thus preventing the checking of the enantiomeric purity of (-)-and (+)-3 by this method.

(-)-c-2-Methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane c-3-Oxide Methiodide ((-)-1). An excess of MeI (1 mL) was added to a solution of (-)-3 (0.3 g) in anhydrous ether (20 mL), and the reaction mixture was left at room temperature overnight. The white solid obtained was crystallized from absolute ethanol: yield 90%; mp 195–196 °C (lit.5 mp 172–174 °C for the racemate); $[\alpha]^{20}_D$ -48.4° (EtOH); CD (EtOH) λ 245 nm, $\Delta \epsilon$ = -0.153. The IR and ¹H NMR spectra are identical with those of the racemate.

In the same way, starting from (+)-3, we obtained (+)-1: yield 90%; mp 194–195 °C; $[\alpha]^{20}_D$ +48.2° (EtOH); CD (EtOH) λ 245 nm, $\Delta\epsilon$ = +0.132. The IR and ¹H NMR spectra are identical with those of the enantiomer.

(2R,3R,5R)-c-2-Methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane t-3-Oxide ((-)-3). To a sample of 1 g of (+)-7, obtained as described before, in 5 mL of CH₃COOH was added 2.5 mL of cold 30% H₂O₂. After 0.5 h at room temperature, the reaction mixture was made alkaline with 10% NaOH and extracted with CHCl₃ to give 1.1 g of a mixture (oil), which was chromatographed on a silica gel column with CHCl₃-petroleum ether-absolute ethanol-concentrated NH₄OH (340:60:65:8) as eluent.

The first fraction (R_f 0.60) was (2R,3R,5R)-c-2-methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane t-3-oxide ((-)-3): yield 0.7 g; [α] 20 D -108.0° (EtOH); CD (EtOH) λ 243 nm, $\Delta \epsilon$ = -0.110.

The compound is in every respect identical with that obtained by resolution of the racemate; treated with CH₃I, as described above, it gave (2R,3R,5R)-c-2-methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane t-3-oxide methiodide ((-)-1): $[\alpha]^{20}_{\rm D}$ -48.0° (EtOH).

The second fraction $(R_f 0.26)$ was $(2R,3S,5R) \cdot c \cdot 2$ -methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane $c \cdot 3$ -oxide ((+)-8): yield 0.25 g; $[\alpha]^{20}_D + 8.0^\circ$ (EtOH); CD (EtOH) λ 236 nm, $\Delta_{\epsilon} = -0.191$. It shows the same IR and ¹H NMR spectra as the racemate.⁵

(2S,3S,5S)-c-2-Methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane t-3-Oxide ((+)-3). With the same procedure described for (-)-3 and starting from (-)-7, we obtained (+)-3, (+)-1, and (-)-8. (2S,3S,5S)-c-2-Methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane t-3-oxide ((+)-3): $[\alpha]^{20}$ D +108.3° (EtOH); CD (EtOH) λ 243 nm, $\Delta \epsilon$ = +0.118.

The compound is in every respect identical with that obtained by resolution of the racemate; treated with CH₃I as described above, it gave (2S,3S,5S)-c-2-methyl-r-5-[(dimethyl-amino)methyl]-1,3-oxathiolane <math>t-3-oxide ((+)-1): $[\alpha]^{20}_D + 47.7^\circ$ (EtOH).

(2S,3R,5S)-c-2-Methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane c-3-oxide ((-)-8): $[\alpha]^{20}_D$ -7.6° (EtOH); CD (EtOH) λ 236 nm, $\Delta\epsilon$ = +0.164. The compound shows IR and

¹H NMR spectra identical with those of the enantiomer.

(2R,3S,5R)-c-2-Methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane c-3-Oxide Methiodide ((+)-9). Using the same procedure described for (-)-1 and starting from (+)-8, we obtained compound (+)-9 in 90% yield: mp 152–154 °C (lit. 5 mp 165–168 °C for the racemate); $[\alpha]^{20}_D$ +29.6° (EtOH); CD (EtOH) λ 243 nm; $\Delta \epsilon$ = -0.127. The IR and 1 H NMR spectra are identical with those of the racemate.

In the same way, starting from (-)-8, we obtained (2S,3R,5S)-c-2-methyl-r-5-[(dimethylamino)methyl]-1,3-oxathiolane c-3-oxide methiodide ((-)-9) in 90% yield: mp 153-154 °C; $[\alpha]^{20}_D$ -29.0° (EtOH); CD (EtOH) λ 243 nm; $\Delta\epsilon$ = +0.144. IR and ¹H NMR spectra are identical with those of the enantiomer.

(2R,5R)-cis-2-Methyl-5-[(dimethylamino)methyl]-1,3-oxathiolane 3,3-Dioxide ((-)-4). To a sample of 1.0 g of (-)-3 (or (+)-8) in CH₃COOH (5 mL) was added 2.5 mL of 30% H₂O₂, and the solution was left at room temperature for 24 h. The reaction mixture was made alkaline with NaHCO₃ and extracted with CHCl₃ to give 0.8 g of an oil, which was purified from some starting material through column chromatography, with the same eluent as used for (-)-3: yield 0.65 g; $[\alpha]^{20}_{\rm D}$ -42.0° (EtOH). The IR and ¹H NMR spectra are identical with those of the racemate.

In the same way, starting from (+)-3 (or (-)-8), we obtained (2S,5S)-cis-2-methyl-5-[(dimethylamino)methyl]-1,3-oxathiolane 3,3-dioxide ((+)-4): $[\alpha]^{20}_D$ +41.2° (EtOH). IR and 1 H NMR spectra are identical with those of the enantiomer.

(2R,5R)-cis-2-Methyl-5-[(dimethylamino)methyl]-1,3-oxathiolane 3,3-Dioxide Methiodide ((-)-2). Using the same procedure as described for (-)-1, and starting from (-)-4, we obtained compound (-)-2 in 90° yield: mp 201–202 °C (lit. 5 mp 178–180 °C for the racemate); $[\alpha]^{20}_D$ –12.5° (EtOH). IR and ¹H NMR spectra are identical with those of the racemate.

In the same way, starting from (+)-4, we obtained (2S,5S)-cis-2-methyl-5-[(dimethylamino)methyl]-1,3-oxathiolane 3,3-dioxide methiodide ((+)-2) in 90% yield: mp 200-202 °C; $[\alpha]^{20}_D$ +11.9° (EtOH). IR and ¹H NMR spectra are identical with those of the enantiomer.

Pharmacology. The protocols used to obtained the results shown in Table I on guinea pig ileum and frog rectus abdominis have been previously reported.⁴

Acknowledgment. We thank Cristina Bellucci for her excellent technical assistance.

Registry No. (\pm) -1, 109280-12-8; (+)-1, 109280-06-0; (-)-1, 109280-05-9; (\pm) -2, 98311-68-3; (+)-2, 109280-11-7; (-)-2, 109280-10-6; (\pm) -3, 109280-01-5; (+)-3, 109280-03-7; (-)-3, 109280-02-6; (+)-4, 109280-09-3; (-)-4, 109280-14-0; (+)-5, 109361-01-5; (-)-5, 109361-02-6; (+)-6, 109361-03-7; (+)-7, 103066-62-2; (-)-7, 103066-64-4; (+)-8, 109280-04-8; (-)-8, 109280-07-1; (\pm) -9, 109280-13-9; (+)-9, 109361-04-8; (-)-9, 109280-08-2.

Additions and Corrections

1987, Volume 30

P. W. Erhardt: In Search of the Digitalis Replacement.

Page 233. Drug 4 (dopexamine) should not be included in Table I since it is predominantly a β_2 -adrenergic receptor agonist and DA₁-dopaminergic receptor agonist with only very weak activity at β_1 -adrenergic receptors.