester hydrochloride ($\mathrm{mp} 152-154^{\circ} \mathrm{C}$, from $\mathrm{CH}_{3} \mathrm{CN}$) were synthesized by published procedures. ${ }^{15}$ 4-(4-Hydroxyphenyl)butyric acid was obtained from the hydrolysis of the precursor methoxy derivative with refluxing $48 \% \mathrm{HBr}$ in HOAc. Glycyl-L-proline benzyl ester was prepared from the DCC coupling of L-proline benzyl ester with N-(tert-butoxycarbony)glycine, followed by unmasking of the amino group with $\mathrm{CF}_{3} \mathrm{COOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The standard reaction conditions were as follows. (1) DCC coupling with HOBt: ${ }^{16}$ equivalent amounts of the acid and amine and 2 equiv of HOB t were used, and the solution was neutralized to pH 7.0 to 7.5 with NEM (reaction time 2 h to 3 days), worked up by filtering the urea, concentrating the filtrate, partitioning between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and washing the organic extracts with a dilute $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, and $5 \% \mathrm{NaHCO}_{3}$ solution and brine. (2) DCC coupling with HOSu: as above except that 1 equiv

[^1]of HOSu was used and activated ester could be isolated prior to the addition of the amine. (3) Basic hydrolysis: about 10 mmol of ester was dissolved in 75 mL of MeOH and 25 mL of 2.5 N NaOH and then stirred at $25^{\circ} \mathrm{C}$ for 2 to $17 \mathrm{~h}, \mathrm{MeOH}$ was evaporated, the aqueous residue was acidified with concentrated HCl , and the product was filtered or extracted with EtOAc. (4) Hydrogenolysis of the Cbz, benzyl, and N^{ω}-nitroarginine groups: 2 mmol of compound was dissolved in 25 mL of EtOH and 25 mL of HOAc (except only EtOH was used for benzyl esters) and shaken on the Parr apparatus with 0.5 g of $10 \% \mathrm{Pd} / \mathrm{C}$ or $\mathrm{Pd} /$ BaSO_{4} (wet with a little $\mathrm{H}_{2} \mathrm{O}$) at 60 psi of H_{2} until TLC showed the reaction was finished (2 to 18 h), the catalyst was filtered, the filtrate was concentrated, and the residue was azeotroped with EtOH and/or toluene. These peptide analogues tenaciously formed hydrates and solvates. Solvents were dried over MgSO_{4}. THF and DMF were dried over molecular sieves. Where analyses are indicated only by synnbols of the elements, results were within $\pm 0.4 \%$ of the theoretical values.

L-Prolyl-L-phenylalanyl-L-arginine (24). A mixture of 2.0 g (8 mmol) of N-carbobenzoxy-L-proline, $1.73 \mathrm{~g}(8 \mathrm{mmol})$ of Lphenylalanine methyl ester hydrochloride, 2.16 g (16 mmol) of HOBt, and 20 mL of THF was neutralized with NEM and was treated all at once with $1.81 \mathrm{~g}(8.8 \mathrm{mmol})$ of DCC at $0^{\circ} \mathrm{C}$. The suspension was then stirred at $25^{\circ} \mathrm{C}$ for 18 h , and worked up in the standard fashion to give a quantitative yield (3.3 g) of the syrupy N-carbobenzoxy-L-prolyl-L-phenylalanine methyl ester: TLC (system C), $R_{f} 0.68$; FD mass spectrum, $m / e 410$ (intense peak). This product ($3.3 \mathrm{~g}, 8 \mathrm{mmol}$) was dissolved in 40 mL of MeOH and 20 mL of 2.5 N NaOH solution and stirred for several hours or until TLC showed complete hydrolysis. The MeOH was evaporated, the aqueous residue was adjusted to pH 2 with 3 N HCl , and the oily precipitate was taken up in EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$. The dried, crude N-carbobenzoxy-L-prolyl-Lphenylalanine ($1 ;^{19} 3.1 \mathrm{~g}, 98 \%$) was of sufficient purity to use for subsequent reactions: TLC (system C), $R_{f} 0.17$; FD mass spectrum, $m / e 396$ (intense). Compound 1 ($1.5 \mathrm{~g}, 3.8 \mathrm{mmol}$) was coupled to N^{ω}-nitro-L-arginine methyl ester hydrochloride by the procedure described above and by using proportional quantities of other reagents to provide 2.1 g (95%) of N-carbobenzoxy-L-prolyl-L-
(17) Lawson, W. B.; Leafer, Jr., D. M.; Tewes, A.; Rao, G. J. S. Hoppe-Seylers Z. Physiol. Chem. 1968, 349, 251.
(18) Cann, J. R.; Stewart, J. M.; Matsueda, G. R. Biochemistry 1973, 12, 3780.
(19) Fujii, S.; Toyonaka, Y.; Takashi, F.; Sugimoto, M. German Patent 2943 582, 1980.
phenylalanyl- N^{ω}-nitro-L-arginine methyl ester: TLC (system C), $R_{f} 0.69$; FD mass spectrum, $m / e 612$. Basic hydrolysis of 1.0 g (1.6 mmol) of this ester afforded a white solid, which was dissolved in a small amount of MeOH and diluted with ethyl ether to give $600 \mathrm{mg}(63 \%)$ of the free acid: $\mathrm{mp} 121-124^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-47.1^{\circ}(c$, $0.5, \mathrm{MeOH}) ; \mathrm{FD}$ mass spectrum, $m / e 597(\mathrm{M}), 598(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. This compound ($1.0 \mathrm{~g}, 1.7 \mathrm{mmol}$) was hydrogenated by the standard conditions for 18 h . The residual product was dissolved in a minimum amount of MeOH , diluted with ethyl ether-EtOAc (1:1), and chilled to provide $554 \mathrm{mg}(78 \%)$ of 24 : ${ }^{6 a, 18}$ TLC (system F), $R_{f} 0.34$; FD mass spectrum, $m / e 418$ ($\mathrm{M}+1$). See Table I for additional data.

L-Prolyl-dL- α-methylphenylalanyl-L-arginine (27). The overall procedure used to prepare 24 was followed. DL- α Methylphenylalanine methyl ester hydrochloride ($4.9 \mathrm{~g}, 0.02 \mathrm{~mol}$) was coupled to N-carbobenzoxy-L-proline to provide a syrupy product, which was chromatographed over 200 g of silica gel with a 20 to 25% of EtOAc in cyclohexane gradient to afford 5.6 g (66%) of N-carbobenzoxy-L-prolyl-DL- α-methylphenylalanine methyl ester: TLC (system A) $R_{f} 0.65$; FD mass spectrum, m / e 424 (strong). This compound ($5.6 \mathrm{~g}, 13.2 \mathrm{mmol}$) was hydrolyzed with NaOH in the usual way to give $5.2 \mathrm{~g}(96 \%)$ of an amorphous solid. This was passed through a short column of silica gel with a 1 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient to provide an analytical sample of N-carbobenzoxy-L-prolyl-DL- α-methylphenylalanine (2): TLC (system C) $R_{f} 0.51$; FD mass spectrum, $m / e 410$ (intense). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. Compound 2 ($3.5 \mathrm{~g}, 8.5 \mathrm{mmol}$) was coupled to N^{ω}-nitro-L-arginine methyl ester hydrochloride (2.3 $\mathrm{g}, 8.5 \mathrm{mmol}$) with DCC in the usual manner to give an amorphous solid, which was chromatographed over 200 g of silica gel with a 1 to 3% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient to afford 3.7 g (70%) of N-carbobenzoxy-L-prolyl-DL- α-methylphenylalanyl- N^{ω}-nitro-Larginine methyl ester: TLC (system C) $R_{f} 0.45$; FD mass spectrum, $m / e 626$ (strong, $M+1$). Basic hydrolysis of the methyl ester gave $3.0 \mathrm{~g}(83 \%)$ of the white powdery acid: TLC (system C with 4 drops of HOAc in 20 mL of solution) $R_{f} 0.42$; FD mass spectrum, $m / e 612(\mathrm{M}+1)$. Catalytic hydrogenation as described for 24, followed by chromatography on 30 g of silica gel with a gradient of 1 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing a few drops of concentrated $\mathrm{NH}_{4} \mathrm{OH}$ gave $27(0.3 \mathrm{~g}, 14 \%)$ as the white carbonate salt: TLC (system F) $R_{f} 0.31$; FD mass spectrum, $m / e 433$ (intense, $\mathbf{M}+1$). See Table I for additional data.

L-Prolyl-L-phenylalanine 3-Aminopropylamide (26). A mixture of $1.5 \mathrm{~g}(3.2 \mathrm{mmol})$ of $1,0.92$ (3.2 mmol) of 3 -(carbobenzoxyamino) propylamine hydrochloride, ${ }^{17} 0.864 \mathrm{~g}$ (6.4 mmol) of HOBt, and 30 mL of THF was neutralized with NEM, treated with 0.87 g (4.2 mmol) of DCC, and stirred at $25^{\circ} \mathrm{C}$ for 18 h . The usual acid-base workup gave $1.9 \mathrm{~g}(100 \%)$ of syrupy N-carbo-benzoxy-L-prolyl-L-phenylalanine 3 -(carbobenzoxyamino)propylamide: FD mass spectrum, $m / e 586$ (intense). This compound ($1.2 \mathrm{~g}, 2.1 \mathrm{mmol}$) was dissolved in 75 mL of EtOH and reduced on the Parr apparatus. The oily product was dissolved in a small amount of MeOH and acidified with ethereal HCl to provide a white solid. A crystallization from $\mathrm{MeOH} /$ ethyl ether gave $497 \mathrm{mg}(75 \%)$ of the dihydrochloride of 26 : TLC (system F) $R_{f} 0.57$; CI mass spectrum (CH_{4}), m/e 318 with correct fragments. See Table I for additional data.

Similarly prepared was L-prolyl-DL- α-methylphenylalanine 3 -aminopropylamide dihydrochloride (29) starting with 2.0 g (4.7 mmol) of $2,1.27 \mathrm{~g}$ (4.7 mmol) of 3 -(carbobenzoxyamino) propylamine hydrochloride, and proportionate amounts of other reagents to give $2.8 \mathrm{~g}(100 \%)$ of N-carbobenzoxy-L-prolyl-DL- α-methylphenylalanine 3-(carbobenzoxyamino)propylamide: FD mass spectrum, $m / e 600$ (strong). Hydrogenolysis of this product and crystallization of the derived hydrochloride salt from $\mathrm{MeOH} /$ ethyl ether gave $1.54 \mathrm{~g}(76 \%)$ of the white solid 29: TLC (system F) $R_{f} 0.57$; FD mass spectrum, $m / e 333$ (intense $\mathrm{M}+1$). See Table I for additional data.

L-Prolyl-DL- α-methylphenylalanyl-L-proline (30). Compound $2(3.0 \mathrm{~g}, 7.3 \mathrm{mmol})$ was coupled to L-proline benzyl ester hydrochloride ($1.76 \mathrm{~g}, 7.3 \mathrm{mmol}$) by the procedure described for 24. The crude product was chromatographed with a 20 to 50% of EtOAc in cyclohexane gradient to give $1.7 \mathrm{~g}(39 \%)$ of N -carbobenzoxy-L-prolyl-DL- α-methylphenylalanyl-L-proline benzyl ester as an amorphous solid: TLC (system B) $R_{f} 0.64$; FD mass spectrum, $m / e 424$ (strong). This product ($1.7 \mathrm{~g}, 2.8 \mathrm{mmol}$) was
hydrogenated to give a white solid. A crystallization from EtOH provided 360 mg (35%) of 30 : FD mass spectrum, m/e 373 (intense, M), 374 (intense, $M+1$). See Table I for additional data.
\boldsymbol{N}-Benzoyl-L-prolyl-DL- α-methylphenylalanyl-L-arginine (33). A mixture of $12.0 \mathrm{~g}(0.05 \mathrm{~mol})$ of L -proline benzyl ester hydrochloride in 100 mL of dry pyridine was cooled to $0^{\circ} \mathrm{C}$, and a solution of $10.5 \mathrm{~g}(8.7 \mathrm{~mL}, 0.075 \mathrm{~mol})$ of benzoyl chloride in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at a fairly rapid rate. Then the reaction was stirred at $25^{\circ} \mathrm{C}$ for 3 h and poured into ice $-\mathrm{H}_{2} \mathrm{O}$, and the organic layer was washed with a $3 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, and $5 \% \mathrm{NaHCO}_{3}$ solution and brine. The dried product was hydrogenated in EtOH over Pd/C to give, after precipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl ether, 7.0 g (65%) of N-benzoyl-L-proline. This compound ($4.6 \mathrm{~g}, 0.021$ mol) and HOSu ($2.42 \mathrm{~g}, 0.021 \mathrm{~mol}$) were mixed in 30 mL of THF, and $4.3 \mathrm{~g}(0.021 \mathrm{~mol})$ of DCC was added. The suspension was stirred for 1.5 h , the urea was filtered, 0.021 mol of $\mathrm{DL}-\alpha-$ methylphenylalanine methyl ester was added, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 days. The usual workup gave 5.5 g (66%) of the syrupy N-benzoyl-L-prolyl-DL- α-methylphenylalanine methyl ester: $[\alpha]_{\mathrm{D}}^{25}-97.0^{\circ}$ ($c 1, \mathrm{CHCl}_{3}$); TLC (system C), $R_{f} 0.76$; FD mass spectrum, $m / e 394$ (intense). Basic hydrolysis provided $5.2 \mathrm{~g}(98 \%)$ of the powdery N-benzoyl-L-prolyl-DL- α-methylphenylalanine (4): $\operatorname{mp} 95-98^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-87.2^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; TLC (system C), $R_{f} 0.31 ; \mathrm{FD}$ mass spectrum, $m / e 380$ (strong). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. Compound $4(3.3 \mathrm{~g}, 8.8 \mathrm{mmol})$ and N^{ω} -nitro-L-arginine methyl ester hydrochloride ($2.4 \mathrm{~g}, 8.8 \mathrm{mmol}$) were coupled (72 h) with DCC and HOBt in the usual way to provide 1.5 g (29%) of N-benzoyl-L-prolyl-DL- α-methylphenylalanyl-\mathbf{N}^{ω}-nitro-L-arginine methyl ester: TLC (system C) $R_{f} 0.63$; FD mass spectrum, $m / e 596$ (significant, $M+1$). Basic hydrolysis gave, after chromatography over 15 g of silica gel with a 1 to 10% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient, $0.6 \mathrm{~g}(41 \%)$ of the free acid: TLC (system C) $R_{f} 0.42$; FD mass spectrum, $m / e 582(\mathrm{M}+1)$. Unmasking of the guanidino group by hydrogenolysis was performed as described for 24 and gave a solid, which was triturated with $\mathrm{MeOH} /$ ethyl ether to give $0.235 \mathrm{~g}(44 \%)$ of 33: TLC (system F) $R_{f} 0.51$; FD mass spectrum, $m / e 537$ (strong, $\mathrm{M}+1$). See Table I for additional data.
\boldsymbol{N}-Benzoyl-L-prolyl-L-phenylalanyl-L-arginine (32). A mixture of 1.0 g (4.6 mmol) of N-benzoyl-L-proline, 1.3 g (4.6 mmol) of L-phenylalanine benzyl ester hydrochloride, 1.2 g (9.2 mmol) of HOBt , and 20 mL of THF was neutralized with NEM and then cooled to $0^{\circ} \mathrm{C}$, and $1.0 \mathrm{~g}(5.1 \mathrm{mmol})$ of DCC was added. The suspension was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at $25^{\circ} \mathrm{C}$ for 2 h . The usual workup gave $1.8 \mathrm{~g}(86 \%)$ of syrupy N-benzoyl-L-pro-lyl-L-phenylalanine benzyl ester: $[\alpha]^{25}{ }_{\mathrm{D}}-76^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; TLC (system C) $R_{f} 0.74$; FD mass spectrum, $m / e 456$ (intense). The benzyl ester ($3.5 \mathrm{~g}, 7.7 \mathrm{mmol}$) was subjected to hydrogenolysis in EtOH with Pd / C to provide 2.5 g (89%) of crude acid. An analytical sample was prepared by passing a small sample through silica gel with a 2 to 5% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient to provide powdery, amorphous, and hydrated N -benzoyl-L-prolyl-Lphenylalanine (3): $\mathrm{mp} 90-93^{\circ} \mathrm{C}$ (lit. ${ }^{19} \mathrm{mp} 200-202^{\circ} \mathrm{C}$); $[\alpha]^{25} \mathrm{D}$ -75.7° (c $1, \mathrm{CHCl}_{3}$); TLC (system C) $R_{f} 0.38$; FD mass spectrum, $m / e 366$ (strong). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. The procedure to prepare 32 from 3 was exactly as described for the synthesis of 33 from 4 . From $1.4 \mathrm{~g}(3.8 \mathrm{mmol})$ of 3 and 1.0 g (3.8 mmol) of N^{ω}-nitro-L-arginine methyl ester hydrochloride was obtained $1.7 \mathrm{~g}(77 \%)$ of powdery N-benzoyl-L-prolyl-L-phenylalanyl- N^{ω} -nitro-L-arginine methyl ester: $\mathrm{mp} 115^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-63.9^{\circ}$ (c 1 , MeOH); TLC (system C), $R_{f} 0.69$; FD mass spectrum, $m / e 581$ $(\mathrm{M}), 582(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. From $1.0 \mathrm{~g}(1.7$ mmol) of the methyl ester there was obtained $0.5 \mathrm{~g}(51 \%)$ of the free acid. This was crystallized from $\mathrm{MeOH} /$ ethyl ether: mp $148-152{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-53.7^{\circ}$ (c 0.5, MeOH); TLC (system C), $R_{f} 0.27$; FD mass spectrum, $m / e 568$ (weak, $M+1$). Anal. ($\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{O}_{7}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$. Hydrogenolysis of the above compound provided 2.1 $\mathrm{g}(41 \%)$ of 32 as a white solid (from $\mathrm{MeOH} / \mathrm{EtOAc} /$ ethyl ether): TLC (system F), $R_{f} 0.52$; FD mass spectrum, $m / e 522$ (significant). See Table I for additional data.
\boldsymbol{N}-Benzoyl-L-prolyl-DL- α-methylphenylalanyl-L-proline (35). Compound 4 ($1.2 \mathrm{~g}, 3.2 \mathrm{mmol}$) was coupled to L-proline benzyl ester hydrochloride ($0.76 \mathrm{~g}, 3.2 \mathrm{mmol}$) by the DCC procedure described for 24 and 30. The crude product was chromatographed over 150 g of silica gel with a 1 to 2% of MeOH in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient to provide 1.3 g (72%) of N -benzoyl-L-prolyl-$\mathrm{DL}-\alpha$-methylphenylalanyl-L-proline benzyl ester: TLC (system C) $R_{f} 0.66$. This product was deblocked following the procedure used for 30 and reprecipitated from $\mathrm{MeOH} /$ ethyl ether to give $0.8 \mathrm{~g}(73 \%)$ of 35 as a flaky solid: TLC (system F) $R_{f} 0.44$; FD mass spectrum, m / e 477. See Table I for additional data.
\boldsymbol{N}-(Phenylacetyl)-L-prolyl-DL- α-methylphenylalanyl-Larginine (34). L-Proline benzyl ester was converted to N -(phenylacetyl)-L-proline by the procedure used to prepare N -benzoyl-L-proline described in the synthesis of 33 . From 4.7 g (0.023 mol) of L-proline benzyl ester hydrochloride was obtained $4.2 \mathrm{~g}(57 \%)$ of N-(phenylacetyl)-L-proline benzyl ester: TLC (system A) $R_{f} 0.85$; CI mass spectrum (CH_{4}), $m / e 323$ and expected fragments. Hydrogenolysis of this product afforded $2.5 \mathrm{~g}(83 \%)$ of powdery N-(phenylacetyl)-L-proline (5): $[\alpha]^{25}{ }_{\mathrm{D}}-61.7^{\circ}$ (c 0.5 , MeOH); TLC (system C) $R_{f} 0.48$; FD mass spectrum, $m / e 233$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. A mixture of $2.0 \mathrm{~g}(8.6 \mathrm{mmol})$ of N-(phenylacetyl)-L-proline, $3.7 \mathrm{~g}(8.6 \mathrm{mmol})$ of 13 , and $2.3 \mathrm{~g}(17.2$ mmol) of HOBt was reacted by the standard technique at $25^{\circ} \mathrm{C}$ for 3 days. The crude product after workup was chromatographed over 60 g of silica gel with a gradient of 0.5 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield 1.7 g (32%) of syrupy N-(phenylacetyl)-L-pro-lyl-DL- α-methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester: TLC (system C) $R_{f} 0.57$; FD mass spectrum, $m / e 610(\mathrm{M}+1)$. The methyl ester ($1.6 \mathrm{~g}, 2.6 \mathrm{mmol}$) was converted to the free acid with NaOH to give $1.1 \mathrm{~g}(71 \%)$ of the amorphous, solid acid: TLC (system C) $R_{f} 0.32$; FD mass spectrum, $m / e 596$ (intense, $\mathrm{M}+$ 1). This product ($1.1 \mathrm{~g}, 1.8 \mathrm{mmol}$) was hydrogenated by the procedure described for the synthesis of 24. The crude product was chromatographed over 30 g of silica gel with 2 to 10% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}$ containing 1% of concentrated $\mathrm{NH}_{4} \mathrm{OH}$ to give $267 \mathrm{mg}\left(27 \%\right.$) of the amorphous 34: TLC (system F) $R_{f} 0.55$; FD mass spectrum, $m / e 551(\mathrm{M}+1)$. See Table I for additional data.
\boldsymbol{N}^{α}-[\boldsymbol{N}-L-Prolyl-L-2-amino-1-phenylpropyl]-L-arginine (25). A mixture of 2.0 g (8 mmol) of N-carbobenzoxy-L-proline, 1.2 g (8 mmol) of $\mathrm{L}-2$-amino-3-phenyl-1-propanol, 2.16 g (16 mmol) of HOBt in 20 mL of THF was treated with $1.8 \mathrm{~g}(8.8 \mathrm{mmol})$ of DCC, stirred at $25^{\circ} \mathrm{C}$ for 2.5 h and worked up under the standard acid-base conditions to give $3.1 \mathrm{~g}(100 \%)$ of crude white solid. A crystallization from aqueous EtOH afforded plates of N -carbobenzoxy-L-proline L-3-hydroxy-1-phenylpropylamide (6): mp $126-128^{\circ} \mathrm{C} ;\left[\alpha{ }^{25}{ }_{\mathrm{D}}-96.4^{\circ}\right.$ (c $1, \mathrm{CHCl}_{3}$); TLC (system C) $R_{f} 0.77$; FD mass spectrum, $m / e 382$ (strong). Anal. ($\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$) C, H, N. This alcohol ($2.0 \mathrm{~g}, 5.2 \mathrm{mmol}$) was dissolved in 10 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise at $-60^{\circ} \mathrm{C}$ to a solution prepared by adding dropwise $1.1 \mathrm{~mL}(15.6 \mathrm{mmol})$ of dry $\mathrm{Me}_{2} \mathrm{SO}$ to 0.68 mL (7.7 mmol) of oxalyl chloride in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60^{\circ} \mathrm{C}$. The solution was stirred at $-60^{\circ} \mathrm{C}$ for 15 min , then $3.6 \mathrm{~mL}(26 \mathrm{mmol})$ of triethylamine was added slowly, and the temperature was allowed to rise to $25^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, the layers were separated, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$. The concentrated, dried product was chromatographed over 100 g of silica gel with an EtOAc in hexane gradient to afford 1.4 g (70%) of the oily aldehyde: TLC (system G) $R_{f} 0.48$; FD mass spectrum, $m / e 380$; IR 1745 (CHO) cm^{-1}. This aldehyde (1.0 g , 2.6 mmol) and N^{ω}-nitro-L-arginine methyl ester hydrochloride (1.2 $\mathrm{g}, 4.5 \mathrm{mmol}$) were dissolved in 20 mL of absolute MeOH , and $\mathrm{NaCNBH}_{3}(120 \mathrm{mg})$ was added. The mixture was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 24 h , concentrated in vacuo, diluted with $5 \% \mathrm{NaHCO}_{3}$ solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried, and the crude product was chromatographed over 40 g of silica gel with a gradient of 1 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $0.71 \mathrm{~g}(45 \%)$ of N^{α}-[N-(N-carbobenzoxy-L-pro-lyl)-L-2-amino-1-phenylpropyl]- N^{ω}-nitro-L-arginine methyl ester: TLC (system C) $R_{f} 0.46 ;[\alpha]^{25} \mathrm{D}-40.2^{\circ}$ (c $0.5, \mathrm{MeOH}$). Basic hydrolysis of this ester ($0.9 \mathrm{~g}, 1.5 \mathrm{mmol}$) gave $0.6 \mathrm{~g}(68 \%)$ of the white powdery free acid: TLC (system F) $R_{f} 0.64$. This compound was reduced, and precipitation of the crude product from $\mathrm{MeOH} /$ ethyl ether gave the triacetate salt of 25. See Table I for additional data.
\boldsymbol{N}^{α}-[\boldsymbol{N}-L-Prolyl-dL-2-amino-2-methyl-3-phenylpropyl]-Larginine (28). A solution of $27.5 \mathrm{~g}(0.154 \mathrm{~mol})$ of $\mathrm{DL}-\alpha-$ methylphenylalanine ${ }^{15}$ in 200 mL of THF was cooled to $0^{\circ} \mathrm{C}$ (under N_{2}), and a solution of 250 mL of $1 \mathrm{M} \mathrm{BH}_{3}$ in THF (0.25 mol) was added. The mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$ and then for 17 h at $25^{\circ} \mathrm{C}$ and recooled, and excess MeOH was added
cautiously. The solvents were evaporated, the residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc, and the washed, dried solution was concentrated to a syrup, which slowly crystallized. A crystallization from ethyl ether/petroleum ether gave 13.0 g (51%) of DL-2-amino-2-methyl-3-phenylpropanol: $\mathrm{mp} 89-91^{\circ} \mathrm{C}$ (lit. ${ }^{15} \mathrm{mp} 99-100^{\circ} \mathrm{C}$, from heptane); TLC (system B), $R_{f} 0.67$; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 165$. A DCC coupling reaction as described above using 5.28 g (0.032 mol) of DL-2-amino-2-methyl-3-phenylpropanol and $7.94 \mathrm{~g}(0.032 \mathrm{~mol})$ of N-carbo-benzoxy-L-proline gave a product, which was chromatographed over 250 g of silica gel with an elution gradient of 0.5 to 1% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $8.1 \mathrm{~g}(63 \%)$ of the syrupy N-carbo-benzoxy-L-proline DL-3-hydroxy-2-methyl-1-phenylpropylamide (7). Slow crystallization from ethyl ether gave the white solid 7: mp 72-74 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-20.6^{\circ}$ (c 1, MeOH); TLC (system A) R_{f} 0.72; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e ~ 396$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}$, H, N.
The alcohol 7 was oxidized exactly as described for the procedure used for the oxidation of 6 using $7.7 \mathrm{~g}(19.4 \mathrm{mmol})$ of 7 and proportional amounts of other reagents. The crude product was chromatographed over 150 g of silica gel with a 16 to 25% of EtOAc in cyclohexane gradient to give $5.1 \mathrm{~g}(67 \%)$ of the syrupy aldehyde: $[\alpha]^{25}{ }_{\mathrm{D}}-59.1^{\circ}\left(c 1, \mathrm{MeOH}\right.$); TLC (system G), $R_{f} 0.59$; FD mass spectrum, strong m / e 394. Anal. ($\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$) C, H, N . This aldehyde ($9.6 \mathrm{~g}, 0.0357 \mathrm{~mol}$) was reductively aminated with the protected arginine as described in the synthesis of 25 and using proportional amounts of other reagents. The crude product was chromatographed over 150 g of silica gel with a 1 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient to afford 3.5 g (64%) of N^{α}-[N-(N-carbobenzoxy-L-prolyl)-DL-2-amino-2-methyl-3-phenylpropyl]- N^{ω}-nitro-L-arginine methyl ester: TLC (system A), doublet centered at $R_{f} 0.46$ for the diastereoisomeric mixture; FD mass spectrum, $m / e 611(\mathrm{M}), 612(\mathrm{M}+1)$. Basic hydrolysis gave $2.8 \mathrm{~g}(82 \%)$ of the free acid as an amorphous powder: $[\alpha]^{25} \mathrm{D}$ -36.7° (c $1, \mathrm{MeOH}$); TLC (system C), $R_{f} 0.24$; FD mass spectrum, $\mathrm{m} / \mathrm{e} 598$ (strong, $\mathrm{M}+1$). Catalytic reduction of $2.5 \mathrm{~g}(4.2 \mathrm{mmol})$ of this nitro derivative afforded $1.25 \mathrm{~g}(71 \%)$ of 28 as a white solid: TLC (system F), $R_{f} 0.34 ;$ FD mass spectrum, $m / e 419$ (strong, M + 1). See Table I for additional data.
\boldsymbol{N}-(3-Phenylpropionyl)-L-proline (8), \boldsymbol{N}-(4-Phenyl-butyryl)-L-proline (9), and \boldsymbol{N}-(5 -Phenylpentanoyl)-L-proline (10). These compounds were prepared by the procedure described for the synthesis of N-benzoyl-L-proline, an intermediate to 33 . The requisite acid chlorides were prepared with thionyl chloride with a few drops of DMF at $60^{\circ} \mathrm{C}$ for 2 h . The crude acid chlorides were concentrated, azeotroped with toluene, and used directly for the acylation reactions with L-proline benzyl ester hydrochloride. The reaction of $8.0 \mathrm{~g}(0.049 \mathrm{~mol})$ of 4 -phenylbutyryl chloride and relative quantities of other reagents provided 16.0 $\mathrm{g}(93 \%)$ of the oily N-(4-phenylbutyryl)-L-proline benzyl ester. Hydrogenation of $8.5 \mathrm{~g}(0.024 \mathrm{~mol})$ of this product gave $4.7 \mathrm{~g}(79 \%)$ of 9. A dicyclohexylamine salt of 9 was prepared: mp 141-143 ${ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{3} \mathrm{CN}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}-33.9^{\circ}\left(c \mathrm{l}, \mathrm{CHCl}_{3}\right)$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$. Similarly prepared was 8 ; from 0.023 mol of 3 phenylpropionyl chloride was obtained 4.9 g (63%) of syrupy N-(3-phenylpropionyl)-L-proline benzyl ester: $[\alpha]^{25}$ D -68.1° (c 0.5 , MeOH); TLC (system G), $R_{f} 0.73$; FD mass spectrum, $m / e 337$ (intense). Hydrogenation of the ester (4.9 g) in EtOH with 10% Pd / C gave 3.4 g (95%) of N-(3-phenylpropionyl)-L-proline (8): $\mathrm{mp} 103-104{ }^{\circ} \mathrm{C}$ (from EtOAc/ethyl ether); $[\alpha]^{25} \mathrm{D}-118.5^{\circ}$ (c 0.5 , $\mathrm{MeOH})$; FD mass spectrum, intense $m / e 247$. Anal. ($\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$. In a similar fashion was prepared 10: from 0.023 mol of 5 -phenylpentanoyl chloride was obtained $3.4 \mathrm{~g}(40 \%)$ of syrupy N -(5-phenylpentanoyl)-L-proline benzyl ester after passage through a short column of silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}:[\alpha]^{25}{ }_{\mathrm{D}}-52.9^{\circ}$ (c $0.5, \mathrm{MeOH}$); TLC (system G) $R_{f} 0.69$; FD mass spectrum, m / e 365 (intense). This benzyl ester was deblocked by catalytic hydrogenation to give 2.4 g (94%) of 10 as a syrup: $[\alpha]^{25} \mathrm{D}-54.3^{\circ}$ (c 0.5, MeOH); FD mass spectrum, $m / e 275$. Anal. ($\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
\boldsymbol{N}-(4-Phenylbutyryl)-L-prolyl-L-phenylalanyl-L-arginine (37). A mixture of $4.0 \mathrm{~g}(0.016 \mathrm{~mol})$ of $9,1.88 \mathrm{~g}(0.016 \mathrm{~mol})$ of HOSu , and 60 mL of THF was reacted in the usual way with 3.36 $\mathrm{g}(0.016 \mathrm{~mol})$ of DCC for 2 h and coupled to $4.0 \mathrm{~g}(0.016 \mathrm{~mol})$ of L-phenylalanine benzyl ester. The solution was stirred at $25^{\circ} \mathrm{C}$ for 24 h , the usual workup provided 7.2 g of crude product, and
column chromatography over 200 g of silica gel with a gradient of 0.5 to 1% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave $4.6 \mathrm{~g}(58 \%)$ of syrupy N-(4-phenylbutyryl)-L-prolyl-L-phenylalanine benzyl ester: TLC (system A) $R_{f} 0.89$; FD mass spectrum, intense $m / e 498$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$, N. The benzyl ester ($2.2 \mathrm{~g}, 4.5 \mathrm{mmol}$) was subjected to catalytic hydrogenation, and the resulting crude product was chromatographed over 70 g of silica gel with a 1 to 10% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient to afford the acid 11 which was converted to the potassium salt with potassium tert-butoxide in tert-butyl alcohol. The potassium salt was dissolved in dry EtOAc and precipitated with ethyl ether/petroleum ether to give $0.923 \mathrm{~g}(46 \%)$ of the potassium salt of $11: \mathrm{mp} 64-67^{\circ} \mathrm{C}:[a]^{25} \mathrm{D}$ -29.7° ($с 1, \mathrm{CHCl}_{3}$); FD mass spectrum, $m / e 408$ (intense, free acid). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~K}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. The free acid of 11 (1.2 $\mathrm{g}, 3.0 \mathrm{mmol}$) was coupled with HOBt and the blocked L-arginine to provide $1.1 \mathrm{~g}(61 \%)$ of N-(4-phenylbutyryl)-L-prolyl-L-phenylalanyl- N^{ω}-nitro-L-arginine methyl ester: $\mathrm{mp} 93-95^{\circ} \mathrm{C}$ (from $\mathrm{MeOH} /$ ethyl ether); $[a]^{25}{ }_{\mathrm{D}}-41.7^{\circ}(c 0.5, \mathrm{MeOH})$; TLC (system C), $R_{f} 0.73$; FD mass spectrum, $m / e 624(\mathrm{M}+1)$. Basic hydrolysis gave a white solid ($0.51 \mathrm{~g}, 51 \%$) of the arginine free acid: mp $124-127^{\circ} \mathrm{C}$ (from $\mathrm{MeOH} /$ ethyl ether); $[\alpha]_{\mathrm{D}}^{25}-39.7^{\circ}$ (c $0.5, \mathrm{MeOH}$); TLC (system C), $R_{f} 0.35$; FD mass spectrum, $m / e 610$ (strong, $\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. Hydrogenolysis of 0.416 $\mathrm{g}(0.7 \mathrm{mmol})$ of this acid afforded, after $\mathrm{MeOH} /$ ethyl ether precipitation, $0.276 \mathrm{~g}(70 \%)$ of the white powdery 37 ; TLC (system F) $R_{f} 0.67$; FD mass spectrum, $m / e 564(\mathrm{M}), 565(\mathrm{M}+1)$. See Table II for additional data.

Similarly prepared was N-(4-phenylbutyryl)-L-prolyl-D-phenylalanyl-L-arginine (38). Coupling of compound $9(5.0 \mathrm{~g}, 0.019$ mol) and D-phenylalanine methyl ester hydrochloride with DCC/HOBt gave $4.2 \mathrm{~g}(52 \%)$ of the methyl ester after column chromatography with 1 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: TLC (system A) $R_{f} 0.68$. Basic hydrolysis of 4.1 g gave $3.6 \mathrm{~g}(91 \%)$ of N-(4-phenylbutyryl)-L-prolyl-D-phenylalanine; TLC (system B) $R_{f} 0.27$; electron-impact mass spectrum, $m / e 408$ (small) with acceptable fragmentation pattern. Coupling of $3.3 \mathrm{~g}(8.0 \mathrm{mmol})$ of this product with the protected arginine gave $4.2 \mathrm{~g}(86 \%)$ of N -(4-phenylbutyryl)-L-prolyl-D-phenylalanyl- N^{ω}-nitro-L-arginine methyl ester after column chromatography on silica gel as described above: TLC (system C) $R_{f} 0.49$; FD mass spectrum, intense $m / e 624$ (M $+1)$. Basic hydrolysis of 1.8 g gave $1.4 \mathrm{~g}(83 \%)$ of the arginine free acid: TLC (system C) $R_{f} 0.21$. After hydrogenolysis, this material afforded the white solid ($1.45 \mathrm{~g}, 82 \%$) 38: TLC (system E) $R_{f} 0.36$; FD mass spectrum, $m / e 565$ (intense, $\mathrm{M}+1$). See Table II for additional data.

Also prepared was N-(4-phenylbutyryl)-L-prolyl-DL- α -methylphenylalanyl-L-arginine (41). Coupling of 9 ($4.6 \mathrm{~g}, 17.6$ mmol) with DL- α-methylphenylalanine methyl ester hydrochloride by the HOBt method gave 6.5 g (85%) of N-(4-phenyl-butyryl)-L-prolyl-DL- α-methylphenylalanine methyl ester after chromatography on 250 g of silica gel with a 1 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient: TLC (system A) $R_{f} 0.74 ; \mathrm{CI}$ mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 436$. Basic hydrolysis gave $5.6 \mathrm{~g}(89 \%)$ of the foamy free acid 12: TLC (system A) $R_{f} 0.48$; CI mass spectrum $\left(\mathrm{CH}_{4}\right)$, $m / e 422(\mathrm{M}+1)$. This product $(5.5 \mathrm{~g}, 0.013 \mathrm{~mol})$ was coupled to the protected arginine to give, after chromatography with a gradient of 0.5 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.2 \mathrm{~g}(63 \%)$ of N-($4-$ phenylbutyryl)-L-prolyl-DL- α-methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester: TLC (system A) $R_{f} 0.52$; FD mass spectrum, $m / e 637(\mathrm{M}), 638(\mathrm{M}+1)$. Basic hydrolysis afforded $4.55 \mathrm{~g}(90 \%)$ of the arginine free acid as an amorphous solid, which was deblocked under the usual hydrogenolysis conditions to give 1.6 g (37%) of the amorphous, powdery 41 , FD mass spectrum, m / e 579 (strong, $\mathbf{M}+1$). See Table II for additional data.
\boldsymbol{N}-(4-Phenylbutyryl)-L-prolyl-DL- α-methylphenyla lanyl-L-proline (47). The procedure for the preparation of 35 was followed. Compound $12(6.8 \mathrm{~g}, 0.016 \mathrm{~mol})$ was coupled to L -proline benzyl ester hydrochloride, and the usual workup and chromatography afforded 5.1 g (52%) of syrupy N-(4-phenylbutyryl)-L-prolyl-DL- α-methylphenylalanyl-L-proline benzyl ester; $[\alpha]^{25} \mathrm{D}$ -106.8° (c $0.5, \mathrm{MeOH}$); TLC (system C) $R_{f} 0.70$; FD mass spectrum, $m / e 609$ (intense). Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. The free acid was unmasked with $\mathrm{Pd} / \mathrm{BaSO}_{4} / \mathrm{H}_{2}$ to provide the amorphous solid 47 ($4.15 \mathrm{~g}, 95 \%$): TLC (system C) $R_{f} 0.72$; FD mass spectrum, $m / e 519$ (intense, M), 520 (intense $\mathbf{M}+1$). See Table II for additional data.

DL- α-Methylphenylalanyl- \boldsymbol{N}^{ω}-nitro-L-arginine Methyl Ester (13). A suspension of $6.4 \mathrm{~g}(0.036 \mathrm{~mol})$ of DL- α-methylphenylalanine, 5.0 mL ($3.6 \mathrm{~g}, 0.036 \mathrm{~mol}$) of triethylamine, 100 mL of DMF, and $9.3 \mathrm{~g}(0.043 \mathrm{~mol})$ of di-tert-butyl dicarbonate was stirred at $25^{\circ} \mathrm{C}$ for 18 h . A small amount of insoluble material was removed by filtration, and the concentrated product was taken up in EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$, cold 1 N HCl , and $\mathrm{H}_{2} \mathrm{O}$. The dried, concentrated crude product solidified on standing and was crystallized from ether/hexane to provide $4.6 \mathrm{~g}(46 \%)$ of N -(tert-butoxycarbonyl)-DL- α-methylphenylalanine: mp 134-135 ${ }^{\circ} \mathrm{C}$; CI mass spectrum $\left(\mathrm{CH}_{4}\right)$, m/e 279. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}\right) \mathrm{C}$, H, N. This Boc derivative ($4.4 \mathrm{~g}, 0.016 \mathrm{~mol}$) was coupled to N^{ω}-nitro-L-arginine methyl ester hydrochloride by the DCC/HOBt method, and the product was chromatographed over 200 g of silica gel with 0.5 to 1% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide $6.8 \mathrm{~g}(86 \%)$ of N-(tert-butoxycarbonyl)-DL- α-methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester. A crystallization from EtOH gave a white solid: mp 143-145 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-33.9^{\circ}$ (c 1, MeOH); FD mass spectrum, $m / e 495$ (strong, $\mathrm{M}+1$). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}$, N. A mixture of $3.4 \mathrm{~g}(6.9 \mathrm{mmol})$ of the Boc derivative, 5.0 mL of 1,3-dimethoxybenzene, and 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to 0 ${ }^{\circ} \mathrm{C}$, and 5.0 mL of $\mathrm{CF}_{3} \mathrm{COOH}$ was added. A clear solution was obtained and was stirred at $0^{\circ} \mathrm{C}$ for 10 min and at $25^{\circ} \mathrm{C}$ for 1 h. The solvents were evaporated in vacuo, dilute HCl was added, and the aqueous layer was washed well with EtOAc. The aqueous layer was concentrated to a white foam and azeotroped with EtOH to give $2.9 \mathrm{~g}(98 \%)$ of the hygroscopic hydrochloride salt of 13 as a foam: $[\alpha]^{25}{ }_{D}-32.8^{\circ}\left(c 1, \mathrm{H}_{2} \mathrm{O}\right)$; FD mass spectrum, $m / e 395$ (intense, $\mathrm{M}+1$). Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
\boldsymbol{N}-(3-Phenylpropanoyl)-L-prolyl-DL- α-methylphenyl-alanyl-L-arginine (40). Compound $8(1.72 \mathrm{~g}, 7 \mathrm{mmol})$ was coupled to 13 ($3.0 \mathrm{~g}, 7 \mathrm{mmol}$) by the DCC/ HOBt method (3 days) and worked up in the usual way, and the crude product was chromatographed over 150 g of silica gel with a gradient of 0.5 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a white amorphous solid (1.7 $\mathrm{g}, 39 \%$): TLC (system A) $R_{f} 0.65$; FD mass spectrum, $m / e 624$ (strong, $\mathrm{M}+1$). Basic hydrolysis afforded $1.5 \mathrm{~g}(90 \%)$ of the amorphous solid N-(3-phenylpropanoyl)-L-prolyl-DL- α-methyl-phenylalanyl- N^{ω}-nitro-L-arginine: $[\alpha]^{25}{ }_{\mathrm{D}}-96.2^{\circ}(c 0.5, \mathrm{MeOH})$; FD mass spectrum, $m / e 610$ (significant, $\mathbf{M}+1$). Hydrogenolysis gave an impure product, which was chromatographed over silica gel with a 3 to 10% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient containing 1 to 3% of concentrated $\mathrm{NH}_{4} \mathrm{OH}$ to provide $0.31 \mathrm{~g}(22 \%)$ of 40 as a foam: FD mass spectrum, $m / e 565$ (intense, $M+1$); TLC (system F) $R_{f} 0.61$. See Table II for additional data.

Similarly prepared was N-(5-phenylpentanoyl)-L-prolyl-DL- α -methylphenylalanyl-L-arginine (42). From $2.4 \mathrm{~g}(8.7 \mathrm{mmol})$ of 10 was obtained $2.0 \mathrm{~g}(35 \%)$ of amorphous N-(5-phenyl-pentanoyl)-L-prolyl-DL- α-methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester: $[\alpha]_{\mathrm{D}}^{25}-85.5^{\circ}$ ($c 0.5, \mathrm{MeOH}$); TLC (system C), R_{f} 0.62 ; FD mass spectrum, $m / e 652$ (strong, $\mathrm{M}+1$). Anal. ($\mathrm{C}_{33^{-}}$ $\mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{7}$) C, H, N. Basic hydrolysis gave 1.8 g (94%) of the amorphous white arginine free acid derivative: TLC (system C), $R_{f} 0.22$; FD mass spectrum, $m / e 638(\mathrm{M}+1)$. Hydrogenolysis provided, after chromatography described for 40, the amorphous solid 42 ($0.87 \mathrm{~g}, 52 \%$); TLC (system F) $R_{f} 0.64$; FD mass spectrum, $m / e 593(\mathrm{M}+1)$. See Table II for additional data.
\boldsymbol{N}-(4-Phenylbutyryl)-L-prolyl-L-phenylalanine 3-Aminopropylamide (39). The procedure for the synthesis of 26 was used. Compound 11 ($1.4 \mathrm{~g}, 3.4 \mathrm{mmol}$) and 3 -(carbobenzoxyamino) propylamine hydrochloride ($0.6 \mathrm{~g}, 3.5 \mathrm{mmol}$) gave 0.71 g (35%) of N-(4-phenylbutyryl)-L-prolyl-L-phenylalanine 3-(carbobenzoxyamino)propylamide as a foam: TLC (system C) $R_{f} 0.89$; EI mass spectrum, $m / e 598$ and expected fragments. The amino group was unmasked as described previously, and the derived hydrochloride salt was precipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl ether to provide 130 mg (24%) of the hydrochloride of 39 : TLC (system C) $R_{f} 0.26$. See Table II for additional data.

Similarly prepared was N-(4-phenylbutyryl)-L-prolyl-DL- α methylphenylalanine 3 -aminopropylamide (43). From 1.0 g (2.4 mmol) of 12 was obtained, after chromatography over silica gel with 1% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.41 \mathrm{~g}(27 \%)$ of N -(4-phenyl-butyryl)-L-prolyl-DL- α-methylphenylalanine 3-(carbobenzoxyamino)propylamide as a foam: TLC (system C) $R_{f} 0.90$; FD mass spectrum, $m / e 612$. The derived hydrochloride of $43(0.22 \mathrm{~g}, 59 \%)$ was a white powder: TLC (system C) $R_{f} 0.33$; FD mass spectrum,
$m / e 478$ (M), $479(\mathrm{M}+1)$. See Table II for additional data. \boldsymbol{N}-(4-Phenylbutyryl)-L-prolyl-DL- α-methyl-3,4-dimeth-oxyphenylalanyl-L-arginine (45). Compound 9 ($1.17 \mathrm{~g}, 4.45$ mmol) was coupled to DL- α-methyl-3,4-dimethoxyphenylalanine methyl ester hydrochloride by the DCC/HOBt method for 72 h at $25^{\circ} \mathrm{C}$. The usual workup afforded $2.2 \mathrm{~g}(98 \%)$ of the syrupy N-(4-phenylbutyryl)-L-prolyl-DL- α-methyl-3,4-dimethoxyphenylalanine methyl ester; TLC (system B) $R_{f} 0.64$; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 496$. Basic hydrolysis gave $2.0 \mathrm{~g}(93 \%)$ of the free acid 14. This was coupled with the blocked arginine, and the crude product was chromatographed over 60 g of silica gel with a 1 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient to give 1.6 g (55%) of the amorphous white solid N -(4-phenylbutyryl)-L-prolyl-DL-α-methyl-3,4-dimethoxyphenylalanyl- N^{ω}-nitro-L-arginine methyl ester: TLC (system A) $R_{f} 0.44$; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 697$. Basic hydrolysis and hydrogenolysis in the usual way provided the off-white solid 45 in an overall yield of 66% : TLC (system E) $R_{f} 0.36$; FD mass spectrum, $m / e 639$ (strong, $\mathrm{M}+1$). See Table II for additional data.
\boldsymbol{N}-(1-Adamantylacetyl)-L-prolyl-DL- α-methylphenyl-alanyl-L-arginine (44). 1-Adamantaneacetic acid ($7.76 \mathrm{~g}, 0.04$ mol) was coupled to L-proline benzyl ester hydrochloride (9.6 g , 0.04 mol) by the $\mathrm{DCC} / \mathrm{HOBt}$ method to give a near quantitative yield of N-(1-adamantylacetyl)-L-proline benzyl ester: TLC (system A) $R_{f} 0.73$; FD mass spectrum, $m / e 381$ (strong). The usual hydrogenolysis conditions on 15.2 g of the benzyl ester gave a solid, which was crystallized from EtOAc to provide white plates of N-(1-adamantylacetyl)-L-proline (16): mp $174-176^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}$ $-51.3^{\circ}(c 1, \mathrm{MeOH})$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. Compounds $16(1.76 \mathrm{~g}, 6.0 \mathrm{mmol})$ and $13(2.6 \mathrm{~g}, 6.0 \mathrm{mmol})$ were reacted with $\mathrm{DCC} / \mathrm{HOBt}$ in the standard manner to give $3.5 \mathrm{~g}(88 \%)$ of the semisolid N-(1-adamantylacetyl)-L-prolyl-DL- α-methylphenyl-alanyl- N^{ω}-nitro-L-arginine methyl ester: $[a]^{25}{ }_{\mathrm{D}}-78.7^{\circ}$ (c 0.5 , MeOH); TLC (system C) $R_{f} 0.63$; FD mass spectrum, $m / e 667$ (M), $668(\mathrm{M}+1)$. Basic hydrolysis of 0.9 g of this product was followed by hydrogenolysis and afforded $0.17 \mathrm{~g}(22 \%)$ of the amorphous solid 44: TLC (system F) $R_{f} 0.49$; FD mass spectrum, $m / e 609$ (intense, $\mathrm{M}+1$). See Table II for additional data.
\boldsymbol{N}^{α}-[\boldsymbol{N}-(4-Phenylbutyryl)-L-propyl-DL-2-amino-2-methyl-3-phenylpropyl]-L-arginine (46). The procedure described for the preparation of 28 was followed. Compound $9(4.6 \mathrm{~g}, 17.6 \mathrm{mmol})$ and DL-2-amino-2-methyl-3-phenylpropanol ($2.9 \mathrm{~g}, 17.6 \mathrm{mmol}$) were coupled, and the crude product was chromatographed over silica gel to give 4.2 g (58%) of the syrupy N-(4-phenyl-butyryl)-L-proline DL-3-hydroxy-2-methyl-1-phenylpropylamide (15): TLC (system A) $R_{f} 0.51$; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 408$. The alcohol $15(4.1 \mathrm{~g}, 10.0 \mathrm{mmol})$ was oxidized to the aldehyde by the procedure described for the synthesis of 25 and provided 2.4 g (59%) of syrupy aldehyde: TLC (system G) $R_{f} 0.45$; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 406$. Reductive alkylation of the aldehyde with L-arginine ($1.0 \mathrm{~g}, 5.9 \mathrm{mmol}$) and $\mathrm{NaCNBH}_{3}(0.9 \mathrm{~g})$ in 2propanol (50 mL) gave, after chromatography, $240 \mathrm{mg}(7 \%)$ of the amorphous solid 46: FD mass spectrum, $m / e 565(\mathrm{M}+1)$. See Table II for additional data.
\boldsymbol{N}-[4-(4-Hydroxyphenyl)butyryl]-L-proline (17). A mixture of $15.1 \mathrm{~g}(0.063 \mathrm{~mol})$ of L-proline benzyl ester hydrochloride, 11.3 $\mathrm{g}(0.063 \mathrm{~mol})$ of 4-(4-hydroxyphenyl)butyric acid, and 17.0 g (0.126 mol) of HOBt in 80 mL of THF and 40 mL of DMF was neutralized with NEM and treated all at once with $13.0 \mathrm{~g}(0.063 \mathrm{~mol})$ of DCC. The resulting suspension was stirred at $25^{\circ} \mathrm{C}$ for 17 h , and the usual workup gave $18.9 \mathrm{~g}(83 \%)$ of the syrupy N-[4-(4-hydroxyphenyl)butyryl]-L-proline benzyl ester: TLC (system A) $R_{f} 0.48$; FD mass spectrum, $m / e 367$ (intense). This benzyl ester ($18.9 \mathrm{~g}, 0.051 \mathrm{~mol}$) was dissolved in 100 mL of EtOH and agitated for 3 h with 2.5 g of 10% of Pd / C (wet with $\mathrm{H}_{2} \mathrm{O}$) at 60 psi of hydrogen. The reaction was filtered, concentrated, and azeotroped with EtOH and toluene to give $14.3 \mathrm{~g}(\sim 100 \%)$ of the foamy 17: TLC (system B) $R_{f} 0.16$; EI mass spectrum, $m / e 277$.
\boldsymbol{N}-[4-(4-Hydroxyphenyl)butyryl]-L-prolyl-DL- α-methyl-3,4-dimethoxyphenylalanyl-L-arginine (50). A mixture of 2.8 g (10 mmol) of 17 and 2.9 g (10 mmol) of DL- α-methyl-3,4-dimethoxyphenylalanine methyl ester hydrochloride were coupled as described for $17\left(25^{\circ} \mathrm{C}\right.$ for 72 h$)$, and the usual workup afforded $5.1 \mathrm{~g}(100 \%)$ of a foam: TLC (system A) $R_{f} 0.21$; FD mass spectrum, m / e (relative intensity) 512 (39.8). This methyl ester ($5.0 \mathrm{~g}, 9.8 \mathrm{mmol}$) was dissolved in 75 mL of MeOH and 25 mL
of 2.5 N NaOH solution and worked up in the standard manner. The residual aqueous solution was filtered from a small amount of insoluble material, and the filtrate was acidified with concentrated HCl to give a voluminous solid. This was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing a small amount of MeOH , and the organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and concentrated to give N -[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α-methyl-3,4-dimethoxyphenylalanine ($19 ; 3.2 \mathrm{~g}, 66 \%$): TLC (system C) $R_{f} 0.11$; FD mass spectrum, $m / e 498$ (strong). Compound 19 ($3.1 \mathrm{~g}, 6.2 \mathrm{mmol}$) and N^{ω}-nitro-L-arginine methyl ester hydrochloride were coupled with DCC and proportional amounts of other reagents as described above. After 2 days, the usual workup gave $3.8 \mathrm{~g}(92 \%)$ of the white gel-like N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α -methyl-3,4-dimethoxyphenylalanyl- N^{ω}-nitro-L-arginine methyl ester: TLC (system B) $R_{f} 0.31$; FD mass spectrum, $m / e 714$ (significant, $\mathrm{M}+1$). This ester ($3.5 \mathrm{~g}, 5 \mathrm{mmol}$) was hydrolyzed with NaOH solution to afford $1.9 \mathrm{~g}(55 \%)$ of the free acid; TLC (system D) $R_{f} 0.46 ; \mathrm{FD}$ mass spectrum, m / e (relative intensity) 700 (intense, $\mathrm{M}+1,45.4$). This acid ($1.75 \mathrm{~g}, 2.5 \mathrm{mmol}$) in 40 mL of EtOH and 40 mL of HOAc was shaken on the hydrogenation apparatus with 2.5 g of $10 \% \mathrm{Pd} / \mathrm{BaSO}_{4}$ for 18 h at 60 psi and filtered, and the filtrate was evaporated and azeotroped with toluene and then EtOH to give the white powdery acetate of 50 ($1.5 \mathrm{~g}, 81 \%$): TLC (system E) $R_{f} 0.33$; FD mass spectrum, m / e 655 (relatively strong, $\mathrm{M}+1$). See Table III for additional data.
N-[4-(4-Hydroxyphenyl) butyryl]-L-prolyl-DL- α-methyl-phenylalanyl-L-arginine (48) was similarly prepared by the following steps: coupling of 17 and DL- α-methylphenylalanine methyl ester hydrochloride [96% yield; $R_{f} 0.34$ (system A); FD mass spectrum, $m / e 452$]; basic hydrolysis, to give N-[4-(4-hydroxy-phenyl)butyryl]-L-prolyl-DL- α-methylphenylalanine [$18 ; 81 \%$ yield: $R_{f} 0.11$ (system C); FD mass spectrum, $m / e 438$]; coupling with the protected arginine [95% yield: $R_{f} 0.19$ (system B), FD mass spectrum, $m / e 654(\mathrm{M}+1)$]; basic hydrolysis (75% yield: $R_{f} 0.08$ (system B); FD mass spectrum, $m / e 639(\mathrm{M}), 640(\mathrm{M}+1)$]; hydrogenolysis, to give 48 [88% yield, $R_{f} 0.35$ (system E), FD mass spectrum, $m / e 595(\mathrm{M}+1)]$. See Table III for other data.

Also prepared was N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-$\mathrm{DL}-\alpha$-methyltyrosyl-L-arginine (52) by the following route: condensation of 17 with DL- α-methyltyrosine methyl ester hydrochloride [92% yield: $R_{f} 0.42$ (system B); CI mass spectrum $\left(\mathrm{CH}_{4}\right)$, $m / e 468$]; basic hydrolysis to give N-[4-(4-hydroxyphenyl)-butyryl]-L-prolyl-DL- α-methyltyrosine [20; 93% yield; $R_{f} 0.08$ (system B); FD mass spectrum, $m / e 454]$; coupling with the protected arginine [62% yield; $R_{f} 0.38$ (system C)]; basic hydrolysis [65% yield; $R_{f} 0.14$ (system A): FD mass spectrum, $m / e 611$ (M +1)]; hydrogenolysis, to give 52 [92% yield; $R_{f} 0.21$ (system E)]. See Table III for additional data.
\boldsymbol{N}-[4-(4-Hydroxyphenyl)butyryl]-L-prolyl-DL- α-methylphenylalanine 3-Aminopropylamide (49). A mixture of 4.38 g (10 mmol) of compound $18,2.45 \mathrm{~g} \mathrm{(10} \mathrm{mmol)} \mathrm{of} \mathrm{3-(carbo-}$ benzoxyamino) propylamine hydrochloride, 2.7 g (20 mmol) of HOBt, 45 mL of THF, and 15 mL of DMF was cooled in ice and neutralized with NEM, and $2.06 \mathrm{~g}(10 \mathrm{mmol})$ of DCC was added. The suspension was stirred at $25^{\circ} \mathrm{C}$ for 48 h and worked up in the usual way and provided about 6 g of crude product. This was chromatographed over 200 g of silica gel with a 1 to 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient to give 5.1 g (81%) of N -[4-(4-hydroxy-phenyl)butyryl]-L-prolyl-DL- α-methylphenylalanine 3 -(carbobenzoxyamino)propylamide as a white amorphous powder: TLC (system A) $R_{f} 0.29$; FD mass spectrum, $m / e 628$. This compound $(4.0 \mathrm{~g}, 6.4 \mathrm{mmol})$ was shaken with 2 g of $10 \% \mathrm{Pd} / \mathrm{C}$ in 75 mL of EtOH and 25 mL of HOAc at 60 psi for 3 h . The filtered, concentrated, and EtOH-azeotroped residue was dissolved in a small amount of EtOH and acidified with ethereal HCl to provide 2.4 $\mathrm{g}(71 \%)$ of the white hydrochloride of 49 : CI mass spectrum $\left(\mathrm{CH}_{4}\right)$, $m / e 496(\mathrm{M}+2)$. See Table III for additional data.

Similarly prepared was N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α-methyl-3,4-dimethoxyphenylalanine 3 -aminopropylamide hydrochloride (51) using 2.25 g (4.5 mmol) of 19 and proportional amounts of reagents to give 1.95 g of the intermediate 3 -(carbobenzoxyamino)propylamide derivative [63% yield; $R_{f} 0.32$ (system A); CI mass spectrum $\left.\left(\mathrm{CH}_{4}\right), m / e 688\right]$. Deblocking with $\mathrm{Pd} / \mathrm{H}_{2}$ gave 1.1 g of the hydrochloride 51 [80% yield: FD mass spectrum, $m / e 554]$. See Table III for additional data.

Also prepared by this method was N-[4-(4-hydroxyphenyl)-butyryl]-L-prolyl-DL- α-methyltyrosine 3 -aminopropylamide hydrochloride (53), starting with $1.04 \mathrm{~g}(2.3 \mathrm{mmol})$ of 20 and proportional amounts of other reagents to give, after chromatography, 700 mg of the intermediate 3-(carbobenzoxyamino) propyl amide [47% yield; $R_{f} 0.16$ (system B), FD mass spectrum, $m / e 645$ (M $+1)]$. Hydrogenolysis of this product as above gave 370 mg of the white solid 53 (FD mass spectrum, $m / e 510$). See Table III for additional data.

N-[4-(4-Hydroxyphenyl)butyryl]-L-prolyl-D-phenyl-alanylglycyl-L-proline (55). Compound 17 ($3.71 \mathrm{~g}, 0.013 \mathrm{~mol}$) was coupled to D-phenylalanine methyl ester hydrochloride (2.89 $\mathrm{g}, 0.013$ mole) by the DCC/HOBt method to give 5.9 g (100%) of the syrupy N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-Dphenylalanine methyl ester: TLC (system A) $R_{f} 0.59$; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 438$. Basic hydrolysis gave $5.4 \mathrm{~g}(93 \%)$ of the free acid 22: TLC (system A) $R_{f} 0.18$; FD mass spectrum, m / e 424 (strong). This acid ($3.18 \mathrm{~g}, 7.5 \mathrm{mmol}$) and an equivalent amount of glycyl-L-proline benzyl ester trifluoroacetate were condensed, and the crude product was chromatographed over 180 g of silica gel with a gradient of 1 to 4% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 2.7 g (54%) of the amorphous white solid N-[4-(4-hydroxy-phenyl)butyryl]-L-prolyl-D-phenylalanylglycyl-L-proline benzyl ester: TLC (system B) $R_{f} 0.58$; FD mass spectrum, $m / e 668$ (M), $669(\mathrm{M}+1)$. Hydrogenolysis of 2.6 g of the benzyl ester afforded $1.8 \mathrm{~g}(80 \%)$ of the white solid 55 (after trituration with ethyl ether); TLC (system E) $R_{f} 0.67$; FD mass spectrum, $m / e 578$. See Table III for additional data.

Similarly prepared was N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-L-phenylalanylglycyl-L-proline (54). Compound 21, the L-Phe isomer, was synthesized following the route described for the D isomer 22. N-[4-(4-Hydroxyphenyl)butyryl]-L-prolyl-L-phenylalanylglycyl-L-proline benzyl ester was obtained in 59% yield from 21: TLC (system B) $R_{f} 0.58$. Compound 54 was obtained in 66% yield from the benzyl ester and had an R_{f} identical with 55: FD mass spectrum, $m / e 578$. See Table III for additional data.
\boldsymbol{N}-[4-(4-Hydroxyphenyl)butyryl]-L-prolyl-DL- α-methyl-phenylalanylglycyl-L-proline (56). Compound 18 ($1.43 \mathrm{~g}, 3.26$ mmol) was coupled to glycyl-L-proline benzyl ester, and the crude benzyl ester was chromatographed on silica gel as described for the synthesis of 55 to afford the amorphous white solid (1.6 g , 72%) of N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α-methyl-phenylalanylglycyl-L-proline benzyl ester: TLC (system A) $R_{f} 0.46$; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 682$. Hydrogenolysis provided 1.1 $\mathrm{g}(79 \%)$ of the white powdery 56: TLC (system E) $R_{f} 0.66$; FD mass spectrum, $m / e 592$. See Table III for additional data.

Similarly prepared was N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α-methyltyrosylglycyl-L-proline (57). Compound 20 (2.5 $\mathrm{g}, 5.5 \mathrm{mmol}$) was condensed with glycyl-L-proline benzyl ester by the procedure described for 55, and the product was purified on a silica gel column with 2% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $1.6 \mathrm{~g}(42 \%)$ of amorphous N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α -methyltyrosylglycyl-L-proline benzyl ester: TLC (system A) R_{f} 0.42, doublet for diastereoisomers; FD mass spectrum, m/e 698 (M), $699(\mathrm{M}+1)$. Hydrogenolysis afforded a solid, which was triturated with ethyl ether to give $1.18 \mathrm{~g}(88 \%)$ of white, powdery 57; TLC (system E) $R_{f} 0.18$; FD mass spectrum, $m / e 608$. See Table III for additional data.
\boldsymbol{N}-[4-(4-Hydroxyphenyl)butyryl]-L-prolyl-DL- α-methylphenylalanine 5-Carboxypentylamide (58). Compound 18 (3.0 $\mathrm{g}, 6.82 \mathrm{mmol}$) was coupled to methyl 6 -aminocaproate hydrochloride [from Fischer esterification of the acid, $\mathrm{mp} 87-89^{\circ} \mathrm{C}$ $\left.\left(\mathrm{CH}_{3} \mathrm{CN} / \mathrm{MeOH}\right) ; 1.81 \mathrm{~g}(10 \mathrm{mmol})\right]$ by the $\mathrm{DCC} / \mathrm{HOBt}$ method and purified by chromatography over 120 g of silica gel with a 1 to 1.5% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient to provide $1.61 \mathrm{~g}(41 \%)$ of amorphous N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α methylphenylalanine 5-carbomethoxypentylamide: TLC (system A) $R_{f} 0.48$; FD mass spectrum, $m / e 565$. Basic hydrolysis gave $1.4 \mathrm{~g}(90 \%)$ of white solid 58: TLC (system D) $R_{f} 0.72$; FD mass spectrum, $m / e 552(\mathrm{M}+1)$. See Table III for additional data.
\boldsymbol{N}^{α}-[2-[4-(4-Hydroxyphenyl)butyryl]-1,2,3,4-tetrahydro-3-carboxy-3-isoquinolinyl]-L-arginine (59). 4-(4-Hydroxyphenyl) butyric acid ($2.7 \mathrm{~g}, 0.02 \mathrm{~mol}$) and 3-carbethoxy-1,2,3,4-tetrahydro- 2 H -isoquinoline ${ }^{10}(2.42 \mathrm{~g}, 0.01 \mathrm{~mol})$ were coupled by the usual DCC/HOBt conditions, and workup afforded 3.7 g
(100\%) of syrupy N-[4-(4-hydroxyphenyl)butyryl]-3-carbeth-oxy-1,2,3,4-tetrahydro- 2 H -isoquinoline: TLC (system A) $R_{f} 0.54$; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 367$. Basic hydrolysis of 2.2 g of the ethyl ester produced 2.0 g (98%) of amorphous solid 23 . This acid ($0.85 \mathrm{~g}, 2.5 \mathrm{mmol}$) was not purified but condensed with the protected L-arginine as described above to afford ($1.3 \mathrm{~g}, 94 \%$) of the amorphous solid arginyl adduct: TLC (system A) $R_{f} 0.11$. The methyl ester was hydrolyzed, and the nitro group was removed to give $0.385 \mathrm{~g}(33 \%)$ of buff, powdery 59: TLC (system E) R_{f} 0.23 ; FD mass spectrum, $m / e 496(\mathrm{M}+1)$. See Table III for additional data.

Similarly prepared was 2-[4-(4-hydroxyphenyl)butyryl]-1,2,3,4-tetrahydro-3-[(3-aminopropyl)carbamyl]isoquinoline (60). Compound 23 ($0.85 \mathrm{~g}, 2.5 \mathrm{mmol}$) and 3 -(carbobenzoxyamino)propylamine hydrochloride ($0.614 \mathrm{~g}, 2.5 \mathrm{mmol}$) provided 1.3 g (98%) of the foamy solid adduct: TLC (system A) $R_{f} 0.34$; CI mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 529$. The hydrogenolysis product was dissolved in a little dilute HCl , filtered from a small amount of insoluble material, concentrated, and azeotroped with EtOH. A crystallization from $\mathrm{EtOH} /$ ethyl ether gave the white solid hydrochloride of 60: TLC (system E), $R_{f} 0.24 ; \mathrm{CI}$ mass spectrum $\left(\mathrm{CH}_{4}\right), m / e 395$. See Table III for additional data.

Acknowledgment. We thank Dr. James Wilson for encouragement and helpful discussions. We are grateful to Edith Reich for elemental analyses and optical rotation determinations. We thank Gerald Roberts, Louis Killmer, and Dr. Susan Rottschafer for mass spectral data.

Registry No. 1, 17350-17-3; 2, 88084-12-2; 3, 59191-06-9; 4, 88084-13-3; 6, 88084-14-4; 7, 88084-15-5; 8, 73030-06-5; 9, 86778-86-1; 9 dicyclohexylamine, 88084-16-6; 10, 88084-17-7; 11, 88084-18-8; 11.K, 88084-19-9; 12, 88105-49-1; 13, 88084-20-2; $13 \cdot \mathrm{HCl}, 86778-93-0 ; 14,86778-87-2 ; 15,88084-21-3 ; 15$ (aldehyde derivative), $88084-22-4 ; 16,87113-92-6 ; 17,86778-72-5 ; 18$, 86778-84-9; 19, 86778-74-7; 20, 86778-34-0; 21, 88105-50-4; 22, 88105-51-5; 23, 88084-23-5; 24, 23846-09-5; 25, 88105-52-6; 26, 88084-24-6; 26.2HCl, 88084-25-7; 27, 88084-26-8; 28, 88084-27-9; 29, 88084-28-0; 29-2HCl, 88084-29-1; 30, 88084-30-4; 31, 58840-30-5; 32, 69677-92-5; 33, 88084-31-5; 34, 88084-32-6; 35, 88084-33-7; 36, 10318-24-8; 37, 88084-34-8; 38, 88105-53-7; 39, 88084-35-9; 39.HCl, 88105-25-3; 40, 88084-36-0; 41, 86778-98-5; 42, 88084-37-1; 43, 86778-95-2; 43-HCl, 86778-96-3; 44, 87113-95-9; 45, 86778-88-3; 46, 88084-38-2; 47, 88084-39-3; 48, 86787-35-1; 49, 86779-01-3; $49 \cdot \mathrm{HCl}, 86778-85-0 ; 50,86778-77-0 ; 51,88084-40-6 ; 51 \cdot \mathrm{HCl}$, 86778-79-2; 52, 86778-81-6; 53, 88084-41-7; 53•HCl, 86778-83-8; 54, 86850-55-7; 55, 86850-57-9; 56, 86850-54-6; 57, 86850-56-8; 58, 86779-00-2; 59, 88105-54-8; 60, 88105-55-9; 60•HCl, 88105-56-0; N -carbobenzoxy-L-proline, 1148-11-4; L-phenylalanine methyl ester hydrochloride, 7524-50-7; N-carbobenzoxy-L-prolyl-L-phenylalanine methyl ester, 23631-72-3; N^{ω}-nitro-L-arginine methyl ester hydrochloride, 51298-62-5; N-carbobenzoxy-L-prolyl-L-phenyl-alanyl- N^{ω}-nitro-L-arginine methyl ester, 6464-80-8; N-carbo-benzoxy-L-prolyl-L-phenylalanyl- N^{ω}-nitro-L-arginine, 16152-74-2; DL- α-methylphenylalanine methyl ester hydrochloride, 64665-60-7; N-carbobenzoxy-L-prolyl-DL- α-methylphenylalanine methyl ester, 88105-57-1; N-carbobenzoxy-L-prolyl-DL- α-methylphenylalanyl-N^{ω}-nitro-L-arginine methyl ester, 88130-44-3; N-carbobenzoxy-L-prolyl-DL- α-methyphenylalanyl- N^{ω}-nitro-L-arginine, 88130-45-4; 3-(carbobenzoxyamino) propylamine hydrochloride, 46460-73-5; N-carbobenzoxy-L-prolyl-L-phenylalanine 3-(carbobenzoxyamino)propylamide, 88105-58-2; N-carbobenzoxy-L-propyl-dL- α methylphenylalanine 3-(carbobenzoxyamino)propylamide, 88130-46-5; L-proline benzyl ester hydrochloride, 16652-71-4; N-carbobenzoxy-L-prolyl-DL- α-methylphenylalanyl-L-proline benzyl ester, 88105-59-3; N-benzoyl-L-proline, $5874-58-8$; DL- α methylphenylalanine methyl ester, 88105-60-6; N-benzoyl-L-prolyl-DL- α-methylphenylalanine methyl ester, 88105-61-7; N -benzoyl-L-prolyl-DL- α-methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester, 88130-47-6; N-benzoyl-L-prolyl-DL- α-methyl-phenylalanyl- N^{ω}-nitro-L-arginine, 88130-48-7; L-phenylalanine benzyl ester hydrochloride, 2462-32-0; N-benzoyl-L-prolyl-Lphenylalanine benzyl ester, 88105-62-8; N-benzoyl-L-prolyl-L-phenylalanyl- N^{ω}-nitro-L-arginine methyl ester, 88105-63-9; N -benzoyl-L-prolyl-L-phenylalanyl- N^{ω}-nitro-L-arginine, 88105-64-0; N-benzoyl-L-proline benzyl ester, 88130-49-8; N-(phenyl-acetyl)-L-proline benzyl ester, 88105-65-1; N-(phenylacetyl)-L-
proline, 2752-38-7; N-(phenylacetyl)-L-prolyl-DL- α-methyl-phenylalanyl- N^{ω}-nitro-L-arginine methyl ester, $88105-66-2$; L-2-amino-3-phenyl-1-propanol, 3182-95-4; oxalyl chloride, 79-37-8; N-carbobenzoxy-L-prolyl-L-2-amino-1-phenylpropanal, 88105-67-3; N^{α} - [N-carbobenzoxy-L-prolyl-L-2-amino-1-phenylpropyl]- N^{ω} -nitro-L-arginine methyl ester, 88105-68-4; N^{α}-[N-carbobenzoxy-L-prolyl-L-2-amino-1-phenylpropyl]- N^{ω}-nitro-L-arginine, 88105 -69-5; DL- α-methylphenylalanine, 1132-26-9; DL-2-methylphenylalanine, 21394-84-3; N-carbobenzoxy-L-prolyl-L-2-amino-2-methyl-1-phenylpropanal, 88105-70-8; N^{α}-[N-carbobenzoxy-L-prolyl-DL-2-amino-2-methyl-3-phenylpropyl]- N^{ω}-nitro-L-arginine methyl ester, 88105-71-9; N^{α} [N-carbobenzoxy-L-prolyl-DL-2-amino-2-methyl-3-phenylprolyl]- N^{ω}-nitro-L-arginine, 88105-72-0; 4-phenylbutyryl chloride, 18496-54-3; N-(4-phenylbutyryl)-Lproline benzyl ester, 88105-73-1; 3-phenylpropionyl chloride, 645-45-4; N-(3-phenylpropionyl)-L-proline benzyl ester, 88105-74-2; 5-phenylpentanoyl chloride, 20371-41-9; N-(5-phenyl-pentanoyl)-L-proline benzyl ester, 88105-75-3; L-phenylalanine benzyl ester, 962-39-0; N-(4-phenylbutyryl)-L-prolyl-L-phenylalanine benzyl ester, 88105-76-4; N-(4-phenylbutyryl)-L-prolyl-L-phenylalanyl- N^{ω}-nitro-L-arginine methyl ester, 88105-77-5; N-(4-phenylbutyryl)-L-prolyl-L-phenylalanyl- N^{ω}-nitro-L-arginine, 88105-78-6; D-phenylalanine methyl ester hydrochloride, 13033-84-6; N-(4-phenylbutyryl)-L-prolyl-D-phenylalanine methyl ester, 88105-79-7; N-(4-phenylbutyryl)-L-prolyl-d-phenylalanine, 88105-80-0; N-(4-phenylbutyryl)-L-prolyl-D-phenylalanyl- N^{ω} -nitro-L-arginine methyl ester, 88105-81-1; N-(4-phenyl-butyryl)-L-prolyl-D-phenylalanyl- N^{ω}-nitro-L-arginine, $88105-82-2$; N-(4-phenylbutyryl)-L-prolyl-DL- α-methylphenylalanine methyl ester, 88105-83-3; N-(4-phenylbutyryl)-L-prolyl-DL- α-methyl-phenylalanyl- N^{ω}-nitro-L-arginine methyl ester, 88105-84-4; N -(4-phenylbutyryl)-L-prolyl-DL- α-methylphenylalanyl- N^{ω}-nitro-Larginine, 86778-97-4; N-(4-phenylbutyryl)-L-prolyl-DL- α -methylphenylalanyl-L-proline benzyl ester, 88105-85-5; N-(tert-butoxycarbonyl)-dL- α-methylphenylalanine, 86778-91-8; N -(tert-butoxycarbonyl)-dL- α-methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester, 86778-92-9; N-(3-phenylpropanoyl)-L-arginine methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester, 88105-86-6; N-(3-phenylpropanoyl)-L-prolyl-DL- α-methylphenylalanyl- N^{ω} -nitro-L-arginine, $88130-50-1 ; N$-(5-phenylpentanoyl)-L-prolyl-DL- α-methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester, 88105-87-7; N-(5-phenylpentanoyl)-L-prolyl-DL- α-methyl-phenylalanyl- N^{ω}-nitro-L-arginine, $88105-88-8$; N-(4-phenyl-butyryl)-L-prolyl-L-phenylalanine 3 -(carbobenzoxyamino)propylamide, 88105-89-9; N-(4-phenylbutyryl)-L-prolyl-LD- α methylphenylalanine 3 -carbobenzoxypropylamide, 86778-94-1; DL- α-methyl-3,4-dimethoxyphenylalanine methyl ester hydrochloride, 16024-44-5; N-(4-phenylbutyryl)-L-prolyl-DL- α -methyl-3,4-dimethoxyphenylalanine methyl ester, 88105-90-2;
N-(4-phenylbutyryl)-L-prolyl-DL- α-methyl-3,4-dimethoxy-phenylalanyl- N^{ω}-nitroarginine methyl ester, 88105-91-3; 1 adamantaneacetic acid, 4942-47-6; N-(1-adamantylacetyl)-L-proline benzyl ester, 87113-91-5; N-(1-adamantylacetyl)-L-prolyl-DL- α -methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester, 87113-93-7; DL-2-amino-2-methyl-3-phenylpropanol, 21394-84-3; 4-(4hydroxyphenyl)butyric acid, 7021-11-6; N-[4-(4-hydroxy-phenyl)butyryl]-L-proline benzyl ester, 86778-71-4; N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α-methyl-3,4-dimethoxyphenylalanine methyl ester, 86778-73-6; N-[4-(4-hydroxy-phenyl)butyryl]-L-prolyl-DL- α-methyl-3,4-dimethoxyphenyl-alanyl- N^{ω}-nitro-L-arginine methyl ester, 86778-75-8; N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-dL- α-methyl-3,4-dimethoxy-phenylalanyl- N^{ω}-nitro-L-arginine, 86778-76-9; N-[4-(4-hydroxy-phenyl)butyryl]-L-prolyl-DL- α-methylphenylalanine methyl ester, 88130-51-2; $\quad N$-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α -methylphenylalanyl- N^{ω}-nitro-L-arginine methyl ester, 88105-92-4; N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α-methylphenyl-alanyl- N^{ω}-nitro-L-arginine, 88105-93-5; DL- α-methyltyrosine methyl ester hydrochloride N-[4-(4-hydroxyphenyl) butyryl]-L-prolyl-DL- α-methyltyrosine methyl ester, 86778-80-5; N-[4-(4-hydroxy-phenyl)butyryl]-L-prolyl-DL- α-methyltyrosyl- N^{ω}-nitro-L-arginine methyl ester, 88105-94-6; N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α-methyltyrosyl- N^{ω}-nitro-L-arginine, 88105-95-7; N -[4-(4-hydroxyphenyl)butyryl]-L-prolyl-dL- α-methylphenylalanine 3-(carbobenzoxyamino) propylamide, 88105-96-8; N-[4-(4hydroxyphenyl) butyryl]-L-prolyl-DL- α-methyl-3,4-dimethoxyphenylalanine 3 -(carbobenzoxyamino) propylamide, 86787-33-9; N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α-methyltyrosine 3 -(carbobenzoxyamino) propylamide, $88105-97-9 ; \quad N$-[4-(4-hydroxyphenyl]-L-prolyl-d-phenylalanine methyl ester, 86850-60-4; glycyl-L-proline benzyl ester trifluoroacetate N-[4-(4-hydroxy-phenyl)butyryl]-L-prolyl-D-phenylalanylglycyl-L-proline benzyl ester, $86850-58-0 ; N$-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-L-phenylalanylglycyl-L-proline benzyl ester, 88105-99-1; N-[4-(4hydroxyphenyl) butyryl]-L-prolyl-DL- α-methylphenylalanyl-glycyl-L-proline benzyl ester, 86850-61-5; N-[4-(4-hydroxy-phenyl)butyryl]-L-prolyl-dL- α-methyltyrosylglycyl-L-proline benzyl ester, 86857-05-8; methyl 6 -aminocaproate hydrochloride, 1926-80-3; N-[4-(4-hydroxyphenyl)butyryl]-L-prolyl-DL- α-methylphenylalanine 5 -carbomethoxypentylamide, 86778-99-6; 3-carb-ethoxy-1,2,3,4-tetrahydro-2H-isoquinoline, 15912-55-7; N -[4-(4-hydroxyphenyl)butyryl]-3-carbethoxy-1,2,3,4-tetrahydro- 2 H -isoquinoline, 88106-00-7; N^{α}-[2-[4-(4-hydroxyphenyl)butyryl]-1,2,3,4-tetrahydro-3-carboxy-3-isoquinolinyl]- N^{ω}-nitro-L-arginine methyl ester, 88130-52-3; 2-[4-(4-hydroxyphenyl)butyryl-1,2,3,4-tetrahydro-3-carboxyisoquinoline 3 -(carbobenzoxyamino)propylamide, 88106-01-8; N-(phenylacetyl)-L-prolyl-dL-2-methylphenylalanyl- N^{ω}-nitro-L-arginine, 88106-02-9.

[^0]: ${ }^{\dagger}$ Medicinal Chemistry.
 : Pharmacology.

[^1]: (15) Stein, G. A.; Bronner, H. A.; Pfister, K. J. Am. Chem. Soc. 1955, 77, 700.
 (16) König, W.; Geiger, R. Chem. Ber. 1970, 103, 788.

