Notes

Nucleosides. 146. 1-Methyl-5-(2-deoxy-2-fluoro- β -D-arabinofuranosyl)uracil, the C-Nucleoside Isostere of the Potent Antiviral Agent 1-(2-Deoxy-2-fluoro- β -D-arabinofuranosyl)thymine (FMAU). Studies Directed toward the Synthesis of 2'-Deoxy-2'-Substituted Arabino Nucleosides. 6¹

Krzysztof W. Pankiewicz,[†] Barbara Nawrot,[†] Hakan Gadler,[‡] Richard W. Price,[‡] and Kyoichi A. Watanabe^{*†}

Laboratory of Organic Chemistry and Cotzias Laboratory of Neuro-Oncology, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division of Graduate School of Medical Sciences, Cornell University, New York, New York 10021. Received June 8, 1987

The synthesis of 5-(2-deoxy-2-fluoro- β -D-arabinofuranosyl)-1-methyluracil (1, C-FMAU), an isostere of the potent antiviral and antitumor nucleoside 1-(2-deoxy-2-fluoro- β -D-arabinofuranosyl)thymine (2'-fluoro-5-methyl-*ara*-U or FMAU), was achieved. Pseudouridine (2) was converted into 4,5'-anhydro-3'-O-acetyl-2'-O-triflylpseudouridine (4), which was treated with tris(dimethylamino)sulfur(1⁺) difluorotrimethylsilicate (TASF) to give 4,5'-anhydro-5-(3-O-acetyl-2-deoxy-2-fluoro- β -D-arabinofuranosyl)-1-methyluracil (5b) in 40% yield. Acid hydrolysis of the 4,5'-anhydro linkage of 5b with Dowex 50 (H⁺) afforded C-FMAU. The inhibitory activity of C-FMAU against HSV-1 and HSV-2 was about 10-fold less than that of FMAU in tissue culture. This compound, however, did not show significant activity in mice inoculated with HSV-1 or HSV-2.

Our previous studies with uracil and cytosine nucleosides bearing a 2'-fluoro substituent in the "up" (arabino) configuration provided a host of potent agents against many DNA viruses.²⁻⁶ Most notable among these are 2'fluoro-5-iodo-ara-C (FIAC) and 2'-fluoro-5-methyl-ara-U (FMAU), both of which are effective in vitro and in vivo against herpes simplex viruses types 1 and 2 (HSV-1 and 2) and Varicella zoster virus (VZV). Both compounds inhibited human Cytomegalovirus (CMV)^{4,7} as well as Epstein-Barr virus (EBV) in vitro.⁸ FMAU, in addition, was shown⁹ to be highly active in vivo against mouse leukemia P-815 or L-1210 made resistant to arabinosylcytosine (ara-C), and underwent phase 1 clinical trials.¹⁰ More recently, the triphosphates of FIAC and FMAU have been shown¹¹ to be the most potent inhibitors of woodchuck hepatitis virus and human hepatitis B virus DNA polymerases in vitro. Our structure-activity relationship studies^{2,3,6,12-14} showed that the 2'-fluoro substituent in the arabinosyl moiety confers far better antiviral activity than does a 2'-OH or a 2'-H. Fluorine at C-2' was also shown to be a better choice than other halogen substituents at this locus.

The C-nucleoside 5-(2-deoxy-2-fluoro- β -D-arabinofuranosyl)-1-methyluracil (1, 2'-fluoro-1-methyl-5-ara-U or C-FMAU) is an isosteric and isoelectronic isomer of FMAU and, therefore, is hoped to exhibit antiviral activity similar to that of FMAU. Though C-FMAU is expected to be less susceptible than FMAU to phosphorylation catalyzed by the viral thymidine kinase (TK) because the former is structurally a little more remote from natural thymidine than FMAU, this C-nucleoside may have a better therapeutic index because phosphorylation of C-FMAU by the TK of a normal cell would be much more difficult than that of FMAU.

For the synthesis of C-FMAU, we utilized the method recently developed in our laboratory to synthesize 2'-substituted C-nucleosides from pseudouridine¹⁵ (2, Scheme I). The key intermediate is 4,5'-anhydro-1-methylpseudouridine (3), in which oxygen at C4 in the uracil ring is linked to C-5' and thereby precludes its participation in nucleophilic reaction that occurs on C-2'. Anhydro-Cnucleoside 3 was regioselectively acetylated at C-3', and then triflylated to give 3'-O-acetyl-4,5'-anhydro-1methyl-2'-O-triflyl-pseudouridine (4). Although 4 had been smoothly converted into the 2'-substituted-arabinosyl

- Relevant papers of this series: Pankiewicz, K. W.; Watanabe, K. A.; Takayanagi, H.; Itoh, T.; Ogura, H. J. Heterocycl. Chem. 1985, 22, 1703. Pankiewicz, K. W.; Watanabe, K. A. Nucleosides & Nucleotides 1985, 4, 613. Also, ref 15.
- (2) Watanabe, K. A.; Reichman, U.; Hirota, K.; Lopez, C.; Fox, J. J. J. Med. Chem. 1979, 22, 21.
- (3) Fox, J. J.; Lopez, C.; Watanabe, K. A. Medicinal Chemistry Advances; de las Heras, F. G., S., Vega, Eds.; Pergamon: New York, 1981; p 27.
- (4) Lopez, C.; Watanabe, K. A.; Fox, J. J. Antimicrobial Agents Chemother. 1980, 17, 803. Colacino, J. M.; Lopez, C. Ibid. 1985, 28, 252.
- (5) Schinazi, R. F.; Peters, J.; Sokol, M. K.; Nahmias, A. J. Antimicrobial Agents Chemother. 1983, 24, 95.
- (6) Su, T.-L.; Watanabe, K. A.; Schinazi, R. F.; Fox, J. J. J. Med. Chem. 1986, 29, 151.
- Mar, E.-C.; Patel, P. C.; Cheng, Y.-C.; Fox, J. J.; Watanabe, K. A.; Huang, E.-S. J. Gen. Virol. 1984, 65, 47.
- (8) Lin, J.-C.; Smith, M. C.; Cheng, Y.-C.; Pagano, J. S. Science (Washington, D.C.) 1983, 221, 579.
- (9) Burchenal, J. H.; Chou, T.-C.; Lokys, L.; Smith, R. S.; Watanabe, K. A.; Su, T.-L.; Fox, J. J. Cancer Res. 1982, 42, 2598.
 10) Fanucchi, M. P.; Leyland-Jones, B.; Young, C. W.; Burchenal,
- (10) Fanucchi, M. P.; Leyland-Jones, B.; Young, C. W.; Burchenal, J. H.; Watanabe, K. A.; Fox, J. J. Cancer Treat. Rep. 1985, 69, 55.
- (11) Hantz, O.; Allaudeen, H. S.; Ooka, J.; De Clercq, E.; Trepo, C. Antiviral Res. 1982, 2, 187.
- (12) Fox, J. J.; Lopez, C.; Watanabe, K. A. Antiviral Chemotherapy: Design of Inhibitors of Viral Functions; Gauri, K. K., Ed.; Academic: New York, 1981; p 219.
- (13) Watanabe, K. A.; Su, T.-L.; Klein, R. S.; Chu, C. K.; Matsuda, A.; Chun, M. W.; Lopez, C.; Fox, J. J. J. Med. Chem. 1983, 28, 152.
- (14) Watanabe, K. A.; Su, T.-L.; Reichman, U.; Greenberg, N.; Lopez, C.; Fox, J. J. J. Med. Chem. 1984, 27, 91.
- (15) Pankiewicz, K. W.; Kim, J.-H.; Watanabe, K. A. J. Org. Chem. 1985, 50, 3319.

0022-2623/87/1830-2314\$01.50/0 © 1987 American Chemical Society

[†]Laboratory of Organic Chemistry.

[‡]Cotzias Laboratory of Neuro-Oncology.

Notes

Scheme I

C-nucleosides by treatment with acetoxy, azide, chlorine, or bromine nucleophile,¹⁵ many attempts at nucleophilic displacement of the triflate group of 4 with fluorine nucleophile including tetraalkylammonium fluoride, Amberlyst A-26 (F⁻), CsF, or KF under various conditions failed. For example, treatment of 4 with Amberlyst A-26 (\mathbf{F}) in acetonitrile afforded a major product, which was isolated in 15-30% yield by silica gel column chromatography. The compound was identical with 4,5'-anhydro- $5-(2,3-di-O-acetyl-\beta-D-arabinofuranosyl)-1-methyluracil$ (5a), which we had synthesized previously.¹⁵ The same product 5a was also obtained as the major product when 4 was treated with CsF in N,N-dimethylformamide. Apparently, acetate ion that was liberated from 4 during the reaction attacked the intact 4 at C-2' to displace the triflate to give rise to 5a. These results indicate that an analogue of 4 in which the 3'-hydroxyl is protected by a more stable group, such as benzyl, may be converted into the 2'-fluoro arabino derivative by treatment with fluoride ion. Thus, we attempted to prepare such an analogue by treatment of 3 with di-n-butyltin oxide followed by benzyl bromide.¹⁶ The tin derivative of 3, however, did not react with benzyl bromide in N,N-dimethylformamide at room temperature. At elevated temperatures, only a less polar product was formed, which contained bromine and benzyl groups in the molecule. The ¹H NMR spectrum of this product revealed the lack of an AB quartet for H5', 5" characteristic for the intact 4,5'-anhydro structure. There were two exchangeable proton doublets indicating the presence of two secondary hydroxyl groups, but no exchangeable proton triplet characteristic for a primary hydroxyl and N3-H in the spectrum. These spectral data together with elemental analyses are fully consistent with the structure of 5-(5bromo-5-deoxy-β-D-ribofuranosyl)-1-methyl-3-benzyluracil (6a). On acetylation of 6a, the corresponding 2',3'-di-Oacetyl derivative 6b was formed. Finally, we found that fluorination went relatively smoothly when 4 was treated with tris(dimethylamino)sulfur(trimethylsilyl)difluoride

(TASF),¹⁷ and 4,5'-anhydro-5-(3-O-acetyl-2-deoxy-2fluoro- β -D-arabinofuranosyl)-1-methyluracil (**5b**) was obtained in ~40% yield in pure state. Hydrolysis of the 4,5'-anhydro linkage with simultaneous removal of 3'-Oacetyl with Dowex 50 (H⁺) afforded C-FMAU in 55% yield as a low-melting solid.

C-FMAU showed activity in vitro against HSV-1, HSV-2, and VZV. The ED₅₀ values for C-FMAU were 8.5, 23, and 6.4 μ M, respectively, while the values for FMAU in parallel experiments were 0.06, 0.13, and 0.02 μ M, respectively, against these viruses in vitro. No morphological cytotoxicity was observed at a concentration of 1000 μ M for 3 days, or a concentration of 100 μ M for 9 days.

Treatment with C-FMAU did not increase the survival of HSV-1 or HSV-2 infected mice. In addition, infected animals receiving the highest doses of C-FMAU, 30 or 10 mg/kg per day, showed probable signs of neurotoxicity on day 3 and later; these animals exhibited jitter and apparent muscular spasms when handled. Neither uninfected control mice nor infected, saline-treated mice developed this effect.

Experimental Section

Melting points were determined on a Thomas-Hoover capillary apparatus and are uncorrected. Column chromatography was performed on a silica gel G60 (70–230 mesh, ASTM, Merck). Thin-layer chromatography was performed on Analtech Uniplates with short wave length UV light for vizualization. Elementary analyses were performed by M-H-W Laboratories, Phoenix, AZ, or Spang Microanalytical Laboratory, Eagle Harbor, MI. ¹H NMR spectra were recorded on a JEOL FX90Q spectrometer with Me₄Si as the internal standard. Chemical shifts are reported in ppm (δ) and signals are described as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (double doublet), dt (double triplet), br s (broad singlet). Values given for coupling constants are first order.

4,5'-Anhydro-1-methylpseudouridine (3). The method of Pankiewicz et al.¹⁵ was employed to prepare 3 from 1-methylpseudouridine¹⁸ in 37% yield, mp 250–251 °C, undepressed upon

⁽¹⁶⁾ Wagner, D.; Verheyden, J. P. H.; Moffatt, J. G. J. Org. Chem. 1974, 39, 24.

 ⁽¹⁷⁾ Doboszewski, B.; Hay, G. W.; Szarek, W. A. Can. J. Chem. 1987, 65, 412. Commercially available from Aldrich Chemical Co., Milwaukee, WI.

admixture with an authentic sample,¹⁵

4,5'-Anhydro-3'-O-acetyl-2'-O-triflyl-1-methylpseudouridine (4). A mixture of **3** (1.44 g, 6 mmol) and Bu₂SnO (300 mg, 6 mmol) in MeOH (150 mL) was heated at reflux until a clear solution was obtained. The solvent was removed in vacuo, and the residue was dissolved in DMF (60 mL) and treated with Ac_2O (0.6 mL) for 3 h at room temperature. After concentration of the mixture in vacuo, the residue was triturated several times with Et_2O . The solid residue was dissolved in water (60 mL), and the solution was washed with Et_2O and concentrated in vacuo, and the residue was further dried azeotropically with toluene to give a 4:1 mixture (¹H NMR) of 3'- and 2'-acetates in quantitative yield.

A 1.5-g (5.3-mmol) sample of the above mixture was suspended in CH₂Cl₂ (200 mL). DMAP (648 mg, 5.3 mmol) and Et₃N (1.5 mL, 10.6 mmol) were added to the suspension followed by triflyl chloride (1.2 mL, 10.6 mmol). The mixture was stirred at room temperature for 1 h and concentrated in vacuo, and the residue was chromatographed on a silica gel column (CHCl₃-EtOH, 49:1, v/v) to give 4 (1.8 g, 75%), mp 135–136 °C dec [lit.¹⁵ mp 130–135 °C dec].

4,5'-Anhydro-5-(2,3-di-O-acetyl- β -D-arabinofuranosyl)-1methyluracil (5a). A mixture of 4 (35 mg, 0.08 mmol) and CsF (30 mg) in DMF (1 mL) was heated at 90 °C for 24 h and then concentrated in vacuo. The residue was dissolved in CHCl₃ (10 mL), washed with water (2 × 2 mL), and dried (Na₂SO₄). The solvent was removed in vacuo, and the residue was purified on a silica gel column with CHCl₃-EtOH (9:1, v/v) as the eluent to give 5a (8 mg, 30%). The IR and ¹H NMR spectra of this product were identical with those of 5a prepared earlier.¹⁵ In a similar manner, treatment of 4 with Amberlyst A-26 (F⁻) in CH₂Cl₂ (refluxing for 48 h) afforded 5a in ~15% yield.

4,5'-Anhydro-5-(3-O-acetyl-2-deoxy-2-fluoro-β-D-arabinofuranosyl)-1-methyluracil (5b). To a solution of 4 (150 mg, 0.36 mmol) in dry CH_2Cl_2 (2 mL) was added a solution of TASF¹⁷ (300 mg, 1.08 mmol) in dry CH₂Cl₂ in an atmosphere of argon at -70 °C. After the mixture was stirred at -72 °C for 30 min, a second charge of TASF (200 mg, 0.72 mmol) was added. The mixture was allowed to warm to room temperature, stirring was continued for 2 h, and then the reaction was quenched by addition of water (0.5 mL). The organic layer was separated, washed with water (0.5 mL), dried $(MgSO_4)$, and concentrated in vacuo. The residue was chromatographed on a silica gel column (CHCl₃-EtOH, 95:5, v/v) to give 5b (40 mg, 38.8% after recrystallization from Et₂O), mp 270–274 °C. ¹H NMR (DMSO- d_6): δ 2.11 (s, 3 From E₁₂(0), mp 2/0-2/4 °C. ¹H NMR (DMSO- d_6): δ 2.11 (s, 3) H, Ac), 3.88 (s, 3 H, Me), 4.08 (d, 1 H, H-5', $J_{4',5'} = 0$, $J_{5',5''} = 13.2$ Hz), 4.40 (m, 1 H, H-4'), 4.57 (dd, 1 H, H-5'', $J_{4',5''} = 2.75$, $J_{5',5''} = 13.1$ Hz), 5.26 (dd, 1 H, H-3', $J_{3',F} = 18.66$ Hz), 5.31 (dd, 1 H, H-1', $J_{1',2'} = 8.23$, $J_{1',F} = 17.29$ Hz), 5.35 (dd, 1 H, H-2', $J_{1',2'} = 8.23$, $J_{2',F} = 53.0$ Hz), 8.24 (s, 1 H, H-6). ¹⁹F NMR (DMSO- d_6): δ 76.8 (in propose to CFC1) (dd, $J_{1'} = 52.7$, $J_{1'} = 1.86$ Hz) δ -76.8 (in reference to CFCl₃) (dd, $J_{F,2'} = 53.7$, $J_{F,3'} = 18.6$ Hz). ¹³C NMR (DMSO- d_6): δ 172.6 (s, C-2), 170.1 (s, C-4), 151.5 (s, C-2), 170.1 (s, C-4), 151.5 (s, C-2), 170.1 (s, C-4), 151.5 (s, C-4) C-6), 104.0 (d, C-5), 93.3 (d, C-2', $J_{F,C2'}$ = 181.6 Hz), 80.0 (d, C-4', $J_{F,C4'} = 6.1 \text{ Hz}$, 78.8 (d, C-1', $J_{F,C1'} = 29.3 \text{ Hz}$), 75.1 (d, C-3', $J_{F,C3'}$ = 21.9 Hz), 73.8 (s, C-5'), 41.3-36.6 (m, DMSO- d_6 and 1-Me), 2.05 (s, Ac). Anal. Calcd for $C_{12}H_{13}FN_2O_5$: C, 50.70; H, 4.58; F, 6.69; N, 9.36. Found: C, 50.31; H, 4.57; F, 6.75; N, 9.57. MS, (m/e): 285 (MH⁺).

5-(2-Deoxy-2-fluoro-β-D-arabinofuranosyl)-1-methyluracil (C-FMAU, 1). A mixture of **5b** (285 mg, 1 mmol) and Dowex 50 (H⁺) (5 mL) in water (50 mL) was stirred for 3 h at 70 °C. The resin was removed by filtration and washed with water, and the combined filtrate and washings were concentrated in vacuo. The residue was chromatographed on a silica gel column (CHCl₃-EtOH, 9:1, v/v) to give 1 (136 mg, 55%) as a syrup, which crystallized upon standing at room temperature, mp 65–67 °C. ¹H NMR (DMSO-d₆): δ 3.28 (s, 3 H, NMe), 3.50 (m, 2 H, H-5', Notes

5''), 3.71 (m, 1 H, H-4'), 4.12 (dt, 1 H, H-3', became dd upon addition of D₂O, $J_{2',3'} = 0$, $J_{3',4'} = 3.0$, $J_{3',F} = 17.0$ Hz), 4.80 (t, 1 H, exchangeable, CH₂OH), 4.83 (dd, 1 H, H-1', $J_{1',2'} = 2.5$, $J_{1',F} = 29.64$ Hz), 4.92 (dd, 1 H, H-2', $J_{1',2'} = 2.5$, $J_{2',3'} = 0$, $J_{2',F} = 49.12$ Hz), 5.63 (d, 1 H, OH), 7.53 (d, 1 H, H-6, collapsed to a singlet upon addition of D₂O). ¹⁹F NMR (DMSO- d_6): δ -73.32 (octet, $J_{2',F} = 52.2$, $J_{1',F} = 17.6$, $J_{3',F} = 28.8$ Hz). ¹³C NMR (DMSO- d_6): δ 162.8 (s, C-2), 151.1 (s, C-4), 143.7 (s, C-6), 107.8 (d, C-5, $J_{F,C5} = 4.9$ Hz), 96.9 (d, C-2', $J_{F,C2'} = 185.5$ Hz), 85.6 (s, C-4'), 76.1 (d, C-1', $J_{F,C1'} = 9.8$ Hz), 75.1 (d, C-3', $J_{F,C3'} = 2.4$ Hz), 61.5 (s, C-5'), 35.7 (s, NMe). Anal. Calcd for C₁₀H₁₃FN₂O₅: C, 46.15; H, 5.03; F, 7.10; N, 10.77. Found: C, 46.04; H, 5.27; F, 7.12; N, 10.52.

5-(5-Bromo-5-deoxy- β -D-ribofuranosyl)-3-benzyl-1methyluracil (6a). A mixture of 3 (720 mg, 3 mmol) and Bu₂SnO(750 mg) in MeOH (30 mL) was heated under reflux until a clear solution was obtained. The mixture was concentrated, the residue was dissolved in DMF, and benzyl bromide (0.1 mL) was added. After being stirred for 3 h at room temperature, the mixture was heated at 100 °C for 1 h. The mixture was concentrated in vacuo, and the residue was chromatographed over a silica gel column (CHCl₃-EtOH, 33:1, v/v) to give **6a** (240 mg) as a foam. ¹H NMR (DMSO-d₆): δ 3.32 (s, 3 H, NMe), 3.69-4.10 (m, 5 H, H-2', 3', 4', 5', 5''), 4.57 (d, 1 H, H-1', J_{1'2'} = 3.8 Hz), 4.98 (s, 2 H, CH₂Ph), 5.00 (d, 1 H, OH), 5.10 (d, 1 H, OH), 7.27 (s, 5 H, Ph), 7.72 (s, 1 H, H-6). Anal. Calcd for C₁₇H₁₄BrN₂O₅: C, 49.65; H, 4.65; Br, 19.43; N, 6.81. Found: C, 50.12; H, 4.71; Br, 19.06; N, 6.90.

5-(2,3-Di-O-acetyl-5-bromo-5-deoxy- β -D-ribofuranosyl)-3benzyl-1-methyluracil (6b). Acetylation of 6a with Ac₂O in pyridine afforded, after concentration of the mixture in vacuo and several coevaporations of the residue with toluene and EtOH, crystalline 6b in quantitative yield, mp 118-119 °C. ¹H NMR (DMSO-d₆): δ 2.03 (s, 6 H, 2 Ac), 3.32 (s, 3 H, NMe), 3.67-3.74 (m, 2 H, H-5', 5''), 4.12-4.18 (m, 1 H, H-4'), 4.77 (d, 1 H, H-1', $J_{1'2'} = 4.9$ Hz), 4.98 (s, 2 H, CH₂Ph), 5.19-5.42 (m, 2 H, H-2', 3'), 7.27 (s, 5 H, Ph), 7.87 (s, 1 H, H-6). Anal. Calcd for C₂₁H₂₃BrN₂O₇: C, 50.92; H, 4.68; Br, 16.13; N, 5.65. Found: C, 50.96; H, 4.72; Br, 15.98; N, 5.51.

HSV Infection in Vitro. The antiviral efficacy of C-FMAU was assessed in a microtiter assay as previously described.¹⁹ Briefly, 10-fold dilutions of C-FMAU were tested against HSV-1, HSV-2, and VZV in human foreskin fibroblasts. The medium was replenished every 3 days, and the ED_{50} of the drug was determined by scoring the inhibition of cytopathic effect. Toxicity of the drug was assessed by observing uninfected cell monolayers.

Animal Model of HSV Infection. Female Balb/c mice, body weight approximately 15–16 g were infected with HSV-1 or HSV-2. Animals were infected either intraocularly (HSV-1, strain SC-16) or intracerebrally (HSV-2, strain G). The virus dilutions were chosen so that approximately 50% of the animals were killed by day 8. Intraocular injections were given in 4 μ L of saline, intracerebral injections in 20 μ L of saline. Control animals received only saline. All mice were injected intraperitoneally twice daily with C-FMAU at concentrations ranging from 30 mg/kg per day to 0.1 mg/kg per day or with saline only, in a volume of 100 μ L. Treatment began 3 days after intraocular infection or approximately 6 h after intracerebral infection and was continued for 5 days.

Acknowledgment. This investigation was supported in part by funds from the National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services (Grants CA-08748, 33907 and 18856). We thank Anna Ptak for the excellent technical assistance.

Registry No. 1, 110419-25-5; 3, 97416-19-8; 3 (3'-acetate), 97416-31-4; 3 (2'-acetate), 97416-32-5; 4, 97430-85-8; 5a, 97416-23-4; 5b, 110419-24-4; 6a, 110419-26-6; 6b, 110419-27-7.

⁽¹⁸⁾ Reichman, U.; Hirota, K.; Chu, C. K.; Watanabe, K. A.; Fox, J. J. J. Antibiot. 1977, 30, 129. Matsuda, A.; Chu, C. K.; Reichman, U.; Pankiewicz, K.; Watanabe, K. A.; Fox, J. J. J. Org. Chem. 1981, 46, 3603.

⁽¹⁹⁾ Matulic-Adamic, J.; Watanabe, K. A.; Price, R. W. Chem. Scr. 1986, 26, 127.