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A new way of combining physicochemical parameters such as the octanol/water partition coefficient (or log P) with 
molecular structure features has been devised to predict antitumor activity on a large, diverse set of compounds. 
This is done by adding the log P parameter as a separate component to an earlier method based on structure. The 
two-component approach is motivated by the dual concepts of accessibility and specificity. Extensive testing shows 
improvement in performance for the two-component method over the use of structure alone. All the compounds 
with definitive biological results in the in vivo NCI prescreen form the training set. The method separates the training 
set into disjoint subsets depending on the range of log P. Therefore, structure fragments receive activity weights 
that vary with the log P range. This change in weights accounts for the improved performance rather than any 
difference in the structural characteristics of the compounds in the different log P ranges. 

This is a report on a method for combining the Hansch 
octanol/water partition coefficient1 with molecular 
structure fragments as predictors of anticancer activity for 
a large, diverse set of compounds. The concepts of ac­
cessibility and specificity of compounds will be used to 
motivate a two-component approach. Then this approach 
will be applied to the National Cancer Institute data. 

The original method2 was first described in 1977 and has 
been used by the NCI Developmental Therapeutics Pro­
gram since 1980 as an aid in selecting compounds for 
screening. Early studies3 to validate the method include 
a comparison of its performance with that of a chemist 
familiar with the data. 

The method was designed to handle large numbers of 
diverse compounds that cannot readily be classified. The 
use of thousands of structure fragments as variables pre­
cluded the use of regression and other quantitative 
structure-activity relationship (QSAR) methods normally 
employed4 to predict activity within one or more classes. 

Under these conditions, one cannot merely account for 
the partition coefficient as another variable in addition to 
the large number of structure fragments. This would imply 
a single optimum partition coefficient for all the diverse 
structures. What we require is a method that allows the 
optimum partition coefficient to vary with structure. Or 
failing that, we allow structure fragment activity weights 
to depend on the partition coefficient. 

Review of the Original Method. All the compounds 
with definitive biological results in the in vivo NCI pre­
screen5 form the training set. These compounds are sub­
jected to exhaustive generation of structure fragments of 
certain sizes and types.6 This process yields about 10000 
distinct fragments from the current training set of over 
100000 compounds. 

The incidence of a given fragment in the entire training 
set yields its expected incidence in the active portion under 
the asumption of homogeneity, that is, irrelevance of the 
fragment to activity. The actual incidence of the fragment 
in the active portion of the training set minus this expected 

(1) Hansch, C; Fujita, T. J. Am. Chem. Soc. 1964, 86, 1610. 
(2) Hodes, L.; Hazard, G. F.; Geran, R. I.; Richman, S. J. Med. 

Chem. 1977, 20, 469. 
(3) Hodes, L. J. Chem. Inf. Comput. Sci. 1981, 21, 128. 
(4) See, for example: Nakayama, A.; Inamura, H.; Fujita, T. J 

Med. Chem. 1984, 27, 1493. 
(5) For a description of the P388 mouse leukemia prescreen, see: 

In Vivo Cancer Models, NIH Publication No. 84-2635; U.S. 
Government Printing Office: Washington, DC, 1984. The 
training set consisted of compounds with conclusive P388 re­
sults, as of September 1983, from which certain well-known 
classes of compounds have been removed. For the A, C, and 
N activity criteria, see ref 7. 

(6) Hodes, L. J. Chem. Inf. Comput. Sci. 1981, 21, 132. 

incidence, expressed in standard deviations, is taken as the 
activity weight for the fragment. 

A new compound is evaluated by summing the weights 
of the fragments it contains. A routine has been estab­
lished under which a 20% subset of the training set is run 
through to check the performance and establish percentile 
scores for further use. This will be amplified further when 
the new method is described. 

For example, the entire training set is represented in the 
center of the diagram in Figure 1. Here it is assumed that 
the active compounds comprise 10% of the training set, 
at the top. To the left is represented the subset of com­
pounds containing some fragment A. About 7% of these 
compounds are active. Fragment A will therefore receive 
a negative weight for activity. Similarly the right-hand 
box represents the portion of compounds containing some 
other fragment B. This fragment would get a positive 
weight for activity because about 15% of the compounds 
are active. Of course, all three boxes would overlap, but 
they are separated for illustration only. 

An Anomaly and Its Resolution. Now suppose 
fragment A were a simple isolated (unfused) benzene ring 
and fragment B were a sugar ring. The above are actually 
the kinds of statistics these two specific fragments yield. 
However they are not generally considered to be involved 
in anticancer activity. For a long time it was felt that these 
readings represented statistical artifacts in the data set.7 

The anomaly can be resolved if one imposes a hypo­
thetical accessibility dimension onto the data as shown in 
Figure 2. Thus one can separate the inaccessible com­
pounds which will have no chance to be active. Let us 
assume and show in Figure 2 that in the entire file 40% 
of the compounds, for one reason or another, wound up 
as inaccessible. We can then derive the proportions of 
compounds containing fragments A and B so that, for the 
accessible compounds, exactly the same fraction will be 
active as in the entire file. 

In other words, as is shown in Figure 2, the negative 
activity weight of fragment A and the positive activity 
weight of fragment B are a result of accessibility properties 
rather that specific drug-receptor interaction. Benzene 
rings tend to render their compounds inaccessible. It is 
probably not possible in practice to separate the effects 
of the two components. However, such a hypothetical 
separation can be used in interpreting the results and 
modifying the method. 

The large negative activity weight of the benzene ring 
was the main reason for an early modification. The me-

(7) Hodes, L. In Computer-Assisted Drug Design; Olson, E. C, 
Cristoffersen, R. E., eds.; ACS Symposium Series 112; Amer­
ican Chemical Society: Washington, DC, 1979; pp 592-593. 
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FRAGMENT A TOTAL FRAGMENT B 
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_J 
Figure 1. Hypothetical training set of compounds. Ten percent 
of the total are active. Subset containing fragment A extracted 
to the left in which 7% of the compounds are active. Subset 
containing fragment B extracted to the right in which 15% of the 
compounds are active. 

FRAGMENT A FRAGMENT B 

INACCESSIBLE 

Figure 2. Compounds of Figure 1 where the difference of activity 
between fragments A and B is explained by accessibility. 

thod was modified to diminish the effect of high incidence 
fragments, such as the benzene ring, which seemed to have 
extreme weights. For every fragment with incidence 
greater than 10 compounds, the weight was divided by the 
logarithm of the incidence. Thus, if the benzene ring 
appeared in 50000 compounds and had an activity weight 
of -15 standard deviations, the weight would be effectively 
-15/4.7 or -3.2. The weight of the sugar ring, having less 
incidence, would not be reduced so dramatically. 

Access ibi l i ty and Specif icity. As implied in the 
previous section, we can separate the action of a drug into 
two components even though this distinction may not 
always be useful in practice. The first component will be 
called accessibility. Following Cramer,8 this refers to 
noncovalent interactions tha t can be derived from phys-
icochemical parameters, tha t is, those due to averages of 
tumbling molecules rather than specific shapes or struc­
ture. Generally, accessibility implies those passive inter­
actions such as solubilities that allow a drug to reach its 
receptor. 

The second component is what Cramer calls specificity. 
This encompasses the covalent or shape-related interac­
tions between drug and receptor, which depend on precise 
structure. 

Most work in QSAR consists of series optimization 
where the distinction between accessibility and specificity 
is not often important. One or the other can become the 
dominant form of expression. Moreover, the variables are 
low in number and constrained so that almost any sys­
tematic method can produce equivalent, if not satisfactory, 
results. 

For a truly diverse set of compounds, however, the 
distinction between accessibility and specificity becomes 
more important. The use of nonspecific accessibility 

Modes 

variables causes Cramer to limit the range of his work to 
areas like anethesia where the passive accessibility varia­
bles account for most of the reaction. Other works that 
explicitly combine the two types of components either 
restrict the compounds so they are not truly diverse or else 
do not allow the full interplay between the accessibility 
and specificity variables. The work reported here attempts 
to allow this interplay in a more adequate manner. 

log P as a Separate Component. The earlier analysis 
of the seemingly anomalous weights has shown how ac­
tivity weights for structural fragments do incorporate both 
accessibility and specificity aspects. However, if these 
aspects can be separated somehow, then the activity 
weights will be more precise. For example, a sugar ring 
in a hydrophobic molecule, by moderating the hydropho-
bicity, should have a better biological effect than a sugar 
ring in an already hydrophilic molecule. 

The two-component method will be illustrated with use 
of the octanol/water partition coefficient or log P to pro­
vide the accessibility component. We chose log P because 
of the large amount of available data and its empirical 
relation to accessibility phenomena. The method involves 
dividing the training set into two or more disjoint subsets 
according to ranges of log P. Thus, the activity weight of 
a fragment will depend on the estimated range of log P of 
the compound in which it occurs. 

The available methods for calculating log P did not 
apply very readily to our diverse and large set of com­
pounds. However, there was not need for actual estimates 
of log P but only an estimate of to which of several ranges 
of log P each compound belongs. This was done by using 
measured log P values for 4013 compounds9 with structures 
obtained from their CAS registry numbers. 

The 4013 compounds with measured log P values were 
sorted in increasing order of log P. Most of the compounds 
were on the positive, hydrophobic side. The lowest 1000 
went from - 5 to +0.57. These were taken as a low log P 
training set. Opposed to these were the top 2000 com­
pounds, taken as the high log P training set, with values 
from 1.7 to 8. In this manner, the same method ordinarily 
used for anticancer data or toxicity data was used to create 
a model for log P. Tha t is, fragment weights were com­
puted based on the difference of incidence of the fragment 
in the low log P set vs. the high log P set. A compound 
could then be evaluated for low log P by summing the 
weights of its fragments. This sum provides a measure that 
the compound belongs to the low log P range. A test run 
of a 20% subset showed a good separation of the log P 
compounds. 

F i r s t Version. The entire P388 training set5 was then 
passed through the log P model, yielding a continuous 
estimate of relative log P over all the P388 compounds. 
Then an arbitrary score, in this case zero, was chosen to 
separate the low from the high log P. 

This procedure yielded a two-component training set 
where the first component, log P, was simply two-valued, 
high or low. The separating score of zero placed a majority 
of the P388 compounds in the high log P subset. It was 
notable that the active compounds tended to be less hy­
drophobic than the inactive compounds in our collection. 
The ratio was about 2:1 for the highly active compounds, 
labeled A; 3:1 for the moderately active compounds, labeled 
C; and 4:1 for the inactive compounds, labeled N. 

The activity weights for the two-component model were 
then generated. As expected, the sugar-related fragment 

(8) R. D. Cramer, III Quant. Struct.-Act. Relat. Pharmacol, 
Chem. Biol. 1983, 2, 1. 

(9) Pomona College Medicinal Chemistry Project Data Base, Issue 
23, July 1983. 



Predicting Antitumor Activity from Chemical Structure 

Table I. Comparison of Performance of Two-Component 
Method vs. Original Method" 

cumulative % actives 

two 
original component 

percentile A C A C 
99 27 10 27 10 
98 39 16 43 17 
95 71 30 72 33 
90 88 44 91 47 
80 92 59 95 63 

70 97 70 99 72 
50 100 82 100 85 
30 92 94 
10 99 99 
0 100 100 

"Test sets are identical 20% subset of training set. Cumulative 
percentages of active compounds are shown at selected percentile 
levels. The columns labeled A refer to the compounds from the 
highly active portion of the training set. The columns labeled C 
refer to the moderately active compounds, which still meet the 
criterion for passing the screen. Note the concentration of active 
compounds above the 80th percentile of the ranking. 

Table II. log P Distribution of Compounds with CAS Registry 
Numbers and Measured log P 

log P range 

-5 to -1 
-1 to 1 

1 to 3 
3 to 8 
total 

no. of compounds 

270 
1094 
1990 
659 

4013 

O R- C R- C - O (O-C-C-0 where the first two bonds are 
ring bonds) received higher activity weight in the high log 
P range. This fragment appeared in 340 actives out of 608 
compounds in the high log P range for a weight of 20.9 and 
402 actives out of 1310 total in the low log P range for a 
weight of 13.9. 

Overall performance did show improvement for the 
two-component model when run on the same 20% subset 
of the training set. Performance can be measured by the 
relative number of actives scoring highly. The cumulative 
percentages of actives at selected percentile levels are 
compared to those for the original unsplit model in Table 
I. 

The distributions in Table I were tested for statistical 
significance by the Smirnov test.10 This yielded a p value 
of about 0.22 in the one-tailed form. A more powerful test, 
the Wilcoxon rank-sum test, yielded a difference of about 
1.5 standard deviations or a p value of 0.06, one-tailed. 

Further experimentation snowed that the gain in per­
formance was due to a somewhat larger gain in perform­
ance on the high log P subset. Perhaps splitting the 
compounds into more ranges of log P, especially at the 
lower end, would produce better results. Also, all the log 
P data could be used by no longer eliminating the roughly 
1000 midrange compounds from the log P data. 

Second Version-. Now the' 4013 compounds with 
measured log P values were separated into four ranges of 
log P as shown in Table II. Each subset of the log P data 
was taken in turn as the active set to produce four separate 
fragment-weight tables. In each table the weights now 
signified the likelihood that a compound with the fragment 
belonged to the given range of log P. 

(10) All statistical tests are taken from Lehmann, E. L. Nonpar-
ametrics: Statistical Methods Based on Ranks; Holden-Day: 
San Francisco, 1975. 
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Table III. Derived log P Distribution of P388 Training Set" 

log P range 

-5 to -1 
-1 to 1 

1 to 3 
3 to 8 
total 

A 

199 
73 

146 
334 
752 

number of compounds 

C 

387 
522 
867 

1576 
3352 

N 

6806 
11665 
27427 
47065 
92963 

"Note the proportions of the highly active A compounds, the 
moderately active C compounds, and the remaining inactive N 
compounds. 

Table IV. Sugar Ring Fragment Statistics in P388 Training Set" 

log P range 

-5 to -1 
-1 to 1 

1 to 3 
3 to 8 

active 
(A + C) 

202 
130 
225 
184 

incidence 

total 
(A + C + N) 

679 
475 
442 
324 

activity weight 

10.54 
8.43 

16.86 
17.15 

" The incidence of the sugar ring is given for the compounds as 
enumerated in Table III. 

Table V. Comparison of Performance of the Second Version of 
the Two-Component Method vs. the Original Method" 

cumulative percent actives 

percentile 

99 
98 
95 
90 
80 

70 
50 
30 
10 
0 

original 

A C 

27 10 
39 16 
71 30 
88 44 
92 59 

97 70 
100 82 

92 
99 

100 

compi 

A 

37 
48 
76 
86 
97 

99 
99 

100 

Dnent 

C 

11 
20 
33 
47 
63 

73 
88 
94 
99 

100 

"Test sets are identical 20% subset of training set. Cumulative 
percentages of active compounds are shown at selected percentile 
levels. These are the same compounds subjected to the first ver­
sion presented in Table I. The two-component method now has 
the training set stratified as shown in Table III. 

At this stage the P388 training set was run through all 
four log P models using the tables just created. Each 
compound was assigned to that range of log P for which 
it received the highest score. The distribution of log P 
determined in this manner for the highly active compounds 
(A), the moderately active compounds (C), and the inactive 
compounds (N) is shown in Table III. In this manner, 
a new two-component model was created. For example, 
the sugar fragment O R- C R- C - O now had four dif­
ferent weights depending on the range of log P as shown 
in Table IV. The lack of differentiation between the 
values at the low end suggests that it would not be 
worthwhile to split the log P ranges further. For com­
parison, the same 20% subset used earlier was run through 
the new version. Each compound was evaluated by sum­
ming the fragment weights in its assigned log P range. The 
cumulative percentages of actives at selected percentile 
levels are shown in Table V. 

These results were somewhat better than those from the 
first version. Notice the 37% of the A's fell in the top 
percentile vs. 27% in the first version and also in the 
original unsplit version. The best difference for the C's 
occurs at the 54th percentile, skipped in Table V, where 
88% of the C's are included but only 80% of the C's in the 
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Table VI. Derived log P Distribution of Disjoint Test Set" 
number of compounds 

>g P range 

-5 to -1 
-1 to 1 
1 to 3 
3 to 8 
total 

A 

5 
9 
15 
28 
57 

C 

19 
27 
49 
60 
155 

N 

322 
492 
1215 
1987 
4016 

" Compare the distribution to that of Table III. 

Table VII. Comparison of Performance of the Second Version 
of the Two-Component Method vs. the Original Method" 

cumulative percent actives 

two 
original component 

percentile 

99 
98 
95 
90 
80 

70 
50 
30 
10 
0 

A 

11 
14 
35 
56 
72 

84 
93 
100 

C 

5 
8 
21 
39 
52 

62 
77 
86 
98 
100 

A 

14 
23 
44 
60 
70 

82 
91 
95 
100 

C 

6 
15 
24 
37 
55 

62 
74 
86 
99 
100 

"Test set is that shown in Table VI disjoint from the training 
set. Cumulative percentages of active compounds are shown at 
selected percentile levels. Note that the concentration of the ac­
tive compounds above the 80th percentile level of the ranking is 
not as pronounced as that for the subset test set of Tables I and V. 

original version. The Smirnov test is a measure of the 
significance of this maximum difference. In this case we 
get a significance level of 0.044. The Wilcoxon rank-sum 
test, again performed roughly by considering the data at 
the same level in Table V to be at tied rank, gives a sig­
nificance level of 0.03, one-tailed. 

Table VIII. Preparation of Active Compounds for Wilcoxon Signed-! 

no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

percentile 

two component 

98 
98 
94 
62 
66 
87 
85 
65 
97 
100 
92 
99 
96 
88 
18 
72 
41 
63 
68 
97 
75 
100 
98 
98 
100 
100 
94 
84 
91 

original 

98 
100 
94 
64 
47 
87 
63 
87 
93 
100 
84 
98 
68 
92 
45 
85 
77 
70 
74 
93 
31 
100 
96 
97 
100 
100 
89 
56 
91 

difference 

0 
-2 
0 
-2 
19 
0 
22 
-22 
4 
0 
8 
1 
28 
-4 
-27 
-13 
-36 
-7 
-6 
4 
44 
0 
2 
1 
0 
0 
5 
28 
0 

differ­
ence 

midrank 

n/a 
23 
n/a 
23 
48 
n/a 
49.5 
49.5 
33.5 
n/a 
41.5 
15 
53.5 
33.5 
52 
44.5 
55 
40 
38 
33.5 
56 
n/a 
23 
15 
n/a 
n/a 
36 
53.5 
n/a 

Although this experiment shows a definite enhancement 
in performance through the use of log P, some of the im­
provement must be due to an increased subset effect. 
When the test set is a subset of the training set, perform­
ance tends to be somewhat better than for a disjoint test 
set. For example, several compounds will get high scores 
if they have fragments that occur only once, but these 
fragments are ignored in the disjoint case. 

Since both runs were done with exactly the same subset 
test set, the comparison seems fair. However, the addition 
of the log P parameter effectively multiplies the number 
of fragments, increasing the likelihood that a compound 
will have a single two-component fragment. Would a 
disjoint test provide a better comparison? 

A Disjoint Test Set. A test set disjoint from the 
training set was obtained by using the compounds in the 
March 1984 update of the training set that were not in the 
September 1983 training set. These additional data con­
sisted of 57 compounds in set A, 155 compounds in set C, 
and 4016 compounds in set N. 

Prior to running the new test set against the two-com­
ponent model just described as the second version, each 
compound in the test set was rated as to range of log P with 
use of the same four log P training sets that were used to 
stratify the two-component model. The split of the new 
test set into ranges of log P is shown in Table VI. In this 
small set we do not see a large proportion of hydrophilic 
active compounds as Table III shows in the earlier training 
set. 

This test set was evaluated first with use of the original 
September 1983 training set without the log P enhance­
ment and again with use of the same training set in its 
two-component version. The two outcomes are presented 
in Table VII at selected percentile levels. The results show 
a large improvement in performance for the two-compo­
nent model at the 98th percentile level, which deteriorates 
as the percentiles decrease. To compare the performance 
on this test set, we were prepared to use a more refined 

Test 

no. 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

percentile 

two component 

79 
40 
100 
100 
93 
99 
76 
100 
82 
99 
100 
29 
76 
94 
98 
98 
98 
83 
96 
76 
99 
96 
93 
93 
94 
99 
24 
75 

original 

97 
32 
100 
98 
91 
97 
86 
100 
76 
98 
100 
52 
75 
91 
81 
96 
95 
96 
95 
82 
96 
95 
95 
90 
92 
98 
73 
79 

difference 

-18 
8 
0 
2 
2 
2 

-10 
0 
6 
1 
0 

-23 
1 
3 
17 
2 
3 

-13 
1 

J6 
3 
1 
-2 
3 
2 
1 

-49 
-4 

differ­
ence 

midrank 

47 
41.5 
n/a 
23 
23 
23 
43 
n/a 
38 
15 
n/a 
51 
15 
29.5 
46 
23 
29.5 
44.5 
15 
38 
29.5 
15 
23 
29.5 
23 
15 
57 
33.5 
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Table IX. Comparison of Performance When Test Compounds 
Are Scrambled by Assignment to Arbitrary log P Ranges 

cumulative percent actives 
two 

scrambled component0 

percentile A C A C 
99 14 3 ~14 6 
98 23 11 23 15 
95 33 20 44 24 
90 42 28 60 37 
80 61 43 70 55 

70 67 55 82 62 
50 77 68 91 74 
30 89 81 95 86 
10 100 97 100 99 
0 100 100 

" The two-component performance is copied from Table VII. 

statistical test, the Wilcoxon signed-rank test. For each 
active compound, the difference in percentile levels is 
taken with a positive sign if the two-component result was 
higher and a negative sign if the original result was higher. 
Compounds at the same percentile level are considered 
tied. Table VIII shows the percentile levels of the 57 A 
compounds and the ranking of their differences that is 
used in the Wilcoxon signed-rank test. 

The Wilcoxon signed-rank test on the data of Table VIII 
shows an improvement of 0.8 standard deviation for the 
two-component model, whereas the C compounds show a 
smaller improvement of 0.34 standard deviation. Failure 
to produce a larger improvement may be due to another 
important effect that was masked by the subset effect 
described earlier, the effect of a smaller training set. That 
is, the two-component method has the effect of splitting 
the training set into disjoint sets, one for each predeter­
mined range of log P. Thus, we are effectively dealing with 
four smaller training sets. All of our experience has shown 
that performance improves with the size of the training 
set. A larger size helps counteract diversity. In this case, 
it is possible that a given fragment may occur in the 
training set at one range of log P and the test set at dif­
ferent ranges of log P. The fragment would be evaluated 
to zero, regardless of its activity weight. 

The following experiment was performed to get a mea­
sure of the small training set effect. The two-component 
model was run by assigning test set compounds to log P 
ranges regardless of their actual estimated log P range, 
merely requiring that the distribution was the same so that 
each training set range received the same number of com­
pounds as in the earlier two-component run. That is, 
following Table VI, for the A's the first five compounds 
were assigned to log P below - 1 , the next nine to log P 
between -1 and 1, and so forth. 

The cumulative percent actives at the selected percentile 
levels are shown in Table IX. As expected, the perform­
ance is a great deal worse than the correctly assigned 
two-component run. The A's were 1.1 standard deviations 
lower and the C's 2.27 standard deviations lower by the 
Wilcoxon signed-rank test. 

This experiment exaggerates the small set effect since 
the training set had been systematically separated by log 
P and the test set had not, causing a possible mismatch. 
At this point there seemed to be another way to eliminate 
the small set effect and even improve the performance of 
the two-component model. The new idea was to restore 
the effect of the complete training set by filling gaps in 
the two-component fragment-weight table. A test com­
pound would no longer be restricted to a single log P range, 
but would be allowed to use the fragment weight of the 

Table X. Number of Distinct Fragments in Training Set at 
Various Ranges of log P° 

log P range 

-5 to -1 
-1 to 1 

1 to 3 
3 to 8 
total 

no. of fragments 

3016 
4476 
6038 
7129 
9478 

" These are the fragments generaged for all the compounds tab­
ulated in Table III. 

Table XI. Comparison of Performance of the Second Version of 
the Two-Component Method vs. the Same Method with 
Augmented Fragment-Weight Table" 

cumulative percent actives 

two 
augmented component 

percentile A C A C 
99 14 6 14 6 
98 23 15 23 15 
95 44 24 44 24 
90 60 37 60 37 
80 70 55 70 55 

70 82 63 82 62 
50 91 74 91 74 
30 95 86 95 86 
10 100 99 100 99 
0 100 100 

" Test set is disjoint from the training set. Cumulative percent­
ages of active compounds are shown at selected percentile levels. 
The two-component performance is again copied from Table VII. 

closest log P range. That is, if a section does not contain 
a given fragment, obtain the fragment and its weight from 
the closest adjacent section. 

A Distributed Fragment-Weight Table. The number 
of fragments in each log P range is shown in Table X. 
There were a total of 9748 distinct fragments among the 
four ranges, which was equal to the number of fragments 
in the intact September 1983 P388 training set. Each 
range was augmented to 9748 fragments by means of the 
following procedure. 

The fragments that were missing from any log P range 
or section were supplied with a log P value taken from the 
closest adjacent section. If the fragment was missing from 
one of the two middle sections and present on both im­
mediately adjacent sections, the average of the weights 
from the two adjacent sections was used. Although the 
number of fragments was greatly increased, the results, 
shown in Table XI, were almost exactly the same as those 
from the earlier two-component run. It seemed as though 
each log P range had automatically selected fragments 
pertinent to that range, so that test compounds that were 
log P rated rarely had fragments outside their assigned 
range. 

But the enlarged distributed fragment-weight table 
should improve performance on the previous run where 
the log P range of the test compounds was ignored and 
scrambled. This last experiment was performed with the 
expectation that the mismatched test compounds would 
now have their fragments matched with something like 
their true fragment weights since these weights would be 
shifted to all the ranges. Thus there should be a dramatic 
improvement in performance. The experiment just de­
scribed was performed, and there was surprisingly little 
change from the earlier results of Table IX. See Table XII. 

Now it became clear that the large number of fragments 
that were distributed across the log P ranges were, like the 
tail of a comet, irrelevant to the performance. They are 
mostly contained in small numbers of usually inactive 



2212 J. Med. Chem. 1986, 29, 2212-2217 

Table XII. Comparison of Performance When Test Compounds 
Are Scrambled by Assignment to Arbitrary log P Ranges" 

cumulative percent actives 

percentile 

99 
98 
95 
90 
80 

70 
50 
30 
10 
0 

scrambled 

A C 

14 3 
23 11 
33 20 
42 28 
61 43 

67 55 
77 68 
89 81 
100 97 

100 

augm 

A 

14 
23 
33 
47 
61 

67 
79 
91 
100 

ented 

C 

3 
12 
19 
30 
43 

55 
71 
81 
97 
100 

"Original from Table IX vs. augmented fragment-weight table. 

compounds. The true determinants of performance in the 
two-component model are distinctions among the differ­
entiated weights of fragments already common to all the 
log P ranges. 

Remarks and Conclus ions 
In constructing a two-component approach to apply to 

a diverse set of compounds, it was necessary to radically 
depart from some of the concepts used in standard Hansch 
analyses. First, there cannot be a single optimum value 
of log P. Second, the use of indicator variables for frag­
ments allowed only one weight upon the presence of a 
fragment. Here, the weight is dependent on the range of 
log P. 

Other stratifications of the training set besides log P can 
be tried. Along these lines, an earlier experiment in sep­
arating large and small compounds was not very satis­
factory. 

For a substance to be an effective antimicrobial agent, 
it must be able to interfere with an essential function of 
the microbial cell. Target sites within the cell are often 
susceptible to inhibitors when tested in cell-free systems, 
but the intact microbe is often not susceptible to the same 
agents. This difference in inhibitory activity between 
intact and cell-free systems is commonly attributed to cell 
permeability, whereby elements of the cell membrane re­
strict the access of external molecules from the environ­
ment. 

In recent years a variety of naturally occurring, as well 
as synthetic, antibiotics have been recognized tha t are 
analogues of small peptides and that function by entering 
susceptible microorganisms via peptide permeases and 
attacking intracellular targets. The inhibitory agent may 

In summary, the experiments on the disjoint test set 
showed a significant loss in performance when the com­
pounds were randomized over the log P ranges. When the 
fragment-weight table was augmented, the results were not 
greatly changed. This shows that the difference in pre-
formance was due to a difference in weights for varying 
log P of fragments in the original table. 

The large amount of testing of the second, more defi­
nitive version of the two-component model indicates the 
amount of improvement in performance that can be ex­
pected when ranges of log P are introduced into the earlier 
model that was based on structure alone. The improve­
ment shown in the two main tests, Tables V and VII, 
appears mostly in the upper two percentiles of the score. 
Thus, the two-component model would be especially useful 
for automated literature surveillance where only the top 
few percent of compounds are examined. 

Some of the compounds appearing in Table VIII that 
had poor ranking under the two-component model were 
examined. They would have ranked much higher with a 
different log P assignment. Perhaps with a more discrim­
inating log P model they would have been classified into 
a more appropriate log P range. This may be achieved if 
there will be a lot more measured log P data. That points 
to the weakness of this approach. Data on 4000 com­
pounds were used to classify 100 000 more diverse com­
pounds. The log P data were especially lacking toward the 
low log P end where performance was worst. 
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be an intact peptide or a moiety released from it by in­
tracellular hydrolysis.1""3 

The most extensively studied antibiotics have been 
analogues of small peptides in which the C-terminal amino 
acid is replaced by the mimetics of alanine.4"10 These 
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Antibacterial Activity of Phosphono Dipeptides Related to Alafosfalin 
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A series of dipeptides containing N-terminal alanine or leucine and a wide range of P-terminal racemic 1-amino-
alkanephosphonates were prepared and tested in vitro for their ability to inhibit the growth of various bacterial 
species. The results demonstrate that peptides containing 4-amino-4-phosphonobutyric acid and 1-amino-l-
methylethanephosphonic acid exhibit antibacterial activity comparable with that observed in the case of peptides 
containing P-terminal racemic 1-aminoethanephosphonic acid (analogue of alanine) used as a positive control. 
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