Antimycotic Azoles. 7. Synthesis and Antifungal Properties of a Series of Novel Triazol-3-ones

J. Heeres,* L. J. J. Backx, and J. Van Cutsem

Research Laboratories, Janssen Pharmaceutica N. V., B-2340, Beerse, Belgium. Received July 5, 1983
A series of novel triazol-3-ones have been synthesized, and their in vitro and in vivo antifungal properties are reported. Compound 68 (itraconazole), which displays a pronounced oral activity against vaginal candidosis in rats and against microsporosis in guinea pigs, has been selected for clinical evaluation.

With the advent of ketoconazole (Ia), which was dis-

covered approximately 30 years after the development of the first orally active broad-spectrum antibiotics, the first oral broad-spectrum antimycotic became available for medical practice. This introduction may be considered a milestone in the treatment of fungal diseases with azoles. The in vitro spectrum of ketoconazole covers a wide variety of yeasts, dermatophytes, and other fungi. ${ }^{1,2}$ Its potential in the therapy of dermatomycoses, candidosis of the mouth and the vagina, systemic candidosis, chronic mucocutaneous candidosis and candiduria, as well as of deep and subcutaneous mycoses by dimorphic and other fungi has extensively been reviewed. ${ }^{1-5}$

Notwithstanding the promising results obtained in the oral treatment of mycoses with ketoconazole and the convenience for the patient, there still is a need for more potent and better antimycotic drugs. The present paper deals with the synthesis and antifungal properties of the title compounds IIa,b, and some of them fulfill these criteria in animal models.

Chemistry. The synthesis, starting from cis-[2-(2,4-dichlorophenyl)-2-(1H-imidazol-1-ylmethyl)-1,3-dioxolan-

[^0]4 -yl]methyl methanesulfonate (1a) ${ }^{6}$ and cis-[2-(2,4-di-chlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-di-oxolan-4-yl] methyl methanesulfonate (1b), ${ }^{7}$ is outlined in Scheme I.

Ketoconazole (3a) and the corresponding triazole analogue 3 b were prepared from $1 \mathbf{a}, \mathrm{~b}$ and 2 according to the method described in a previous paper. ${ }^{6}$ These compounds were deacylated at reflux temperature with NaOH in n BuOH to the piperazines 4 a and 4 b , respectively. Both compounds, as well as 1-(4-methoxyphenyl)piperazine (5) were arylated with 1-chloro-4-nitrobenzene to the corresponding nitroaryl compounds $6 \mathbf{a - c}$. Catalytic reduction with $5 \% \mathrm{Pt} / \mathrm{C}$ afforded the anilino derivatives $7 \mathrm{a}-\mathrm{c}$, which were acylated with phenyl chloroformate to the phenyl carbamates $8 \mathbf{a}-\mathbf{c}$. Conversion of these carbamates with hydrazine hydrate at reflux temperature yielded the semicarbazides $9 \mathrm{a}-\mathrm{c}$, which were cyclized to the triazol-3-ones IIIa-c. Alkylation of these triazol-3-ones with alkyl bromides or with dimethyl sulfate gave the target compounds IIa,b (method A) and IIc, respectively. Phenols IId were prepared by demethylation with a $48 \% \mathrm{HBr}$ solution of compounds IIc. Methanesulfonates $\mathbf{1 a}, \mathbf{b}$ in a suspension of NaH (50% dispersion in mineral oil) were coupled either with the sodium salt of phenols IId, generated in situ from IId, to give IIa,b (method B) or with compound 2 to give 3a,b.

Biological Methods. The title compounds were tested against a large number of microorganisms. Preliminary in vitro experiments were conducted according to the method described by Godefroi ${ }^{8}$ with the fungi Microsporum canis (M.c.), Trichophyton mentagrophytes (T.m.), Trichophyton rubrum (T.r.), Phialophora verrucosa (Ph.v.), Cryptococcus neoformans (Cr.n.), Candida tropicalis (C.tr.), Candida albicans (C.a.), Mucor sp. (Muc.), Aspergillus fumigatus (A.f.), Sporothrix schenckii (Sp.s), and Saprolegnia sp. (Sapr.). In vivo, the compounds were tested in experimental vaginal candidosis in rats ${ }^{6}$ and in experimental microsporosis. ${ }^{9}$ For oral treatment, the compounds were formulated in polyethylene glycol (PEG) 200. In vaginal candidosis, the animals were treated therapeutically (treatment starting 3 days after infection) o.d. for 3 consecutive days with doses ranging from 0.63 to $10 \mathrm{mg} / \mathrm{kg}$. Vaginal candidosis in ovarectomized and hysterectomized Wistar rats, kept in pseudopregnancy by weekly injections of 0.1 mg of oestradiol undecylate, was induced by infection with 8×10^{5} cells of C. albicans (strain B 2630) Experimental microsporosis was treated prophylactically (treatment starting the day of infection
(6) Heeres, J.; Backx, L. J. J.; Mostmans, J. H.; Van Cutsem, J. J. Med. Chem. 1979, 22, 1003.
(7) Heeres, J.; Hendrickx, R.; Van Cutsem, J. J. Med. Chem. 1983, 26, 611 .
(8) Godefroi, E. F.; Van Cutsem, J.; Van der Eycken, C. H. M.; Janssen, P. A. J. J. Med. Chem. 1967, 10, 1160.
(9) Van Cutsem, J.; Thienpont, D. Chemotherapy 1972, 17, 392.

Table I

[^1] 5.

Table II

Compd.	R	M.p. ${ }^{\circ} \mathrm{C}$	Formula	Cryst. solv.	Mr	Yield	Anal. ${ }^{\text {a }}$
6 c	$-\mathrm{NO}_{2}$	195.1	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$	dioxane	313.35	67	N
7 c	$-\mathrm{NH}_{2}$	191.8	$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$	$\mathrm{n}-\mathrm{BuOH}$	283.36	74	C, H, N
8 c		204.5	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$	$n-\mathrm{BuOH}$	403.46	61	N
9 c		>300	$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$	DMF	341.40	63	N

[^2]Table III

Compd.	R^{1}	R^{2}	m.p.	Formula	Crystn. solv.	Mr.	Yield	Anal. ${ }^{\text {a }}$
10	H	H	>300	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$	DMF	351.40	28	C, H,N
11	CH_{3}	H	245.2	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$	dioxane	365.42	35	N
12	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	210.2	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$	$n-\mathrm{BuOH}$	379.45	44	C, H, N
13	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H		$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$	$n-\mathrm{BuOH}$	393.48	65	- ${ }^{\text {b }}$
14	i- $\mathrm{C}_{3} \mathrm{H}_{7}$	H	209.5	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$	$n-\mathrm{BuOH}$	393.48	47	C, H, N
15	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	H	171.6	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}$	$n-\mathrm{BuOH}$	407.51	61	C, H, N
16	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	H	203.0	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}$	$n-\mathrm{BuOH}$	407.51	57	N
17	H	CH_{3}	298.4	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$	dioxane	365.42	34	C, H
18	CH_{3}	CH_{3}	196.7	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$	$n-\mathrm{BuOH}$	379.45	31	C, H, N
19	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	179.8	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$	$i-\mathrm{PrOH}$	393.48	80	C, H, N
20	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	144.5	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}$	$i-\mathrm{PrOH}$	407.50	83	C, H, N
21	$1-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	192.7	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}$	$i-\mathrm{PrOH}$	407.50	51	C, H, N
22	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	150.1	$\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{2}$	$i-\mathrm{PrOH}$	421.54	59	N
23	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	139.0	$\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{2}$	$i-\mathrm{PrOH}$	421.54	53	C, H, N

${ }^{a}$ Unless otherwise stated, the analyses are within $\pm 0.4 \%$ of the theoretical values. ${ }^{b}$ Product was used without further purification.
Table IV

Compd.	R^{1}	R^{2}	m.p. ${ }^{\circ} \mathrm{C}$	Formula	Crystn. solv.	Mr.	Yield	Anal. ${ }^{\text {a }}$
24	CH_{3}	H	>260	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$	DMF	351.40	96	- ${ }^{\text {b }}$
25	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	217	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$	DMF	365.42	95	C, H, N
26	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H		$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$	DMF	379.45	83	- ${ }^{\text {b }}$
27	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	H	208.4	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$	DMF	379.45	86	C, H, N
28	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	H	221.6	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$	$1-\mathrm{PrOH}$	393.49	69	N
29	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	H	211.4	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$	$i-\mathrm{PrOH}$	393.49	38	C, H,N
30	CH_{3}	CH_{3}	>260	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$	DMF	365.42	96	C, H, N
31	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	287.8	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$	DMF	379.45	92	C, H, N
32	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	258.2	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$	$i-\mathrm{PrOH}$	393.49	88	C, H, N
33	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	251.3	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$	$n-\mathrm{BuOH}$	393.49	100	C, H, N
34	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	262.0	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}$	$n-\mathrm{BuOH}$	407.51	84	C, H, N
35	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	268.7	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}$	$i-\mathrm{PrOH}$	407.51	89	C, H, N

[^3]Table V

Compd	Stereo chem.	x	R^{1}	R^{2}	m.p. ${ }^{\circ} \mathrm{C}$	Formula	Crystn. solv.	Mr.	Yield	Method	Anal. ${ }^{\text {a }}$
36	cis	CH	H	H	255.0	$\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	$n-\mathrm{BuOH}$	648.53	30	-	N
37	cis	CH	H	CH_{3}	295.7	$\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	$i-\mathrm{PrOH}$	692.62	44	-	${ }^{c},{ }^{c}, N^{c}{ }^{\text {c }}$, Cl
38	cis	CH	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	275.6	$\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	$n-\mathrm{BuOH}$	676.58	26	-	N
39	cis	CH	CH_{3}	H	212.8	$\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	$n-\mathrm{BuOH}$	662.55	44	B	C, H,N
40	cis	CH	CH_{3}	CH_{3}	147.3	$\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	MIK	676.58	74	B	C1,N
4	cis	CH	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	204.7	$\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	$n-\mathrm{BuOH}$	676.58	53	B	C, H,N
42	cis	CH	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	135.5	$\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{\mathrm{d}}$	$i-\mathrm{PrOH}$	708.63	51	B	$\mathrm{C}, \mathrm{H}, \mathrm{N}$
43	cis	CH	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	185.7	$\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	MIK	690.61	51	B	C, H, N
44	cis	CH	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	153.9	$\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}{ }^{\text {e }}$	n-BuOH	722.67	61	B	$\mathrm{N}, \mathrm{C}^{e}, \mathrm{H}$
45	cis	CH	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	170.4	$\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	MIK $/ i-\mathrm{Pr}_{2} \mathrm{O}$	718.68	70	B	C, H, N
46	cis	CH	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	H	222.1	$\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	MIK	690.61	37	A	C, H, N
47	cis	CH	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	146.1	$\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{+}$	$\mathrm{MIK} / \mathrm{i}-\mathrm{Pr}_{2} \mathrm{O}$	722.67	71	A	C, H,N
48	cis	CH	$n-\mathrm{C}_{4} \mathrm{Hg}_{9}$	H	199.2	$\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	MIK	704.65	45	A	C, H, N
49	cis	CH	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	172.6	$\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	$\mathrm{PhCH}_{3} / i-\mathrm{Pr}_{2} \mathrm{O}$	718.68	70	A	Cl, N
50	cis	CH	i- $\mathrm{C}_{4} \mathrm{H}_{9}$	H	195.0	$\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	MIK	704.65	35	B	C, H, N
51	cis	CH	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	150.3	$\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	MIK	718.68	23	A	N
52	cis	CH	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	181.3	$\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	MiK	588.61	49	A	C, H, N
53	cis	CH	$s-\mathrm{C}_{4} \mathrm{H}_{9}$	H	170.7	$\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4}$	MIK	704.65	74	-	C, H, N
54	cis	N	H	H	254.4	$\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	OMF/i- $\mathrm{Pr}_{2} \mathrm{O}$	652.31	62	-	C, H, N
55	cis	N	H	CH_{3}	212.4	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}^{9}$	EtOH	686.59	38	-	$\mathrm{Cl}, \mathrm{C}, \mathrm{H}, \mathrm{N}$
56	cis	N	CH_{3}	H	212.8	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	n-BuOH	663.55	42	B	C, H,N
57	cis	N	CH_{3}	CH_{3}	161.9	$\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{\mathrm{n}}$	MIK	695.60	71	B	Cl
58	cis	N	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	184.4	$\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	$n-\mathrm{BuOH}$	677.57	74	B	C, H, N
59	cis	N	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	178.3	$\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	$n-\mathrm{BuOH}$	691.60	71	B	N, Cl
60	cis	N	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	176.3	$\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	MiK	691.60	53	B	N, Cl
61	cis	N	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	165.5	$\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{\text {i}}$	$n-\mathrm{BuOH}$	723.64	52	B	C, H,N
62	cis	N	$\mathrm{i}_{-\mathrm{C}_{3} \mathrm{H}_{7}}$	H	200.4	$\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	MIK	691.62	64	B	Cl, N
63	cis	N	$\mathrm{i}_{-\mathrm{C}_{3} \mathrm{H}_{7}}$	CH_{3}	158.6	$\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{\text {- }}$	MIK	723.66	68	B	$\mathrm{Cl}, \mathrm{N}, \mathrm{C}_{\mathrm{H}}^{\mathrm{j}}$
64	cis	N	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	H	180.5	$\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	$\mathrm{n}-\mathrm{BuOH}$	705.62	70	B	C, H, N
65	cis	N	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-$	CH_{3}	140.0	$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	MIK	719.67	50	B	C, H,N
66	cis	N	$\left.1 \mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-$	H	155.8	$\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	MIK	705.62	54	B	C, H, N
67	cis	N	$-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	159.2	$\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	PhCH_{3}	689.60	54	A	Cl
68	cis	N	5- $\mathrm{C}_{4} \mathrm{H}_{9}$	H	166.2	$\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	PhCH_{3}	705.64	46	A	C, H, N
69	cis	N	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}{ }^{-}$	H	183.4	$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	PhCH_{3}	719.67	68	A	C, H, N
70	cis	N	\checkmark	H	197.3	$\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	PhCH_{3}	717.66	43	A	C, H, N
71	cis	N	$-\mathrm{CH}_{2}<$	H	174.5	$\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	MIK	703.63	40	A	N, Cl
72	cis	N	s- $\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	146.1	$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	$\mathrm{MIK} / 1-\mathrm{Pr}_{2} \mathrm{O}$	719.67	68	A	C, H, Cl

${ }^{a}$ Unless otherwise stated, the analyses are within $\pm 0.4 \%$ of the theoretical values. ${ }^{b} \mathrm{MIK}=\mathrm{CH}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} .{ }^{c} \mathrm{C}=\mathrm{calcd}$, 59.82; found, 58.80. N: calcd, 14.80; found, 14.16. ${ }^{d} \mathrm{NMR}$ for $\mathrm{H}_{2} \mathrm{O} \delta 1.86 .{ }^{e} \mathrm{C}$: calcd, 59.84 ; found, 59.16 ; NMR for $\mathrm{H}_{2} \mathrm{O} \delta 1.86$. ${ }^{f} \mathrm{NMR}$ for $\mathrm{H}_{2} \mathrm{O} \delta 1.82 .{ }^{g} \mathrm{C}$: calcd, 57.73 ; found, 56.81 ; NMR for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \delta 1.20\left(\mathrm{CH}_{3}\right), 3.71\left(\mathrm{CH}_{2}\right)$. ${ }^{h} \mathrm{NMR}$ for $\mathrm{H}_{2} \mathrm{O} \delta 1.84$. ${ }^{i} \mathrm{NMR}$ for $\mathrm{H}_{2} \mathrm{O}$ $\delta 1.75 .{ }^{j} \mathrm{C}$: calcd, 58.09; found, 58.64. NMR for $\mathrm{H}_{2} \mathrm{O} \delta 1.75$.

Scheme I

or the day before) o.d. for 14 consecutive days with doses ranging from 1.25 to $20 \mathrm{mg} / \mathrm{kg}$. Experimental microsporosis was induced in guinea pigs by artificial infection on the back with M. canis. Substances showing more than a 50% cure rate were tested at lower doses.

Results and Discussion

The test results are summarized in Table VI. The in vitro results represent the lowest dose levels for total inhibition of growth. Compared with the title compounds, ketoconazole demonstrates the highest in vitro activity and is also clearly more active than its triazole analogue. The low in vitro activity of the triazol-3-ones may be associated with their low solubility in the test medium. Compound 68, when tested in $\mathrm{Me}_{2} \mathrm{SO}$ solution in Sabouraud broth at pH 7.4 , was active against dermatophytes at concentrations ranging from 0.1 to $1 \mu \mathrm{~g} / \mathrm{mL}$ and against Candida spp., Cr. neoformans, A. fumigatus, S. schenckii, and Ph. verrucosa at $0.1 \mu \mathrm{~g} / \mathrm{mL} .{ }^{10}$ Some compounds (39,53,58, and 67) appear to be active at rather low concentrations (1-10 $\mu \mathrm{g} / \mathrm{mL}$) against dermatophytes, such as T. rubrum, T. mentagrophytes, and yeasts, such as Cr. neoformans and C. tropicalis. It is striking that even at $100 \mu \mathrm{~g} / \mathrm{mL}$ none of the tested compounds showed significant activity against Mucor sp., and only one compound (40) showed significant activity against M. canis. Three compounds (39, 40, and 53) inhibit the growth of A. fumigatus at $100 \mu \mathrm{~g} / \mathrm{mL}$.

[^4]Compound $\mathbf{6 7}$ was active against T. mentagrophytes, T. rubrum, Cr. neoformans, and C. tropicalis and was the only compound that had an inhibitory effect on the growth of S. schenckii at $100 \mu \mathrm{~g} / \mathrm{mL}$. By comparison, it can be concluded that in vitro and in vivo activity are very poorly correlated. Although none of the triazol-3-ones displays any in vitro activity against M. canis at $100 \mu \mathrm{~g} / \mathrm{mL}$, when tested under the conditions described, several compounds (39, 47, 62 and 66-68) demonstrated significant oral activity against experimental microsporosis, even at low doses $(2.5 \mathrm{mg} / \mathrm{kg})$. None of the nonalkylated triazol-3-ones was found to be active in established vaginal candidosis and microsporosis at the indicated doses. N-Alkylation has a pronounced enhancing effect on in vivo activity. In the prophylactic experiments against vaginal candidosis as well as against microsporosis, it was seen that nonalkylated triazol-3-ones were less potent than the alkylated analogues. ${ }^{11}$ Moreover, the in vivo results prove that it is favorable to substitute a triazole ring for the imidazole moiety ($46<62$ and $53<68$). Introduction of a methyl group in the 5-position of the triazol-3-one ring (R^{2}) tends to decrease the oral activity, in particular in microsporosis ($66>65$ and $62>63$, and $68>72$). No definite conclusions can be drawn concerning the influence of alkyl chain variation ($\mathrm{R}^{\mathbf{1}}$) on biological activity in the imidazole derivatives, since the gained in vivo results are too heterogeneous. Only minor effects on activity in vaginal candidosis have been observed after elongation of the alkyl chain ($\mathrm{R}^{\mathbf{1}}$) from methyl to n-propyl (56,58 , and 60) in the

[^5]Table VI. In Vitro and in Vivo Antifungal Activity

Compd.	in Vitroo ${ }^{\text {a }}$											IN Vivo ${ }^{\text {b }}$							
	M.c.	T.m.	T.r.	Ph.v.	Cr.n.	C.tr.	C.a.	Muc.	A.f.	Sp.s.	Sapr.	VAGINAL CANDIDOS1S IN RATS				M1CROSPOROS1S GUINEA PIGS			
												DOSE (mg/kg)				DOSE ($\mathrm{mg} / \mathrm{kg}$)			
												10	2.5	1.25	0.63	20	10	2.5	1.25
36	>100	100	>100	>100	>100	100	>100	>100	>100	>100	>100		$0 / 2$						
37	>100	10	10	>100	100	10	100	>100	>100	>100	>100						$0 / 2$		
38	>100	>100	>100	>100	>100	100	100	>100	>100	>100	>100							$0 / 2$	
39	>100	1	1	>100	1	1	>100	>100	100	>100	100	5/6	4/11	3/12	$0 / 4$		$4 / 4$	$2 / 6$	0/6
40	100	10	100	>100	>100	> 100	100	>100	100	>100	>100	$3 / 4$	0/2			$2 / 2$	$0 / 2$		
41	>100	100	10	>100	>100	100	100	>100	>100	>100	>100		$0 / 2$						
42	>100	100	>100	>100	>100	100	>100	>100	>100	>100	>100		$0 / 2$					0/2	
43	>100	100	100	>100	>100	>100	>100	>100	>100	>100	>100	$4 / 4$	$0 / 2$						
44	>100	>100	>100	>100	>100	100	100	>100	>100	>100	>100		0/2						
45	>100	10	100	>100	>100	10	100	>100	>100	>100	>100		1/2				1/4		
46	>100	100	100	>100	>100	100	100	>100	>100	>100	>100		$0 / 2$				$2 / 4$	$0 / 2$	
47	>100	100	>100	>100	>100	1	100	>100	>100	>100	>100		$1 / 6$				5/6	1/6	$0 / 6$
48	>100	100	10	>100	>100	100	100	>100	>100	>100	>100		$4 / 6$	0/2					
49	>100	10	10	>100	100	1	100	>100	>100	>100	>100		$4 / 8$	1/6	$0 / 4$		$4 / 6$	0/6	$0 / 2$
50	>100	100	>100	>100	>100	>100	100	>100	>100	>100	>100		1/2				$0 / 2$		
51	>100	100	100	>100	100	100	>100	>100	>100	>100	>100		$2 / 4$				$2 / 2$	$0 / 2$	
52	>100	10	1	>100	>100	10	100	>100	>100	>100	>100		$0 / 2$				1/2	$0 / 2$	
53	> 100	1	1	100	10	1	> 100	>100	100	>100	>100		1/2				1/2	$2 / 4$	
54	> 100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100						0/2		
55	>100	10	100	100	100	1	>100	>100	>100	>100	>100						$0 / 2$		
56	>100	1.	10	100	100	10	100	>100	>100	>100	>100	$2 / 2$	$4 / 6$	5/6	$4 / 8$		$1 / 8$	$0 / 2$	0/2
57	> 100	>100	>100	>100	>100	>100	>100	≥ 100	>100	>100	>100	1/2	1/2			$0 / 2$			
58	>100	1	1	>100	10	1	100	>100	>100	>100	>100	10/12	13/15	16/18	4/12		$4 / 8$	3/10	0/8
59	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100		9/10	$1 / 4$	1/6		$0 / 4$		
60	> 100	100	1	>100	100	100	>100	>100	>100	>100	>100	6/6	9/10	9/10	3/10		1/8	0/5	$0 / 6$
61	>100	1	>100	>100	100	100	100	>100	>100	>100	>100		1/4		$0 / 2$				
62	>100	100	>100	>100	>100	>100	>100	>100	>100	>100	>100	5/6	20/24	12/22	2/12		6/6	7/12	$2 / 6$
63	>100	100	>100	>100	>100	10	>100	>100	>100	>100	>100		1/2				$0 / 2$		
64	>100	100	>100	>100	>100	>100	>100	>100	>100	>100	>100		$0 / 2$				1/6		
65	>100	10	>100	>100	100	1	100	>100	>100	>100	>100		6/6	6/6	4/11		$2 / 6$	$0 / 8$	0/8
66	>100	10	10	>100	100	10	100	>100	>100	>100	>100		7110	7/10	4/10		$2 / 2$	$5 / 8$	3/6
67	>100	1	10	>100	10	1	>100	>100	>100	100	>100		3/6	1/2	1/6		$2 / 2$	$4 / 6$	$0 / 4$
68	>100	10	10	>100	100	100	>100	>100	>100	>100	>100	12/12	29/34	13/33	7/10		$6 / 6$	11/12	12/15
69	>100	100	>100	>100	>100	>100	100	>100	>100	>100	>100		0/2				1/2		
70	>100	100	>100	>100	>100	>100	>100	>100	>100	>100	>100		1/2				$2 / 2$	$0 / 2$	
71	>100	10	10	100	>100	>100	100	>100	>100	>100	>100		1/2				$2 / 2$	012	
72	>100	100	> 100	>100	>100	>100	10	>100	>100	>100	>100		$2 / 2$		0/2		$2 / 2$	$0 / 2$	
3b	100	1	10	100	10	>100	>100	>100	>100	100	10	1/2	0/2			0/2			
3 a	100	1	1	10	10	10	100	>100	100	10	10	173/181	218	0/12		30/30	$4 / 34$	0/14	

${ }^{a}$ Lowest level of total inhibition (micrograms per milliliter). ${ }^{b}$ Ratio of animals cured/animals infected.
triazoles, whereas the n-butyl derivative (64) is devoid of activity.
Replacement of the n-propyl (60) by an allyl chain (67) tends to decrease the activity against vaginal candidosis, but, on the other hand, an important increase in activity
against microsporosis is noticed. Branching of the alkyl chain gives rise to a dramatic increase of activity against vaginal candidosis, as well as against microsporosis (62, 66, and 68). Introduction of a cyclopropylmethyl group (71) for isobutyl (66) leads to a decreased activity in both in-
fection models. Based on the results, ${ }^{10}$ also gained from other animal models, one compound [68, (itraconazole, proposed international nonproprietary name)] has been selected for clinical studies.

Experimental Section

Melting points are measured with a Mettler FP_{1} melting point apparatus and are uncorrected. New compounds were routinely checked for their structure by UV and/or IR and NMR spectrometry (UV, Hewlett-Packard HP-8450; IR, Perkin-Elmer 580B; NMR, Brucker WP 200).
cis-1-Acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-(1H-1,2,4-tri-azol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine (3b). To a suspension of NaH (50% dispersion) (37.0 $\mathrm{g}, 0.772 \mathrm{~mol})$ in $\mathrm{Me}_{2} \mathrm{SO}(1500 \mathrm{~mL})$ was added compound 2 (168.0 $\mathrm{g}, 0.772 \mathrm{~mol})$. After the solution was stirred for $1 \mathrm{~h}, \mathbf{1 b}(286.0$ $\mathrm{g}, 0.7 \mathrm{~mol}$) was added, and stirring was continued for 5 h at 80 ${ }^{\circ} \mathrm{C}$. The reaction mixture was cooled, and water was added. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford an oily residue, which was crystallized from 4 -methyl-2-pentanone to give $3 \mathrm{~b}(240.0 \mathrm{~g}, 64 \%), \operatorname{mp} 176.4^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
cis-1-[4-[[2-(2,4-Dichlorophenyl)-2-($1 H$-1,2,4-triazol-1-yl-methyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine (4b). A solution of $3 \mathrm{~b}(240.0 \mathrm{~g}, 0.450 \mathrm{~mol})$ and NaOH pellets $(22.0 \mathrm{~g}$, 0.54 mol) in $n-\mathrm{BuOH}(1000 \mathrm{~mL})$ was refluxed with stirring overnight. The reaction mixture was cooled, whereupon water was added. The mixture was subsequently extracted with CHCl_{3}; the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The solid residue was crystallized from 4-methyl-2-pentanone/isopropyl ether to give $\mathbf{4 b}(156.0 \mathrm{~g}, 70 \%), \mathrm{mp} 130.6^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
cis-1-[4-[[2-(2,4-Dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl-methyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-4-(4-nitrophenyl) piperazine (6b). A solution of 4 b ($150.0 \mathrm{~g}, 0.306 \mathrm{~mol}$) and 1-chloro-4-nitrobenzene ($56.0 \mathrm{~g}, 0.356 \mathrm{~mol}$) in $\mathrm{Me}_{2} \mathrm{SO}(400$ mL) was stirred overnight at $120^{\circ} \mathrm{C}$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(22.4 \mathrm{~g}, 0.160 \mathrm{~mol})$. The reaction mixture was cooled and diluted with water. The crystallized product was filtered and taken up in CHCl_{3}. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo, yielding 6 b ($180.0 \mathrm{~g}, 96 \%$), mp $165.0^{\circ} \mathrm{C}$. Recrystallization from n - BuOH afforded an analytical sample, $\mathrm{mp} 167.8^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
cis-4-[4-[4-[2 -(2,4-Dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-1piperazinyl]benzenamine (7 b). A solution of $\mathbf{6 b}$ ($175.0 \mathrm{~g}, 0.286$ mol) in $\mathrm{MeOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\left(1000 \mathrm{~mL}\right.$) was hydrogenated at $50^{\circ} \mathrm{C}$ in the presence of a solution of thiophene (4%) in $\mathrm{MeOH}(1 \mathrm{~mL})$ with $5 \% \mathrm{Pt} / \mathrm{C}(2.0 \mathrm{~g})$ as the catalyst. When hydrogen uptake was complete, the mixture was heated to reflux, and, subsequently, the catalyst was filtered off. While the mixture was cooling, the product crystallized and then filtered off to give $\mathbf{7 b}(134.4 \mathrm{~g}, 81 \%)$, $\operatorname{mp} 180.0^{\circ} \mathrm{C}$. Recrystallization from $n-\mathrm{BuOH}$ afforded an analytical sample, $\mathrm{mp} 186.8^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
cis-Phenyl [4-[4-[4-[[2-(2-(2,4-Dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]-phenyl]-1-piperazinyl]phenyl]carbamate (8b). To a solution of $7 \mathbf{7 b}(129.0 \mathrm{~g}, 0.222 \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(1000 \mathrm{~mL})$ and pyridine (300 mL) was added dropwise over a period of 15 min phenyl chloroformate ($36.3 \mathrm{~g}, 0.232 \mathrm{~mol}$). The reaction mixture was stirred for 3 h , and subsequently, $\mathrm{H}_{2} \mathrm{O}$ and petroleum ether were added. The product crystallized and was filtered off. The crystals were subsequently washed with $\mathrm{H}_{2} \mathrm{O}, i-\mathrm{PrOH}$, and finally with isopropyl ether to give, after drying, $8 \mathrm{~b}(133.0 \mathrm{~g}, 86 \%)$, mp $203.0^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H} . \mathrm{N}$.
cis- N - [4-[4-[4-[[2-(2,4-Dichlorophenyl)-2-(1H-1,2,4-tri-azol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-1piperazinyl]phenyl]hydrazinecarboxamide (9b). Hydrazine hydrate ($50.0 \mathrm{~g}, 1.0 \mathrm{~mol}$) and $8 \mathrm{~b}(130.0 \mathrm{~g}, 0.185 \mathrm{~mol})$ in 500 mL of dioxane were stirred and refluxed for 3 h . Subsequently, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, whereupon the product crystallized. The crystalline solid was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and i - PrOH , and dried to give $9 \mathrm{~b}(170.0 \mathrm{~g}, 99 \%), \mathrm{mp} 199.7^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
cis -4-[4-[4-[4-[[2-(2,4-Dichlorophenyl)-2-(1H-1,2,4-tri-azol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-1-piperazinyl]phenyl]-2,4-dihydro-3H-1,2,4-triazol-3-one (10 b). Formamidine acetate ($83.2 \mathrm{~g}, 0.800 \mathrm{~mol}$) and $9 \mathrm{~b}(115.0 \mathrm{~g}, 0.179$ mol) in DMF (300 mL) were stirred at $130^{\circ} \mathrm{C}$ for 3 h . The product crystallized on dilution with water. The solid was filtered off and recrystallized from DMF/i- $\mathrm{Pr}_{2} \mathrm{O}$, yielding $10 \mathrm{~b}(72.0 \mathrm{~g}, 62 \%), \mathrm{mp}$ $254.4{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
cis -4-[4-[4-[4-[[2-(2,4-Dichlorophenyl)-2-(1H-1,2,4-tri-azol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-1-pi-perizinyl]phenyl]-2,4-dihydro-2-(1-methylpropyl)-3H-1,2,4-triazol-3-one (68). To a suspension of KOH powder ($0.7 \mathrm{~g}, 0.01$ mol) and $10 \mathrm{~b}(5.0 \mathrm{~g}, 0.0077 \mathrm{~mol})$ in $\mathrm{Me}_{2} \mathrm{SO}(100 \mathrm{~mL})$ was added 2 -bromobutane ($1.23 \mathrm{~g}, 0.009 \mathrm{~mol}$). Stirring was continued for 14 h , whereupon the reaction mixture was diluted with water. Extracting with CHCl_{3}, drying (MgSO_{4}), and evaporating in vacuo afforded a solid,which was chromatographed on silica with $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ (98:2) as the eluent. The pure compound was recrystallized from toluene to give $68(2.5 \mathrm{~g}, 46 \%), \mathrm{mp} 166.2^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2,4-Dihydro-4-[4-[4-(4-hydroxyphenyl)-1-piperazinyl]-phenyl]-2-(1-methylethyl)-3H-1,2,4-triazol-3-one (27). A mixture of $14(4.7 \mathrm{~g}, 0.012 \mathrm{~mol}$) and $48 \% \mathrm{HBr}$ solution (50 mL) was refluxed overnight. The reaction mixture was cooled, whereupon a product crystallized. The solid was filtered off and dissolved in a water/ MeOH mixture ($50: 50$). After neutralization of the solution with NaHCO_{3}, the product was extracted with $\mathrm{CHCl}_{3}(500 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford a residue, which was crystallized from DMF to give $27(3.9 \mathrm{~g}, 86 \%), \mathrm{mp} 208.4^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$, N.
cis-4-[4-[4-[4-[[2-(2,4-Dichlorophenyl)-2-(1H-1,2,4-tri-azol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-1-piperazinyl]phenyl]-2,4-dihydro-2-(1-methylethyl)-3H-$1,2,4$-triazol-3-one (62). To a suspension of NaH (50% dispersion in mineral oil) ($0.4 \mathrm{~g}, 0.0083 \mathrm{~mol}$) in dry $\mathrm{Me}_{2} \mathrm{SO}(100 \mathrm{~mL})$ was added $27(3.0 \mathrm{~g}, 0.0079 \mathrm{~mol})$. after the solution was stirred at 50 ${ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, 1 \mathrm{~b}$ ($3.2 \mathrm{~g}, 0.0079 \mathrm{~mol}$) was added, and stirring at 100 ${ }^{\circ} \mathrm{C}$ was continued for 3 h . After dilution with water, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the organic layer was washed with water, dried (MgSO_{4}), and evaporated in vacuo to leave a solid residue. Purification on silica with $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ (98:2) as the eluent, followed by recrystallization from 4-methyl-2-pentanone, gave $62(3.5 \mathrm{~g}, 64 \%), \mathrm{mp} 200.4^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{Cl}$, N.

Acknowledgment. The authors thank the "Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nÿverheid en Landbouw" for financial support. Dr. M. Janssen and H. Vanhove are thanked for helpful suggestions in the preparation of this manuscript.

Registry No. 1a, 61397-61-3; 1b, 67914-86-7; 2, 67914-60-7; 3a, 65277-42-1; 3b, 67915-35-9; 4a, 67914-61-8; 4b, 67915-50-8; 6a, 89848-07-7; 6b, 89872-79-7; 6c, 74852-61-2; 7a, 89848-08-8; 7b, 89848-09-9; 7c, 74852-62-3; 8a, 89848-10-2; 8b, 89848-11-3; 8c, 74853-06-8; 9a, 89848-12-4; 9b, 89848-13-5; 9c, 74852-89-4; 10, 74853-07-9; 11, 74852-91-8; 12, 74852-95-2; 13, 74852-92-9; 14, 89848-14-6; 15, 89848-15-7; 16, 89848-16-8; 17, 74852-90-7; 18, 74853-02-4; 19, 74852-93-0; 20, 74852-94-1; 21, 89848-17-9; 22, 89848-58-8; 23, 89848-18-0; 24, 79538-92-4; 25, 74853-20-6; 26, 79538-91-3; 27, 89848-19-1; 28, 89848-20-4; 29, 89848-21-5; 30, 74853-17-1; 31, 74853-18-2; 32, 74853-19-3; 33, 89848-22-6; 34, 89848-23-7; 35, 89848-24-8; 36, 89848-25-9; 37, 89848-26-0; 38, 89848-27-1; 39, 89872-80-0; 40, 89848-28-2; 41, 89848-29-3; 42, 89872-81-1; 43, 89848-30-6; 44, 89848-31-7; 45, 89848-32-8; 46, 89848-33-9; 47, 89848-34-0; 48, 89848-35-1; 49, 89848-36-2; 50, 89848-37-3; 51, 89848-38-4; 52, 89848-39-5; 53, 89848-40-8; 54, 89848-41-9; 55, 89848-42-0; 56, 89848-43-1; 57, 89848-44-2; 58, 89848-45-3; 59, 89848-46-4; 60, 89848-47-5; 61, 89848-48-6; 62, 89848-49-7; 63, 89848-50-0; 64, 89848-51-1; 65, 89848-52-2; 66, 89848-53-3; 67, 89848-54-4; 68, 84625-61-6; 69, 89848-55-5; 70, 89848-56-6; 71, 89848-57-7; 72, 89848-59-9; $\mathrm{NH}=\mathrm{CHNH}_{2}, 463-52-5$; $\mathrm{NH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}, 143-37-3 ; p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 100-00-5$; 1-(4-methoxyphenyl)piperazine, 38212-30-5.

[^0]: (1) Levine, H. B. "Ketoconazole in the Management of Fungal Disease"; ADIS Press: Australia, 1982.
 (2) Van Cutsem, J. Am. J. Med. 1983, 74(1B), 9.
 (3) Restrepo, A.; Stevens, D. A.; Utz, J. P. Rev. Inf. Dis. 1980, 2, 519.
 (4) Graybill, J. R., Am. J. Med. 1983, 74(1B).
 (5) Symoens, J.; Cauwenberg, G., to be published in Prog. Drug. Res.

[^1]: ${ }^{a}$ Unless otherwise stated, the analyses are within $\pm 0.4 \%$ of the theoretical values. ${ }^{b} \mathrm{MIK}=\mathrm{CH}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$. ${ }^{c} \mathrm{Reference}$

[^2]: ${ }^{a}$ Unless otherwise stated, the analyses are within $\pm 0.4 \%$ of the theoretical values.

[^3]: ${ }^{a}$ Unless otherwise stated, the analyses are within $\pm 0.4 \%$ of the theoretical values. ${ }^{b}$ Products were used without further purification.

[^4]: (10) Van Cutsem, J.; Van Gerven, F.; Zaman, R.; Heeres, J; Janssen, P. A. J. 13th International Congress of Chemotherapy, Vienna, Aug 28-Sept 2, 1983.

[^5]: (11) Van Cutsem J., unpublished results.

