1-Phthalimido-8-(tosyloxy)-3,6-dioxaoctane (9). To a solution of 8 (5.0 g, 0.018 mol) in dry pyridine (20 mL) was added over a 1-h period p-toluenesulfonyl chloride (6.82 g, 0.036 mol) at 0-5 °C. After stirring for 3 h at 23 °C, the mixture was poured onto a mixture of HCl (25 mL) and ice, and the product was extracted with EtOAc (25 mL × 4). After removal of the solvent in vacuo, the crude product was chromatographed on silica gel with EtOAc-hexane (1:1) to give an oil (6g, 77%), which solidified upon cooling: mp 80-81 °C; R_f 0.33 (silica gel, EtOAc-hexane, 1:1); EIMS, m/e 432 (M - 1); NMR (CDCl₃) δ 7.84 and 7.71 (4 H, d and m, phthalimide, Ar), 7.77 and 7.44 (4 H, q, Ts, Ar), 4.18-3.48 (12 H, t and m, CH₂O), 2.44 (3 H, s, CH₃). Anal. (C₂₁H₂₃NO₇S), C, H, N.

1-Phthalimido-8-(\u03b3-naltrexamino)-3,6-dioxaoctane Dihydrochloride (6·2HCl). A mixture of 9 (650 mg, 1.5 mmol), β -naltrexamine 5 (342 mg, 1 mmol), and NaHCO₃ (840 mg) in toluene-diglyme (15 mL, 2:1) was heated under N₂ at 110 °C for 10 h. After filtration and removal of solvents in vacuo, the crude product was dissolved in 0.5 N HCl (10 mL) and extracted with EtOAc ($25 \text{ mL} \times 3$). The aqueous phase was rendered basic (pH 9) with NH_4OH , and the liberated free base was extracted with EtOAc (25 mL \times 4). After removal of the solvent in vacuo, the crude product was chromatographed on silica gel with EtOAc-MeOH-NH₄OH (85:15:0.5) to give 300 mg (50%) of 6, R_f 0.31 (EMA, 85:15:1), which was converted to the HCl salt (hygroscopic); mp 105–110 °C; CIMS, m/e 603 (M⁺); NMR (Me₂SO- d_6) δ 6.85 and 6.76 (2 H, q, Ar), 7.85 (4 H, m, phthalimide, Ar), 4.92 (1 H, d, C-5 H), 3.81-3.50 (12 H, m, CH₂O); IR (KBr) cm⁻¹ 1777 and 1715 (C==O, phthalimide). Anal. ($C_{34}H_{41}N_3O_7$ ·2HCl·0.5H₂O) C, H, N.

1-Amino-8-(\$-naltrexamino)-3,6-dioxaoctane Trihydrochloride (2·3HCl). A solution of 6·2HCl (340 mg, 0.563 mmol) and hydrazine (96 mg, 3 mmol) in EtOH (5 mL) was stirred at 23 °C for 2 days. The solvent was removed in vacuo and the residue was stirred at 23 °C with HCl (1 N, 10 mL) for 5 h. After removal of the insoluble phthalhydrazide by filtration and evaporation of the solvent in vacuo, the crude product was chromatographed on silica gel with EtOAc-MeOH-NH4OH (80:20:1) to give 2 an oil (229 mg, 0.48 mmol, 96%); R₁ 0.35 (EMA, 50:50:5). The free base was converted to the 3HCl salt with 1 N HCl in 2-propanol; mp 190–193 °C dec; EIMS, *m/e* 472.9 (M⁺); NMR (Me₂SO- d_6) δ 9.58 (1 H, s, OH phenolic), 9.37 (1 H, br s, H⁺N), 8.96 (2 H, br, nal-N⁺H₂), 8.12 (3 H, br s, N⁺H₃), 6.80 and 6.67 (2 H, q, J = 8.2 Hz, Ar), 6.43 (1 H, br s, C-14 OH), 5.00 (1 H, br s)H, d, J = 7.1 Hz, C-5 H), 3.78–3.58 (12 H, t ad m, CH₂O). Anal. (C₂₆H₃₉N₃O₅·3HCl·3H₂O) C, N; H: calcd, 7.1; found, 8.09.

1-Guanidino-8-(β-naltrexamino)-3,6-dioxaoctane Sulfate (3·1.5H₂SO₄). A solution of 2 (46 mg, 0.097 mmol) and methyl isothiourea sulfate (28 mg, 0.1 mmol) in aqueous ethanol (50%, 3 mL) was stirred at 100 °C for 25 h. Sulfuric acid (1.8 N, 2 mL) then was added to the cold mixture. After removal of solvents in vacuo, the product was purified by gel filtration on Sephadex (LH-20) with MeOH to give the product, mp 155–160 °C (foaming); R_f 0.19 (EMA, 50:50:10); NMR (Me₂SO-d₆) δ 9.45 (1 H, s, OH phenolic), 7.30 (5 H, br s, NHC(NH₂)₂+NH₂), 6.68 and 6.61 (2 H, q, J = 8 Hz, Ar), 4.96 (1 H, d, C-5 H), 3.88–3.45 (12 H, m, CH₂O); ¹³C NMR 157.1 (NHC(NH₂)₂+), 69.80, 69.64, and 69.23 ppm (CH₂O). Anal. (C₂₇H₄₁N₅O₅·1.5H₂SO₄·1.5H₂O) C, H.

 $1 - (Benzylamino) - 8 - (\beta - naltrexamino) - 3, 6 - dioxaoctane$ Trihydrochloride (4.3HCl). To a refluxing toluene (15 mL) solution of triethylene glycol ditosylate¹² (4.0 g, 8.76 mmol) containing NaHCO₃ (1 g) was added over a 2-h period 1 g of β -naltrexamine 5 in 15 mL of toluene-diglyme (2:1). The reaction was conducted under N2 at 110 °C for an additional 5 h. After filtration and removal of solvents in vacuo, the excess of ditosylate was removed by dissolving the crude product in 1 N HCl (10 mL) and extracted with EtOAc (30 mL \times 3). The aqueous phase containing the product was basified with NH₄OH (pH 9) and extracted with EtOAc (25 mL \times 5). After removal of the solvent in vacuo, the crude intermediate compound 7^1 was purified by gradient elution chromatography using silica gel and EtOAc-MeOH-NH₄OH (99:1:0.5 to 80:20:1). The product (440 mg, 0.7 mmol) was isolated as a glass: $R_f 0.67$ (EMA, 70:30:4); CIMS, m/e455 (M - TsOH); NMR (CDCl₃) δ 7.83 and 7.40 (4 H, q, Ts, Ar), 6.71 and 6.54 (2 H, q, J = 8.2 Hz, Ar), 4.51 (1 H d, J = 7.97 Hz, C-5 H), 3.98-3.57 (12 H, m, CH₂O). To a solution of 7 (160 mg, 0.28 mmol) in toluene-diglyme (5 mL, 2:1) containing NaHCO₃ (120 mg) was added a solution of benzylamine (61 mg, 0.57 mmol) in toluene (1 mL). The reaction that was conducted under $\rm N_2$ was stirred at 110 °C for 6 h. After filtration and removal of solvent in vacuo, the crude product was chromatographed on silica gel with EtOAc-MeOH-NH4OH (85:15:1) to give the 4 as an oil (30 mg, 0.053 mmol), which was converted to the 3HCl salt (hygroscopic); $R_f 0.25$ (EMA, 80:20:2); CIMS, m/e 563 (M⁺); NMR (D₂C exchanged in Me₂SO-d₆) & 7.47 (5 H, m, Ar), 6.82 (2 H, Ar), 4.98 (1 H, d, C-5 H), 3.92-3.52 (12 H, m, CH₂O). Anal. (C₃₃-H₄₅N₃O₅·3HCl·3H₂O) C, H; N: calcd, 5.80; found, 5.16.

Acknowledgment. This research was supported by NIDA Grant DA 02659. We thank Michael Powers and Barbara Taylor for the capable technical assistance in performing the biological testing.

Additions and Corrections

1986, Volume 29

Reinhard Sarges,* Harry R. Howard, Kathy M. Donahue, Williard M. Welch, Beryl W. Dominy, Albert Weissman, B. Kenneth Koe, and Jon Bordner: Neuroleptic Activity of Chiral *trans*-Hexahydro-γ-carbolines.

Page 19. The supplementary material paragraph was inadvertently omitted. It should read as follows: Listings of coordinates and bond angles and distances, anisotropic temperature factors, hydrogen coordinates, and observed and calculated structure factors and a stereoscopic view of molecule 8 are available as supplementary material (26 pages). Ordering information is given on any current masthead page.