benzyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride¹⁵ (13.5 g, 0.05 mol) and TEA (30.3 g, 0.3 mol) was stirred at 88 °C for 8 h. After cooling, the mixture was slowly poured into 10% H₂SO₄ (500 mL), and the resulting solution was extracted with CHCl₃. The solvent was washed with ${
m H_2O}$ (2 imes 100 mL), dried, and evaporated. The residue was distilled to give 34 g: bp 90–93 °C (11 mm); IR ν_{max} 1720 (C=O), 1140 (CO), 1075, 1038, 990 cm⁻¹.

Pharmacology. Oral Treatment. Groups of three male conscious spontaneously hypertensive rats (SHR) rats were used. The compounds, suspended in aqueous 0.5% methocel HC 90 Dow, were administered by gavage in a volume of 2 mL/kg. Systolic blood pressure (SBP) was recorded before and 2 and 4 h after treatment. The measurements were taken by the indirect tail-cuff method (W + W BP recorder, Electronic Basel) with a sensor and pressure cuff, after heating the rats for 20 min at 37 °C. Heart rate (HR) was calculated from the pressure tracing. Regression lines were plotted for the maximum fall in blood pressure vs. 1-g dose.

Intravenous Treatment. Groups of four conscious mongrel renal hypertensive dogs were used. The compounds were dissolved in distilled water and administered at 0.5 mL/kg. SBP and HR were measured in the tail by an indirect technique with the recorder already described.

Acknowledgment. We acknowledge with thanks the contribution of Adele Depaoli for the interpretation of the NMR spectra, Valentino Milani for the microanalyses, and Dr. Romeo Ciabatti for helpful discussion on metabolism.

Registry No. 1, 89937-23-5; 2, 83491-12-7; 2.HCl, 83514-28-7; 3, 89937-24-6; 4, 66346-85-8; 5, 89937-25-7; 6, 89937-26-8; 7, 89937-27-9; 8, 89937-28-0; 9, 89937-29-1; 10, 89937-30-4; 11. 75848-36-1; 12, 89937-31-5; 13, 83491-13-8; 14, 89937-32-6; 15, 75842-13-6; 16, 76953-31-6; 17, 89937-33-7; 18, 89937-34-8; 19, 89937-35-9; 20, 37121-81-6; 21.2HCl, 75842-03-4; 22,2HCl, 75842-01-2; 23.2HCl, 75842-05-6; 24.2HCl, 75842-11-4; 25.HCl, 77510-12-4; 26.2HCl, 89937-36-0; 27, 89937-37-1; 28, 75848-33-8; 29, 75842-02-3; 30·HCl, 86703-02-8; 31, 75841-81-5; 32, 75842-04-5; 33, 89937-38-2; 34, 75841-90-6; 35, 75841-87-1; 36 HCl, 89937-39-3; 37, 75841-98-4; 38, 75841-80-4; 39, 75841-99-5; 40, 75842-12-5; 41, 89937-40-6; 42, 75842-08-9; 43, 75842-06-7; 44, 75842-00-1; 45, 89937-41-7; 46, 75841-93-9; 47, 89937-42-8; 48, 75848-35-0; 49, 89937-43-9; **50**, 75841-91-7; **51**, 75841-97-3; **52**, 75841-86-0; **53**, 75841-95-1; 54, 75841-89-3; 55, 75841-94-0; 26, 75842-10-3; 57, 89937-44-0; I ($R_3 = R_4 = H$), 141-30-0; IV ($R = c-N(CH_2CH_2)_2O$, $R_1 = CH_3, R_3 = \tilde{R}_4 = \tilde{H}, R_5 = CH_3), 77510-10-2; V 2HCl (\tilde{R} = (CH_2))$ = $CHCH_2)_2N_1R_1 = R_3 = R_4 = H$, 28546-57-8; VII, 17259-72-2; VIII, 89937-45-1; IX, 89937-46-2; X ($R_2 = CH_3$), 110-13-4; X ($R_2 = C_2H_5$), 2955-65-9; XI ($R = c-N(CH_2CH_2)_2$ O, $R_1 = CH_3$, $R_3 = R_4 = H$), 61472-02-4; HN(CH₂CH₂OCH₃)₂, 111-95-5; NH₂NHCO₂Bu-t, 870-46-2; C₂H₅CHO, 123-38-6; C₂H₅COCH = CH₂, 1629-58-9; 1-(2-methoxyphenyl)piperazine, 35386-24-4; 2,5-dimethoxytetrahydrofuran, 696-59-3.

Notes

Syntheses and Anthelmintic Activity of Alkyl 5(6)-(Substituted-carbamoyl)- and 5(6)-(Disubstituted-carbamoyl)benzimidazole-2-carbamates and Related Compounds¹

Shiv Kumar,[†] Manju Seth,[†] Amiya P. Bhaduri,^{*,†} Pradeep K. S. Visen,[‡] Anuradha Misra,[‡] Suman Gupta,[‡] Nigar Fatima,[‡] Jagdish C. Katiyar,[‡] Ranjeet K. Chatterjee,[‡] and Amiya B. Sen[‡]

Divisions of Medicinal Chemistry and Parasitology, Central Drug Research Institute, Lucknow 226001, India. Received August 5, 1983

A number of alkyl 5(6)-(substituted-carbamoyl)- and 5(6)-(disubstituted-carbamoyl)benzimidazole-2-carbamates and related compounds have been synthesized, and their anthelmintic activity against various intestinal helminths of experimental animals have been evaluated. A large percentage of the compounds synthesized showed noteworthy activity against Ancylostoma ceylanicum and at higher doses against Hymenolepsis nana infections. Compared to the alkyl 5(6)-(substituted-carbamoyl)benzimidazole-2-carbamates, the disubstituted carbamoyl analogues were found to exhibit better anthelmintic activity. The most active compound of the series, namely, methyl 5(6)-[(N-2-pyridylpiperazino)carbamoyl]benzimidazole-2-carbamate (90), has been screened against intestinal helminths in higher animals and as a micro- and macrofilaricidal agent. Compound 90 has been identified as a broad-spectrum anthelmintic agent. Compound 90 has been identified as a broad-spectrum anthelmintic in view of its efficacy against A. ceylanicum (hamsters and dogs), H. nana (rats), Nippostrongylus brasiliensis (rats), Syphacia obvelata (mice), A. tubaeformis (cat), Toxocara spp. (cat), and Litomosoides carinii (cotton rat).

The incidence of helminth infections is alarmingly high in tropical and subtropical regions,^{2,3} as a result of poor sanitation and lower standard of living. The nonavailability of minimal medical facilities for diagnosis of the specific helminth infection aggravates the situation even. further. A research program was therefore initiated to obtain a broad-spectrum anthelmintic.

We report herein the syntheses and anthelmintic properties of alkyl 5(6)-(substituted- and -disubstituted-carbamoyl)benzimidazole-2-carbamates (68-90), 1,2-bis[[2-(carbomethoxyamino)-5-benzimidazolyl]carboxamido]-

ethane and its phenyl derivature (103 and 104), bis[4-[[2-(carbomethoxyamino)-5-benzimidazolyl]carboxamido]phenyl] sulfide or sulfone (105 and 106) 1,4-bis-[[2-(carbomethoxyamino)-5-benzimidazolyl]carboxamido]benzene 1,4-bis[2-(carbomethoxyamino)-5-benzimidazolyl]carboxamido]benzene (109).

Chemistry. Nitration of 4-acetamidobenzoic acid with fuming HNO3 at 0 °C furnished 4-acetamido-3-nitrobenzoic acid (1).⁴ The reaction of 1 with SOCl₂ gave the

0022-2623/84/1827-1083\$01.50/0 © 1984 American Chemical Society

[†]Division of Medicinal Chemistry.

[‡]Division of Parisitology.

⁽¹⁾ CDRI communication no. 3339.

P. A. J. Janssen, Prog. Drug. Res., 18, 191 (1974). (2)

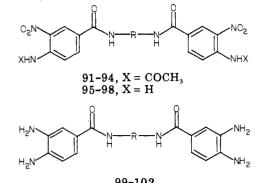
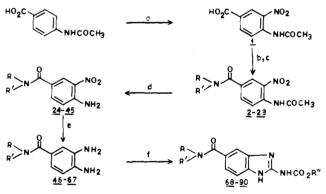

⁽³⁾ B. B. Gaitonde and D. M. Renapurkar, J Assoc. Physicians India, 27, 129 (1979).

Table I. Physical Data of Various Compounds Synthesized

	R'I		NO2 R'RN-	NH ₂	
		NHAC	NH ₂	NH ₂	
			4-45	46-67	
compd	R	<u>R'</u>	mp, °C	yield, %	mol formula ^a
2 3	H H	CH_3 C_4H_9	175 - 176 120	80 85	$C_{10}H_{11}N_{3}O_{4}$
4	H	$C_{8}H_{17}$	120	86	$C_{13}H_{17}N_3O_4 \\ C_{17}H_{25}N_3O_4$
5	Н	cyclohexyl	190-192	90	$C_{15}H_{19}N_3O_4$
6	H	C_6H_5	220-222	90	$C_{15}H_{13}N_{3}O_{4}$
7	H	C_6H_4 - $F(p)$	260	92	$C_{15}H_{12}FN_3O_4$
8 9	H H	(CH ₂) ₂ C ₆ H ₃ -3,4-(OCH ₃) ₂ 2-thiazolyl	182 197	90 75	$C_{19}H_{21}N_3O_6 \\ C_{12}H_{10}N_4O_4S$
10	H	2-thiazoliyi	180-182	70	$C_{12}H_{10}N_4O_4S$ $C_{12}H_{12}N_4O_4S$
11	H	5-methyl-2-thiazolyl	245	70	$C_{13}H_{12}N_4O_4S$
12	Н	2-pyridyl	201	75	$C_{14}H_{12}N_4O_4$
13	H	4-pyridyl	250-251	72	$C_{14}H_{12}N_4O_4$
14 15	H H	6-methyl-2-pyridyl 6-methoxy-2-benzothiazolyl	188 - 190 225 - 227	80 68	$C_{15}H_{14}N_4O_4$
15	н Н	furfural	170	80	${f C_{17}H_{14}N_4O_5S} \ {f C_{14}H_{13}N_3O_5}$
17	$\tilde{C}_{2}H_{5}$	C_2H_5	85	82	$C_{13}H_{17}N_3O_4$
18	$\tilde{C}_{3}H_{7}$	C_3H_7	70	80	$C_{15}H_{21}N_3O_4$
19	$CH(CH_3)_2$	$CH(CH_3)_2$	95-98	85	$C_{15}H_{21}N_3O_4 \\ C_{14}H_{17}N_3O_4$
20		lethylene	115-116	80	$C_{14}H_{17}N_3O_4$
21 22	oxydiet	nylene limino)diethylene	128 - 130 85 - 86	80 90	$C_{13}H_{15}N_3O_5 \\ C_{19}H_{20}N_4O_4$
23		lylimino)diethylene	115-116	85	$C_{18}H_{19}N_5O_4$
24	н	CH ₃	235-237	65	$C_8H_9N_3O_3$
25	Н	C_4H_9	162	70	$C_{11}H_{15}N_3O_3$
26	H	C_8H_{17}	160	70	$C_{15}H_{23}N_3O_3$
27 28	H H	cyclohexyl C ₆ H ₅	188–190 195–196	72 75	$C_{13}H_{17}N_3O_3 \\ C_{13}H_{11}N_3O_3$
28 29	H	C_6H_5 C_6H_4 - $F(p)$	225	75	$C_{13}H_{10}FN_3O_3$ $C_{13}H_{10}FN_3O_3$
30	Ĥ	$(CH_2)_2C_6H_3$ -3,4- $(OCH_3)_2$	176	76	$C_{17}H_{19}N_3O_5$
31	Н	2-thiazolyl	230-232	60	$C_{10}H_8N_4O_3S$
32	Н	2-thiazolinyl	198-200	50	$C_{10}H_{10}N_4O_3S$
33 34	H H	5-methyl-2-thiazolyl 2-pyridyl	233–235 268	64 65	${f C_{11}H_{10}N_4O_3S} \ {f C_{12}H_{10}N_4O_3}$
34 35	H	4-pyridyl	208-210	65	$C_{12}H_{10}N_4O_3$ $C_{12}H_{10}N_4O_3$
36	Ĥ	6-methyl-2-pyridyl	218-220	70	$C_{13}H_{12}N_4O_3$
37	Н	6-methoxy-2-benzothiazolyl	268 - 270	70	$C_{15}H_{12}N_4O_4S$
38	H	furfural	205	72	$C_{12}H_{11}N_{3}O_{4}$
39	C_2H_5	C_2H_5	oil oil	65 60	${f C_{11}H_{15}N_3O_3} \ {f C_{13}H_{19}N_3O_3}$
40 41	$C_{3}H_{7}$ CH(CH ₃) ₂	C_3H_7 CH(CH ₃) ₂	156-158	68	$C_{13}H_{19}N_{3}O_{3}$ $C_{13}H_{19}N_{3}O_{3}$
41 42	pentam	ethylene	135-137	70	$C_{12}H_{15}N_3O_3$
43	oxydiet	hylene	182	70	$C_{11}H_{13}N_{3}O_{4}$
44		imino)diethylene	135-137	75	$C_{17}H_{18}N_4O_3$
45 46	(2-pyrid H	lylimino)diethylene CH3	168	78	$C_{16}H_{17}N_5O_3$
46 47	H H	$C_{4}H_{9}$	120	70	C ₁₁ H ₁₇ N ₃ O
48	н	C_8H_{17}	136	65	$C_{15}H_{25}N_3O$
49	н	cyclohexyl	152-154	72	$C_{13}H_{19}N_{3}O$
50	H	$C_{6}H_{5}$	156-158	70	$C_{13}H_{13}N_{3}O$
51 52	H H	$C_{6}H_{4}-F(p)$ (CH ₂) ₂ C ₆ H ₃ -3,4-(OCH ₃) ₂	o b		
52 53	Ĥ	2-thiazolyl	234-236	60	$C_{10}H_{10}N_4OS$
54	Н	2-thiazolinyl	220-223	54	$C_{10}H_{12}N_4OS$
55	Н	5-methyl-2-thiazolyl	130	50 70	$C_{11}H_{12}N_4OS$
56 57	H	2-pyridyl	$160 \\ 282 - 284$	70 60	$C_{12}H_{12}N_4O \\ C_{12}H_{12}N_4O$
57 58	H H	4-pyridyl 6-methyl-2-pyridyl	185 - 187	75	$C_{12}H_{12}N_4O$ $C_{13}H_{14}N_4O$
59	H	6-methoxy-2-benzothiazolyl	242-244	70	$C_{15}H_{14}N_4O_2S$
60	Н	furfural	170	75	$C_{12}H_{13}N_3O_2$
61	C_2H_5	C_2H_5	b		
62 63	$C_{3}H_{7}$ CH(CH ₃) ₂	C_3H_7 CH(CH ₃) ₂	$b \\ b$		
63 64		ethylene	b		
65	oxvdiet	hvlene	Ь	_	
66	(phenyl	imino)diethylene	162-164	70	$C_{17}H_{20}N_4O$
67	(2-nyric	lylimino)diethylene	ь		

^aC, H, and N analyses were within ±0.4% of theory. ^bNot isolated.


Table II. Physical Data of Various Compounds Synthesized

		99-10Z		
compd	R	mp, %	yield, %	mol formulaª
91	CH ₂ CH ₂	256-257	80	$C_{20}H_{20}N_6O_8$
92 ^b	CH_2CH_2	190-192	70	$C_{26}H_{24}N_6O_8$
93	$C_6 H_4 S C_6 H_4$	215 - 218	60	$C_{30}H_{24}N_6O_8S$
94	$C_6H_4SO_2C_6H_4$	258 - 260	65	$C_{30}H_{24}N_6O_{10}S$
95	CH_2CH_2	220-222	64	$C_{16}H_{16}N_6O_6$
96 ^b	CH_2CH_2	125	69	$C_{22}H_{20}N_6O_6$
97	$C_{6}H_{4}SC_{6}H_{4}$	285 - 287	70	$C_{26}H_{20}N_6O_6S$
9 8	$C_6H_4SO_2C_6H_4$	220-222	75	$C_{26}H_{20}N_6O_8S$
99	CH_2CH_2	140-141	60	$C_{16}H_{20}N_6O_2$
100^{b}	CH_2CH_2	210-212	60	$C_{22}H_{24}N_6O_2$
101	C ₆ H ₄ SC ₆ H ₄	142 - 143	50	$C_{26}H_{24}N_6O_2S$
102	$C_6H_4SO_2C_6H_4$	190-192	50	$C_{26}H_{24}N_6O_4S$

^aC, H, and N analyses were within $\pm 0.4\%$ of theory. ^bNH-R-NH is replaced by N(C₆H₅-R-NH.

Scheme I^a

^a a = fuming HNO_3 ; b = $SOCl_2$; c = HN(R)R'; d = ethanolic NaOH solution; e = Raney Ni/NH₂NH₂; f = NH₂C(SMe)=NH and $ClCO_3R''$.

acid chloride, which, without further purification, was treated with various primary and secondary amines to yield the required amides (2-23). Hydrolysis of 2-23 with an aqueous ethanolic NaOH solution furnished the corresponding 4-(substituted- and disubstituted-carbamoyl)-2nitroanilines (24-45). Catalytic hydrogenation of these nitroamines with Raney Ni or their reduction with hydrazine hydrate in the presence of Raney Ni gave the corresponding 4-substituted o-phenylenediamines (46-67). The reaction of these diamines (46-67) with S-methylisothiouronium sulfate and methyl or ethyl chloroformate⁵ furnished the desired compounds 68-90.

Similarly, the syntheses of 1,2-bis[[2-(carbomethoxyamino)-5-benzimidazolyl]carboxamido]ethane and its phenyl derivative and bis[4-[[2-(carbomethoxyamino)-5benzimidazolyl]carboxamido]phenyl] sulfide or sulfone were carried out by reacting 1 with SOCl₂, followed by treatment with various diamines. Deacetylation of amides 91-94 with aqueous alkali gave the corresponding nitroamines 95-98 (Scheme II). Catalytic hydrogenation of these compounds with Raney Ni in the presence of hydrazine hydrate furnished the desired o-phenylenediamines 99-102. Reaction of these diamines with S-methylisothiouronium sulfate and methyl chloroformate furnished the desired compounds 103-106.

In an extension of this study, the synthesis of 1,4-bis-[[2-(carbomethoxyamino)-5-benzimidazolyl]carboxamido]benzene (109) was carried out by reacting 2-nitrop-phenylenediamine with terephthaloyl chloride, followed by the catalytic hydrogenation of the amide 107 over Pd/C, and the diamine (108) obtained on ring closure with Smethylisothiouronium sulfate and methyl chloroformate furnished the required compound 109.

Anthelmintic Activity and Structure-Activity Relationships. The anthelmintic profile of the compounds synthesized is summarized in Tables III and IV. The substituted carbamovl residue at position 5(6) of the benzimidazole nucleus yielded compounds with lower activity, while the disubstituted carbamoyl moiety invariably improved the anthelmintic activity. Further improvement in the efficacy of the compound was observed when the disubstituted carbamoyl residue represented a heterocyclic system. Joining the two units of methyl 5(6)-carbamoylbenzimidazole-2-carbamates to two ends of a short carbon chain or to both the extreme ends of the diphenyl sulfide or sulfone residue did not improve anthelmintic activity. The most active compound of the series, namely, methyl 5(6)-(N-2-pyridylpiperazino)carbamoyl]benzimidazole-2carbamate (90), however, exhibited significant activity against hookworm, roundworm, and pinworm but was ineffective against tapeworm at comparable doses. When administered intraperitoneally, compound 90 exhibited both micro- and macrofilaricidal activities (Table V). When administered orally, this compound exhibited microfilaricidal activity at higher doses. It would appear that the compound is poorly absorbed from the gastrointestinal tract. The maximum tolerated dose of 90 in mouse by ip and oral routes was 600 mg/kg and >4 g/kg, respectively. Detailed toxicity studies and pharmacological investigations of this compound are in progress.

Experimental Section

Chemistry. All the melting points were determined either on a H_2SO_4 bath or an electrically heated apparatus and are uncorrected. IR spectra were recorded on Perkin-Elmer 157 or 177 grating instruments. ¹H NMR spectra were taken on Perkin-Elmer R-32 spectrometer with Me₄Si as internal reference and are expressed in δ units (parts per million). Satisfactory IR and NMR spectra were recorded for all the compounds.

4-Acetamido-3-nitrobenzoic Acid (1). To well-cooled (0 °C) fuming HNO₃ (d 1.54, 100 mL) was added 4-acetamidobenzoic acid (40 g) under stirring during a period of 1 h. Stirring was continued for another hour, and the temperature was maintained at 0 °C during the entire period of nitration. This mixture was then poured onto crushed ice, and the separated solid was filtered, washed with ice-cold water, dried, and recrystallized from DMF-H₂O: yield 80%; mp 218-20 °C (lit.⁴ mp 221 °C).

4-(Substituted-carbamoyl)- and 4-(Disubstituted-carbamoyl)-2-nitroacetanilides (2-23). A mixture of 1 (5 g, 0.022 mol) dissolved in dry benzene (50 mL) and thionyl chloride (10 mL) was refluxed for 4 h. The reaction mixture was then concentrated at reduced pressure, another aliquot (20 mL) of dry benzene was added, and the solution was again concentrated under reduced pressure to remove the traces of SOCl₂. To this residue, redissolved in dry benzene (30 mL), was added, under stirring, the appropriate primary or secondary amine (0.022 mol) in dry benzene (10 mL) and triethylamine (0.022 mol) at room temperature. The reaction was continued for an additional period of 2 h. In cases where the solid separated out from the reaction mixture, the material was filtered, washed with water, and re-

⁽⁴⁾ V. E. Borel and H. Deuel, *Helv. Chim. Acta.*, 36, 801 (1953).
(5) A. H. M. Raeymaekers, J. L. H. Van Gelder, L. F. C. Roevens,

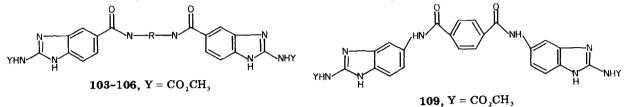
and P. A. J. Janssen, Arzneim.-Forsch., 28, 586 (1978).

Table III. Physicochemical and Biological Data of Various Benzimidazole-2-carbamates Synthesized

R'RN[,] NHCO2R" 68-90

biological activity^b N. brasiliensis

H. nana

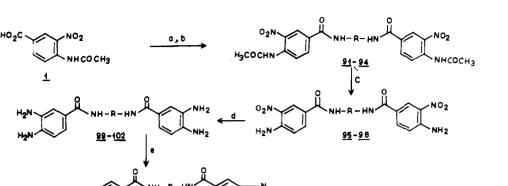

				A. ceyl	inicum
R″	mp, °C	yield, %	mol formulaª	$\frac{\text{dose, mg}}{\text{kg} \times 1}$	act., '
CH ₃	270-272	60	$C_{11}H_{12}N_4O_3$	250	95
CH ₃	>300	70	$C_{14}H_{18}N_4O_3$	250	100
CH ₃	292-293	75	$C_{18}H_{26}N_4O_3$	250	100
CH ₃	>300	75	C ₁₆ H ₂₀ N ₄ O ₃	250	100
CH ₃	183-185	70	$C_{16}H_{14}N_4O_3$	250	87
$C_2 H_5$	220	72	$C_{17}H_{16}N_4O_3$	250	50

							A. teyu	A. teytantcum		IN. Drustnensts		<u>11. nana</u>	
compd	R	R'	R″	mp, °C	yield, %	mol formulaª	dose, mg kg × 1	act., %	dose, mg kg × 3	act., %	dose, mg kg × 1	act., %	
68	Н	CH ₃	CH ₃	270-272	60	$C_{11}H_{12}N_4O_3$	250	95	250	*	250	100	
69	Ĥ	C_4H_9	CH ₃	>300	70	$C_{14}H_{18}N_4O_3$	250	100	250	*	250	100	
70	H	C_8H_{17}	CH ₃	292-293	75	$C_{18}H_{26}N_4O_3$	250	100	250	*	200	100	
••		08-17	3			- 1820 - 4 - 0					100	100	
71	н	cyclohexyl	CH ₃	>300	75	$C_{16}H_{20}N_4O_3$	250	100	250	63.2	250	*	
72	H	C_6H_5	CH ₃	183-185	70	$C_{16}H_{14}N_4O_3$	250	87	250	*	b		
73	H	C_6H_5	C_2H_5	220	72	$C_{17}H_{16}N_4O_3$	250	50	250	*	250	*	
74	H	C_6H_4 -F(p)	CH ₃	>300	75	$C_{16}H_{13}FN_4O_3$	250	100	250	*	250	100	
75	H	$(CH_2)_2C_6H_3$ -3,4- $(OCH_3)_2$	C_2H_5	285	74	$C_{21}H_{24}N_4O_5$	NT℃		250	*	250	*	
76	н	2-thiazolyl	CH ₃	205	60	$C_{13}H_{11}N_5O_3S$	250	*	250	*	250	*	
77	н	2-thiazolinyl	CH ₃	227-230	60	$C_{13}H_{13}N_5O_3S$	250	100	250	*	250	100	
• •		2-mazonnyi	0113	221 200	00	0131113- 15030	100	200	200		200	200	
							50	55.5					
78	н	5-methyl-2-thiazolyl	CH ₃	240243	65	$C_{14}H_{13}N_5O_3S$	250	100	250	*	250	100	
10	11	5-methyi-2-timazoiyi	0113	240 240	00	0141113145030	200	100	200		100	100	
79	н	2-pyridyl	CH ₃	237-238	70	$C_{15}H_{13}N_5O_3$	250	95	250	*	250	*	
80	H	4-pyridyl	CH ₃	247-248	60	$C_{15}H_{13}N_5O_3$	250	75	250	*	250	*	
81	H	6-methyl-2-pyridyl	CH ₃	>300	70	$C_{16}H_{15}N_5O_3$	250	100	250	*	250	100	
01	11	o-methyl-z-pylldyl	0113	2 000	10	016111514503	100	100	200		100	*	
							50	92.5			100		
82	Н	6-methoxy-2-benzothiazolyl	CH ₃	235-236	65	$C_{18}H_{15}N_5O_4S$	250	*	250	86.6	250	*	
83	H	furfuryl	CH ₃	285 285	75	$C_{15}H_{14}N_4O_4$	250	100	250	*	250	100	
69	11	Iuliulyi	0113	200	10	01511141404	100-25	100	200		100	100	
							10 25	57-82			50	100	
							10	07 02			25	100	
84	C_2H_5	C_2H_5	CH ₃	222-223	65	$C_{14}H_{18}N_4O_3$	250	100	250	100	250	100	
04	$C_2 \Pi_5$	02115	0113	222 220	00	01411181403	100-50	100	100	100	100-25	100	
							25	90	50	100	12.5	100	
							20	50	25	50	3.12	100	
85	C_3H_7	$C_{3}H_{7}$	CH ₃	218-219	68	$C_{16}H_{22}N_4O_3$	250	100	250	*	250	100	
69	$C_3 \Pi_7$	$C_{3}n_{7}$	0113	210-213	00	$O_{16} O_{22} O_{4} O_{3}$	100	75	200		100	100	
86	CH(CH)	CH(CH ₃) ₂	CH ₃	225-227	70	$C_{16}H_{22}N_4O_3$	250	100	250	100	250	100	
80	$CH(CH_3)_2$	$CH(CH_3)_2$	0113	220-221	10	$O_{16} O_{22} O_{4} O_{3}$	200 100	100	100	100	250 50	100	
							50	88.8	100	100	50	100	
07		pentamethylene	СH3	233-237	70	$C_{15}H_{18}N_4O_3$	250	100	ь		250	*	
87 88		oxydiethylene	CH ₃ CH ₃	223-224	65	$C_{15}H_{16}N_4O_3$ $C_{14}H_{16}N_4O_4$	250 250	100	250	100	250 250	100	
66		oxymethylene	0113	220-224	00	V1411161 4V4	250 1006.25	100	250 100-50	100	250 100	100	
							3.12	83-97	25	100 5077	50	100	
00		(phenylimino)diethylene	CH ₃	237-240	75	$C_{20}H_{21}N_5O_3$	250	100	250	100	250	100	
89		(pnenyumno) die mytelle	0113	201-240	10	V201121115V3	250 100-6.25	100	250 100-50	100	250 100	100	
							3,12	77-100	25	86.6	50	100	
							3,12	11-100	20	00.0	90	100	

90	(2-pyridylimino)diethylene	CH3	>240	75	$C_{19}H_{20}N_6O_3$	250 1006.25 3.12	100 100 88–100	250 100–50 25	100 100 60	250 100–50 25	100 100 100
	mebendazole					2.50 1.0	100 100	250 167	100 33.3	400	0.0

^aC, H, and N analyses were within ±0.4% of theory. ^bAsterisks indicate insignificant activity. ^cNot tested.

Table IV. Physicochemical and Biological Data of Various Benzimidazole-2-carbamates Synthesized

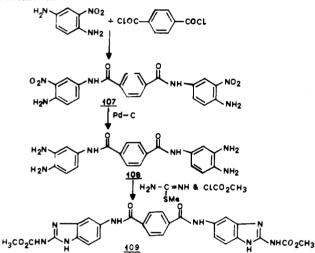

							biological activ	vity		
					····		N. brasiliens	is	H. nana	
					A. ceylanic	um		act.,		act.,
compd	R	mp, °C	yield, %	mol formulaª	dose, mg/kg $\times 1$	act., %	dose, mg/kg × 1		dose, mg/kg × 1	%
103	CH ₂ CH ₂	>300	75	C ₂₂ H ₂₂ N ₈ O ₆	250	50	250	*	250	*
104	PhCH ₂ CH ₂	257-258	76	C ₂₈ H ₂₆ N ₈ O ₆ ^b	250	50	250	*	250	*
105	PhSPh	170-171	70	$C_{32}H_{26}N_8O_6S^b$	250	48.2	250	*	250	*
106	PhSO ₂ Ph	288-291	75	C ₃₂ H ₂₆ N ₈ O ₈ S ^b	250	48.2	250	*	25 0	*
1 09	-	>300	40	$C_{26}H_{22}N_8O_6$	250 50	100 66.6	250	*	250	*

^bOnly C and H were analyzed. Asterisks indicate insignificant activity.

Table V. Efficiency of Compound 90 against Other Intestinal and Tissue Helminths

host	parasite	dose, mg/kg	results
mouse	S. obvelata (pinworm)	12.5×3	100% active
cat	A. tubaeformis (hookworm)	25 × 3	100% active
		10×3	inactive
	Toxocara spp. (ascaris)	25 × 3	100% active
	Taenia spp. (tapeworm)	25×3	inactive
dog	A. ceylanicum (hookworm)	25×3	100% active
-	-	10×3	100% active
cotton rat	L carinii (filarid worm)	30×5 (ip)	97% effective on microfilariae
			100% effective on adults
		10×5 (ip)	inactive against both microfilariae and adults
		100×5 (po)	94.8% effective against microfilariae and inactive against adults
		50 × 5 (po)	inactive against both microfilariae and adults
		$30 \times 5 (ip)^a$	100% effective on adults
		$10 \times 5 \ (ip)^{a}$	68.5% effective on adults
		$3 \times 5 \text{ (ip)}^a$	27.2% effective on adults
		$300 \times 5 (po)^{a}$	31.8% effective on adults

^aDose of mebendazole.



NHC02CH3

^a $a = SOCl_2$; $b = NH_2RNH_2$; c = ethanolic NaOH solution; $d = Raney Ni/NH_2NH_2$; $e = NH_2C(SMe) = NH$ and $ClCO_2CH_3$.

103 - 106

Scheme III

H-CO-CH

crystallized from aqueous ethanol or $DMF-H_2O$. In cases where the solid did not separate, the reaction mixture was extracted with ethyl acetate, and the usual workup of the organic layer furnished the desired compounds. These were recrystallized from $CHCl_3$ -hexane.

4-(Substituted-carbamoyl)- and 4-(Disubstituted-carbamoyl)-2-nitroanilines (24-45). To a mixture of the appropriate 4-carboxamido-3-nitroacetanilide (2-23; 0.02 mol) in ethanol (25 mL) was added NaOH solution (10%, 2 mL), and the mixture was stirred at room temperature for 1 h. This was followed by the addition of dilute HCl, and the precipitated compound was filtered, washed with water, dried, and recrystallized from DMF-H₂O. In cases where the solid did not separate, the reaction mixture was extracted with appropriate organic solvent, which after usual workup furnished the desired compounds.

4-(Substituted-carbamoyl)- and 4-(Disubstituted-carbamoyl)-o-phenylenediamines (46-67). To a mixture of the appropriate 4-carboxamido-2-nitroaniline (24-45; 5 g) and Raney Ni (\sim 5 g) in ethanol (50 mL) was added dropwise, under stirring, hydrazine hydrate (99%, 5 mL) in ethanol (5 mL), and the mixture was refluxed for 1 h. Filtration of the catalyst, followed by removal of the solvent under reduced pressure and crystallization of the solid residue from aqueous ethanol, yielded the desired compound. In cases where the solid did not separate, it was used as such for the next step without further purification, assuming the yield of hydrogenation as quantitative.

Alkyl 5(6)-(Substituted-carbamoyl)- and 5(6)-(Disubstituted-carbamoyl)benzimidazole-2-carbamates (68-90). Aqueous NaOH solution (25%) was added under stirring to a precooled mixture (10-15 °C) of S-methylisothiouronium sulfate (0.01 mol) and alkyl chloroformate (0.02 mol) in water (10 mL) until the pH of the solution was between 7.0 and 8.0. This was followed by the addition of glacial acetic acid for readjusting the pH to about 5.0. To this mixture was added the appropriate diamine (46–67; 0.01 mol) in ethanol (30 mL), and the reaction mixture was then stirred for 1 h. After the mixture was cooled, the separated solid was filtered, washed with water, and dried. These compounds were recrystallized either from DMF-H₂O or acetic acid-H₂O. Compounds 84–86 have been reported earlier.¹⁴

1,2-Bis[(*m*-nitro-*p*-acetamidobenzoyl)amino]ethane and Bis[4-[(*m*-nitro-*p*-acetamidobenzoyl)amino]phenyl] Sulfide and Sulfone (91-94). The experimental procedure was essentially the same as described for the syntheses of 2-24, except that in cases of 93 and 94 dry DMF was used as solvent instead of dry benzene for the preparation of the amide.

1,2-Bis[(m-nitro-p-aminobenzoyl)amino]ethane and Bis[4-[(m-nitro-p-aminobenzoyl)amino]phenyl] Sulfide and Sulfone (95-98). The method adopted for the hydrolysis of 91-94 to obtain 95-98 was similar to the one described for the preparation of 24-45.

Catalytic Hydrogenation of Compounds 95–98. Formation of Compounds 99–102. The method of preparation described for 46–67 was employed for the synthesis of these compounds.

1,2-Bis[[2-(carbomethoxyamino)-5-benzimidazolyl]carboxamido]ethane and Its Phenyl Derivative and Bis-[4-[[2-(carbomethoxyamino)-5-benzimidazolyl]carboxamido]phenyl] Sulfide and Sulfone (103-106). The experimental procedure, for obtaining 103-106 from 99-102, was essentially the same as described for the synthesis of 68-90.

1,4-Bis[(p-amino-m-nitrophenyl)carboxamido]benzene (107). Terephthalic acid (6.64 g, 0.04 mol), SOCl₂ (10 mL), and PCl₅ (10 g) was heated at 240 °C for 2 h, and the clear solution so obtained was concentrated under reduced pressure. The residue was triturated with dry benzene (20 mL), and the solvent was concentrated under reduced pressure. To this residue, dissolved in dry DMF (25 mL), was added dropwise, under stirring, a solution of 2-nitro-p-phenylenediamine (12.25 g, 0.08 mol) in dry DMF (30 mL) and triethylamine (4 g, 0.04 mol). The reaction was allowed to continue for 4 h. This was followed by the addition of water, and the separated solid was filtered, dried, and recrystallized from DMF-H₂O: yield 5.00 g; mp >300 °C.

1,4-Bis[(m,p-Diaminophenyl)carboxamido]benzene (108). To a solution of 107 (4 g) in ethanol (50 mL) and DMF (10 mL) was added Pd/C (10%, 0.4 g), and the mixture was hydrogenated at 2.5 kg/cm² for a period of 6 h. The catalyst was filtered off, and the removal of solvent from the filtrate under reduced pressure gave an oil, which was used as such for the next step without further purification.

1,4-Bis[[2-(carbomethoxyamino)-5-benzimidazolyl]carboxamido]benzene (109). The method employed to prepare this compound is similar to the one described for 68-90: yield 40%; mp >300 °C.

Biological Methods. The anthelmintic activity of the compounds synthesized was evaluated against a variety of intestinal worms in experimental animals. Compounds that showed promise in this test were subjected to further detailed evaluation against intestinal helminths in higher animals as well as tissue helminths. Anthelmintic Screening in Experimental Animals. Ancylostoma ceylanicum (Hookworm). The screening for anti Ancylostoma ceylanicum was carried out essentially according to Ray et al.⁶ with modifications to suit the local conditions as described by Misra et al.⁷ and Katiyar et al.⁸ Hamsters of either sex (40–60 g) were infected orally with third-stage larvae (60 in number), and the testing of the compounds was carried out on day 20 ± 1 postinfection. The initial oral dose of the test compounds was $250 \text{ mg/kg} \times 1$. Lower doses of active compounds were used to determine the dose-response relationship.

Hymenolepsis nana (Tapeworm). The cestodicidal activity in male rats (25–35 g) was assessed by following the method of Steward.⁹ The animals were infected orally with 200 viable eggs, and on days 17–20 postinoculation, the infection was checked by ovoscopic examination. Rats that were found positive were treated with test compounds on day 20 ± 1 postinfection at an initial dose of 250 mg/kg × 1. The dose-response relationship for active compounds was obtained as described above.

Nippostrongylus brasiliensis (Trichostrongylid). The screening technique in male rats (25-40 g) was essentially that of Steward⁹ and modified later by Katiyar and Sen¹⁰ to suit local conditions. The animals received an inoculation of 500 infected larvae (from 6-8 day old fecal culture) subcutaneously, and the compounds were administered orally on day 9 postinfection in doses of 250 mg/kg × 3. Lower doses (as described above) were employed for active compounds as a follow-up study.

Syphacia obvelata (Pinworm). The test compounds were evaluated in adult mice of both sexes (20-30 g) according to Standon.¹¹ An initial oral dose of $25 \text{ mg/kg} \times 3$ was followed by lower doses for active compounds. A positive control of mebendazole, $50 \text{ mg/kg} \times 3$, gave 100% activity.

Litomosoides carinii (Filariid). The antifilarial activity of the test compounds was evaluated in recently infected cotton rats showing a progressive rise in microfilaraemia, and the technique of Hawking and Swell,¹² as modified by Misra et al.¹³ was employed. In the beginning, a dose of 30 mg/kg \times 5 (ip) was ad-

- (6) D. K. Ray, K. K. Bhopale, and V. B. Srivastava, Ann. Trop. Med. Parasitol., 72, 55 (1978).
- (7) A. Misra, P. K. S. Visen, and J. C. Katiyar, J. Helminthol., 55, 273 (1981).
- (8) J. C. Katiyar, P. K. S. Visen, S. Gupta, A. B. Sen, S. K. Dubey, and S. sharma, *Experientia*, 38, 457 (1982).
- (9) J. S. Steward, Parasitology, 45, 242 (1955).
- (10) J. C. Katiyar and A. B. Sen, Indian J. Pharmacol., 31, 132 (1969)
- (11) O. D. Standon, in "Experimental Chemotherapy", Vol. 1, R. J. Schnitzer and I. Hawking, Eds., Academic Press, New York, 1963, p 701.
- (12) F. Hawking and P. Swell, Br. J. Pharmacol. Chemother., 3, 285 (1948).
- (13) S. Misra, R. K. Chatterjee, and A. B. Sen, Indian J. Med. Res. 73, 725 (1981).

ministered, and for the active compound, the efficacy was also assessed at 100 mg/kg \times 5 po.

Assessment of Anthelminitic Efficacy in Higher Animals. The activity of compound 90 was evaluated against intestinal helminths (A. tubaeformis, Toxocara spp., Taenia spp., and A. ceylanicum) in naturally or artificially infected cat and dog as described earlier.

Registry No. 1, 1539-06-6; 2, 89790-47-6; 3, 89790-48-7; 4, 89827-24-7; 5, 89790-49-8; 6, 89790-50-1; 7, 89790-51-2; 8, 89790-52-3; 9, 89790-53-4; 10, 89790-54-5; 11, 89790-55-6; 12, 89790-56-7; 13, 89790-57-8; 14, 89790-58-9; 15, 89790-59-0; 16, 89790-60-3; 17, 89790-61-4; 18, 89790-62-5; 19, 89790-63-6; 20, 89790-64-7; 21, 89790-65-8; 22, 89790-66-9; 23, 89790-67-0; 24, 89790-68-1; 25, 88638-67-9; 26, 89790-69-2; 27, 89790-70-5; 28, 89790-71-6; 29, 89790-72-7; 30, 89790-73-8; 31, 89790-74-9; 32, 89790-75-0; 33, 89790-76-1; 34, 89790-77-2; 35, 89790-78-3; 36, 89790-79-4; 37, 89790-80-7; 38, 89790-81-8; 39, 89790-82-9; 40, 89790-83-0; 41, 89790-84-1; 42, 89790-85-2; 43, 89790-86-3; 44, 89790-87-4; 45, 89790-88-5; 46, 89790-89-6; 47, 89790-90-9; 48, 89790-91-0; 49, 89790-92-1; 50, 93-64-1; 51, 89790-93-2; 52, 89790-94-3; 53, 89790-95-4; 54, 89790-96-5; 55, 89790-97-6; 56, 89790-98-7; 57, 89790-49-8; 58, 89791-00-4; 59, 89791-01-5; 60, 89791-02-6; 61, 89791-03-7; 62, 89791-04-8; 63, 89791-05-9; 64, 89791-06-0; 65, 65003-29-4; 66, 89791-07-1; 67, 89791-08-2; 68, 89791-09-3; **69**, 89791-10-6; **70**, 89791-11-7; **71**, 89791-12-8; **72**, 89827-25-8; **73**, 89791-13-9; **74**, 89791-14-0; **75**, 89827-26-9; **76**, 89791-15-1; 77, 89791-16-2; 78, 89791-17-3; 79, 89791-18-4; 80, 89791-19-5; 81, 89791-20-8; 82, 89827-27-0; 83, 89791-21-9; 84, 67476-34-0; 85, 67476-35-1; 86, 67476-36-2; 87, 65003-32-9; 88, 65003-30-7; 89, 89791-22-0; 90, 89791-23-1; 91, 89791-24-2; 92, 89791-25-3; 93, 89791-26-4; 94, 89791-27-5; 95, 89791-28-6; 96, 89791-29-7; 97, 89791-30-0; 98, 89791-31-1; 99, 89791-32-2; 100, 89791-33-3; 101, 89791-34-4; 102, 89791-35-5; 103, 89791-36-6; 104, 89791-37-7; 105, 89791-38-8; 106, 89791-39-9; 107, 89791-40-2; 108, 89791-41-3; 109, 89791-42-4; 4-acetamidobenzoic acid, 556-08-1; methanamine, 74-89-5; 1-butanamine, 109-73-9; 1-octanamine, 111-86-4; cyclohexanamine, 108-91-8; 4-fluorobenenamine, 371-40-4; 3,4-dimethoxybenzenethanamine, 120-20-7; 2-thiazolamine, 96-50-4; 2-thiazolinamine, 1779-81-3; 5-methyl-2-thiazolamine, 7305-71-7; 2-pyridinamine, 504-29-0; 4-pyridinamine, 504-24-5; 6-methyl-2-pyridinamine, 1824-81-3; 6-methoxy-2-benzothiazolamine, 1747-60-0; benzenamine, 62-53-3; 2-furanmethanamine, 617-89-0; diethylamine, 109-89-7; dipropylamine, 142-84-7; diisopropylamine, 108-18-9; piperidine, 110-89-4; morpholine, 110-91-8; 1-phenylpiperazine, 92-54-6; 1-(2-pyridyl)piperazine, 34803-66-2; ethylenediamine, 107-15-3; phenylethylenediamine, 5700-56-1; 4,4'-sulfonylbisbenzenamine, 80-08-0; 2-nitro-1,4benzenediamine, 5307-14-2; 1,4-benzenedicarbonyl dichloride, 100-20-9; S-methylisothiouronium sulfate, 2260-00-6; ethyl chloroformate, 541-41-3; methyl chloroformate, 79-22-1.

(14) Beard, U.S. Patent 4 086 235 (1978).