removed under reduced pressure, and the residue was dissolved in 0.05 N sodium acetate buffer, pH 4.5, for injection. Aliquots were removed for radio-TLC analysis on silica gel (CH<sub>2</sub>Cl<sub>2</sub>-EtOH, 90:10) to detect residual [<sup>18</sup>F]-3 ( $R_f$  of 3 was 0.42,  $R_f$  of 4 was 0.00); radio-TLC purity was >99%. See Figure 2 for radio-HPLC purity. Specific activity, which was 500–1200 mCi/mmol, was determined by UV/radio-HPLC.

**Tissue Distribution Study.** This was performed in two male mongrel dogs (20.1 and 20.4 kg). Animals received a bolus intravenous injection (cephalic vein) of 2 mCi of [<sup>18</sup>F]-4 in 2.0 mL of sterile 0.150 M acetate buffer (pH 4.5). The dogs were sacrificed 1 h later by rapid iv injection of sodium pentobarbital. Duplicate tissue samples (15-80 mg) of organs were excised, washed free of blood with 0.9% saline solution, blotted dry, quickly weighed, and counted on a Packard 5780 autogamma counter for 1 min. The technique for isolating adrenomedullary tissue has been described previously.<sup>13</sup> To normalize for differences in animal weights, tissue concentrations are expressed in terms of percent kilogram dose per gram (% kg dose/g).<sup>23</sup> Radioactive concentrations in Tables II–IV are decay corrected.

**Pharmacological Studies.** The selective uptake of [<sup>18</sup>F]-4 and [<sup>3</sup>H]NE was inhibited in female Sprague–Dawley rats (Charles River Breeding Laboratories, Inc., Wilmington, MA) weighing 230–290 g, by the ip injection of desmethylimipramine hydrochloride (Revlon Care Group, Tuckahoe, NY), 10 mg/kg.<sup>24</sup> The  $[{}^{3}H]NE$  (*levo*- $[7{}^{3}H]$ ), specific activity 15–20 Ci/mmol, was obtained from Du Pont NEN, Wilmington, DE. Significance levels were determined by the Student's t test.

The adrenergic neurons of the rat heart were impaired in rats (Sprague–Dawley) by the ip injection of 6-hydroxydopamine hydrobromide (Aldrich Chemical Co., Milwaukee, WI) freshly dissolved in physiological saline, 100 mg/kg, 5 days prior to the tracer experiments.<sup>25</sup>

Acknowledgment. We gratefully acknowledge support of this research by the National Institutes of Health (Grants HL 27555 and CA 09015). We thank Dr. Kenneth L. Kirk of the National Institutes of Health for graciously providing us with samples of 2-, 4-, and 6-fluorophenylephrine for <sup>19</sup>F NMR analysis, Phillip S. Sherman and Susan J. Fisher for conducting the animal studies, and Linder Markham for preparing the manuscript. We are indebted to Dr. William Kerr for the use of the radiochemical laboratories at the Phoenix Memorial Building, University of Michigan and to the staff of the Cyclotron/PET Facility of the University of Michigan Medical Center for providing <sup>18</sup>F.

# Quantitative Structure-Activity Relationships for the Inhibition of *Escherichia* coli Dihydrofolate Reductase by 5-(Substituted benzyl)-2,4-diaminopyrimidines

### Ren-Li Li\*<sup>†</sup> and Martin Poe<sup>‡</sup>

Department of Medicinal Chemistry, Beijing Medical University, Beijing, China, and Merck Institute for Therapeutic Research, Rahway, New Jersey 07065-0900. Received May 11, 1987

Quantitative structure-activity relationships for the inhibition of *Escherichia coli* (MB 1428) dihydrofolate reductase (DHFR) by 61 5-(substituted benzyl)-2,4-diaminopyrimidines are reported and analyzed. The 61 compounds include 17 congeners whose activities have not been previously reported, five of which have a 5'-substituent larger than a methoxy group. The correlation equations indicated that the molar refractivity (MR) values of the 5'-substituent, just as with the 3'- and 4'-substituents, contributed maximally at the value of 0.79 with no increment of binding for compounds with MR larger than 0.79 (which corresponds to a 5'-methoxy substitution). This experimental result is in agreement with the crystal structure of the *Escherichia coli* DHFR-trimethoprim complex, which shows a reasonably large trimethoprim-binding site. The inhibition of *E. coli* (MB 1428) DHFR by nine of the 17 new benzylpyrimidines is at lower concentrations than for trimethoprim. However, all 17 are much less potent than trimethoprim in inhibition of growth of *E. coli* (1515).

Dihydrofolate reductase (DHFR) plays a crucial role in DNA synthesis; its inhibition can be used to control growth in any organism: animal, plant, insect, or microorganism. By studying DHFR from host and from pathogen, one can establish selectivity in growth inhibition (a therapeutic index) before commencing expensive animal testing.

Trimethoprin  $[5 \cdot (3', 4', 5' \cdot \text{trimethoxybenzyl}) \cdot 2, 4 \cdot \text{di-}$ aminopyrimidine, 44] is a potent dihydrofolate reductase inhibitor and is widely used as bacteriostatic agent in combination with sulfamethaxazole.<sup>1</sup> Trimethoprim is a selective inhibitor of DHFR. Burchall<sup>2</sup> has shown the variability of the inhibitory power of trimethoprim with DHFR from different microorganisms, as well as mammalian sources. The apparent  $K_i$  values in nanomolar obtained for trimethoprim are 1.35 (Escherichia coli DHFR),<sup>3</sup> 132 (Lactobacillus casei DHFR),<sup>4</sup> 170 000 (human lymphoblast DHFR),<sup>5</sup> and 7900 (bovine liver DHFR).<sup>6</sup> Thus, trimethoprim binds from 60 to 100 000 times more tightly to the bacterial enzymes than to the mammalian enzymes.

Because of the clinical success of the antimicrobial agent trimethoprim, the structure-activity relationships for 5-

- (1) Bushby, S. R. M.; Hitchings, G. H. Br. J. Pharmacol. Chemother. 1968, 33, 72.
- (2) Burchall, J. J. J. Infect. Dis. 1973, 128, S437.
- (3) Dietrich, S. W.; Blaney, J. M.; Reynolds, M. A.; Jow, P. Y. C.; Hansch, C. J. Med. Chem. 1980, 23, 1205.
- (4) Hansch, C.; Li, R. L.; Blaney, J. M.; Langridge, R. J. Med. Chem. 1982, 25, 777.
- (5) Li, R. L.; Hansch, C.; Matthews, D.; Blaney, J. M.; Langridge, R.; Delcamp, T. J.; Susten, S. S.; Freisheim, J. H. Quant. Struct.-Act. Relat. Pharmacol., Chem. Biol. 1982, 1, 1.
- (6) Blaney, J. M.; Dietrich, S. W.; Mark, A. R.; Hansch, C. J. Med. Chem. 1979, 22, 614.

0022-2623/88/1831-0366\$01.50/0 © 1988 American Chemical Society

<sup>(23)</sup> Kirschner, A. S.; Ice, R. D.; Beierwaltes, W. H. J. Nucl. Med. 1975, 16, 248.

<sup>(24) (</sup>a) Axelrod, J. G.; Herttling, G.; Potter, L. Nature (London) 1962, 194, 297. (b) Daly, J. W.; Creveling, C. R.; Witkop, B. J. Med. Chem. 1966, 9, 280.

<sup>(25)</sup> DeChamplain, J.; Nadeau, R. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1971, 30, 877.

<sup>&</sup>lt;sup>†</sup>Beijing Medical University.

<sup>&</sup>lt;sup>‡</sup>Merck Institute for Therapeutic Research.

(substituted benzyl)-2,4-diaminopyrimidines (I) have been intensively studies.<sup>3-8</sup> The best correlation equation for



the inhibition of E. coli DHFR by benzylpyrimidines obtained in previous studies is<sup>4</sup>

 $\log 1/K_{i}(\text{app}) = 0.43\pi_{3',4',5'} + 1.23\text{MR}'_{3',5'} + 0.80\text{MR}'_{4'} - 0.88\log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) - 0.45\sigma_{\text{R}}^{-} + 5.81 (1)$ 

$$n = 43, r = 0.923, s = 0.263, \log \beta = -0.67,$$
  
 $\pi_0 = 0.64 \ (\pm 0.64), F_{1,36} = 8.88$ 

In eq 1,  $K_i(app)$  is the apparent inhibitory constant, n represents the number of data points used to derive eq 1, r is the correlation coefficient, and s is the standard deviation from regression. The figures in parentheses are 95% confidence limits. MR is molar refractivity of substituents, defined as  $MR = (n^2 - 1)[MW/(n^2 + 2)d]$ , where n is the index of refraction, MW the molecular weight, and d the density. This definition makes MR a corrected molar volume, thus representing the substituent volume; the values of MR are multiplied by 0.1 to make their magnitudes comparable to  $\pi$  and  $\sigma$ .  $\pi$  is the hydrophobic constant of substituents. The subscript on  $\pi$  and MR indicates the position of substituents on the benzyl moiety. The electronic parameter  $\sigma_{\rm R}^-$  is defined as  $\sigma_{\rm R}^- = \sigma^- - \tau^9$ and thus represents only the resonance effect of the substituents. The hydrophobic constant  $\pi$  in eq 1 is fit to a Kubinyi bilinear model.<sup>10</sup> The prime symbol on MR indicates a nonstandard, scaled use of this parameter. The limiting value for this parameter has been concluded to be 0.79, which is the MR value of  $OCH_3$ , from a computerized series of trial and error calculations. Larger substituents having greater values of MR at position 3', 4', and 5' are predicted to be no more effective at enhancement of DHFR inhibition than a methoxy substituent. However, the series of benzylpyrimidines utilized in the derivation of eq 1 do not include any compounds with a MR value of its 5'-substituent larger than 0.79. Therefore, it is hard to be completely confident that eq 1 will hold true for I with a 5'-substituent larger than OCH<sub>3</sub>. In order to confirm eq 1, a few congeners of I with a 5'-substituent larger than a methoxy group have been synthesized<sup>11</sup> and tested against E. coli DHFR. The largest 5'-substituent is a benzyloxy group, which has a MR value of 3.17 (when scaled by 0.1). All of the 17 new congeners of I have been correlated with the 41 benzylpyrimidines used in the derivation of eq 1 by utilizing a similar calculational approach.4-10

- (7) Li, R. L.; Dietrich, S. W.; Hansch, C. J. Med. Chem. 1981, 24, 538.
- (8) Li. R. L.; Hansch, C.; Kaufman, B. T. J. Med. Chem. 1982, 25, 435.
- (9) Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology; Wiley-Intersciences: New York, 1979.
- (10) Kubinyi, H. J. Med. Chem. 1977, 20, 623.
- (11) (a) Selassie, C. D.; Fang, Z. X.; Li, R. L.; Hansch, C.; Klein, T.; Langridge, R.; Kaufman, B. T. J. Med. Chem. 1986, 29, 621.
  (b) Fang, Z. X.; Li, R. L.; Jiang, Y. M.; Gao, J. N. Yaoxue Xuebao, in press. (c) Fang, Z. X.; Li, R. L.; Qian, Y.; Liang, H. L. Yaoxue Xuebao 1987, 22, 23.

### **Results and Discussion**

The inhibition of E. coli DHFR by the 17 new congeners are tested according to reference 12. Equations 2-7

$$\log 1/K_{i}(\text{app}) = 1.391 \ (\pm 0.51) \text{MR}'_{3',5'} + 6.307 \ (\pm 0.45)$$
(2)

$$n = 60, r = 0.585, s = 0.908, F_{1.58} = 30.25$$

 $\log 1/K_{i}(\text{app}) = 0.722 \ (\pm 0.31) \text{MR'}_{3',5'} + 1.773 \ (\pm 0.32)I + 6.316 \ (\pm 0.26)$ (3)

$$n = 60, r = 0.889, s = 0.517, F_{1.57} = 123.60$$

 $log 1/K_{i}(app) = 1.000 (\pm 0.29) MR'_{3',5'} + 0.942 (\pm 0.38) MR'_{4} + 1.525 (\pm 0.29)I + 5.765 (\pm 0.31)$ (4)

$$n = 60, r = 0.924, s = 0.434, F_{1.56} = 25.28$$

$$\begin{split} \log 1/K_{i}(\text{app}) &= 1.131 \ (\pm 0.25) \text{MR'}_{3',5'} + 0.918 \\ (\pm 0.32) \text{MR'}_{4'} + 1.081 \ (\pm 0.49) \pi_{3',4',5'} - 1.336 \ (\pm 0.57) \ \log \\ (\beta \cdot 10^{\pi_{3',4',5'}} + 1) + 1.494 \ (\pm 0.25) I + 6.983 \ (\pm 0.57) \ (5) \end{split}$$

$$n = 60, r = 0.949, s = 0.367, F_{3,53} = 24.39,$$
  
 $\log \beta = 0.71, (\pi_{3'4'5'})_0 = -0.08$ 

$$\begin{split} \log 1/K_{i}(\text{app}) &= 0.942 \ (\pm 0.27) \text{MR}'_{3',5'} + \\ & 0.765 \ (\pm 0.34) \text{MR}'_{4'} + 0.380 \ (\pm 0.19) \pi_{3',4',5'} - \\ & 0.769 \ (\pm 0.31) \ \log \ (\beta \cdot 10^{\pi_{3',4',5'}} + 1) - 0.43 \ (\pm 0.30) \sigma_{\text{R}}^- + \\ & 1.384 \ (\pm 0.25) I + 6.054 \ (\pm 0.27) \ (6) \end{split}$$

$$n = 60, r = 0.954, s = 0.351, F_{1,52} = 6.10$$
$$\log \beta = -0.46, (\pi_{3',4',5'})_0 = 0.45$$

$$\log 1/K_{i}(\text{app}) = 1.282 \ (\pm 0.41) \text{MR}'_{3',5'} + 1.157 (\pm 0.50) \text{MR}'_{4'} + 1.393 \ (\pm 0.64) \pi_{3',4',5'} -$$

1.681 (±0.76) log ( $\beta$ ·10<sup> $\pi$ </sup><sub>9.4',5'</sub> + 1) - 0.09 (±0.44) $\sigma_{\rm R}^{-}$  + 1.483 (±0.38)*I* + 6.953 (±0.75) (7)

$$n = 61, r = 0.909, s = 0.542, \log \beta = 0.61,$$
  
 $(\pi_{3'.4'.5'})_0 = 0.074$ 

have been derived from the results summarized in Table I, with symbols as in eq 1. In eq 2–6, F is the test of significance of the regression analysis. The first subscript number is the number of terms added in the equation, and the second number is the degrees of freedom.

Equation 6 is the best correlation equation, i.e., it has the highest r. Equations 2-5 are the stepwise-developed equations that lead to eq 6. Compound 1 of Table I is not used in the derivation of eq 2–6. The  $K_i$  for compound 1 is 3236-fold larger than its predicted value. It is interesting that the inhibitory activities for many kinds of DHFR by compound 1 are all much larger than predicted values; the reason for this disparity has not yet been clarified. Including all points in the regression analysis gives eq 7, which has a smaller correlation coefficient r(0.909 vs 0.954 in eq 6) and a multiplier for the  $\sigma_{\rm R}^{-}$  term insignificantly different from zero. In eq 2–6, I is an indicator variable, indicative of two different methods of enzyme testing. I = 1 indicates the compounds are tested as described in ref 12, while I = 0 indicates the compounds are tested as described in ref 3.

The results summarized by eq 6 show that compounds with a 5'-substituent with MR' larger than 0.79, the MR'of a methoxy group, did not fit the correlation equation

<sup>(12)</sup> Poe, M.; Greenfield, N. J.; Hirshfield, J. M.; Williams, M. N.; Hoogsteen, K. Biochemistry 1972, 11, 1023.



|            | $\log 1/K_i(app)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |            |          |            |                           |                    |        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|------------|----------|------------|---------------------------|--------------------|--------|
| no.        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | obsd              | $calcd^i$    | $ \Delta $ | MR'3',5' | $MR'_{4'}$ | $\pi_{3'4'5'}$            | $\sigma_{\rm R}$ - | Ι      |
| 1          | 3',5'-(OH) <sub>2</sub> <sup>j</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.04              | 6.55         | 3.52       | 0.58     | 0.10       | -1.34                     | -0.90              | 0      |
| 2          | $4'-O(CH_2)_6CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.60              | 6.13         | 0.53       | 0.21     | 0.79       | 3.23                      | -0.42              | 0      |
| 3          | 4'-O(CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.07              | 6.37         | 0.30       | 0.21     | 0.79       | 2.63                      | -0.42              | 0      |
| 4          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.18              | 6.23         | 0.05       | 0.21     | 0.10       | 0                         | 0                  | 0      |
| 5          | 4'-NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.20              | 6.47         | 0.27       | 0.21     | 0.74       | 0"                        | 0.57               | 0      |
| 6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.23              | 6.42         | 0.19       | 0.20     | 0.10       | 0.23*                     | -0.38              | 0      |
| 1          | $3^{\circ}-O(CH_2)_7CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.25              | 6.03         | 0.22       | 0.89     | 0.10       | 3.79                      | -0.42              | 0      |
| 0<br>0     | $3 - CH_2 OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.20              | 6.93         | 0.19       | 0.82     | 0.10       | -1.03<br>-1.39°           | -0.17              | 0      |
| 10         | 3' 5' - (CH - OH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.31              | 6.63         | 0.07       | 1 44     | 0.04       | -2.06                     | -0.17              | 0      |
| 11         | 4'-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.35              | 6.41         | 0.06       | 0.21     | 0.09       | 0.14                      | -0.38              | õ      |
| 12         | 3'-O(CH <sub>a</sub> ) <sub>e</sub> CH <sub>a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.39              | 6.25         | 0.14       | 0.89     | 0.10       | 3.23                      | -0.42              | õ      |
| 13         | 4'-OCH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.40              | 6.87         | 0.47       | 0.21     | 0.79       | -0.30 <sup>e</sup>        | -0.42              | Ō      |
| 14         | 4'-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.45              | 6.70         | 0.25       | 0.21     | 0.60       | 0.71                      | -0.14              | 0      |
| 15         | 3',4'-(OH) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.46              | 6.52         | 0.06       | 0.39     | 0.29       | -1.34                     | -0.90              | 0      |
| 16         | 3'-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.47              | 6.41         | 0.06       | 0.39     | 0.10       | -0.67                     | -0.45              | 0      |
| 17         | 4'-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.48              | 6.68         | 0.20       | 0.21     | 0.57       | 0.56                      | -0.11              | 0      |
| 18         | 3'-OCH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.53              | 6.98         | 0.45       | 0.89     | 0.10       | $-0.30^{e}$               | -0.42              | 0      |
| 19         | 3'-CH <sub>2</sub> O(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.55              | 6.87         | 0.33       | 0.89     | 0.10       | 0.84                      | 0.01               | 0      |
| 20         | 3'-OCH <sub>2</sub> CONH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.57              | 6.63         | 0.06       | 0.89     | 0.10       | -1.37                     | -0.42              | 0      |
| <b>2</b> 1 | 4'-OCF <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.57              | 6.78         | 0.21       | 0.21     | 0.79       | 1.04                      | -0.11              | 0      |
| 22         | 3'-CH <sub>2</sub> OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.59              | 6.65         | 0.06       | 0.89     | 0.10       | -0.78                     | 0.01               | 0      |
| 23         | 3'-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.65              | 6.78         | 0.13       | 0.70     | 0.10       | 0.67 <sup>e</sup>         | -0.14              | 0      |
| 24         | 3'-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.70              | 6.75         | 0.05       | 0.67     | 0.10       | 0.52                      | -0.11              | 0      |
| 25         | $4' - N(CH_3)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.78              | 6.89         | 0.11       | 0.21     | 0.79       | 0.24                      | -0.22              | 0      |
| 26         | 4'-Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.82              | 6.83         | 0.01       | 0.21     | 0.79       | 0.86                      | -0.16              | 0      |
| 27         | $4 - 0 \subset \Pi_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.82              | 6.90         | 0.08       | 0.21     | 0.79       | -0.20*                    | -0.42              | 0      |
| 28         | $3 - O(CH_2)_3 CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.86              | 6.00         | 0.00       | 0.69     | 0.10       | 1.00                      | -0.42              | 0      |
| 25         | $4'_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH)_{-0}(CH$ | 6.89              | 676          | 0.58       | 0.85     | 0.10       | 2.05                      | -0.42              | 0      |
| 31         | 4'-NHCOCH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.89              | 6.61         | 0.15       | 0.21     | 0.79       | -0.91e                    | -0.26              | Ő      |
| 32         | 3'-080-CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.92              | 673          | 0.19       | 0.89     | 0.10       | -0.88                     | -0.26              | Ő      |
| 33         | 3'-OCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.93              | 6.71         | 0.22       | 0.89     | 0.10       | 0.11 <sup>e</sup>         | -0.42              | õ      |
| 34         | 3'-Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.96              | 6.95         | 0.01       | 0.89     | 0.10       | 0.86                      | -0.16              | 0      |
| 35         | 3'-NO <sub>2</sub> , 4'-NHCOCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.97              | 6.86         | 0.11       | 0.84     | 0.79       | $-1.19^{e}$               | 0.31               | 0      |
| 36         | 3'-OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.99              | 6.51         | 0.48       | 0.89     | 0.10       | $1.56^{e}$                | -0.42              | 0      |
| 37         | 3'-CF <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.02              | 6.49         | 0.53       | 0.67     | 0.10       | 0.88                      | 0.27               | 0      |
| 38         | $3',4'-(OCH_2CH_2OCH_3)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.22              | 7.52         | 0.30       | 0.89     | 0.79       | $-0.86^{e}$               | -0.84              | 0      |
| 39         | 3'-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.23              | 6.86         | 0.37       | 0.89     | 0.10       | 1.12                      | -0.10              | 0      |
| 40         | 3'-CF <sub>3</sub> , $4'$ -OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.69              | 7.18         | 0.52       | 0.61     | 0.79       | 1.05°                     | -0.15              | 0      |
| 41         | $3',4'-(OCH_3)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.72              | 7.61         | 0.11       | 0.89     | 0.79       | -0.58                     | -0.84              | 0      |
| 42         | $3^{\prime}, 5^{\prime} - (\text{OCH}_3)_2, 4^{\prime} - \text{OCH}_2\text{CH}_2\text{OCH}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.35              | 8.38         | 0.03       | 1.58     | 0.79       | -0.78                     | -1.26              | 0      |
| 43         | $3^{\circ}, 5^{\circ} - (\text{UCH}_3)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.38              | 7.89         | 0.49       | 1.58     | 0.10       | 0.02°                     | -0.04              | 0      |
| 44         | 3,4,3-(UCH <sub>3</sub> ) <sub>3</sub><br>3'-OCH C H 4' OCH b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01<br>10.01d    | 0.40         | 0.41       | 1.58     | 0.79       | -0.52<br>1.00f            | -0.84              | 1      |
| 40         | $3 - 0 CH_2 C_6 H_5, 4 - 0 CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01<br>0.25d     | 9.12         | 0.09       | 0.89     | 0.79       | -0.96f                    | -0.84              | 1      |
| 40         | $3'-0CH_{3}, 4'-0CH_{2}CH_{2}CCH_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.05 <sup>d</sup> | 8.63         | 0.00       | 0.89     | 0.29       | -0.56                     | -0.87              | 1      |
| 48         | $3'-0CH_3$ , $4'-0CH_3C_4H_4^b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $9.43^{d}$        | 9.10         | 0.33       | 0.89     | 0.79       | 1.10 <sup>f</sup>         | -0.84              | 1      |
| 49         | 3'.5'-(OCH_CH_CH_).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.80 <sup>d</sup> | 8.91         | 0.11       | 1.58     | 0.79       | $2.06^{g}$                | -0.84              | 1      |
| 50         | 3'-OCH <sub>2</sub> CH <sub>2</sub> , 5'-O(CH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $8.49^{d}$        | 9.11         | 0.62       | 1.58     | 0.10       | $1.50^{s}$                | -0.84              | 1      |
| 51         | 3'-OSO2CH3, 4'-OCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $8.96^{d}$        | 8.75         | 0.21       | 0.89     | 0.79       | -1.08                     | -0.68              | 1      |
| 52         | $4'-OSO_2CH_3^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $8.15^{d}$        | 8.00         | 0.15       | 0.21     | 0.79       | -0.88                     | -0.26              | 1      |
| 53         | 4'-OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.70 <sup>d</sup> | 8.11         | 0.59       | 0.21     | 0.79       | 1.66                      | -0.42              | 1      |
| 54         | 3′,4′-OCH <sub>2</sub> O- <sup><i>a</i></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $7.92^{d}$        | 8.37         | 0.45       | 0.55     | 0.79       | $-0.06^{e}$               | -0.84              | 1      |
| 55         | $3',5'-(OCH_2CH_3)_2^a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.11 <sup>d</sup> | 9.26         | 0.15       | 1.58     | 0.10       | 0.94 <sup>e</sup>         | -0.84              | 1      |
| 56         | 3'-O(CH <sub>2</sub> ) <sub>2</sub> OCH <sub>3</sub> , 4'-OCH <sub>3</sub> <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.74ª             | 8.90         | 0.16       | 0.89     | 0.79       | -0.86                     | -0.84              | 1      |
| 57         | $3' - 0 CH_3, 4' - 0 (CH_2)_3 CH_3''$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.014             | 9.10         | 0.09       | 0.89     | 0.79       | 1.10'<br>0 1 0h           | -0.84              | 1<br>1 |
| 58<br>20   | $3^{\circ}, 5^{\circ} - (UCH_2C_6H_5)_2^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.77°<br>9 Azd    | 8.48<br>9.54 | 0.29       | 1.98     | 0.10       | 0.18"<br>1 19             | -0.04              | 1      |
| 59<br>97   | ο, σ=(UП3/2 <sup></sup><br>3'-Вr 4'-ОСН, 5' О(СН) СН «                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00-<br>g 0.0d   | 0.04<br>0.66 | 0.49       | 1.14     | 0.10       | 1.14<br>1.64 <sup>f</sup> | -1.00              | 1      |
| 61         | 3'-Br, 4'-OCH <sub>3</sub> , 5'-O(CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.96 <sup>d</sup> | 9.45         | 0.49       | 1.58     | 0.79       | 2.20 <sup>f</sup>         | -1.00              | 1      |

<sup>a</sup>Reference 11a. <sup>b</sup>Reference 11b. <sup>c</sup>Reference 11c. <sup>d</sup>New compounds tested following methods reported in reference 11. <sup>e</sup>Data from reference 11a. <sup>f</sup>Calculated on the basis of 3',4'-(OCH<sub>3</sub>)<sub>2</sub>. <sup>g</sup>Calculated on the basis of 3',5'-(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>. <sup>h</sup>Calculated on the basis of 3',5'-(OCH<sub>3</sub>)<sub>2</sub>. <sup>i</sup>Calculated with eq 6. <sup>j</sup>Not used in the derivation of eq 2-6.

well unless their MR' was set at 0.79. For compounds with a 5'-substituent larger than a methoxy group, the unscaled MR values and scaled values larger than 0.79 (e.g. 1.25,

1.00, 0.89) were used in correlation equations, but none of the correlation coefficients with these equations were better than the equations that had 0.79 as the maximum

MR'. A computer graphics model indicates<sup>4</sup> that the trimethoprim binding site of E. coli DHFR is reasonably tight in the immediate vicinity of the trimethoxyphenyl portion of trimethoprim but that the active site widens considerably near the entrance to the trimethoprim binding site. This could explain why there appears to be an upper limit on MR (MR') for inhibition of E. coliDHFR. The quantitative structure-activity relationship (QSAR) equation indicates that there is essentially no additional interaction for substituents larger than a methoxy group at the 3'-, 4'-, or 5'-position; only the first two atoms of the substituent contribute to enzyme binding. The portion of substituents beyond the first two atoms will be located in the widened region of the trimethoprim binding site of the enzyme where there is no opportunity for tight contacts.

Compound 45 (Table I) is about 7.8-fold more potent than its predicted activity. The difference between observed and calculated activities is more than twice the standard deviation of eq 6. If this compound is omitted, the correlations do not significantly improve. If the actual MR values of 3'-, 4'-, and 5'-substituents are used in the derivation of QSAR analysis (see eq 8), compound 45 will 1/V(....) = 0.040 (10.15) MD 1 0 000

$$\log 1/K_{i}(\text{app}) = 0.348 (\pm 0.15) \text{MR}_{3',5'} + 0.236 (\pm 0.16) \text{MR}_{4'} + 0.273 (\pm 0.17) \pi_{3',4',5'} - 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',4',5'}} + 1) -0.73 (\pm 0.32) \sigma_{\text{R}}^{-} + 1.144 (\pm 0.40) \log (\beta \cdot 10^{\pi_{3',5'}} + 1) -0.73 (\pm 0.32) (\pm$$

$$n = 60, r = 0.938, s = 0.407, \log \beta = -0.98, (\pi_{3',4',5'})_0 = 0.48$$

fit the correlation equation better than when using MR' of the substituents. However, a poorer overall fit is made when MR is used instead of MR'; i.e., the correlation coefficient of eq 6 is smaller and the standard deviation of eq 8 is larger than eq 6. In eq 6, MR rather than  $\pi$  is the principal correlate of the inhibitory activities, although inclusion of the  $\pi$  constant of 3'-, 4'-, and 5'-substituents bilinearly improves the correlation of MR'. Molecular modeling reveals that only a small portion of each 3'-, 4'-, and 5'-substituent is buried within a hydrophobic region, with most of the substituent solvated.<sup>4</sup> This explains why the  $\pi$  constant of these substituents is not the primary parameter determining the inhibitory activity against E. coli DHFR.

By comparison of eq 6 with eq 1 it can be seen that the coefficients of each corresponding term in the two equations are nearly the same. Therefore, it appears that there is no substantial difference between these two equations, except for the indicator variable term. The coefficient of I in eq 6 means that the  $K_i$  values tested as in ref 12 are about 24-fold smaller than the  $K_i$  values measured as in ref 3. The difference in  $K_i$  values using these two methods is much larger than the experimental error. Trimethoprin has been tested by these two different methods; its  $K_i$  is 1.2 nM (by ref 12) and 1.35 nM (by ref 3), a 1.12-fold difference. There may be some as yet unrevealed factors concealed in the I term of eq 6, which may be revealed in future studies.

It is noteworthy that nine compounds (45–48, 51, 55, 57, 60, and 61) are more potent inhibitors of E. coli (MB 1428) DHFR than trimethoprim. The most potent one is about 12-fold more potent than trimethoprim. We have tested these nine compounds as inhibitors of growth of E. coli (1515) to see whether they are more potent than trimethoprim in growth inhibition. The results (Table II) show that they are all less potent than trimethoprim. For example, 45 is 125-fold less potent than trimethoprin in growth inhibition.

Table II. Inhibitory Activities of Some 5-(Substituted benzyl)-2,4-diaminopyrimidines against the Activity of E. coli MB 1428 Dihydrofolate Reductase and the Growth of E. coli 1515 and E. coli MB 1428

|           |                                                                                  | $\log 1/K_{i}$ - | $\log 1/C^a$ |      |  |
|-----------|----------------------------------------------------------------------------------|------------------|--------------|------|--|
| no.       | х                                                                                | (app)            | 1515         | 1428 |  |
| 44        | $3',4',5'-(OCH_3)_3^b$                                                           | 8.92             | 7.06         | 5.22 |  |
| <b>45</b> | 3'-OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> , 4'-OCH <sub>3</sub>          | 10.01            | 4.96         | 5.02 |  |
| 46        | 3'-OCH <sub>3</sub> , 4'-OCH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>       | 9.25             | 5.82         | 4.30 |  |
| 47        | 3'-OCH <sub>3</sub> , 4'-OH                                                      | 9.05             | 6.45         | 3.51 |  |
| 48        | 3'-OCH <sub>3</sub> , 4'-OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>          | 9.43             | 4.96         | 5.02 |  |
| <b>51</b> | 3'-OSO <sub>2</sub> CH <sub>3</sub> , 4'-OCH <sub>3</sub>                        | 8.96             | 6.42         | 4.13 |  |
| 55        | $3',5'-(OCH_2CH_3)_2$                                                            | 9.11             | 6.54         | 4.77 |  |
| 57        | 3'-OCH <sub>3</sub> , 4'-O(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>        | 9.01             | 5.93         | 4.98 |  |
| 60        | 3'-Br, 4'-OCH <sub>3</sub> , 5'-O(CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub> | 8.96             | 4.91         | 6.07 |  |
| 61        | 3'-Br, 4'-OCH <sub>3</sub> , 5'-O(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> | 8.96             | 5.02         | 6.24 |  |

 $^{a}C$  is the molar concentration of benzylpyrimidine that inhibits growth by 80%. The column labeled 1515 is the logarithm of the inverse of the concentration of the compound listed in column 1 that inhibited growth of  $E. \ coli\ 1515$  by 80%. The column labeled 1428 is analogously defined for  $E. \ coli\ MB\ 1428.$  <sup>b</sup>Trimethoprin.

Equation 9 is the correlation equation describing the inhibition of growth of E. coli (1515) bacteria by compounds 45-48, 51, 55, 57, 60, and 61 in Table II.<sup>11c</sup>

## $\log 1/C =$

$$0.079 \text{MR}_{3',4',5'} - 1.876 \log (\beta \cdot 10^{\text{MR}_{3',4',5'}} + 1) + 5.554 \quad (9)$$
  

$$n = 20, r = 0.840, s = 0.345, F_{3,16} = 20.29,$$

$$\log \beta = -2.17, (MR_{3',4',5'})_0 = 1.95$$

Equation 9 is based on a Kubinyi bilinear formulation of  $MR_{3',4',5'}$ ; the optimum value of  $MR_{3',4',5'}$  is 1.95. The  $MR_{3',4',5'}$  values of compounds 45, 46, 48, 51, 55, 57, 60, and 61 are larger and the  $MR_{3',4',5'}$  of compound 47 is smaller than the optimum value. The compounds in Table II are all less potent than trimethoprim in inhibition of growth of E. coli (1515). The E. coli DHFR used in enzyme testing came from a different species of E. coli; therefore, it is not possible to directly compare eq 6 with eq 9. Coats et al. $^{13}$ studied the QSAR of the inhibition of growth of E. coli (MB 1428) by 5-(substituted benzyl)-2,4-diaminopyrimidines and derived eq 10.

$$\log 1/C = 1.25 \mathrm{MR'}_{3',4',5'} + 0.35 \pi_{3',4',5'} + 2.11 \quad (10)$$

$$n = 26, r = 0.0969, s = 0.238, F_{1,23} = 87.3$$

In eq 10,  $MR'_{3',4',5'}$  and  $\pi_{3',4',5'}$  are defined as in eq 1 [see references 3-8]. When the predicted bacteriostatic activities of the nine compounds of Table II are calculated from eq 10, the calculated growth inhibitory activities do not parallel DHFR inhibitory activities. The calculated activities of compounds 60 and 61 are higher than that of trimethoprim because they have more favorable  $MR'_{3',4',5'}$ and  $\pi_{3',4',5'}$  values. The above results indicate that the most potent inhibitor of DHFR is not necessarily the most potent bacteriostatic agent. Clearly, in the evaluation of DHFR inhibitors as antibacterial agents, it is necessary to test with whole bacteria.

#### **Experimental Section**

Enzymatic Assay. Buffer R was 80 mM KCl, 20 mM Tris, 10 mM  $KH_2PO_4$ , and 5 mM  $MgCl_2$  adjusted to pH 7.2 with 2 M HCl. *E. coli* (MB 1428) DHFR, NADPH, and  $H_2$ -folate were prepared and standardized as in ref 12. Inhibitors were accurately weighed and dissolved in 1.00 mL of  $(CH_3)_2SO$  to make a 500-2000  $\mu M$  solution. For assay, there was added 10  $\mu L$  of  $H_2\text{-folate}$ solution (9.4 mM) to 990  $\mu$ L of a mixture of 9.90 mL of buffer

Coats, E. A.; Genther, C. S.; Selassie, C. D.; Strong, C. D.; (13)Hansch, C. J. Med. Chem. 1985, 28, 1910.

R and 0.10 mL of 5.8 mM NADPH in a cuvette in the sample chamber of a Cary 118 UV-vis spectrometer set at 340 nm at room temperature. Then, an aliquot of inhibitor was added, followed by 10  $\mu$ L of DHFR. The initial steady rate of A(340) decrease was measured.

**Calculation of**  $K_i$ . The following equation was used:  $K_i(\text{app}) = i_{50}[1/(1+(s/K_s))]$ , where s was the concentration of H<sub>2</sub>-folate in M in cuvette,  $K_s$  was the Michaelis constant for H<sub>2</sub>-folate (440 nM), and  $i_{50} = i[1/([v(i = o)/v(i = i)]) - 1)]$  where i is the concentration of inhibitor in nM,  $i_{50}$  is the concentration of inhibitor that gave 50% inhibition of DHFR activity, v(i = o) is the rate of decrease of A(340) without inhibitor, and v(i = i) is the rate of decrease of A(340) in the presence of inhibitor were repeated three to seven times until the standard error in  $K_i$  was less than 20%.

**QSAR Parameters.** All parameters of Table I come from the compilation used in ref 9 unless noted.

Acknowledgment. This project was supported by the Science Fund of the Chinese Academy of Sciences. Com-

pounds 45-58 of Table I were synthesized by Fang Zhao-Xia of Department of Medicinal Chemistry, Beijing Medical University.

**Registry No.** 1, 80407-57-4; 2, 80407-60-9; 3, 80407-61-0; 4, 7319-45-1; 5, 69945-52-4; 6, 69945-57-9; 7, 77113-60-1; 8, 77113-56-5; 9, 69945-50-2; 10, 77113-54-3; 11, 836-06-6; 12, 80407-62-1; 13, 80407-59-6; 14, 18588-43-7; 15, 71525-05-8; 16, 77113-55-4; 17, 46726-70-9; 18, 80416-29-1; 19, 77113-61-2; 20, 80407-58-5; 21, 49561-94-6; 22, 77113-57-6; 23, 69945-58-0; 24, 69945-56-8; 25, 69945-51-3; 26, 69945-55-7; 27, 20285-70-5; 28, 77113-63-4; 29, 77113-62-3; 30, 77113-59-8; 31, 69945-53-5; 32, 77113-58-7; 33, 59481-28-6; 34, 69945-59-1; 35, 69945-54-6; 36, 69945-60-4; 37, 50823-94-4; 38, 73356-41-9; 39, 30077-60-2; 40, 50823-96-6; 41, 5355-16-8; 42, 53808-87-0; 43, 20344-69-8; 44, 738-70-5; 45, 78233-99-5; 46, 107697-99-4; 47, 73356-40-8; 48, 83158-06-9; 49, 107698-00-0; 50, 7334-22-7; 51, 111743-19-2; 52, 107698-01-1; 53, 49873-11-2; 54, 13932-40-6; 55, 100515-03-5; 56, 107697-98-3; 57, 80267-19-2; 58, 111743-20-5; 59, 100515-04-6; 60, 107697-96-1; 61, 107697-97-2; DHFR, 9002-03-3.

# N-Aryl 3-Halogenated Azetidin-2-ones and Benzocarbacephems, Inhibitors of $\beta$ -Lactamases

Roger Joyeau,<sup>†</sup> Huguette Molines,<sup>†</sup> Roger Labia,<sup>‡</sup> and Michel Wakselman\*<sup>†</sup>

CNRS-CERCOA, 2-8, rue Henri Dunant, 94320 Thiais, France, and Museum National d'Histoire Naturelle, 63, rue Buffon, 75005 Paris, France. Received May 18, 1987

N-(3-Carboxy-6-methylphenyl)-3-fluoroazetidin-2-one and a series of related N-aryl-3-halo- and -3,3-dihaloazetidinones 3, in which the halo substituent is a fluorine or a bromine atom, were prepared, by using the Wasserman procedure of cyclization of  $\beta$ -bromopropionamides as a key step. Their affinities for the TEM-1  $\beta$ -lactamase were determined and compared with those of a series of tricyclic azetidinones, the benzocarbacephems 2, and known  $\beta$ -lactamase inhibitors. The  $\beta$ -lactams 2 and 3 behave as competitive inhibitors and not as substrates of the enzyme; neither halogen substitution (series 3) nor ring strain (series 2) induces enzymatic hydrolysis.

In spite of the introduction in therapy of innovative  $\beta$ -lactams with expanded antibacterial activity and improved  $\beta$ -lactamase stability, bacteria continue to exhibit resistance. Therefore enzymatic inactivation of the newer molecules is still a major problem. A recent outbreak of bacteria carrying plasmid-mediated  $\beta$ -lactamases markedly active against third-generation cephalosporins has renewed the interest in  $\beta$ -lactamase inhibitors.<sup>1</sup> Clavulanic acid, sulbactam, and related compounds<sup>2</sup> are  $\beta$ -lactamase inhibitors which potentiate the antibacterial activity of various  $\beta$ -lactams, but the need for  $\beta$ -lactamase inhibitors of new chemical structures and new biological properties remains a subject of very high interest.

We have previously shown that some N-arylazetidinones, and particularly the 3-carboxy-6-methyl-substituted one, 1a (Figure 1), are interesting competitive inhibitors of  $\beta$ -lactamases. However, they are not detectable substrates of the enzymes.<sup>3</sup> Their bromomethylated analogues such as 1b are not suicide inhibitors,<sup>3</sup> for ring opening is a prerequisite for the design of new suicide inhibitors of  $\beta$ -lactamases.<sup>2</sup>

To increase the reactivity of the  $\beta$ -lactam ring toward enzymatic ring opening, two ways were considered: cyclization to give strained tricyclic  $\beta$ -lactams 2 and halogen substitution  $\alpha$  to the carbonyl to give compounds of type 3 (vide infra). We have already described the synthesis Scheme I

Br CH<sub>2</sub>CO CO<sub>2</sub>Et 
$$SF_4$$
 Br CH<sub>2</sub>CF<sub>2</sub>CO<sub>2</sub>Et  $COCl$  Br CH<sub>2</sub>CF<sub>2</sub>COCl Br CH<sub>2</sub>CF<sub>2</sub>COCl CI SO<sub>3</sub>H  $Sb$ 

of the benzocarbacephems 2 (Y = H, Cl, or F).<sup>4</sup> We report here the results of their biological activity together with the synthesis and properties of the N-aryl 3-halogenated and 3,3-dihalogenated azetidinones 3 (X<sup>1</sup>, X<sup>2</sup> = H, Br, or F).

The presence of one or two halogen substituents  $\alpha$  to the carbonyl should increase the  $\nu_{c=0}$  IR stretching frequency, one of the criteria of the reactivity of the  $\beta$ -lactam ring.<sup>5</sup> In this respect, fluorine substitution, which will not

- (2) (a) Knowles, J. R. Acc. Chem. Res. 1985, 18, 97. (b) Chen, Y. L.; Chang, C. W.; Hedberg, K.; Guarino, K.; Welch, W. M.; Kiessling, L.; Retsema, J. A.; Haskell, S. L.; Anderson, M.; Manousos, M.; Barrett, J. F. J. Antibiot. 1987, 40, 803. (c) Micetich, R. G.; Maiti, S. N.; Spevak, P.; Hall, T. W.; Yamabe, S.; Ishida, N.; Tanaka, M.; Yamazaki, T.; Nakai, A.; Ogawa, K. J. Med. Chem. 1987, 30, 1469.
- (3) Zrihen, M.; Labia, R.; Wakselman, M. Eur. J. Med. Chem.— Chim. Ther. 1983, 18, 307.
- (4) (a) Joyeau, R.; Dugenet, Y.; Wakselman, M. J. Chem. Soc., Chem. Commun. 1983, 431. (b) Joyeau, R.; Yadav, L. D. S.; Wakselman, M. J. Chem. Soc., Perkin Trans. 1 1987, 1899.

370

0022-2623/88/1831-0370\$01.50/0 © 1988 American Chemical Society

<sup>&</sup>lt;sup>†</sup>CNRS-CERCOA.

<sup>&</sup>lt;sup>‡</sup> Museum National d'Histoire Naturelle.

Sirot, D.; Sirot, J.; Labia, R.; Morand, A.; Courvalin, P.; Darfeuille-Michaud, A.; Perroux, R.; Cluzel, R. J. Antimicrob. Chemother. 1987, 20, 323.