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accounts for 80% of the variation in partitioning data while 
the other factor accounts for an additional 15%. Solute 
size is identified as the major factor. This can be param­
eterized by what we term the isotropic surface area of a 
solute. The isotropic surface area is that area of the solute 
tha t interacts with the solvent water in a "nonspecific" 
manner. 

The log P of a compound, which is considered a measure 
of its "lipophilicity", is proportional to the free energy of 
distribution of the solute between water and the nonpolar 
phase. The analysis carried out here deconvolutes this free 
energy into two components, a result consistent with 
cavity-based theoretical t reatments of aqueous solubility 
and partitioning from an aqueous phaase into a nonpolar 
phase.22 '23 The driving force for this latter process is 
considered to be the increase in entropy associated with 
desolvation of the solute on transfer from the aqueous to 
the nonpolar phase.6,21 The use of the isotropic surface 
area of a solute supermolecule to represent solute structure 
is consistent with this view. 

The treatment presented considers solute hydration, and 
therefore intramolecular hydrogen bonding, explicitly. The 
number and positions of waters of hydration in the su­
permolecule are treated, at this point, as adjustable pa­
rameters. In order to generalize the approach, a suitable 
function must be developed tha t will theoretically deter­
mine the number and positions of hydration in a given 
solute. This is presently under study. 

An advantage of this approach is that the isotropic 
surface area is a function of solute conformation. For the 
limited set of solutes on which this first report is based, 

Peptides are of central importance in all living systems. 
Hence, they may be considered to be the drugs of the 
future. In drug development, quantitative structure-ac­
tivity relationships (QSARs) are essential to optimize the 
structure to give desired biological activities. Here we 
present a strategy for developing peptide QSAR. 

The quantitative description of amino acids is crucial 
for QSARs of peptides. In a pioneering work Sneath1 

derived amino acid descriptors from qualitative (interval) 
data for the 20 coded amino acids. In a recent paper2 we 
extended the multivariate approach of Sneath to contin­
uous amino acid properties. The scales derived from this 
matrix are relevant in peptide QSAR.3 Here we have 
further expanded the property matrix by including nine 
HPLC measurements of dansylated amino acids at dif-

(1) Sneath, P. H. A. J. Theoret. Biol. 1966, 12, 157. 
(2) Sjostrom, M.; Wold, S. J. Mol. Evol. 1985, 22, 272. 
(3) Hellberg, S.; Sjostrom, M.; Wold, S. Acta Chem. Scand., Ser. 

B 1986, 40, 135. 

the members are of limited flexibility. In order to fully 
understand the role of solute size on partitioning, it will 
be necessary to consider size as a function of conformation. 

The second factor, while relatively small in its general 
contribution to partitioning, must also be identified in 
order to completely understand structural effects of the 
solute on partitioning behavior. Work on these aspects 
of the problem are under investigation. 

Registry No. Methanol, 67-56-1; ethanol, 64-17-5; propanol, 
71-23-8; butanol, 71-36-3; pentanol, 71-41-0; hexanol, 111-27-3; 
heptanol, 111-70-6; acetic acid, 64-19-7; propionic acid, 79-09-4; 
butyric acid, 107-92-6; hexanoic acid, 142-62-1; pentanoic acid, 
109-52-4; trichloroacetic acid, 76-03-9; dichloroacetic acid, 79-43-6; 
chloroacetic acid, 79-11-8; methyl acetate, 79-20-9; ethyl acetate, 
141-78-6; acetone, 67-64-1; ethylamine, 75-04-7; propylamine, 
107-10-8; trimethylamine, 75-50-3; n-butylamine, 109-73-9; di-
ethylamine, 109-89-7; pyridine, 110-86-1; aniline, 62-53-3; phenol, 
108-95-2; benzoic acid, 65-85-0; benzamide, 55-21-0; 2-naphthol, 
135-19-3; hydroquinone, 123-31-9; p-hydroxybenzaldehyde, 123-
08-0; o-hydroxybenzoic acid, 69-72-7; p-hydroxybenzoic acid, 
99-96-7; o-hydroxyanisole, 90-05-1; p-hydroxyanisole, 150-76-5; 
o-nitrophenol, 150-76-5; m-nitrophenol, 554-84-7; p-nitrophenol, 
100-02-7; m-nitrobenzoic acid, 121-92-6; o-aminobenzoic acid, 
118-92-3; p-aminobenzoic acid, 150-13-0; m-nitroaniline, 99-09-2; 
o-nitroaniline, 88-74-4; p-nitroaniline, 100-01-6; vanillin, 121-33-5; 
o-vanillin, 148-53-8; isovanillin, 621-59-0; isobutyl alcohol, 78-83-1; 
phenobarbital, 50-06-6; pentobarbital, 76-74-4; octanol, 111-87-5; 
ether, 60-29-7; chloroform, 67-66-3; benzene, 71-43-2; carbon 
tetrachloride, 56-23-5; hexane, 110-54-3; progesterone, 57-83-0; 
hydroxyprogesterone, 68-96-2; cortexone, 64-85-7; cortexolone, 
152-58-9; cortisone, 53-06-5; Cortisol, 50-23-7; testosterone, 58-22-0; 
pregnenolone, 145-13-1; corticosterone, 50-22-6; aldosterone, 52-
39-1; hydroxypregnenolone, 12041-98-4; water, 7732-18-5. 

ferent pH and eluent mixtures4 (see Table I). The new 
multiproperty matrix (available as supplementary mate-

(4) Skagerberg, B.; Sjostrom, M.; Wold, S., manuscript in prepa­
ration. 

(5) The Merck Index, 9th ed., 1977. 
(6) Handbook of Biochemistry; CRC: Baca Raton, FL, 1968. 
(7) Seydel, J. K.; Schaper, K.-J. Chemische Struktur und biolo-

gische Aktivitat von Wirkstoffen; Verlag Chemie: Weinheim, 
1979. 

(8) Roberts, G. C. K.; Jardetzky, O. Adv. Protein Chem. 1970, 24, 
447. 

(9) Horsley, W.; Sternlicht, H.; Cohen, J. S. J. Am. Chem. Soc. 
1970, 92, 680. 

(10) Rosenthal, S. N.; Fendler, J. H. Adv. Phys. Org. Chem. 1976, 
13, 279. 

(11) Aboderin, A. A. Int. J. Biochem. 1971, 2, 537. 
(12) Woese, C. R.; Drugre, D. H.; Saxinger, S. A. Proc. Natl. Acad. 

Sci. U.S.A. 1966, 55, 966. 
(13) Jones, D. D. J. Theor. Biol. 1975, 50, 167. 
(14) Wolfenden, R.; Andersson, L.; Cullis, P. M.; Southgate, C. C. 
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The variation in amino acid sequence within sets of peptides is described by three principal properties, zx, z2, and 
z3, per varied amino acid position. These principal properties are derived from a principal components analysis 
of a matrix of 29 physicochemical variables for the 20 coded (in mRNA) amino acids. The scales z1; z2, and z3 are 
used to construct informative sets of analogues for exploring and developing quantitative structure-activity relationships 
(QSAR) of peptides. For the QSARs, the multivariate partial least squares (PLS) method is used. Multivariate 
QSARs are developed for four families of peptides, and it is shown how these QSARs can predict the activity of 
new peptide analogues. 
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Table I. 
variable 

no. 

i-t 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

14 

15 

16 

17 
18 

Variables Used To Characterize the Amino Acids 

ref 

5 
5 
6 
7 
8 
8 
8 
9,10 
9,10 
9,10 
9,10 
11 

12 

13 

14 

15 
16 

property 
molecular weight 
PKCOOH (COOH on C„) 
pKNHs (NH2 on C„) 
pi, pH at the isoelectric point 
substituent van der Waals volume 
>H NMR for C„-H (cation) 
'H NMR for Ca-H (dipolar) 
*H NMR for C„-H (anion) 
13C NMR for C = 0 
13C NMR for Ca-H 
13C NMR for C = 0 in tetrapeptide 
13C NMR for C„-H in tetrapeptide 
R/ for l-N-(4-nitrobenzofurazono)amino acids 

in ethyl acetate/pyridine/water 
slope of plot l/(Rf - 1) vs. mol % H20 in 

paper chromatography 
dG of transfer of amino acids from Organic 

solvent to water 
hydration potential or free energy of transfer 

from vapor phase to water 
Rf, salt chromatography 
log P, partition coefficient for amino acids in 

19 

20 

17 

18 

21-29 

octanol/water 
log D, partition coefficient at pH 7.1 for 

acetylamide derivatives of amino acids in 
octanol water 

dG = RT In /; / = fraction buried/accessible 
amino acids in 22 proteins 

HPLC retention times for nine combinations of 
three different pH and three eluent mixtures 

Table II. Descriptor 

amino acid 
Ala (A) 
Val (V) 
Leu (L) 
He (I) 
Pro (P) 
Phe (F) 
Trp (W) 
Met (M) 
Lys (K) 
Arg (R) 
His (H) 
Gly (G) 
Ser (S) 
Thr (T) 
Cys (C) 
Tyr (Y) 
Asn (N) 
Gin (Q) 
Asp (D) 
Glu (E) 

Scales «i, z2, 

*1 

0.07 
-2.69 
-4.19 
-4.44 
-1.22 
-4.92 
-4.75 
-2.49 
2.84 
2.88 
2.41 
2.23 
1.96 
0.92 
0.71 

-1.39 
3.22 
2.18 
3.64 
3.08 

and z3 for Amino Acids" 

22 

-1.73 
-2.53 
-1.03 
-1.68 
0.88 
1.30 
3.65 

-0.27 
1.41 
2.52 
1.74 

-5.36 
-1.63 
-2.09 
-0.97 
2.32 
1.45 
0.53 
1.13 
0.39 

23 

0.09 
-1.29 
-0.98 
-1.03 
2.23 
0.45 
0.85 

-0.41 
-3.14 
-3.44 

1.11 
0.30 
0.57 

-1.40 
4.13 
0.01 
0.84 

-1.14 
2.36 

-0.07 
0 The first three score vectors of a principal component analysis 

of the amino acid data. 

rial) was extracted by principal components analysis (PCA) 
to give three scales zlt z2, and 23 (see Table II). We call 
these "principal properties" of the amino acids and ten­
tatively interpret them as related to hydrophilicity (zj), 
bulk (22), and electronic properties {zs). Cramer19 has in 
a similar way developed chemical descriptor scales 
(BCDEF) for common organic compounds. 

Prior to the introduction of the solid-phase technique, 
the synthesis of peptides was a severely limiting factor in 

(15) Weber, A. L.; Lacey, J. C, Jr. J. Mol. Euol. 1978, 11, 199. 
(16) Pliska, V.; Schmidt, M.; Fauchere, J.-L. J. Chromatogr. 1981, 

216, 79. 
(17) Fauchere, J.-L.; Pliska, V. Eur. J. Med. Chem. 1983, 18, 369. 
(18) Janin, J. Nature {London) 1979, 277, 491. 
(19) (a) Cramer, R. D., Ill J. Am. Chem. Soc. 1980,102,1837. (b) 

Cramer, R. D., Ill J. Am. Chem. Soc. 1980, 102, 1849. 
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peptide research. The development of automated peptide 
synthesis has now made it possible to synthesize a large 
number of analogues to an interesting "lead" peptide. The 
major problem is no longer to make peptides, but rather 
which peptides to prepare. For example, if a "lead" peptide 
is varied in four amino acid positions, it is possible to 
synthesize 160 000 different analogues using only the 20 
coded amino acids. Hence, given the time and economical 
constraint to make only a certain number of analogues, it 
is important to change the structure of the "lead" peptide 
according to an informationally optimal scheme. Such a 
scheme should allow the capture of as much information 
as possible about which chemical properties (and in which 
combinations) that are important for the biological effects, 
i.e., the construction of a QSAR. We note that the com­
mon practice to change one position at a time gives a set 
of analogues that contains the least possible amount of 
information. By applying simple principles of statistical 
design, we demonstrate that more informative sets can 
easily be constructed. 

When the biological activities of the synthesized peptides 
have been measured, multivariate data analytic methods 
are used to model the relation between the structural 
modifications of the peptides and the biological mea­
surements. The resulting QSAR can predict new more 
potent and selective analogues in the given family of 
peptides. We here demonstrate the use of the recently 
developed PLS model20,21 for relating multivariate de­
scriptor data (X) to uni- or multivariate biological activity 
data (Y). The PLS model also applies when the number 
of descriptors is larger than the number of analogues. 

Peptide QSAR 
The development of a QSAR for a series of peptides can, 

like other QSAR, be divided into five steps. 
(1) The description of the change in chemical structure 

within the series (here of peptide analogues). (2) The 
selection (design) of a series of analogues to be synthesized 
and tested. (3) The synthesis and the biological testing 
of the analogues (peptides). (4) The construction of a 
model that relates the change in chemical structure to the 
change in biological activity in the series. (5) The postu-
lation of new and possibly more active and selective ana­
logues to be synthesized and tested. 

Step 1: Structural Description, a. Qualitative and 
Semiquantitative Structural Description. The tra­
ditional approach to the structural description of peptides 
regards each amino acid as having unique qualitative 
features, e.g., an aromatic ring, an amide group, a hydroxyl 
group, a sulfhydryl group, ^-branching, ionized or no-
nionized, and hydrophobic side chains. The structure-
activity relationship is then discussed in terms of how the 
biological activity changes when certain features are in­
troduced or deleted in various positions in the peptides.22 

Molecular modelling gives the investigator a visual 
representation of the structure of several amino acid 
positions simultaneously. This approach may be relevant 
for finding "lead" compounds, but probably not for the lead 
optimization.23 

(20) Wold, H. In Systems under Indirect Observation; Joreskog, K. 
G., Wold, H., Eds.; North Holland: Amsterdam, 1982; Part II, 
pp 1-54. 

(21) Wold, S.; Ruhe, A.; Wold, H.; Dunn, W. J., Ill SIAM J. Sci. 
Stat. Comput. 1984, 5, 735. 

(22) Sawyer, W. H.; Manning, M. Annu. Rev. Pharmacol. 1973, 13, 
5. 

(23) Marshall, G. R. In Drug Design: Fact or Fantasy"!; Jolles, G., 
Wooldridge, K. R. H., Eds.; Academic: London, 1984; pp 
35-46. 
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The traditional qualitative approach has been semi-
quantified by Sneath,1 who assembled a matrix consisting 
mainly of qualitative variables related to the presence or 
absence of functional groups and various other features 
of the coded amino acids. By multivariate techniques he 
derived a similarity index, a dissimilarity index, and four 
scales (vj-Ujy), which he thereafter related to the biological 
activity of peptides. 

A similar approach was used by Simon24 who used 10 
indicator variables for the presence or absence of functional 
groups and features relating to intermolecular forces. From 
these variables he derived a dissimilarity index by com­
paring all peptides to the most active peptide in the set. 
This index he then related to the biological activity of the 
peptides. However, this approach has the drawback that 
it cannot be used to predict peptides with higher activity 
than the most active already included in the set. 

Additivity schemes such as the Free-Wilson/Fujita-Ban 
methods26 have been used to relate the change in amino 
acid composition of peptides to the biological activity.26 

That approach does not allow predictions to be made about 
peptide activity for peptides substituted with amino acids 
not already incorporated in the set. 

b. Quantitative Description. Univariate quantitative 
description of amino acid properties have been used by, 
for example, Burton27 and Borea et al.,28 who used tr (li-
pophilicity of the side chain of the amino acid) as a de­
scriptor of peptide structure and regression analysis to 
model the relationship to the biological activity. A mul­
tivariate quantitative approach using multiple regression 
analysis (MRA) has been used by Nadasdi et al.,29 who 
used 13-15 analogues and four to six descriptors, Char-
ton,30 who used 6-13 analogues and seven descriptors, and 
Fauchere et al.,31 who used seven analogues and five de­
scriptors. However, these authors studied peptide sets with 
only one varying amino acid position. 

c. Quantitative, Multivariate, and Multipositional 
Description. In our approach the variation of the chem­
ical structure of the individual amino acids is quantita­
tively reflected in a multitude of different chemical mea­
surements. For practical reasons this multitude of data 
is then contracted by a statistical analysis to give three 
scales, zu z2, and z3. The scales are then used for the 
structural description of peptide analogues and also, as 
described in "Step 2: Design", to construct test series of 
analogues. We presently investigate how much informa­
tion that may be lost in this contraction. For peptide sets 
with up to four varying positions, a full description with 
29 variables per position is certainly feasible. 

I. Derivation of Scales zlt z2, and z3. Each of the 
20 coded amino acids was described by 29 measures of 
various properties (see Table I). The variables were scaled 
to unit variance, except for the nine HPLC variables, which 
was scaled to variance 0.33. In this way the variables are 
given the same possibility to influence the statistical 

(24) Simon, Z. Rev. Roum. Biochim. 1968, 5, 319. 
(25) (a) Free, S. M.; Wilson, J. W. J. Med. Chem. 19G4, 7, 395. (b) 

Fujita, T.; Ban, T. J. Med. Chem. 1971, 14, 148. 
(26) Schaper, K.-J. Eur. J. Med. Chem. 1980, 15, 449. 
(27) Burton, J. In Peptides 1982; Walter de Gruyter: Berlin, 1983; 

pp 629-633. 
(28) Borea, P. A.; Sarto, G. P.; Salvadori, S.; Tomatis, R. Farmaco, 

Ed. Sci. 1983, 38, 521. 
(29) Nadasdi, L.; Medzihradszky, K. Peptides 1983, 4, 137. 
(30) Charton, M. In QSAR and Strategies in the Design of Bioac-

tive Compounds; Seydel, J. K., Ed.; VCH Verlagsgesellschaft: 
Weinheim, 1985; pp 260-263. 

(31) Fauchere, J.-L.; Lauterwein, J. Quant. Struct.-Act. Relat. 
1985, 4, 11. 

Table III. Loadings (pak) from PCA of the Descriptor Matrix 
for Amino Acids" 

Plk 

-0.09 
-0.20 
-0.06 

0.02 
-0.10 
-0.01 

0.01 
0.02 

-0.06 
-0.13 
-0.11 
-0.13 
-0.31 
0.28 

-0.28 
-0.21 

0.23 
-0.31 
-0.31 
-0.22 
-0.19 
-0.18 
-0.19 
-0.18 
-0.18 
-0.18 
-0.18 
-0.18 
-0.18 

P2k 

0.41 
-0.10 
-0.16 

0.09 
0.37 
0.33 
0.34 
0.26 
0.17 
0.11 
0.25 
0.10 

-0.05 
0.07 
0.16 

-0.31 
-0.24 
-0.07 
-0.04 
-0.22 

0.01 
0.00 

-0.02 
0.00 

-0.03 
-0.03 
-0.01 
-0.02 
-0.01 

P3k 

-0.10 
-0.20 

0.35 
-0.34 
-0.25 

0.36 
0.36 
0.41 

-0.13 
-0.03 
-0.21 
-0.05 
-0.02 

0.14 
0.04 
0.12 

-0.08 
0.09 
0.15 
0.26 

-0.04 
-0.01 
-0.01 
-0.04 
-0.02 

0.00 
-0.05 
-0.03 
-0.05 

" The loadings reflect the relative contribution of each variable 
(k) to the three z values. 

analysis and the nine HPLC variables will not dominate. 
The PCA of the scaled data gave three components zh z2, 
and z3, significant according to cross validation32 (Table 
II). The three z values can be regarded as "principal 
properties" of the amino acids summarizing all 29 mea­
surements. As seen from the loadings (Table III) of the 
PCA, the first component, zx, is mainly related to hydro-
philicity, z2 is additionally influenced by the size, XH NMR, 
and some hydrophobicity/hydrophilicity scales, while z3 
contains information from the pKa, pi, and *H NMR 
variables. We are presently working on an extension of 
the data matrix by including noncoded amino acids and 
variables such as *H and 13C NMR data, IR data, and TLC 
data recorded at different pH and solvent mixtures. 

II. Peptide Description. For a set of peptide ana­
logues, the chemical structure can now be quantified by 
describing each varied amino acid position with the three 
z values. Thus, a set of peptide analogues varied in m 
positions is described by 3m variables. 

Other possibly relevant descriptors may also be added, 
e.g., squared terms, cross terms, or descriptors of properties 
of the whole peptide, such as Rf values from TLC (see 
example III in the Results section). 

Step 2: Design. The selection of the peptide analogues 
(design) in a series is of the same importance as the se­
lection of compounds in other QSAR.33 A bad design will 

(32) Wold, S.; Albano, C.; Dunn, W. J., Ill; Edlund, U.; Esbensen, 
K.; Geladi, P.; Hellberg, S.; Johansson, E.; Lindberg, W.; 
Sjostrom, M. In Chemometrics-Mathemathics and Statistics 
in Chemistry, NATO ASI Series C No. 138; Kowalski, B. R., 
Ed.; Reidel: Dordrecht, 1984; pp 17-95. 

(33) (a) Hansch, C ; Unger, S. J. Med. Chem. 1973, 16, 1217. (b) 
Wootton, R.; Cranfield, R.; Sheppey, G. C; Goodford, P. J. J. 
Med. Chem. 1975,18, 607. (c) Austel, V. Eur. J. Med. Chem. 
1982, 17, 9. (d) Hellberg, S.; Sjostrom, M.; Skagerberg, B.; 
Wikstrom, C.; Wold, S., accepted for publication in Acta 
Pharm. Jugosl. 



Peptide QSAR Journal of Medicinal Chemistry, 1987, Vol. 30, No. 7 1129 

Table IV. Number of Peptide Analogues in Test Series 
Constructed by Fractional Factorials When Each Varied Position 
Is Described by Three z Values 

no. of varied positions 
1 
2 
3-5 
6-10 
11-21 

minimum no. of analogues 
4 
8 

16 
32 
64 

give data containing no or only little information con­
cerning the structure-activity relationship, whereas a good 
design will give data containing much information and may 
result in a successful QSAR. 

However, the design problem is generally overlooked. 
Thus the peptide sets with literature data used as examples 
in this article are not constructed by any design (to our 
knowledge). 

The intuitive way to select a set of peptide analogues 
is to change one amino acid position at a time.34 This 
"design", or rather lack of design, is inefficient. This is 
because the resulting data will not contain any informa­
tion about the joint influence of the substituted positions 
on the peptide activity. This inefficiency of "one feature 
at a time" designs is well-known in chemical engineering 
and statistics35 but seems to be unrecognized in peptide 
chemistry. 

Instead all positions of interest in the peptide should 
be varied simultaneously over all principal properties of 
the amino acids. One way of making such a design, in­
troduced in QSAR by Austel,33c is by a fractional factorial 
design,35 with 2q~r analogues. Here q = mj, where m is the 
number of varied positions and j the number of descriptors 
of each amino acid and r the reduction factor. This factor 
r must be chosen so that 2q~r is larger than q. With these 
designs, deviations from additivity can be detected and 
interactions between different positions can be estimated. 
Even if the substitution at different positions has just an 
additive influence on the activity, factorial designs give 
data that can model the structure-activity relationship 
with higher precision.35 Thus, the intuitive "one position 
at a time" design has the disadvantage to give data with 
less information and "consume" more peptide analogues 
than a proper design based on, for instance, fractional 
factorials. 

Our approach to the design problem is based on the 
result that each varied amino acid position, in a series of 
peptide analogues, can be approximately characterized by 
three principal properties, zlr z2, and z3 (Table II). In the 
case when, for example, four positions are varied (m = 4), 
and each is described by three z values (j = 3), a full 
factorial 2" design would require 24'3 = 4096 peptides to 
be synthesized and tested. With a fractional factorial 2q~r 

design it is possible to obtain information concerning the 
main factors in the QSAR using only 2(4-3)~8 = 16 peptides. 
Table IV shows the minimum number of analogues in sets 
of peptides with 1-21 varied positions when using frac­
tional factorial designs for the selection of analogues. We 
note that a standard factorial design assumes that each 
variable can be set precisely to the level corresponding to 
plus (+) and minus (-). In the present case this is not 
possible and we use the design only as a tool to find the 
combination of amino acids that together span the chem-

(34) (a) Rudinger, J. In Drug Design; Ariens, E. J., Ed.; Academic: 
New York, 1971; pp 319-419. (b) Farmer, P. S. In Drug De­
sign; Ariens, E. J., Ed.; Academic: New York, 1980; pp 119. 

(35) Box, G. E. P.; Hunter, W. G.; Hunter, J. S. Statistics for Ex­
perimenters; Wiley: New York, 1978. 

ical property space as well as possible. 
Design Example. As an example of a fractional fac­

torial design we constructed a test series for oxytocin/ 
vasopressin analogues varied in four positions (positions 
2, 3, 4, and 8). A smaller example of a design that includes 
modelling as well is found in ref 33d. 

The 2(4-3)"8 fractional factorial design matrix, Table V, 
is generated according to standard rules35 as follows. 

(a) A full factorial design is constructed for the four 
columns with A, B, C, and D. These columns are assigned 
to the z1 values of the four varied positions. 

(b) Four additional columns are constructed from A, B, 
C, and D by multiplying the signs of three of these together 
and then assigning them to z2 for positions 2, 3, 4, and 8. 
Thus z2 in position 2 is ABC, z2 in position 3 is BCD, z2 

in position 4 is ACD, and z2 in position 8 is ABD. 
(c) Four additional columns (z3 columns) were then 

generated in a similar way by multiplying the signs of two 
Zj columns, i.e., z3 in position 2 is AB, z3 in position 3 is 
BC, z3 in position 4 is AC, and z3 in position 8 is BD. 

This design matrix is used for constructing the test se­
ries. For each position amino acids with the corresponding 
signs of the z values are chosen. However, as seen from 
Table II, most of the coded amino acids have small z3 

values. The only exceptions are Cys, Pro, and the amino 
acids with both zx and z2 positive. Hence, for some com­
binations of signs of the three z values it is impossible to 
find representative coded amino acids. The amino acids 
Cys and Pro have unique properties that may make them 
less suitable to be incorporated in test series aimed to study 
continuous relationships. We have therefore chosen to 
primarily span the Zi/z2 plane and span z3 for the amino 
acids with positive z1 and z2. This is indicated in the design 
matrix (Table V) by the parentheses in the z3 columns. For 
each combination of signs the amino acid with the highest 
absolute z values is chosen to be included in the test series. 

Table VI shows the set of 16 oxytocin analogues resulting 
from the design. This set is one of the most informative 
that can be selected from the 16000 possible peptide 
analogues. 

Designed test series can also be used in the search for 
new and more selective lead compounds with, for example, 
D-amino acids. If the presence of a D-amino acid in a 
certain position leads to a dramatic change in, say, selec­
tivity, a new test series should then be constructed, cen­
tered at this analogue. 

Step 3: Synthesis and Biological Testing. The 
synthesis and biological testing of the analogues is, of 
course, crucial to a QSAR study but beyond the scope of 
the present paper. However, we note that information can 
be gained if the biological activity is measured in several 
ways; i.e., Y is multivariate. For example, it is customary 
to observe the biological tests at different dose levels. 
Unfortunately, most of these data are not used in the data 
analysis correlating structure with activity. In many cases 
it would be better to use the raw data from the dose-re­
sponse measurements than the reported values, e.g., ED50 
values, which have been estimated from dose-response 
models which do not always describe the test data well. 

For QSAR studies it is an advantage if all the com­
pounds in the studied set are tested in the same laboratory 
and approximately at the same point of time. Data col­
lected from several different laboratories often contain 
some interlaboratory variation. If the biological tests are 
performed several years apart from each other, it is also 
possible that some unknown systematic difference can be 
introduced. Indeed this is reflected in the present peptide 
QSARs. The best QSARs are obtained for the examples 
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Table V. Fractional Factorial Design Matrix for Peptide Analogues Varied in Four Positions 

no. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

A 
-
+ 
-
+ 
-
+ 
-
+ 
-
+ 
-
+ 
-
+ 
-
+ 

position 2 

ABC 
-
+ 
+ 
-
+ 
-
-
+ 
-
+ 
+ 
-
+ 
-
-
+ 

AB 

(+) 
-

(-) 
(+) 
(+) 
(-) 
(-) 
+ 

(+) 
-

(-) 
(+) 
(+) 
(-) 
(-) 
+ 

B 
-
-
+ 
+ 
-
-
+ 
+ 
-
-
+ 
+ 
-
-
+ 
+ 

position 3 
BCD 

-
-
+ 
+ 
+ 
+ 
-
-
+ 
+ 
-
-
-
-
+ 
+ 

«1> 

BC 

(+) 
(+) 
-
-

(-) 
(-) 
(+) 
(+) 
(+) 
(+) 
(-) 
(-) 
(-) 
(-) 
+ 
+ 

^2 i Z 3 

C 
-
-
-
-
+ 
+ 
+ 
+ 
-
-
-
-
+ 
+ 
+ 
+ 

position 4 
ACD 

-
+ 
-
+ 
+ 
-
+ 
-
+ 
-
+ 
-
-
+ 
-
+ 

AC 

(+) 
(-) 
(+) 
(-) 
-

(+) 
-

(+) 
(+) 
(-) 
(+) 
(-) 
(-) 
+ 
(-) 
+ 

D 
-
-
-
-
-
-
-
-
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

position 8 
ABD 

-
+ 
+ 
-
-
+ 
+ 
-
+ 
-
-
+ 
+ 
-
-
+ 

BD 

(+) 
(+) 
(-) 
(-) 
(+) 
(+) 
H 
(-) 
-

(-) 
(+) 
+ 
-
(-) 
(+) 
+ 

Table VI. Example of a Test Series of Oxytocin Analogues 
Varied in Four Positions Constructed Using Fractional Factorial 
Design 

no. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

position 2 

He 
Arg 
Trp 
Gly 
Trp 
Gly 
He 
Asp 
He 
Arg 
Trp 
Gly 
Trp 
Gly 
He 
Asp 

position 3 

He 
He 
Arg 
Arg 
Trp 
Trp 
Gly 
Gly 
Trp 
Trp 
Gly 
Gly 
He 
He 
Asp 
Asp 

position 4 
He 
Trp 
He 
Trp 
Arg 
Gly 
Arg 
Gly 
Trp 
He 
Trp 
He 
Gly 
Asp 
Gly 
Asp 

position 8 

He 
Trp 
Trp 
lie 
He 
Trp 
Trp 
He 
Arg 
Gly 
Gly 
Asp 
Arg 
Gly 
Gly 
Asp 

III and IV where all the compounds in each set are mea­
sured in the same laboratory; furthermore, a systematic 
difference is indicated between the two sets in example IV 
that are tested 4 years apart. For the oxytocin analogues 
(example I), less precise QSARs are obtained. This was 
expected since the biological data were collected from 
several different publications. 

Step 4: Mathematical Modelling. The QSARs in this 
study have been modelled by using the PLS method.20,21 

With PLS it is possible to relate multivariate descriptor 
data to uni- or multivariate activity data. It is also possible 
to use more descriptors and activities than compounds, if 
this is desired. Of course, irrelevant variables introduce 
some noise in the models. However, PLS models are less 
sensitive to this noise than other regression methods.20'21 

With the PLS method one also keeps the risk for spurious 
correlations under control, which otherwise is a problem 
when many variables are used to describe a limited set of 
objects.36 

The PLS Method. In the first phase of the data 
analysis, data from compounds with known biological ac­
tivity (a training set) are used to construct a model that 
connects the variation in chemical structure to the varia­
tion in biological activity. In the second phase, as discussed 
below in "Step 5", this model is used to predict how the 
structure should be modified to improve the biological 

(36) (a) Topliss, J. G.; Edwards, R. P. J. Med. Chem. 1979,22,1238. 
(b) Wold, S.; Dunn, W. J., Ill J. Chem. Inf. Comput. Sci. 1983, 
23,6. 

activity. If sufficiently many compounds are available, a 
test set, consisting of analogues not used in the model 
development, can be used to test the predictive capability 
of the model. 

a. Scaling. Usually, if no prior knowledge is present, 
the variables are scaled to unit variance as to give every 
variable the same influence in the data analysis. Here, 
however, we use the z scales as descriptors that have been 
derived by principal components analysis of scaled mea­
surement data. Hence we have not found it warranted to 
apply any scaling here, except in example III where we 
scaled the descriptor variables so that the z scales and the 
Rf values have the same variance. 

b. Modelling of the Training Set. The biological test 
data are denoted yu for the ith compound in the Ith test, 
and the chemical descriptors xik for the ith compound and 
the feth descriptor. It is assumed that the biological ac­
tivities are related to the chemical structure descriptors 
by means of latent variables u and t. This is formulated 
as 

X — t -* u -* Y (1) 

At the same time these latent variables, u and t, model 
the Y and X matrices; see eq 2 and 3. 

A 

yu = 5>i + £ uiacal + fa 

0-1 

in matrix form: Y = ly + UC + F (2) 

A 
xik = xk + Y, tiapak + eik 

0 = 1 

in matrix form: X = lx + TP + E (3) 
The number of significant factors (A) in the models is 

estimated by cross validation.21,32 

The models for Y and X resemble ordinary PC models. 
However, the PLS models differ in the respect that they 
are calculated as to simultaneously (a) minimize the re­
siduals E and F and (b) yield latent variables u and t which 
are optimally correlated. In this way the predictions of 
Y by X are better than by PC regression. 

The predictive relation between Y and X is modelled 
in terms of the latent variables: 

uia = tiaba + hia 

in matrix form: U = TB + H (B is diagonal) (4) 

This gives the predictive relation for Y: 
Y = TBC + F (5) 
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Table VII. Summary of Results from the Data Analysis of 
QSARs in Four Families of Peptides 

explained variance of 
set n" mb Ac biol act. 

(I) oxytocins 22 4 3 OA = 88%, PA = 64% 
(II) pseudopeptides 13 1 d 
(III) pepstatins 7 1 1 -log K{ = 80% 
(IV) pentapeptides 15 5 3 log RAI = 97% 
"n = number of analogues. bm = number of varied positions. 

'A = number of dimensions in the model. ''No significant model 
according to cross validation. 

c. Predictions of Activity for New Analogues. For 
predictions of activities of new analogues, the descriptor 
data for the new analogues are first inserted in the X 
model, which was calculated in "Step 4b". This results in 
t values that with eq 4 give u values. These u values 
inserted in eq 2 give predictions of the biological activities 
of the new analogue. The standard deviation of the re­
siduals e; (RSD), i.e., the degree of fit of the descriptor data 
of the new analogues to the X model, can be compared to 
the RSD of the training set analogs. If the RSD of the new 
analogue is considerably larger than this typical RSD, this 
indicates that the structure of the new analogue differs 
significantly from the training set and that the predicted 
activity values for this analogue are less reliable. 

A more detailed description of the PLS method, with 
algorithms, is given in ref 20, 21, 32, and 37. 

Step 5: The Postulation of New Analogues. A main 
goal for a QSAR is usually to predict the structure of new 
more potent and selective analogues. In our approach 
three scales, zlt z2, and z3, are used to describe each varying 
position. Applying the PLS method to these data results 
in loadings (pak), one for each z value in each model di­
mension (A). Hence, for a one-component model (A = 1) 
we get three loadings for each varied amino acid position. 
The loadings reflect the influence of the different z values 
in their corresponding positions in the model. A high 
absolute value of a loading indicates that the corresponding 
2 value contains much information related to the biological 
activity. The signs of the loadings give information about 
how the z values at the different positions are related to 
the biological activity. Hence, for each varied amino acid 
position, the magnitude and signs of the loadings indicate 
which of the positions that are important and how these 
should be modified to give a new analogue with increased 
(or decreased) biological activity. Quantitative predictions 
of the biological activities for the new peptide analogues 
are then calculated according to "Step 4c". 

However, as for all chemical models, the more different 
the chemical structure of the new analogue is from the 
training set analogues, the less precise the prediction. This 
is analogous to calibration models in for example analytical 
chemistry, where the models are less precise far from the 
calibration domain.37 

Results 
We here report the result from QSAR studies on four 

different families of peptides. The raw data and resulting 
parameter tables are available as supplementary material. 
In the examples we have used the three z values as de­
scriptors of the varied positions and the PLS method to 
model the data. A complete set of PLS parameters is given 
for one of the examples (IV). Peptides substituted with 
other than the 20 natural amino acids are not included 
since we presently only have z values for the coded amino 

(37) Lindberg, W.; Persson, J.-A.; Wold, S. Anal. Chem. 1983, 55, 
643. 

acids. A summary of the results is given in Table VII. We 
presently study some peptide sets containing peptides with 
noncoded amino acids. The results will be reported when 
z values have been developed also for noncoded amino 
acids. In view of the lack of design of the investigated 
peptide series, we refrain from a detailed mechanistic in­
terpretation of the resulting models. 

I. Oxytocin Analogues. We have analyzed a set of 
oxytocin (I) analogues compiled by Sneath.1 The biological 
data for this set of 22 oxytocin analogues originate from 
about 10 different publications dating from the late 1950s 
and early 1960s. Hence, it is expected that the data con­
tain some interlaboratory variation that may complicate 
the modelling of the structure-activity relationship (see 
"Step 3"). 

1 2 3 4 5 6 7 8 9 
Cys-Tyr-J/e-GJn-Asn-Cys-Pro-Leu-G2y-NH2 

I (oxytocin) 

The analogues are varied in four positions, 2, 3, 4, and 
8. Positions 2, 3, and 8 were described by three z values 
each. Position 4 was described by an indicator variable 
with Glu = 1 and Ser = 0, since this position only was 
varied with these two amino acids. Two biological activ­
ities were reported for the analogues, oxytocic activity (OA, 
contraction of isolated rat uterus) and pressor activity (PA, 
rise in blood pressure of rat). The analysis of the data for 
the 22 analogues resulted in a four-component PLS model 
describing 88% of the variance in OA and 64% of the 
variance in PA (Figures 1 and 2). 

To investigate the predictive capability of the model, 
a test set of 15 peptide analogues (23-37) were collected 
from a compilation by Berde et al.,38 who collected them 
from several different publications. It was noted by Berde 
et al. that the technical variations between the different 
laboratories could introduce some interlaboratory varia­
tion. As seen from Figures 1 and 2, the agreement between 
the observed and the predicted activities is good for most 
of the analogues. The test set analogues marked with an 
asterisk in Figures 1 and 2 (26, 30, 34, and 35) have very 
high RSD values (2.72, 2.43, 3.26, and 2.75, respectively) 
compared with the RSD (0.70) of the training set. This 
indicates that the predictions for these analogues may be 
less precise. Hence, the PLS model gives information 
about the reliability of predictions. One low active peptide 
(37) was predicted to have moderate oxytocic activity and 
pressor activity. Thus only for one out of 15 test set 
peptides was the activities badly predicted. 

This training set has also been analysed by Simon24 and 
Sneath,1 Simon using the approach described above in 
"Step la". In the study by Sneath, four principal com­
ponents, î i-Uiv, were extracted from a "resemblance 
matrix" derived from the 20 natural amino acids and 134 
noncontinuous descriptors. Sneath described the peptides 
by taking the sum of Vj for all positions, va for all positions, 
etc. Hence, in his regression analyses he had at the most 
four variables, ^( tot^-u^tot . ) . His data analyses of the 
structure-activity relationships resulted in weak models 
"... predictions of the biological activity of new peptides 
... would probably be better than chance, though not of 
high accuracy". We applied our multipositional approach 
to the description using Sneath's scales (vj-v^) and the 
PLS data analytic method to model the peptide activities 
OA and PA. This resulted in a two-component model 
describing 77% and 44% of the variance in OA and PA, 

(38) Berde, B.; Boissonnas, R. A. In Handbuch der experimentellen 
Pharmakologie; Springer: Berlin, 1968; Vol. 23, pp 802-863. 
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Figure 1. Plot of observed against calculated oxytocic activity (OA) for the training set, 1-22 (•), and predicted OA for the test set, 
23-37 (O). The analogues are substituted in positions 2, 3, 4, and 8 as follows (peptides 1-37): YIQL, FIQL, YFQL, YYQL, FFQL, 
YWQL, YLQL, YVQL, YIQI, YIQV, YFQK, YYQK, FFQK, FYQK, YIQK, SIQK, YWQK, FIQK, YFQR, YIQR, YFQH, YISI, SIQL, 
LIQL, YISL, YIQG, YIQA, FYQL, FIQR, YSQK, YISQ, FFQR, YFSK, GIQL, YGQL, HFQL, HFQK. The peptides marked with an 
asterisk in the plot are those with high RSD values (see text). 

calculated pressor activity ( • ) 

predicted pressor activity | o | 

Figure 2. Plot of observed against calculated pressor activity (PA) for the training set, 1-22 (•), and predicted PA for the test set, 
23, 25-30, and 32-37 (O). PA for analogues 24 and 31 were not given in the compilation by Berde et al.38 The peptides marked with 
an asterisk in the plot are those with high RSD values (see text). 

compared to 88% and 64% using our z\-z$ scales. Hence, 
Sneath's scales contain information, but in his data 
analysis this is obscured by an inefficient approach to the 
peptide description. 

II. Pseudopeptides. For a set of 13 pseudopeptides 
of the general structure II, where X is one of the amino 
acids Gly, Ala, He, Leu, Phe, Pro, Asn, Met, Thr, Trp, Tyr, 
Asp, and Lys, Rodriques et al.39 reported the oncostatic 
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activity evaluated on L1210 leukemia and acute toxicity. 

C1CH2CH2N(N0)C0(X)NHCH2CH2C1 
II 

The three z values were used as descriptors of change 
of amino acid. No successful QSAR model was obtained 
for this set. Hence, either the descriptor data does not 
contain any information that can be related to the varia­
tion of these biological activities or the biological data 
contain only little information that is related to the change 
in chemical structure of the amino acids. 

III. Pepstatin Analogues. For seven analogues of 
pepstatin of the general structure III, the inhibition (in­
hibition constants &,) of porcine pepsin was reported by 
Rich et al.40 Here Iva = isovaleryl, (S,S)-Sta = 4(S)-

1 2 3 4 5 
Iva-(X)-(S,S)-Sta-(Y)-Iaa 

III 

amino-3(S)-hydroxy-6-methylheptanoic acid, and Iaa = 
isoamylamide. The analogues varied in positions 2 and 
4. The z values of the amino acids in the varied positions 
and the reported Rf values from TLC measurements on 
the peptide analogues were used as descriptors. Prior to 
the data analysis, the Rf and z values were scaled to unit 
variance. A two-component PLS model describing 80% 
of the variance in biological activity was obtained (Figure 
3). 

IV. Bradykinin Potentiating Pentapeptides. The 
bradykinin potentiating activity for 15 pentapeptides were 
reported by Ufkes et al.41 in 1978, who varied the peptides 
in all five positions. These 15 pentapeptides were used 
as a training set to develop a QSAR. Schaper26 has earlier 
made a QSAR study on this set of analogues using the 
Fujita-Ban approach.25 However, that model cannot be 
used to make predictions of biological activity for peptides 
containing other amino acids than those already included 
in the set. We have previously analyzed this set with 
preliminary z scales.3 

We describe the five positions using the z values, giving 
an X matrix with 15 descriptor variables. The biological 
activity was modelled as the logarithm of the activity index 
relative to peptide 1 (log RAI). The PLS analysis gives 
three significant components with the PLS latent variable 
inner regression coefficients ba as follows: 6X = 0.29, b2 = 
0.19, and b3 = 0.07. Together, the three components de­
scribe 97% of the variance in biological activity. The 
parameters of the PLS model are presented in Tables VIII 
and IX. 

After this model was developed, another set of 15 active 
bradykinin potentiating pentapeptides (16-30) and one 
inactive (RAI = 0) pentapeptide (31) reported by Ufkes 
et al.42 in 1982 was used as a test set to investigate the 
predictive power of the PLS model. As seen from Figure 
4, the prediction of the biological activity for the 15 new 
active peptides is satisfactory. However, there seems to 
be some systematic difference in peptide activity between 
the sets measured in 1978 and 1982 that cannot be mo­
delled. This is seen in Figure 4 where eight peptides have 
lower observed activity than expected from the predictions. 
This may be due to a change in the biological test system. 
The inactive peptide (Gly-Gly-Gly-Gly-Gly) was predicted 

(39) Rodriguez, M.; Imbach, J.-L.; Martinez, J. J. Med. Chem. 1984, 
27, 1222. 

(40) Rich, D. H.; Salituro, F. G. J. Med. Chem. 1983, 26, 904. 
(41) Ufkes, J. G. R.; Visser, B. J.; Heuver, G.; van der Meer, C. Eur. 

J. Pharmacol. 1978, 50, 119. 
(42) Ufkes, J. G. R.; Visser, B. J.; Heuver, G.; Wynne, H. J.; van der 

Meer, C. Eur. J. Pharmacol. 1982, 79, 155. 
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Figure 3. Plot of the observed and calculated activity for pep­
statin analogues. The analogues are substituted in positions 2 
and 4 as follows (peptides 1-7): VA, VL, VG, GA, AA, LA, FA. 
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Figure 4. Plot of observed against calculated bradykinin po­
tentiating activity for the training set, 1-15 (•), and predicted 
activity for the test set, 16-30 (O) of pentapeptides. 

to have a RAI = 0.01; i.e., it is correctly predicted to be 
inactive. 

Discussion 
For rigid molecules QSARs have been developed where 

the varied substituents in the different positions are de­
scribed by substituent descriptors, e.g., a values, ir, E%, etc.7 

Here we have demonstrated that this approach also works 
for small flexible peptides, albeit with other scales, z1( z2, 
and z3. 

The present approach is based on three cornerstones: 
(i) A characterization of amino acids with three scales 

(z1( z2, and z3). The scales were estimated by PCA from 
a matrix consisting of 29 properties for each of the twenty 
amino acids. 

(ii) A numerical description of the peptides in terms of 
the three scales z1( z2, and z3. Each varied position is thus 
described by three variables. 

(iii) PLS, a multivariate data analytical method that can 
relate the chemical description to the-biological activities 
even when the descriptors are collinear and numerous.20'21,32 

In three out of four investigated families of peptides, 
significant QSARs were obtained (see Table VII). For two 
of the families it was possible to further validate (not only 
by cross validation of the training set) the predictive ca-
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Table VIII. Latent Variables, tia, of the PLS Model and Biological Activity for Bradykinin Potentiating Pentapeptides with 1-15 as 
Training Set and 16-31 as Test Set 

no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

peptide 

VESSK 
VESAK 
VEASK 
VEAAK 
VKAAK 
VEWAK 
VEAAP 
VEHAK 
VAAAK 
GEAAK 
LEAAK 
FEAAK 
VEGGK 
VEFAK 
VELAK 
AAAAA 
AAYAA 
AAWAA 
VAWAA 
VAWAK 
VKWAA 
VWAAK 
VAAWK 
EKWAP 
VKWAP 
RKWAP 
VEWVK 
PGFSP 
FSPFR 
RYLPT 
GGGGG 

obsd" 
log RAI 

0.00 
0.28 
0.20 
0.51 
0.11 
2.73 
0.18 
1.53 

-0.10 
-0.52 

0.40 
0.30 

-1.00 
1.57 
0.59 

-0.10 
0.46 
0.75 
1.43 
1.45 
1.71 
0.04 
0.23 
1.30 
2.35 
1.98 
1.71 
0.90 
0.64 
0.40 
6 

calcd" 
log RAI 

0.22 
0.26 
0.21 
0.25 
0.16 
2.57 
0.19 
1.58 

-0.03 
-0.34 

0.37 
0.35 

-1.23 
1.64 
0.58 

predicted* 
log RAI 

-0.43 
1.17 
1.89 
2.24 
2.29 
2.44 

-0.16 
0.04 
1.82 
2.42 
2.11 
2.64 
0.91 
1.57 
0.00 

-2.11 

ta 
-1.83 
-1.57 
-0.82 
-0.56 
-0.64 

6.56 
-0.95 

0.83 
-0.78 
-1.52 
-0.28 
-0.11 
-5.55 

4.80 
2.44 

-1.44 
2.58 
5.68 
6.08 
6.34 
6.22 

-0.88 
0.76 
5.42 
6.09 
5.78 
6.84 
3.79 
3.98 
2.35 

-6.90 

t[i 

1.34 
1.27 

-0.05 
-0.12 
-0.29 

0.58 
-0.18 

3.91 
-0.80 
-2.84 

0.68 
1.14 

-0.80 
-1.18 
-2.66 
-2.01 
-0.32 
-1.31 
-0.12 
-0.09 

0.38 
-1.08 
-1.26 
-1.59 

0.36 
-0.55 

0.50 
-2.34 

2.01 
-4.34 
-4.16 

'.3 

0.62 
0.34 
0.06 

-0.21 
-0.63 

1.47 
0.62 
2.10 

-1.54 
2.61 

-1.77 
-4.04 

1.15 
0.26 

-1.05 
-1.13 

0.38 
0.55 
0.70 
0.14 
1.61 

-2.13 
-5.56 

1.37 
1.90 
1.14 
1.45 

-2.83 
-5.82 
-4.39 

3.25 

"Reported by Ufkes et al.40'41 6RAI = 0.00. 
the test set predicted by the PLS model. 

1 Biological activity for the training set calculated by the PLS model. d Biological activity for 

Table IX. Variable-Related Model Parameters of the PLS Model for Bradykinin Potentiating Pentapeptides" 

variable position Pik Pik Pik «Jl* Wik U>3k 

"1 
32 
3̂ 
Zl 
Z2 

*3 
Zl 
Z2 

Z3 
Zl 
«2 
23 

Zl 
22 
Z3 

log RAI 

-2.61 
-2.36 
-1.04 

2.86 
0.32 

-0.26 
-0.31 
-1.12 

0.24 
0.47 

-1.96 
0.17 
2.57 
1.37 

-2.78 
0.45 

-0.06 
0.03 

-0.02 
0.02 
0.01 
0.02 

-0.72 
0.65 
0.02 

-0.15 
0.17 

-0.02 
0.03 
0.00 

-0.04 
1.00 

-0.45 
0.35 

-0.06 
0.06 
0.04 
0.02 
0.69 
0.37 
0.20 
0.02 
0.08 
0.01 
0.02 
0.00 

-0.02 
1.00 

0.63 
-0.65 
-0.09 

0.12 
0.07 
0.04 
0.14 
0.29 
0.13 
0.10 

-0.11 
0.01 

-0.06 
-0.01 

0.09 
1.00 

-0.14 
0.07 

-0.06 
0.05 
0.03 
0.03 

-0.60 
0.78 
0.08 

-0.14 
0.16 

-0.02 
0.03 
0.00 

-0.05 

-0.36 
0.17 

-0.16 
0.15 
0.08 
0.06 
0.76 
0.48 
0.28 
0.07 

-0.09 
0.01 
0.00 
0.00 
0.00 

0.46 
-0.72 
-0.30 

0.27 
0.13 
0.14 

-0.04 
0.20 
0.18 
0.16 

-0.57 
-0.01 
-0.08 
-0.01 

0.10 

apak = loadings, wah = PLS weights. 

pabilities of the models. This was done by separate test 
sets of peptides, which not had been used to establish the 
QSAR model. The predicted activities for the test set 
peptides were in good accordance with the measured bio­
logical activities except for a few cases. However, with PLS 
not only predictions of the activity for a test set peptide 
analogue is obtained but also a measure of how well the 
peptide fits the QSAR model. Indeed, the test set peptides 
with poor predictions of their activities had a poor fit to 
the QSAR model. This type of information cannot be 
obtained from a data analysis using multiple regression. 

A referee has raised the critisism that in these applica­
tions there are so many variables that a good fit to the 
training sets is almost certain. This would be true if we 
used multiple regression for the data analysis. PLS, 
however, is a projection method similar to prinicipal com­
ponents regression, where the data matrix X is first pro­

jected to a small number of latent variables, ta, which then 
are used as independent variables in a regression model. 
Hence, as long as the number of latent variables is small 
compared to the number of compounds in the training set, 
there is no overfit, even if the original number of x vari­
ables is very large. This matter has been extensively 
covered in the literature; see, e.g., ref 20, 21, 32, 36b, and 
37. 

Moreover, we have used cross validiation (CV) to test 
the predictive significance of the PLS models. With CV, 
part of the training set is kept out from the model de­
velopment and then later predicted by the model. Then 
another part of the training set is kept out, a new model 
developed, and the kept out data predicted. This is re­
peated until each training set compound has been kept out 
once and only once. The predictions are then, finally, 
compared with the actual values, and only model dimen-



J. Med. Chem. 1987, 30, 1135-1144 1135 

sions that give predictions significantly better than chance 
are retained in the model. 

Finally, we have shown in two of the four examples that 
the predicted activities for new sets of compounds tha t 
were not involved in the model development were close to 
the actually observed values, much closer than would be 
expected by chance (Figures 2 and 4). 

With the current view on peptides, one would expect the 
variation in conformation of the peptides to have a great 
influence on the biological activity. The present descrip­
tion does not explicitly take the conformation into account. 
Hence, the success of the modelling of three out of four 
peptide families may be interpreted in either of three ways: 
(1) Conformation is not important in these families. (2) 
Conformation is important , but in some way implicitly 
described by the z scales. (3) Conformation is important 
but all peptides in each set can adopt the bioactive con­
formation with low energy. 

We refrain from taking a strong position for one of these 
three possibilities and just note that in these examples the 
prediction of the biological activities of small flexible 
peptides seems to be considerably simpler than can be 
expected from their conformation flexibilities. 

For the future development of peptide QSAR, we have 
proposed the estimation of improved descriptors for the 
amino acids and also an extension to noncoded amino acids 
and other fragments of interest. 

Another area for improvement is the often overlooked 
problem of how to construct a series of peptide analogues 
suited for structure-activity studies. Here we propose 
fractional factorial designs as a possibility for constructing 

Previous studies of the pharmacology, stereochemistry, 
and conformational dynamics of the enantiomers of the 
potent dopamine (DA) receptor agonist 5-hydroxy-2-(di-
rc-propylamino)tetralin (5-OH-DPAT)1 and their C l -
methyl-substituted derivatives2,3 have demonstrated that 
DA agonistic C5-oxygenated 2-aminotetralins have the 
same sense of chirality at the nitrogen-bearing carbon (C2). 
In addition, results obtained2b suggested that, in this series, 

* University of Uppsala. 
I Department of Pharmacology, University of Goteborg. 
§ KabiVitrum. 
II Department of Structural Chemistry, University of Goteborg. 

informative training sets. This design problem has also 
been discussed in a separate paper.33d 

A designed test series can be used in different peptide 
families. Thus a set of designed peptide fragments (as 
those 16 proposed in Table VI) can be introduced as tet-
rapeptide units in different peptide families. Such pre­
designed sets of peptide fragments simplify the synthesis 
of multipositionally varied peptides. Furthermore, for a 
design with only coded amino acids, a set of codon se­
quences can be constructed tha t corresponds to a set of 
designed peptide fragments. The rapid development of 
protein engineering43 may then make it possible to produce 
designed sets of mature proteins and enzymes for QSAR 
studies. 
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C3-Methylated 5-Hydroxy-2-(dipropylamino)tetrahns: Conformational and Steric 
Parameters of Importance for Central Dopamine Receptor Activation 
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C3-Methyl-substituted derivatives of the potent dopamine (DA) receptor agonist 5-hydroxy-2-(di-n-propylamino)tetralin 
(5-OH-DPAT) have been synthesized and their conformational preferences have been studied by use of NMR 
spectroscopy, X-ray crystallography, and molecular mechanics calculations (MMP2). The compounds were tested 
for activity at central DA receptors, by use of biochemical and behavioral tests in rats. (2fl,3S)-5-Hydroxy-3-
methyl-2-(di-n-propylamino)tetralin [(-)-8] was demonstrated to be a highly potent DA receptor agonist, while the 
other new compounds were of low potency or inactive. Results obtained confirmed the hypothesis that the tetralin 
inversion angle $ and the direction of the N-electron pair (AT-H) TN are conformational parameters of critical importance 
for DA D2 receptor activation in the 2-aminotetralin series. The high potency of (-)-8 allowed an extension of a 
previously defined "partial DA D2 receptor excluded volume". 
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