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The relationship between variation in structure and variation in antiinflammatory activity was investigated for 125 
steroids whose antiinflammatory activity had previously been determined by using the McKenzie-Stoughton human 
vasoconstrictor assay. Eighty-eight of the compounds were used in the training stages of analysis. A two-class problem 
was developed by classifying the compounds as low-to-no potency (37 compounds) or potent-to-very potent (51 
compounds) on the basis of their activity relative to that of hydrocortisone butyrate. Thirty-eight different structural 
variations occurred at six different sites on the steroid nucleus. These variations were coded by a total of 10 
descriptors—three indicator descriptors and seven descriptors that coded for the lipophilicity of the substituents 
at specific sites of variation. Linear discriminant analysis, principal components plots, K nearest neighbor analysis, 
and statistical measurements of class separation all confirmed that the more potent compounds existed in a region 
of the data space different from the less potent compounds. This structure-activity relationship was applied to 
the prediction of the activities of 37 compounds that were not used in the preliminary analysis with good results. 

Steroids play a part in many biological processes and 
have many therapeutic applications. Over several decades, 
much effort has been applied to the development of 
steroids that have both strong antiinflammatory activity 
and few negative side effects. Variations at several sites 
on the steroid nucleus yield compounds of greatly differing 
activities. The biological importance of these compounds, 
their structural similarity, and the large amount of 
available data make this class of compounds attractive for 
structure-activity relationship (SAR) analysis. SAR 
studies have been performed by using Hansch analysis,1"3 

Free-Wilson analyses,4"5 conformational analysis,6 and 
quantum mechanics.7 All of these have dealt with small 
sets of compounds of little variation. Only one study that 
we know of has used pattern recognition (PR) techniques. 
This study by Bodor et al.8 dealt with a larger and more 
diverse set of compounds than any previous study. 

The study of Bodor et al. was performed on 122 steroids 
with the common nucleus shown in Figure 1. Of these 
compounds, 74 were considered to be potent antiinflam­
matory agents and 48 were considered to be nonpotent on 
the basis of their activities relative to hydrocortisone bu­
tyrate. Variations in the steroid nucleus occurred at six 
sites and are listed in Table I. These variations were 
described with use of a set of 33 indicator variables that 
coded for the presence or absence of these variations. 
Through feature selection methods, 11 of the descriptors 
were identified as having no effect on classification results. 
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This resulted in a final set of 22 descriptors. With use of 
these 22 descriptors, a linear learning machine generated 
a linear discriminant function (LDF) that correctly clas­
sified all 122 of the compounds. 

The McKenzie-Stoughton human vasoconstrictor test9 

was used to determine the antiinflammatory activity of the 
compounds. In this test, the vasoconstricting potential of 
a compound is assessed by applying it in alcoholic solution 
to the skin of a human forearm, occluding the test area for 
16 h, and estimating the resulting level of blanching of the 
skin. The degree of blanching is positively correlated with 
antiinflammatory activity. The data provided by this assay 
are well-suited to analysis by pattern recognition tech­
niques. While a quantitative index of activity is reported 
for this test, the raw data consist of subjective human 
evaluations of levels of blanching relative to a standard, 
usually fluocinolone acetonide, 5. This results in wide 
confidence intervals for the reported quantitative values 
and variations between laboratories. The activities of the 
compounds used by Bodor et al. ranged from zero to 1900; 
some of the ranges for individual compounds were several 
hundreds of units. Furthermore, in order to include as 
many data as possible in their study, Bodor et al. included 
some compounds that had only relative activities reported 
or that were assayed with use of a different standard and 
sometimes in slightly different systems. In such cases, it 
is difficult to assign a consistent quantitative index of 
activity; however, some confidence can be given to general 
ranking of activities. Pattern recognition techniques deal 
well with such semiquantitative data and can make use 
of such information when other methods are not applica­
ble. Bodor et al. arbitrarily separated the data into active 
and inactive classes by specifying an activity cutoff of 50, 
the activity of hydrocortisone butyrate. Those compounds 
with an activity less than 50 were considered inactive, and 
those with an activity greater than 50 were considered 
active. The studies reported here adhere to that cutoff. 

(9) McKenzie, A. W.; Atkinson, R. M. Arch. Dermatol. 1964, 89, 
741-746. 
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Figure 1. Structural backbone common to all 125 compounds 
examined in this study. 

Table I. Structural Variations and Their Corresponding 
Descriptor Values 

structural descriptor descriptor 
index position variation value type 

The nonparametric linear discriminant analysis that was 
performed by Bodor et al. followed the then-established 
guidelines concerning the ratio of descriptors to observa­
tions that is permitted to avoid fortuitous 100% correct 
classifications when using these pattern recognition tech­
niques.10,11 Recently, we have investigated the reliability 
of the levels of correct classifications provided by these 
pattern recognition methods and have found that they may 
be overly optimistic in indicating the presence of a rela­
tionship between structure and activity.12"14 The results 

(10) Stuper, A. J.; Jurs, P. C. J. Chem. Inf. Comput. Sci. 1976, 4, 
238. 

(11) Whalen-Pedersen, E. K.; Jurs, P. C. J. Chem. Inf. Comput. Sci. 
1979, 19, 264. 

(12) Stouch, T. R.; Jurs, P. C. J. Chem. Inf. Comput. Sci. 1985, 25, 
45-50. 
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of these studies show that for 122 data points divided 
48/74 between two classes, a 22-dimensional data space 
can support correct classifications due to chance of between 
85% and 90%. When the data space used by Bodor et al. 
was simulated in 10 different trials, as it was for several 
other SAR studies using pattern recognition,13 rates of 
correct classifications ranged between 93% and 96%. 

These results indicate that much of the linear separation 
of the two classes shown in the study of Bodor et al. could 
have been due to chance. This is not to say that the results 
are meaningless; but, as we suggested previously,12 the 
results provided by nonparametric linear discriminant 
functions (NLDFs) should be verified by other methods 
when the level of correct classifications due to chance 
becomes high. 

Bodor et al. used a Free-Wilson-like approach to rep­
resent the steroids. In Free-Wilson analysis, each variation 
in structure is assumed to elicit a constant variation in 
activity regardless of other structural variations. In fact, 
this assumption does not hold within this data set. For 
example, in several cases, unsaturation at the 1,2-position 
yielded no change in activity, but such a change in com­
pound 78 to yield 92 caused an increase in vasoconstriction 
from 360 to 720. Another problem with the Free-Wilson 
approach is that it deals only in substructural variations. 
Information concerning the physical properties that affect 
the activities is not used, and no extrapolation or inter­
polation can be made beyond the substituent types present 
in the data set. The major problem with this approach, 
for this particular data set, at least, is that over 30 de­
scriptors must be used to represent the 122 compounds. 
For the data set of 122 compounds, this will result in high 
level of correct classifications due to chance for linear 
discriminant function analysis. Reduction of this de­
scriptor set, however, would remove some substituents 
from the analysis. For example, in the final descriptor set 
used by Bodor et al., 11 of the variations were removed 
from the analysis to yield the final set of 22 descriptors. 
Chlorination of the 9-position and methylation of the 6-
position were not represented. Esterification with iso­
valeric ester at the 21- and 17-positions was not repre­
sented. These features were assigned no importance, even 
though these variations have previously been found to 
influence activity. An implication of this is that acetyl, 
propanoyl, and butanoyl esters at the 21- and 17-positions 
affect activity but isovaleryl esters do not. 

In this paper, the data used in that previous study are 
reexamined with use of several multivariate methods, in­
cluding linear discriminants, in an effort to further es­
tablish and verify the SAR between the structures of these 
compounds and the results of the McKenzie-Stoughton 
test. Rather than applying the Free-Wilson formalism, 
we attempted to code for the structural variations in a 
more physically meaningful way. 

Data. Bodor et al. used all 122 compounds drawn from 
the literature in their SAR study. The activities of only 
88 of these were reported in such a way that they could 
be unambiguously ranked relative to hydrocortisone bu-
tyrate, which had an activity of 50. Of these 88, 51 had 
activities greater than 50, and so were considered to be 
active, and 37 had activities less than 50, and so were 
considered to be inactive. Of the remaining 34, some were 
reported only as having activities less than that of beta­
methasone 17-valerate, 26 (activity = 360), or fluocinolone 

(13) Stouch, T. R.; Jurs, P. C. J. Chem. Inf. Comput. Sci. 1985, 25, 
92-98. 

(14) Stouch, T. R.; Jurs, P. C. Quant. Struct.-Act. Relat. 1986, 5, 
57-61. 
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acetonide, 5 (activity = 100). In the studies reported here, 
only the unambiguous 88 compounds were used to inves­
tigate the SAR so that the analysis would not be com­
plicated by potentially erroneous data. This also excluded 
a set of compounds with which to perform an unbiased test 
of the predictive ability of the results of the pattern rec­
ognition analyses. All the compounds are listed in Table 
II; those excluded from analysis are indicated. The num­
bering and classifications for the compounds are the same 
as those used by Bodor et al. References to the experi­
mental data can be found in the work of Bodor et al.8 

Descriptor Development. We wanted to represent the 
chemical structures by a concise numerical description of 
the physicochemical variations caused by the structural 
variations of the compounds. We sought to do this, and 
at the same time reduce the dimensionality of the problem, 
by representing the variations at each site of substitution, 
as is performed for a Hansch analysis. While there are 
many different substitutions at any one position, they will 
all exert their influence through physicochemical properties 
such as steric, electrostatic, and hydrophobic effects. 

The structural variations were coded as follows. Indi­
cator variables were used to represent the presence of 
saturation at the 1,2-position, the presence of an acetonide 
linkage between sites 16 and 17, and methylation at site 
16. Since these variations were binary in nature, they were 
numerically encoded as " 1 " if one of the variations was 
present and "0" if it was not present. The rest of the sites 
were coded by the log P of the substituents at that site, 
including hydrogen substitution. In all cases, these values 
were calculated by the method of Hansch and Leo.15 

We chose to use the log P of the substituents for several 
reasons. First, the substituents at several of the sites vary 
widely. By definition, this descriptor will contain infor­
mation regarding chain length, branching, and size and the 
presence of heteroatoms. Use of this descriptor allows us 
to code all of the variations at any one site whereas other 
descriptors would not be as general. Second, log P is a 
physically meaningful quantity. Use of molecular con­
nectivity indices may give similar information, but they 
have no physical basis. Third, this descriptor has been 
found to be useful in many SAR studies. 

The ester linkages at the 17- and 21-positions could be 
hydrolyzed during metabolism of these compounds. This 
has been examined by previous SAR studies.16 Because 
of this, these linkages were coded separately from the 
nonhydrolyzable substitutions. In order to maximize the 
variance of those descriptors, the esterifications were coded 
by the log P of the side chain of the esterifying acid rather 
than that of the entire acid. Since all the side chains were 
simple hydrocarbons and since log P for simple hydro­
carbons can be calculated from a simple additivity scheme, 
this is equivalent to removing a constant factor from the 
log P of each acid moiety. 

This representation coded the compounds with 10 
descriptors—three indicator descriptors and seven de­
scriptors coding for the log P at the sites of varying sub­
stitution (positions 6, 9, 17, and 21) or esterification 
(positions 17 and 21). Each compound could be thought 
of as a point in a 10-dimensional descriptor space, where 
each axis is defined by one of the 10 descriptors. All 
descriptors were autoscaled prior to the data analysis. A 
list of these descriptors and their numerical values is 

(15) Hansch, C; Leo, A. Substituent Constants for Correlation 
Analysis in Chemistry and Biology; Wiley: New York, 1979. 

(16) Phillipps, G. H. In Mechanisms of Topical Corticosteroid 
Activity; Wilson, L., Marks, R., Eds.; Churchill Livingston: 
New York, 1976; pp 1-14. 

presented in Table I, and the descriptor values for one of 
the compounds are listed in Table III. 

Data Analysis. Our approach to this problem was to 
use a variety of techniques in order to probe this 10-di­
mensional data space and establish biological activity 
trends within it. The methods that we used in these 
studies are well-described in other sources such as pattern 
recognition texts17"19 or multivariate statistical texts,20'21 

and we will furnish only brief descriptions here. 
Linear discriminants can be generated statistically or 

in a pattern recognition sense with use of a linear learning 
machine17"19 or related least-squares techniques.22,23 

Linear discriminants are vectors of weights for the de­
scriptors. These vectors define a hyperplane that separates 
the data space into distinct regions. For an SAR study, 
these regions would contain compounds of differing ac­
tivity. For our current study, we would hope that those 
compounds with potent antiinflammatory activity would 
lie in a different region of the data space than those com­
pounds that are nonpotent and that a linear discriminant 
would partition the data space accordingly. 

A linear discriminant generated by an adaptive least-
squares method of linear discriminant generation22 could 
classify all but four of the 88 training set compounds. 
However, the ratio of descriptors to observations for this 
study was approximately 1/9. According to our previous 
studies,12 the levels of correct classifications due to chance 
for this ratio could be as high as 85%. Several other 
multivariate methods were used to verify that the LDF 
results were significant. 

If linear discriminant analysis is to provide meaningful 
results, the classes that compose the problem must be 
separate in the data space. One method for assessing this 
separation is a comparison of the means of the two classes. 
If the means are identical, the classes overlap completely. 
While one class may be more diffuse than the other, linear 
discriminant analysis will provide nothing but fortuitous 
results. If the classes are separate, then, in many cases, 
this could be determined by a comparison of the means 
of the classes. 

The Mahalanobis distance between two vectors is cal­
culated by eq 1, where x; is the mean vector of class i, S 
is the common variance-covariance matrix, and D is the 
Mahalanobis distance. This metric provides a distance 

D = (*! - XJTS-HX! - X2) (1) 

measure between two vectors that is free of complications 
caused by correlation or multicorrelation between the 
descriptors. Equation 2 relates the Mahalanobis distance 
to an F statistic, providing a measure of significance with 
which to interpret the results. In this equation, rc, is the 

J = — (r^V (2) 

n \ (n - 2)d J 

number of observations in class i, d is the number of de-
(17) Nilsson, N. J. Learning Machines; McGraw-Hill: New York, 

1965. 
(18) Tou, J. T.; Gonzalez, R. C. Pattern Recogntion Principles; 

Addison-Wesley: Reading, MA, 1974. 
(19) Varmuza, K. hattern Recognition in Chemistry; Springer-

Verlag: New York, 1980. 
(20) Hand, D. J. Discrimination and Classification; Wiley: New 

York, 1981. 
(21) Johnson, R. A.; Wichern, D. W. Applied Multivariate Analy­

sis; Prentice-Hall: Englewood Cliffs, NJ, 1982. 
(22) Moriguchi, I.; Komatsu, K.; Matsushita, Y. J. Med. Chem. 

1980, 23, 20. 
(23) Pietrantonio, L.; Jurs, P. C. Pattern Recognition 1972, 4, 391. 
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Table I I . List of Compounds 

class0 no. class0 

1 clobetasol 17-propionate P 
2 dexamethasone NP 
3 beclomethasone 17,21-dipropionate P 
4 hydrocortisone 21-acetate NP 
5 fluocinolone acetonide P 
6 hydrocortisone NP 
7 9a-fluorohydrocortisone NP 
8 prednisolone 21-acetate NP 
9 halcinonide P 

10 9a-fluoro-21-chloro-ll/3-hydroxy-16|8-methylpregna- P 
4,4-diene-3,20-dione 17-butyrate 

11 corticosterone 
12 prednisolone 
13 hydrocortisone 17-butyrate 
14 fluocinonide 
15 ethyl 17a-acetoxy-9-fluoro-ll/3-hydroxy-16|8-methyl 

3-oxo-androsta-l,4-diene-17/S-carboxylate 
16 propyl 9-fluoro-ll|3,17a-dihydroxy-16/3-methyl-3-

oxoandrosta-l,4-diene-17/3-carboxylate 
*17' ll/3-hydroxy-16a,17a-dihydroxy-16/3-methylpregna-

l,4-diene-3,20-dione 21-acetate 
•18 diflucortolone 21-valerate 
*19 fluocortolone 
*20 flumethasone 21-pivalate 

21 dexamethasone 21-phosphate 
*22 flurandrenolone 
*23 flurandrenolone acetonide 
24 triamcinolone acetonide 
25 betamethasone 17-isobutyrate 
26 betamethasone 17-valerate 
27 betamethasone 21-acetate 
28 betamethasone 
29 methyl prednisoloneacetate 

*30 9ff-fluoro-16a,17-dimethylpregna-l,4-diene-3,20-
dione 21-propionate 

*31 (methylthio)methyl 17a-(pentanoyloxy)-ll|8-
hydroxy-3-oxoandrost-4-ene-17/J-carboxylate 

*32 9a-fluoro-21-chloro-llj3,16a,17a-trihydroxypregna-
l,4-diene-3,20-dione 16,17-acetonide 

33 9a-fluoro-ll/3,17a-dihydroxy-16/^methyl-3-oxo-
androsta-1,4-diene- 17/3-carboxylic acid 

34 methyl 17a-acetoxy-9a-fluoro-ll/3-hydroxy-16|3-
methyl-3-oxoandrost-l,4-diene-17/3-carboxylate 

35 betamethasone 21-isobutyrate 
36 chloromethyl 17a-(propanoyloxy)-9-fluoro-ll/3-

hydroxy- 16/3-methyl-3-oxoandrosta-1,4-diene-17/3-
carboxylate 

*37 paramethasone 
38 betamethasone 21-butyrate 

*39 chloromethyl 17a-(propanoyloxy)-ll/3-hydroxy-
3,20-dioxopregn-4-en-21-oate 

*40 ll/3-hydroxy-16a,17<x,21-trimethylpregna-l,4-diene- P 
3,20-dione 

41 methyl 17a-(butanoyloxy)-9-fluoro-ll/3-hydroxy- P 
16/3-methyl-3-oxoandrosta-l,4-diene-17/3-carboxylate 

42 betamethasone 21-valerate NP 
43 betamethasone 17-acetate P 
44 6a,9a-difluoroprednisolone 17-isobutyrate P 
45 6a,9ff-difluorohydrocortisone 17-valerate P 
46 6a,9a-difluoroprednisolone 17-propionate P 
47 6a,9a-difluoroprednisolone 17,21-dibutyrate P 
48 triamcinolone NP 
49 dexamethasone 21-acetate NP 
50 6a,9o-difluoroprednisolone 17-pripionate P 

21 -trimethylacetate 
51 prednisolone 17-valerate NP 
52 ethyl 17a-(propanoyloxy)-9-fluoro-ll^- P 

hydroxy-160-methyl-3-oxoandro8ta-l,4-diene-17/3-
carboxylate 

53 6a,9a-difluoro-21-deoxyprednisolone 17-acetate P 
54 beclomethasone NP 

*55 paramethasone 21-acetate P 
56 6a,9a-difluoroprednisolone 17,21-diacetate P 
57 9#-fluoro-21-chloro-ll/3-hydroxy-16/3-methyl- P 

pregna-l,4-diene-3,20-dione 17-isobutyrate 

NP 
NP 
P 
P 
NP 

NP 

P 
P 
P 
NP 
NP 
P 
P 
P 
P 
NP 
NP 
NP 
P 

NP 

NP 

P 
P 

NP 
P 
P 

58 prednisolone phosphate NP 
59 propyl 17a-(propanoyloxy)-9-fluoro-ll/3-hydroxy- NP 

165-methyl-3-oxoandrosta-l,4-diene-17/3-carboxylate 
60 17a-acetoxy-9-fluoro-ll/3-hydroxy-16/3-methyl-3-oxo- NP 

androsta-1,4-diene- 17/3-carboxylic acid 
61 methyl 17a-(propanoyloxy)-9-fluoro-ll/3-hydroxy-16/3- P 

methyl-3-oxoandrosta-l,4-diene-17/3-carboxylate 
62 betamethasone 17-butyrate P 
63 betamethasone 21-propionate NP 
64 hydrocortisone 17-valerate NP 

*65 chlorcortolone P 
*66 desonide P 
67 9a-fluorohydrocortisone acetate NP 
68 methyl prednisolone NP 

*69 (methylthio)methyl ll/S,17a-dihydroxy- NP 
3-oxoandrost-4-ene-17/3-carboxylate 

*70 chloromethyl 17a-(propanoyloxy)-ll/3-hydroxy-3- P 
oxoandrost-4-ene-17/?-carboxylate 

*71 9a-fluoro-ll/3,21-dihydroxy-16a,17a-dimethylpregna-l, P 
4-diene-3,20-dione 

*72 chloromethyl 6a,9a-difluoro-ll/3-hydroxy-3,20- P 
dioxopregna-l,4-dien-21-oate 16,17-acetonide 

73 17a-(propanoyloxy)-9-fluoro-ll/3-hydroxy-16/3-methyl-3- NP 
oxoandrosta-l,4-diene-17/3-carboxylic acid 

74 6a,9a-difluoroprednisolone 17-isobutyrate 21-acetate P 
75 6a,9a-difluoroprednisolone 17-acetate 21-isobutyrate P 
76 6a,9a-difluoroprednisolone 17-acetate P 

*77 6a,9a-difluoroprednisolone NP 
78 6a,9a-difluoro-ll/3-hydroxypregn-4-ene-3,20-dione P 

17-valerate 21-acetate 
79 ethyl 9-fluoro-ll/3-hydroxy-16/3-methyl-3-oxo-17a- NP 

(butanoyloxy)androsta-1,4-diene-17/3-carboxylate 
*80 deoxymethasone P 
81 21-deoxycortisol NP 
82 betamethasone 17,21-dipropionate P 
83 propyl 9-fluoro-ll/3-hydroxy-16/3-methyl-3-oxo-17a- NP 

(butanoyloxy)androsta-1,4-diene-17/3-carboxylate 
84 21-deoxybetamethasone 17-propionate P 

*85 6a,9a-difluoroprednisolone 17-acetate 21-butyrate P 
86 6a,9a-difluoroprednisolone 17-propionate P 

21-isobutyrate 
*87 difluorocortolone trimethylacetate P 
88 6a,9a-difluoroprednisolone 17-valerate P 
89 6a,9a-difluoroprednisolone 17-butyrate P 
90 6a,9a-difluoro-21-deoxyprednisolone 17-propionate P 
91 fluprednisolone NP 
92 6a,9a-difluoroprednisolone 17-valerate 21-acetate P 
93 flurandrenolone acetate NP 
94 methyl 9-fluoro-ll/3,17a-dihydroxy-16/3-methyl- NP 

3-oxoandrosta-l,4-diene-17/3-carboxylate 
95 9-fluoro-ll/3-hydroxy-16/3-methyl-3-oxo-17a-(pentanoyl- NP 

oxy)androsta-1,4-diene-17/3-carboxylic acid 
*96 21-chloro-ll/3,16a,17a-trihydroxypregna-l,4-diene-3,20- P 

dione 16,17-acetonide 
97 6a,9a-difluoroprednisolone 17-butyrate 21-acetate P 
98 6a,9a-difluoroprednisolone 17-butyrate 21-propionate P 

*99 hydrocortisone 17-acetate NP 
100 medrysone NP 

*101 chloromethyl ll^,17a-dihydroxy-3-oxoandrost- N P 
4-ene-17/3-carboxylate 

102 betamethasone 17-propionate P 
103 hydrocortisone phosphate NP 

*104 (methylthio)methyl 9a-fluoro-17a-(pentanoyloxy)-16/3- NP 
methyl-1 l/3-hydroxy-3-oxoandrosta-1,4-diene-110-
carboxylate 

105 6a,9a-difluoroprednisolone 17,21-dipropionate P 
106 methyl 17a-(pentanoyIoxy)-9-fluoro-ll/9-hydroxy- NP 

16/3-methyl-3-oxoandrosta-1,4-diene-17/3-carboxyla te 
*107 fluocinolone NP 

108 6a,9a-difluoroprednisolone 17-propionate 21-acetate P 
*109 21-chloro-ll/3,16a,17a-trihydroxypregn-4-ene-3,20-dione P 

16,17-acetonide 
*110 9a-fluoro-21-chloro-ll/3,17a-dihydroxy-16/3-methyl- NP 

pregna-l,4-diene-3,20-dione 
111 6a,9a-difluoroprednisolone 17-butyrate 21-isobutyrate P 
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Table II (Continued) 

no. class" no. class" 
112 6a,9a-difluoroprednisolone 17-propionate 21-butyrate 
113 beclomethasone 17-propionate 
114 6a,9a-difluorodeoxyprednisolone 17-butyrate 

*115 desfluochlorocortolone trimethylacetate 
*11G chloromethyl 17a-(pentanoyloxy)-ll/3-hydroxy-

3,20-dioxopregn-4-en-21-oate 
*117 prednisolone 17-valerate 21-acetate 

118 6a,9a-difluoroprednisolone 17-isobutyrate 21-propionate 
119 6a,9a-difluoroprednisolone 17,21-diisobutyrate 

P 
p 
p 
p 
p 

p 
p 
p 

*120 
121 

122 

*123 
*124 
*125 

betamethasone phosphate 
9a-fluoro-21-chloro-ll#-hydroxy-16(3-methylpregna-

l,4-diene-3,20-dione 17-valerate 
9a-fluoro-21-chloro-110-hydroxy-16/3-methylpregna-

l,4-diene-3,20-dione 17-acetate 
6a,9a-difluoroprednisolone 17,21-dibutyrate 
dexamethasone 21-acetate 
beclomethasone 17-propionate 

NP 
P 

p6,c 
NPW 
T>b,e 

potent, NP = nonpotent. 'Not included in the analysis of Bodor et al. cGardi, R.; Vitali, R.; Falconi, G.; Ercoli, A. J. Med. Chem. 
Curr. Ther. Res. 1979, 25, 92. e Harris, D. M. J. Steroid Biochem. 1975, 6, 711. f* means not included in 

"P 
1972, 15, 556. dLorenzetti, O. J 
the 88-compound training set. 

Table III. Values of Table I Descriptors for Clobetasol 
17-Propionate (1) 

CHaCl 

C = 0 
,-OCCH2CH3 

descrip­
tor index 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

variation 

1,2-unsaturation 
6-hydro 
9-fluoro 
no 16,17-acetonide linkage 
16-methyl 
17-esterification 
17-OCOCH2CH3 

21-CH2C1 
no 21-esterification 
no 21-esterification 

descrip­
tor value 

0 
0.23 

-0.38 
0 
1 
0.0 
1.55 
0.72 
0.0 
0.0 

descrip­
tor type 

indicator 
l o g P 
l o g P 
indicator 
indicator 
l o g P 
l o g P 
l o g P 
l o g P 
l o g P 

scriptors used, and D is the Mahalanobis distance. J is 
compared with the F distribution with d and (n - 1 - d) 
degrees of freedom.20 For the 10-dimensional data space 
described above, the Mahalanobis distance between the 
means is 19.2. The J value for this problem is 36.1, and 
the tabulated F statistic is 1.9. This shows that the means 
are different at the 95% probability level. The F statistics 
were tabulated for normally distributed, continuous data, 
and so we do not expect to interpret these results strictly. 
It is further evidence, however, that the two classes that 
define this problem are well-separated in this 10-dimen­
sional space. 

The K nearest neighbor (KNN) method classifies a 
pattern on the basis of the classes of neighboring patterns. 
For example, first nearest-neighbor classification assigns 
a compound to the class of that compound that is nearest 
to it in the descriptor space. Any odd number of nearest 
neighbors can be used; a vote can be taken if there are 
disagreements between neighbors. As in all pattern rec­
ognition methods, this method makes the assumption that 
compounds of like activity will have similar descriptor 
values and so will exist in similar regions of the descriptor 
space. If this assumption holds, and if the classes are 
well-separated in the data space, then the nearest-neighbor 
classification success rate will be high. The results for this 
data space are tabulated in Table IV. The Euclidean 
metric was used to calculate the distances between the 
patterns. Monte Carlo trials using 88 patterns with the 
same class distribution but randomly assigned classes gave 
classification levels less than 61%, far lower than the 
85-90% correct classifications reported in Table IV. 

Additional evidence for data structure was provided by 
principal components projection of the data space. Prin-

Table IV 

no 

KNN Results for the First 10-Descripl 

. NN" 

1 
3 
5 
7 

or Set 

percentage correctly classified 

overall 

86 
90 
90 
85 

active 

96 
92 
92 
90 

inactive 

73 
86 
86 
78 

1 Number of nearest neighbors included in classification. 

i t « 

Figure 2. Data plotted in the first two principal components of 
the first set of 10 descriptors, l's are active, 2's are inactive. 

cipal components analysis provides a new set of axes, which 
are linear combinations of the original axes. These new 
axes are mutually orthogonal and are calculated such that 
each successive axis contains a successively smaller portion 
of the variance in the data. With this method, much of 
the variance of a high-dimensional space can often be 
projected into a lower dimensional space and displayed for 
visual examination. Often, this allows relationships within 
high-dimensional data to be examined visually. Figure 2 
is a plot of the data projected into the space of the first 
two principal components of the data. Even though these 
two vectors account for only 54% of the total variance of 
the data, much class structure is evident. 

Since KNN analysis and principal components (PC) 
plots both provided evidence of a real difference in posi­
tioning of the two classes in the data space, the classifi­
cation results provided by the LDF were assumed to be 
due to real data structure and not to chance, and the four 
compounds that were misclassified in the LDF analysis (93, 
13, 52, 42) were examined. The activities of these com­
pounds were all close to 50, the activity that was chosen 
as the cutoff between the active and inactive classes. This, 
in itself, provides some evidence of data structure. Com­
pounds with activities close to the cutoff would presumably 
lie somewhere between the most and least active com­
pounds in the data space and so would be expected to be 
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acetic propionic butyric valeric 

LENGTH OF ESTER SIDE CHAIN 

Figure 3. Plot of the nonlinear relationship between the activity 
and the length of the side chain of the acid esterifying the 17 (X) 
and 21 (•) positions. 

close to a discriminant that divided the two classes. On 
reexamination of the original literature,24 the classification 
of compound 93 as inactive was questioned. It was as­
signed to the inactive class; however, the literature value 
was listed as 100-300 and that of hydrocortisone butyrate, 
the cutoff, was listed as 300. These were not reported on 
the same scale as most of the rest of the data in which 
hydrocortisone butyrate had an activity of 50. Another 
misclassified compound, 13, hydrocortisone butyrate, was 
that compound whose activity was used as the cutoff be­
tween the active and inactive classes. 

The other two misclassified compounds yield some 
valuable information. Compound 52 has an activity of 75, 
relatively close to 50, the cutoff. Its nearest neighbors in 
the data space were compounds 79 (activity = 40) and 15 
(activity = 16). The only difference between these com­
pounds was in the acid that esterified the 17-position. The 
17-position of compound 52 was esterified with propanoic 
acid, that of compound 79 with butanoic acid, and that of 
15 with acetic acid. This indicates a nonlinear relationship 
between the length of this side chain and activity (Figure 
3). Within this homologous series, esterification of the 
17-position with propanoic acid yields the highest activity. 
Esterification with acids with longer or shorter side chains 
decreases the activity. 

Much the same effect was seen for compound 42 (ac­
tivity = 26). Its 21-position was esterified with valeric acid. 
In this data space, its nearest neighbors were esterified 
with propanoic acid (activity = 40), acetic acid (activity 
~ 30), butanoic acid (activity = 90), and isobutyric acid 
(activity = 85). Once again, a nonlinear relationship exists 
between the length of the side chain and the activity 
(Figure 3). For this series, a three-carbon side chain on 
the esterifying acid yielded the highest activity. 

The descriptors that coded for the log P of the side 
chains of the 17- and 21-esters were transformed to reflect 
these nonlinear relationships. For the 17-position, this was 
done by subtracting the log P of the side chain of the 
propanoic acid (1.55) and squaring the result for each value 
in the descriptor. For the 21-position, this was done by 
subtracting the log P of the n-propyl group (2.09) from the 
log P of the side chain of the acids and squaring that term. 
These transformed descriptors were substituted for the 

(24) Lorenzetti, O. J. Curr. Ther. Res. 1979, 25, 92-103. 
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Table V. KNN Results for the Second 10-Descriptor Set 
percentage correctly classified 

overall 

93 
91 
91 
85 

active 

96 
92 
92 
92 

inactive 

89 
89 
89 
76 

° Number of nearest neighbors included in classification. 

<< i 

1 1 

Figure 4. Data plotted in the first two principal components of 
the second set of 10 descriptors, l's are active, 2's are inactive. 

original descriptors that coded for the ester substitution 
at sites 17 and 21. These transformations caused the new 
descriptors to reflect the nonlinear nature of the depen­
dence of activity on chain length. The most active sub-
stituent had a value of zero, and any chain length longer 
or shorter had a negative value. 

With use of this modified set of 10 descriptors, a linear 
discriminant was generated that correctly classified all 88 
of the compounds into their assigned potent/nonpotent 
classes. KNN correct classifications were slightly higher 
in all cases than for the original set of descriptors (Table 
V). The first two principal components of this data are 
plotted in Figure 4 and represent 49% of the total variance 
of the data. The classes are well-separated in this plot. 
In fact, most of the discriminatory information in this data 
is contained in these first two principal components. A 
linear discriminant, that classified all but four of the 88 
compounds could be obtained with these first two principal 
components. Of these four, one was compound 92, whose 
inactive classification is in question. Two of these were 
compounds 35 and 38, whose activities (90 and 85, re­
spectively) are very close to the cutoff and whose structures 
differ from inactive compounds only by the length of the 
acid esterifying the 21-position. These high levels of 
correct classifications in the reduced space of the two 
principal components reinforce the nonradomness of the 
results for the 10-dimensional space. 

Figure 5 is the same plot as Figure 4, but the activities 
of the compounds are plotted semiquantitatively, the 
highest as "A" and the lowest as "V". Even finer activity 
structure can be seen in this plot. Most of the compounds 
with a very low activity, "V", fall in the same region of the 
plot. Most of the very active compounds, "B", " C , "D", 
and "E", also lie in one area of the plot. 

Prediction. As noted above, 34 compounds were ini­
tially excluded from the analysis because of lack of in­
formation about their activities. Further examination of 
the original literature confirmed the classifications of 11 
of these, which are listed in Table VI. The other 23 either 
had no listed activity information or had activities that 
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Table VI. 

no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

of SAR of Some Steroids 

Prediction Results for the 10-Descriptor Set 

compound" 

*20 
22 

X 2 3 
*65 
80 

*87 
H07 

115 
*77 

X 17 
18 
19 

*30 
31 

*32 
37 
39 
40 
55 
66 
69 

*70 
71 
72 
85 
96 

*99 
101 
104 
109 

*110 
H6 
117 
120 

H23 
H24 
*125 

class6 

1 
2 

1 
1 
1 
2 
1 
2 

1 
1 
1 
2 
1 
2 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
2 
2 
2 
1 
2 
1 
1 
2 
1 
1 
2 

1st NNC distance 

2.032 
3.782 

2.983 
1.233 
2.453 
2.031 
2.344 
2.031 

2.433 
3.102 
2.603 
1.682 
1.912 
1.995 
0.369 
3.194 
2.816 
2.555 
1.617 
1.826 
1.675 
0.237 
0.000 
3.191 
0.139 
1.744 
0.496 
2.555 
1.841 
0.237 
1.987 
0.000 
2.775 
0.005 
0.000 

1 

2 
2 

1 
1 
1 
2 
1 
2 

1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
1 
1 
1 
1 
1 
2 
2 
1 
2 
2 
2 
2 
1 
1 
2 

Journal 

3 

2 
1 

1 
1 
1 
2 
1 
2 

1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 

a/ Medicinal Chemistry, 

KNNd 

5 

2 
1 

1 
1 
1 
2 
1 
2 

1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
2 
2 
2 
2 
2 
1 
1 
2 

7 

2 
1 

1 
1 
1 
2 
1 • 

2 

1 
1 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
2 
2 
2 
2 
2 
1 
1 
2 

2986, VoJ. 29, No. 

multiple disci 

trial V 

8 
0 

100 
100 

0 
11 
44 
11 

0 
100 

0 
0 
0 
0 
0 

16 
100 
100 

0 
35 
70 

0 
0 

66 
6 
0 

100 
99 

9 
100 

0 
0 
6 
0 
0 

11 2131 

iminants* 

trial 2f 

0 
94 

35 
100 

0 
9 
3 
9 

0 
70 

0 
2 
0 
1 
0 
5 

53 
88 

0 
2 

56 
0 
0 
2 

57 
0 

90 
0 
3 

95 
0 
0 
0 
0 
0 

"* means certain classification; X—no available data—was not used. 61 is active, 2 is inactive. c Nearest neighbor. d Results reported for 
1, 3, 5, and 7 nearest neighbors. e93 included in analysis. '93 excluded from analysis. * Number of times misclassified for 100 discriminants 
generated. 

9 rw a 

r I I M 

Figure 5. Figure 4 with semiquantitative rather than class ac­
tivity. "A" is most active, "V is least active. 

were borderline or ambiguous. In addition to the 11, a 
search of the literature yielded three additional compounds 
(123-125) that were similarly assayed. This yielded a set 
of 14 compounds of unambiguous classification and that 
were not used to develop either the descriptor set or the 
discriminant and so could be used to evaluate the pre­
dictive ability of the descriptor set. 

Prediction of the activity of compounds not contained 
in the original training set is not a straightforward task. 
Several questions must first be answered. First, how 

general is the data in the data set? Is the entire range of 
substitution represented here? How far can the data in 
the training set be extrapolated? 

The data set was chosen solely by the availability of data 
in the literature. No experimental design was involved, 
and there was no effort to represent all possible variations 
or all possible combinations of variations. It is very un­
likely that the training set is a complete representation of 
all possible compounds of the backbone shown in Figure 
1. A simple calculation reinforces this statement. For the 
descriptors that are used here, if only the extremes of each 
descriptor were represented, 210 or 1024 compounds would 
be required. This does not account for all the compounds 
with intermediate values, however, and even within the 
set of substituents and variations contained in this data 
set, 150 000 possible combinations could result. It is un­
realistic to assume that these 150000 compounds have 
been well-represented by 88 almost randomly chosen 
compounds. Any of those 150000 could be represented 
in this space, however, and a classification could be made 
based on its discriminant score or nearest-neighbor vote 
even if it were very different from the other compounds. 
Figure 6 is a pictorial representation of this problem. Of 
the entire possible descriptor space, only a portion has been 
represented by the compounds in our training set. The 
X's and O's represent training set compounds of different 
classes, the boxes represent prediction set compounds, and 
the lines represent two of many discriminants that could 
correctly classify all of the compounds in the training set. 
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25.ee 

Figure 6. Hypothetical data space. X and 0 represent com­
pounds of different classes. Squares represent new compounds 
whose activities are to be predicted. 

This prediction set compounds lie in regions that are not 
populated by training set compounds. Their positions 
would cause their predicted activity to differ, depending 
on which discriminant was used. Since their is no infor­
mation about the region that these compounds are in, any 
prediction of their activity would be fortuitous. 

If the compounds used in this analysis were a sample 
from a larger statistical population, then perhaps the data 
space could be described by parameters calculated from 
that sampling. We question, however, whether a statistical 
approach is warranted in SAR problems. If no limits are 
placed on the acceptable substitutions at any given site, 
it is unlikely that SAR problems can be thought of in a 
statistical sense. At any given site of substitution, there 
will be no one substituent that is the mean substituent; 
rather, there are an infinite range of substitutions. Fur­
thermore, the entire data space could be uniformly pop­
ulated in the space of the descriptors used in this study. 
There will not necessarily be a separate and distinct 
clustering of activity classes in different regions of the 
space when it is completely populated by all possible 
compounds. There may be a gradual merging of the 
classes, or several areas of high or low activity. Since minor 
structural variations can often cause large changes in bi­
ological activity, an area of very high activity could exist 
immediately adjacent to one of very low activity. Because 
of this, a statistical approach might not always be the best 
means of investigating SAR. Instead, methods that could 
establish and uncover trends between the individual com­
pounds may be required. 

Since the compounds in the data set might not be rep­
resentative of all the compounds for which predictions are 
to be made, two problems must be faced before prediction 
can be done. First, nonparametric methods of generating 
LDFs do not yield unique discriminants. Except for 
special cases, many different discriminants could be de­
veloped for a separable data set. Which is to be used? The 
second problem is the extent of extrapolation. Any pre­
diction of the activity of a compound that is not included 
in the data set requires some amount of extrapolation or 
interpolation of the data in the training set. How similar 
do predicted compounds have to be to the training set 

S.00 

ae.ee 
e.eae e.see i.eee i.see 2.eee z . see 3.000 3.saa 4.000 

1«l N*ar«*t Neighbor Dlatanc* 

Figure 7. Histogram of the first nearest neighbor distances for 
the 88 training set compounds in the 10-dimensional space. 

compounds, and how is this similarity to be assessed? 
One way to develop an unambiguous discriminant is to 

centralize it between the points from the different classes 
by specifying that it have a thickness. A dead zone can 
be specified on either side of the hyperplane defined by 
the discriminant. If any patterns lie in that dead zone, 
they are considered to be misclassified, even though they 
may be on the proper side of the plane. If the size of this 
dead zone is maximized, this has the effect of forcing the 
discriminant to lie midway between the two classes. There 
is no guarantee that this centralized discriminant is the 
best one, however. In actuality, this method is simply a 
means for dealing with the lack of data that would define 
a unique discriminant. Another way to deal with this 
problem is to generate many different discriminants and 
apply each to the prediction set. Any compound whose 
activity is predicted differently by different discriminants 
should be called into question. Such variation in predicted 
activity would indicate that this compound would exist in 
a region of the space that was not well-defined by the 
training set. In such a case, the prediction of the activity 
of such a compound might not be justified. 

One way to ensure that a prediction compound's 
structure does not deviate too far from those of the training 
sets compounds is to predict the activities only of those 
compounds that have substitutions the same as or similar 
to those compounds used in the training set. Certainly, 
there is no justification for predicting the activity of com­
pounds whose structures differ greatly. The method that 
Bodor et al. used to choose compounds for analysis and 
visual examination of the data assured such structural 
homogeneity for these prediction compounds. 

Another level-of-similarity check is to use distance 
measures to at least ensure that the prediction compounds 
are in the same region of space as the training set com­
pounds. If a compound lies far from the remainder of the 
data, it is in a region of the data space that is poorly 
represented by the training set. Many PR methods, such 
as linear discriminants and KNN analysis, can assign a 
classification to such a compound, but prediction by ex­
trapolating beyond the boundaries of known data is risky. 

We have chosen to examine nearest-neighbor distances 
as a means of assessing similarity. A histogram of the first 
nearest-neighbor distances for the 88 training set com­
pounds is shown in Figure 7. Sixty-four of the 88 distances 

25.ee
ae.ee
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are below 1.0 for the autoscaled data; all but three are 
below 2.5. The first NN distances for the prediction set 
compounds are shown in column four of Table VI under 
the heading 1st NN distance. Comparison of these dis­
tances to the histogram in Figure 7 shows that most of the 
14 prediction compounds whose activities are fairly certain 
are, by coincidence, relatively far from their first nearest 
neighbors. If the activity of these compounds were truly 
unknown, this should prompt caution in the interpretation 
of predictive classifications since many of these compounds 
might not be close enough to training set compounds to 
allow reliable prediction results. 

Three different methods were used for prediction 
studies: LDFs, KNN, and PC plots. One hundred dis­
criminants were generated to serve both for prescreening 
the prediction compounds, as noted above, and for their 
prediction results. Each was used to predict the activity 
of the compounds that were reserved for prediction, the 
14 that had reasonably certain activity as well as the 23 
others whose activity was less certain. Column six of Table 
VI (multiple discriminants, trial 1) shows the results for 
the 100 predictions. Of the 37 compounds, 12 were pre­
dicted differently with the different discriminants. These 
compounds might be thought of as being in a gray area 
that was not sufficiently represented by the training set. 
In our prediction, we were fortunate enough to have the 
activities available to us for interpretation. In a case of 
blind prediction, compounds such as this whose predicted 
activity varies with different discriminants might be 
flagged for further investigation. Of the other prediction 
compounds, 17 were consistently predicted correctly and 
eight were consistently misclassified. Of the 14 compounds 
of unambiguous classification, one was consistently mis-
classified, seven had varying activities, and six were clas­
sified correctly by all 100 of the discriminants. 

As noted earlier, the classification of compound 93 might 
be in error. This compound was found to be troublesome 
throughout the analysis. In order to determine its influ­
ence on the prediction studies, it was removed from the 
88-member training set, 100 more discriminants were 
generated, and the predictions were redone. The results 
are shown in column seven of Table VI (multiple discri­
minants, trial 2). Removal of pattern 93 decreased the 
total incidence of misclassifications considerably. Only one 
compound was misclassified by all 100 of the discriminants. 
The predicted activity for 19 of the compounds varied 
between discriminants; for eight of the compounds, the 
number of misclassifications was low. Seventeen com­
pounds were predicted consistently correctly. Of those 14 
prediction compounds of unambiguous activity, in all but 
one case (compound 99) the number of misclassifications 
were decreased; eight were consistently predicted correctly, 
and six had varying activities. Of those six, only one was 
predicted incorrectly by more than 10 of the 100 discri­
minants. It appears that compound 93 had a large effect 
on discriminant development. Both the PC plot of Figure 
4 and KNN results showed this compound to be far re­
moved from the rest of the data points. This may account 
for its high leverage in the discriminant development. 
These results might indicate that compound 93 was as­
signed to the incorrect activity class. 

The prediction results using KNN analysis are shown 
in column five of Table VI (KNN). Of the 14 compounds 
with certain classification, two were misclassified by all 
levels of nearest-neighbor classification. Both of these were 
far from their nearest neighbors, however, and so the va­
lidity of their predictions would be questioned in a blind 
study. One of these, compound 70, was assayed with use 
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Figure 8. Figure 4 with active prediction compounds plotted as 
"+" and inactive prediction compounds plotted as "*". 

Table VII. KNN Results for the 7-Descriptor Set 

no. NN" 
1 
3 
5 
7 

percentage 
overall 

97 
92 
90 
85 

correctly classified 
active 

96 
92 
92 
94 

inactive 

97 
92 
86 
73 

" Number of nearest neighbors included in classification. 

of a cream base rather than an alcohol base for application. 
Such variation in procedure has been shown to affect re­
sults,25 but since compound 70 did not have a borderline 
activity (activity = 360), it was kept in the prediction set. 
Of the 23 other prediction compounds, seven were mis­
classified. Two of these had activities that would make 
them borderline cases. Compound 22 had an activity of 
46, very close to the cutoff of Bodor et al. of 50. Compound 
55 had an activity listed only as less than fluocinolone 
acetonide, which had an activity of 100. Both of these were 
far from their nearest neighbors. 

Prediction from the PC plot can be made through visual 
inspection of Figure 8, which is Figure 4 with the prediction 
compounds plotted as "+", active, and "*", inactive. Of 
the 14 compounds, all but two (70 and 99) could be un­
ambiguously and correctly classified by their location 
within the plot. Many of the remaining 23 prediction 
compounds lay somewhere between the areas occupied by 
the active and inactive classes. This corresponds well to 
the results from the LDF predictions which suggest that 
many of the prediction compounds are in areas that are 
ill-defined. Since many of those compounds have bor­
derline or ambiguous activities, this plot provides further 
evidence of the existence of structure in the data. 

Feature Section. The variance method of feature se­
lection has been described previously.26'27 This is a method 
for removing the descriptors that provide little or no 
discriminatory information. It was used to assess the 
discriminatory value of the 10 descriptors. 

Three variables were identified as having no effect on 
the classification results: the indicator variable for the 

(25) Barry, B. W.; Brace, A. R. J. Invest. Dermatol. 1975, 64, 
418-422. 

(26) Stuper, A. J.; Brugger, W. E.; Jurs, P. C. Computer Assisted 
Studies of Chemical Structure and Biological Function; Wi-
ley-Interscience: New York, 1979. 
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Table VIII. Prediction Results for the 7-Descriptor Set 

KNN"* 

compound" class6 1st NNC distance 

0.070 
0.303 

2.118 
1.232 
2.142 
0.000 
2.257 
0.000 

2.119 
1.995 
2.403 
1.682 
0.000 
0.712 
0.368 
2.299 
1.995 
0.303 
1.276 
1.826 
1.674 
0.237 
0.000 
0.358 
0.140 
1.434 
0.496 
0.358 
1.841 
0.237 
1.195 
0.000 
2.775 
0.005 
0.000 

1 

2 
2 

1 
1 
1 
2 
1 
2 

1 
2 
1 
2 
1 
2 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
1 
2 
2 
2 
2 
2 
2 
2 
1 
1 
2 

7 multiple discriminants'^ 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

*20 
22 

X23 
*65 
80 

*87 
*107 
115 
*77 

X 17 
18 
19 

*30 
31 

*32 
37 
39 
40 
55 
66 
69 

*70 
71 
72 
85 
96 

*99 
101 
104 
109 

*110 
116 

*U7 
120 

*123 
*124 
*125 

97 
0 

100 
100 

0 
0 
0 
0 

0 
100 

0 
0 
0 
0 
0 
0 

100 
100 

0 
56 
0 
0 
0 

100 
28 
0 

100 
100 

0 
100 

0 
0 
0 
0 
0 

"* means certain classification; X—no available data—was not used. * 1 is active, 2 is inactive. cNearest neighbor. ''Results reported for 
1, 3, 5, and 7 nearest neighbors. "93 excluded from analysis. 'Number of times misclassified for 100 discriminants generated. 

acetonide linkage, the log P at the 6-position, and the 
indicator variable for the 1,2-saturation. When these were 
removed from the analysis, the reduced set of seven var­
iables could support a discriminant that correctly classified 
all 88 of the training set compounds. K N N results are 
listed in Table VII and are somewhat higher than for the 
full set of 10 descriptors. A PC plot is shown in Figure 
9; good separation is still obvious. 

This seven-dimensional data space was also used to 
predict the activity of the compounds that were excluded 
from the training set. As above, 100 discriminants were 
generated with use of the 87-member training set (com­
pound 93 excluded). The results for the prediction are 
shown in Table VIII. Of the 14 compounds of certain 
classification, one was misclassified, 10 were classified 
correctly, and three had varying predicted activity. For 
the remaining 23 compounds, nine were misclassified by 
all 100 discriminants and 14 were classified correctly by 
all the discriminants. This reduced data space seems to 
be more restricted than the 10-dimensional space. Fewer 
of the prediction compounds had activities tha t varied 
between the different discriminants. Also, more com­
pounds were misclassified. K N N results for the misclas­
sified compounds are also listed in Table VIII. A histo­
gram of the first nearest-neighbor distances of the 88 
training set compounds is shown in Figure 10. 

Much information is lost when the three descriptors are 
removed from the 10-descriptor set. Many unique com­
pounds are equivalent in the reduced seven-dimensional 
data space. Examination of the raw data shows tha t all 

t 

Figure 9. Data plotted in the first two principal components of 
the set of seven descriptors, l's are active, 2's are inactive. 

the structural variations affect activity; however, within 
the training set they are not responsible for switching 
activity between the two classes. Close examination of the 
structures and class assignments verified this. There were 
no instances of the removed variations causing a change 
in activity of a compound from one class to another. 

Many of the 37 prediction compounds were found to 
have borderline or ambiguous activities or were found to 
be in positions in the data space that were ill-defined. 
These contain new information, which was not present in 
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Figure 10. Histogram of the first nearest neighbor distances for 
the 88 training set compounds in the seven-dimensional space. 

the 88-compound training set. In order to assess the effect 
of this new information on the two different descriptor sets, 
the entire set of 122 compounds was submitted to the LDF 
analysis for both the 10- and seven-descriptor sets. With 
the 10 descriptors, three compounds were misclassified. 
Two of these were 22 and 93, which had questionable class 
assignments. (The activity of 22 was listed as 46, very close 
to the cutoff of 50.) The other was 116, which did not have 
a verifiable activity. The best NLDF results for the sev­
en-descriptor study misclassified 10 compounds. This 
increased misclassification may be due to the loss of the 
information from the three removed descriptors. 

Conclusions 
The work reported here illustrates that there is structure 

within the data space defined for the steroids by the 10 
indicator and log P descriptors. Several different methods 
have shown that the potent and nonpotent compounds 
occupy different regions of the data space. The classes are 
sufficiently separated to support a linear discriminant that 
separates the two classes of compounds as defined by 
Bodor et al. The KNN method also provided a high 
correct classification success rate, and principal compo­
nents plots showed structure not only between the classes 
but also within the classes. The prediction studies show 
that this data space could be useful for predicting the 
activity of new compounds that passed the prescreening 
criteria mentioned previously. 

While the two-class representation is a useful means for 
exploring variations in activity of such data, it should not 
be interpreted too strictly. The activities of the compounds 
are continuous, even though the quantitative data have 
large errors. This is supported by the fact that many of 
the compounds that were consistently troublesome for the 
LDF methods were those with activities close to the class 
cutoff. The principal components plots do not rely on the 
two-class representation and can be useful for looking at 
finer structure within the data. 

Future directions for this work could include expansion 
of the training set to include a broader range of structural 
variations. These could include both new substituents at 
the sites that were coded in this study as well as variations 
at other sites. Compounds could be included that would 
broaden the range of the variations in activities that were 
caused by those descriptors that were eliminated by the 
feature selection. Other structural descriptors could also 
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be used to represent these structures. 
While this particular data set seems to be well-described 

by the indicator and log P descriptors used here, this might 
be due to a limited variation of the substituents at some 
sites or to high correlations of these descriptors with 
properties other than those that are directly coded. These 
compounds might be described more precisely by other 
descriptors that would directly code for steric and/or 
electronic properties. New descriptors might be necessary 
if compounds containing new substituents are included in 
the analysis. 

The work reported here demonstrates the advantages 
of physicochemical descriptors over substructural de­
scriptors. First, far fewer descriptors were required for this 
study than for that of Bodor et al. Second, reduction of 
the data space through feature selection leads to chemically 
meaningful elimination of descriptors which can be used 
to investigate the generality of the data set. Third, var­
iations within the sites of substution beyond the specific 
variations contained in the training set can be accommo­
dated without adding new descriptors and redoing the 
entire study as would be required with a substructure-
based approach. 

These studies have shown that several different multi­
variate methods can be used in tandem to investigate a 
data space and verify the results of an LDF. Some of these 
methods can be used even when the classes are not linearly 
separable. 

Through this work it has been suggested that a data 
space composed of structural data does not necessarily 
have to consist of separate clusters or a well-defined or­
dering of activities of compounds. For example, for the 
variables that were used in this work, the entire data space 
could be uniformly occupied by points that would repre­
sent chemical compounds, and no distinct clustering of the 
different classes need necessarily be present, even though 
such seems to be the case in this study. This attitude could 
affect the approach that is taken for the analysis of such 
problems and may suggest the need to develop new 
methods with which to more carefully investigate a data 
space that is to be used for SAR analysis. 

This study has also been used as a medium to suggest 
the use of a multistage prescreen of compounds prior to 
use of LDFs for prediction of the activity of unknowns. 
Similarity of a predicted compound to the compounds in 
the training set should be ascertained prior to interpre­
tation of any prediction results. Use of multiple discri­
minants can help to identify those compounds that may 
be similar to those in the training set but whose structural 
variations place them in a region of space that was not 
sufficiently represented by the training set. 
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Irreversible ligands2 for specific opioid receptors3 are 
valuable tools for a number of purposes. For example, we 
have previously reported the characterization of a cova-
lently labeled glycopeptide subunit of the 5 opioid receptor 
using FIT, an opioid agonist which specifically acylates this 
receptor class.48 Using a more potent acylating analogue, 
we have now purified this subunit to apparent homoge­
neity.415 Specific covalent modifying agents can also be 
utilized for the production of antibodies to drugs, and these 
can lead to antiidiotypic antibodies to the receptor.5 

Affinity columns for purification of receptors can be pre­
pared with these selective modifying agents.6 Autoradi­
ographic mapping of receptor subtypes in brain sections7 

and the determination of the effect of receptor occupancy 
in individual neurons using electrophysiological techniques8 

can also be carried out using specific affinity ligands. For 
these reasons, we have been engaged in a program to 
identify a number of different affinity ligands that would 
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opioid receptors. 
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Probes for Narcotic Receptor Mediated Phenomena. 13.1 Potential Irreversible 
Narcotic Antagonist-Based Ligands Derived from 
%,li-endo-Ethenotetrahydrooripavine with 7-(Methoxyfumaroyl)amino, 
(Bromoacetyl)amino, or Isothiocyanate Electrophiles: Chemistry, Biochemistry, 
and Pharmacology 
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iV-Allyl-, /V-(cyclopropylmethyl)-, and JV-propyl-endo-ethenotetrahydronororipavines (N-substituted 6,14-endo-
etheno-4,5-epoxy-3-hydroxy-6-methoxymorphinans) were synthesized with potential acylating or alkylating moieties 
at the C-7 position (isothiocyanato, (bromoacetyl)amino, and (methoxyfumaroyl)amino) and examined in vivo for 
their narcotic agonist and antagonist activities and for their ability to interact with opioid receptors in vitro. The 
2V-(cyclopropylmethyl)-substituted compounds were found to have the highest affinity for opioid receptors among 
these N-substituted compounds, although all of them were found to be reasonably potent narcotic antagonists in 
the mouse tail flick vs. morphine assay. Their in vivo potency ranged from x/s to 4 times that of nalorphine on 
intravenous injection in mice. Rat brain membrane binding studies indicated that the compounds interacted with 
opioid receptors with potencies that ranged from 0.5 times that of morphine (8c, 9c, and 10c) to 0.017 that of morphine 
(8b). Among the compounds studied here, only the previously reported isothiocyanato compound (10c) and 
(methoxyfumaroyl)amino compound (8c) interacted irreversibly and selectively with M or <5 opioid receptors, respectively, 
in assays using NG108-15 neuroblastoma-glioma hybrid cells and/or in a rat brain membrane preparation. Both 
8c and 10c were found to interact irreversibly, to a limited extent, with K opioid sites in rat brain membranes in 
which the n and 5 opioid receptors were depleted by interaction with the ^-selective irreversible ligand BIT and 
the 5-selective irreversible ligand FIT. Neither compound showed irreversible actions in the electrically stimulated 
mouse vas deferens preparation. 
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