compound for 5 days, starting on the day of virus infection. The test compounds were formulated in 0.2% (w/w) sodium (carboxymethyl)cellulose, 0.2% Tween 80 in H₂O to give a solution or a homogeneous suspension. Twenty mice were used per group. Statistical significance of the differences in the final mortality rates (after 20 days of observation) was assessed by the χ^2 test with Yates correction for small numbers.³⁸

The procedure for topical treatment of cutaneous HSV-1 or HSV-2 infection in hairless mice has been recently described.³⁹ The mice were inoculated intracutaneously in the lumbosacral area with either HSV-1 (Brand) at 1×10^{6} PFU/0.025 mL per mouse or HSV-2 (K 979) at 1.8×10^{5} PFU/0.025 mL per mouse. The test compounds were formulated in AZDMSO (5% azone [1-dodecylazacycloheptan-2-one], synthesized at the Sandoz Forschungsinstitut by the method of Swain et al.,⁴⁰ in dimethyl sulfoxide). They were applied in a volume of 50 μ L topically four times a day (at 9 a.m., 11 a.m., 2 p.m., and 4 p.m.) for 5 days, starting immediately after virus infection. Ten mice were used per group.

Acknowledgment. Financial support from "Fonds zur Förderung der wissenschaftlichen Forschung in Österreich" is gratefully acknowledged. For performing NMR analyses, we thank Drs. R. Csuk and G. Schulz. This investigation was supported in part by grants from the Belgian fonds voor Geneeskundig Wetenschappelijk Onderzoek (Project no. 3.0040.83) and the Belgian Geconcerteerde Onderzoeksacties (Project no. 85/90-79). The excellent technical assistance of Christine Hotowy, Edita Mlynar, Gerhard Polzer, Gerhard Weber, Anita Van Lierde, Frieda De Meyer, and Willy Zeegers is gratefully acknowledged.

Registry No. 1a, 951-78-0; 1b, 50-89-5; 1c, 54-42-2; 1d, 90301-59-0; 1e, 69304-47-8; 2a, 115365-13-4; 2b, 115365-14-5; 2c, 115365-15-6; 2d, 115365-16-7; 2e, 115365-18-9; 2f, 115365-19-0; 2g, 115365-20-3; 2h, 115365-24-7; 5a, 115365-22-5; 3b, 115365-23-6; 3c, 115365-27-0; 5d, 115365-28-1; 6, 115365-33-8; 7, 115365-24-9; 5c, 115365-38-3; 9, 115365-39-4; 10, 115365-40-7; 11a, 115365-34-9; 8, 115365-38-3; 9, 115365-39-4; 10, 115365-40-7; 11a, 115365-29-2; 11b, 115365-36-1; 11c, 115365-30-5; 11d, 115365-31-6; 11e, 115365-32-7; 12a, 115365-37-2; EtOCOP(0)-(OMe)Cl, 115365-12-3; EtOCOCH_2P(O)(OMe)Cl, 115365-17-8; HOOCCH_2P(O)(OMe)_2, 34159-46-1; EtOCOCH_2P(O)(OH)_2, 35752-46-6; t-BuOCOCH_2P(O)(OH)_2, 77530-32-6; EtOCOP(O)-(OH)_2, 55920-71-3; EtOCOP(O)(OH)_2, PhNH_2, 67472-32-6; MeO-COP(O)(OH)_2, 55920-68-8; PhCH_2OCOP(O)(OH)_2, 55920-74-6.

Synthesis and Biological Activity of Some Transition-State Inhibitors of Human Renin

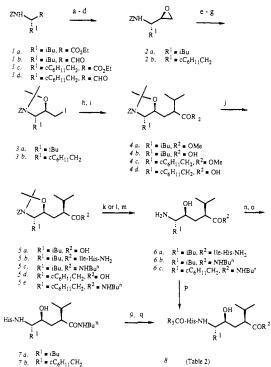
Peter Bühlmayer, Anthony Caselli, Walter Fuhrer, Richard Göschke, Vittorio Rasetti, Heinrich Rüeger, James L. Stanton,* Leoluca Criscione, and Jeanette M. Wood

Research Department, Pharmaceuticals Division, Ciba-Geigy Limited, CH-4002 Basel, Switzerland. Received September 10, 1987

A series of renin inhibitors containing the dipeptide transition state mimics (2S,4S,5S)-5-amino-4-hydroxy-2-isopropyl-7-methyloctanoic acid (Leu^{OH}Val) and (2S,4S,5S)-5-amino-4-hydroxy-2-isopropyl-6-cyclohexylhexanoic acid (Cha^{OH}Val) was prepared. A structure-activity study with Boc-Phe-His-Leu^{OH}Val-Ile-His-NH₂ (8a) as starting material led to N-[(2S)-2-[(*tert*-butylsulfonyl)methyl]-3-phenylpropionyl]-His-Cha^{OH}Val-NHC₄H₉-n (8i) which has the length of a tetrapeptide and contains only one natural amino acid. Compound 8i had an IC₅₀ of 2 × 10⁻⁹ M against human renin and showed high enzyme specificity; IC₅₀ values against the related aspartic proteinases pepsin and cathepsin D were (8 × 10⁻⁶ and 3 × 10⁻⁶ M, respectively). In salt-depleted marmosets, 8i inhibited plasma renin activity PRA and lowered blood pressure for up to 2 h after oral administration of a dose of 10 mg/kg.

Renin, the rate-determining enzyme in the cascade leading to the vasopressor substance angiotensin II, plays a key role in the regulation of blood pressure.¹ Interruption of the renin-angiotensin system by inhibition of angiotensin converting enzyme (ACE) has led to the development of effective antihypertensive agents.² In principle, renin inhibitors should also provide a means of controlling blood pressure. Animal studies comparing an ACE inhibitor with a renin inhibitor have shown the two agents to be equieffective.³ In addition, renin inhibitors may have advantages over ACE inhibitors, since, unlike ACE, which hydrolyzes a variety of bioactive peptides, renin is specific, having angiotensinogen as its only known substrate.⁴ Human renin hydrolyzes the Leu¹⁰-Val¹¹ amide bond of angiotensinogen. A number of nonhydrolyzable equivalents of this dipeptide based on the transition state inhibitor concept have been prepared and incorporated into small peptides. Szelke and co-workers were the first to apply this concept to the synthesis of renin inhibitors.⁵ These and subsequent efforts by others have produced a number of potent inhibitors of renin, but none of these have shown good oral activity.⁶ Herein we report some

 ^{(1) (}a) Peach, M. J. Physiol. Rev. 1977, 57, 313. (b) Ondetti, M. A.; Cushman, D. W. Annu. Rev. Biochem. 1982, 51, 283.


^{(2) (}a) Frohlich, E. D.; Copper, R. A.; Lewis, E. J. Arch. Intern. Med. 1984, 144, 1441. (b) Vlasses, P. H.; Rotmensch, H. H.; Swanson, B. N.; Lee, R. B.; Koplin, J. R.; Ferguson, R. F. J. Clin. Pharmacol. 1983, 23, 227. (c) Watthey, J. W. H.; Stanton, J. L.; Desai, M.; Babiarz, J. E.; Finn, B. M. J. Med. Chem. 1985, 28, 1511. (d) Stanton, J. L.; Watthey, J. W. H.; Desai, M. N.f Finn, B. M.; Babiarz, J. E.; Tomaselli, H. C. J. Med. Chem. 1985, 28, 1603. (e) Teetz, V.; Geiger, R.; Henning, R.; Urbach, H. Arzneim. Forsch. 1984, 34(II), 1399. (f) Schaller, M. D.; Nussberger, J.; Waeber, B.; Bussien, J. P.; Turini, G. A.; Brunner, H.; Brunner, H. R. Eur. J. Clin. Pharmacol. 1985, 28, 267.

^{(3) (}a) Hofbauer, K. G.; Fuhrer, W.; Heusser, C.; Wood, J. M. J. Cardiovasc. Pharmacol., 1985, 7(Supple. 4), 562. (b) Wood, J. M.; Forgiarini, P.; Hofbauer, K. G. J. Hypertens. 1983, 1-(Suppl. 2), 189. (c) Sweet, C. S.; Ludden, C. T.; Frederick, C. M.; Bush, L. R.; Ribeiro, L. G. T. J. Cardiovasc. Pharmacol. 1984, 6, 1067.

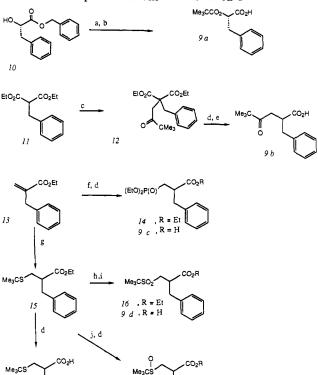
⁽⁴⁾ Foltmann, B.; Pedersen, V. B. Acid Proteases, Structure, Function, and Biology; Tang, J., Ed.; Plenum: New York, 1977; pp 3-22.

 ⁽⁵⁾ Szelke, M.; Leckie, B. J.; Hallett, A.; Jones, D. M.; Sueiras, J.; Atrash, B.; Lever, A. F. Nature (London) 1982, 299, 555.

Scheme I.^a Preparation of Leu $\frac{OH}{Val}$ Val and Cha $\frac{OH}{Val}$ Val Derivatives

^a (a) DIBAL; (b) H₂NNHCONH₂; (c) HCHO, HCl; (d) Me₂SOCH₂Na; (e) NaI, Me₃SiCl; (f) KF; (g) (MeO)₂CMe₂, TsOH; (h) Me₂CHCHLiCO₂Me; (i) KO-*t*-Bu, H₂O; (j) chromatography; (k) lle-His-NH₂, DCC, HOBT; (l) H₂N-*n*-Bu, DCC, HOBT; (m) H₂, Pd-C; (n) Z-His or N,N'-ditrityl-His, DCC, HOBT; (o) H₂, Pd-C; (p) Boc-Phe-His or pivaloyl-Phe-His, DCC, HOBT; (q) DCC, HOBT.

results from our studies based on hydroxyethylene isosteres of the dipeptides Leu-Val and Cha-Val⁷ leading to the


- (6) (a) Wood, J. M.; Gulati, N.; Forgiarini, P.; Fuhrer, W.; Hofbauer, K. G., Hypertension 1985, 7, 797. (b) Szelke, M.; Leckie, B. J.; Hallett, A.; Jones, D. M.; Sueiras, J.; Atrash, B.; Lever, A. F. Nature (London) 1982, 299, 555. (c) Leckie, B. J.; Szelke, M.; Atrash, B.; Beattie, S. R.; Hallett, A.; Jones, D. M.; McIntyre, G. D.; Sueiras, J.; Webb, D. J. Biochem. Soc. Trans. 1985, 13, 1029. (d) Boger, J.; Lohr, N. S.; Ulm, E. H.; Poe, M.; Blaine, E. H.; Fanelli, G. M.; Lin, T. Y.; Payne, L. S.; Schorn, T. W.; LaMont, B. I.; Vassil, T. C.; Stabilito, I. I.; Veber, D. F.; Rich, D. H.; Bopari, A. S. Nature (London) 1983, 303, 81. (e) Boger, J.; Payne, L. S.; Perlow, D. S.; Lohr, N. S.; Poe, M.; Blaine, E. H.; Ulm, E. H.; Schorn, T. W.; LaMont, B. I.; Lin, T. Y.; Kawai, M.; Rich, D. H.; Veber, D. F. J. Med. Chem. 1985, 28, 1779. (f) Blaine, E. H.; Schorn, T. W.; Boger, J. Hypertens. 1984, 6(Suppl. 1), I-111. (g) Declavi << crvere, M.; Cazaubon, C.; Lacour, C.; Nisato, D.; Gagnol, J. P.; Evin, G.; Corvol, P. J. Cardiovasc. Pharmacol. 1985, 7(Suppl. 4), 558. (h) Luly, J. R.; Plattner, J. J.; Stein, H.; Yi, N.; Cohen, J.; Tricarico, K.; Dellaria, J. F. Pharmacologist 1985, 27, 260, abstract 803. (i) Free, C. A.; Ryono, D. E.; Samaniego, S. G.; Neubeck, R.; Petrillo, E. W. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1985, 44, 1431, abstract 5964. (j) Miyayaki, M.; Toda, N.; Etoh, Y.; Kubota, T.; Diyuka, K. Jpn. J. Pharmacol. 1986, 40(Suppl.), 70P, abstract0-30.
- (7) Abbreviations used are as follows: Z, benzyloxycarbonyl; Boc, tert-butoxycarbonyl; DCC, dicyclohexylcarbodiimide; HOBT, hydroxybenzotriazole; DIBAL, diisobutylaluminum hydride; TMSI, iodotrimethylsilane; Cha, β -cyclohexyl-L-alanine;

Leu<u>OH</u>Val, (2S,4S,5S)-5-amino-4-hydroxy-2-isopropyl-7-

methyloctanoic acid; Cha<u>OH</u>Val, (2S,4S,5S)-5-amino-4hydroxy-2-isopropyl-6-cyclohexylhexanoic acid; TFA, tri-

fluoroacetic acid; Piv, pivaloyl; Pla, L-phenyllactyl; Leu $\frac{R}{Val}$, N-[(2S)-2-amino-4-methylpentyl]-L-valine; MCPBA, 3-chloroperoxybenzoic acid.

Scheme II.^a Preparation of Phe Derivatives 9a-f

 a (a) Me₃CCOCl; (b) H₂, Pd–C; (c) Me₃CCOCH₂Br, NaH; (d) NaOH; (e) HCl, reflux; (f) (EtO)₂POH; (g) Me₃CSH; (h) KHSO₅; (i) 6 N HCl; (j) MCPBA.

17.R = Et

 $Q_R = H$

discovery of a potent inhibitor active after oral administration.

Chemistry

9 f

The dipeptide derivatives Leu^{OH}Val and Cha^{OH}Val, which span the site of enzymatic cleavage, were prepared as depicted in Scheme I. A somewhat related approach to this class of dipeptide mimics has been reported.^{9b} For

Cha^{OH}Val, Z-L-cyclohexylalanine ethyl ester (1c) was reduced with diisobutylaluminum hydride to aldehyde 1d. The product was isolated as its semicarbazone, purified. and regenerated in aqueous acid immediately prior to use. The aldehyde 1d showed at least 90% optical purity according to HPLC analysis of the diastereomeric (-)-MTPA-amides (see the Experimental Section) of the reduced aldehyde. Conversion of 1d to epoxide 2b was carried out with dimethyloxosulfonium methylide.⁸ This reaction produced a 5:1 mixture of diastereomers, with the desired isomer (2b) predominating. After ring opening of epoxide 2b with iodotrimethylsilane,¹⁰ the diastereomeric iodo alcohols were separated by flash column chromatography. Acetonide formation led to 3b. The stereochemical assignment was based on ¹³C NMR data of acetonide 3a or **3b** and on the absolute configuration of the hydroxyl group in statine-containing renin inhibitors.^{9,16} Alkylation

- (10) Sakurai, H.; Sosaki, K.; Hosomi, A. Tetrahedron Lett. 1980, 21, 2329.
- (11) Gassman, P. G.; Schenk, W. N. J. Org. Chem. 1977, 42, 918.
 (12) Stetter, H.; Kuhlmann, H. Synthesis 1979, 29.

Bühlmayer et al.

⁽⁸⁾ Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.

^{(9) (}a) Holladay, M. W.; Rich, D. H. Tetrahedron Lett. 1983, 24, 4401. (b) Evans, B. E.; Rittle, K. E.; Homnick, C. F.; Springer, J. P.; Hirshfield, J.; Veber, D. F. J. Org. Chem. 1985, 50, 4615.
(c) Ohfune, Y.; Nishio, H. Tetrahedron Lett. 1984, 25, 4133.

Table I. Characterization of Leu $\frac{OH}{Val}$ Val and Cha $\frac{OH}{Val}$ Val Derivatives $(8a-l)^a$

no. ^b	TLC, R_f^c	formula ^d	$[\alpha]_{\mathrm{D}},^{e} \mathrm{deg}$
8a	0.28 (N)	C44H68N10O8	-44.8 (c 0.50)
8b	0.31 (L), 0.17 (N)	C44H68N10O7	-38.4 (c 1.0)
8c	0.32 (L)	C44H67N9O8	-43.8 (c 0.85)
8d	0.47 (P)	C ₃₆ H ₅₇ N ₅ O ₆	-33.7 (c 0.49)
8e	0.72 (N)	$C_{39}H_{61}N_5O_6^f$	-37.7 (c 0.48)
8f	0.33 (P)	$C_{40}H_{63}N_5O_5$	-49.0 (c 0.50)
8g	0.46 (P), 0.66 (N)	C ₃₉ H ₆₄ N ₅ O ₇ P	$-44.0 (c \ 0.50)$
8ĥ	0.44 (P), 0.67 (N)	C ₃₉ H ₆₃ N ₅ O ₆ S	$-30.0 (c \ 0.50)$
8i	0.24 (C)	$C_{39}H_{63}N_5O_6S$	-30.3 (c 0.95)
8j	0.31 (P)	$C_{39}H_{63}N_5O_6S$	-66.2 (c 0.47)
8k	0.53/0.63 (J)	$C_{39}H_{63}N_5O_5S$	-59.1 (c 0.20)
81	0.42 (P)	$C_{39}H_{63}N_5O_4S$	-36.0 (c 0.50)

^aSee ref 7 for definition of Leu-^{OH}-Val and Cha-^{OH}-Val. ^bSee Table II for structures. Each compound had NMR consistent with structure and expected M + H ion seen in FAB-MS. ^cSee the Experimental Section for solvent systems (A-R). ^d Analyses for C, H, N were correct within $\pm 0.4\%$ unless otherwise indicated. ^e Rotations were determined in MeOH. ^fC, H, N analysis was within $\pm 0.51\%$.

of methyl isovalerate with iodide **3b** generated **4c** as an approximately 1:1 mixture of diastereomers. The ester was hydrolyzed to yield a diastereomeric mixture of acids **4d**, which were separated by chromatography to give the desired S,S,S isomer **5d**.¹¹ The stereochemistry at the newly formed asymmetric center with the Val side chain was assigned on the basis of ¹H NMR coupling constants of the corresponding γ -butyrolactones. Acid **5d** was converted to *n*-butylamide **5e** and then deprotected by hydrogenolysis to generate the dipeptide mimic **6c**.

The final compounds 8e-1 were prepared by standard amide coupling procedures. Condensation of Z-L-histidine with 6c followed by hydrogenolytic removal of the benzyloxycarbonyl group led to 7b. Acylation of 7b with acids 9a-f yielded the final compounds 8e-1.

The corresponding Leu^{OH}Val derivatives 8c and 8d were prepared analogously with 1a as starting material. Hexapeptide derivative 8a was prepared from 6a by amidation with Boc-Phe-His, and compound 8b was derived from coupling of 6a with pivaloyl-Phe-His.

The acids 9a-f, which mimic phenylalanine, were prepared as summarized in Scheme II. O-Pivalvl-Lphenyllactic acid (9a) was obtained by acylation of benzyl-L-pivalate (10) followed by hydrogenolysis. 2-(Pivalylmethyl)hydrocinnamic acid (9b) was generated by alkylation of diethyl benzylmalonate (11) with bromopinacolone to give 12, followed by hydrolysis and decarboxylation. Phosphonate 9c was synthesized by Michael addition of diethylphosphite to ethyl 2-benzylacrylate $(13)^{12}$ with subsequent hydrolysis. The sulfur-containing acids 9d-f were produced by 1,4-addition of tert-butyl mercaptan to 15 followed, if required, by the appropriate oxidation and hydrolysis. The optical isomers of 9d were prepared by chromatographic separation of the corresponding diastereomeric amides formed with L-phenyl-

Table II.	In Vitro Hu	man Renin	Inhibition	of Leu-OH Val	and
Cha <u>OH</u> Va	l Derivatives	(8 a -l)			

		human renin
no.	structure ^a	IC ₅₀ , ^{<i>b</i>} nM
8 a	$Boc-Phe-His-Leu \frac{OH}{Val-Ile-His-NH_2}$	15
8b	Piv-Phe-His-Leu ^{OH} Val-Ile-His-NH ₂	20
8 c	Piv-Pla-His-Leu <u>OH</u> Val-Ile-His-NH ₂	20
8 d	Piv-Pla-His-Leu <u>OH</u> Val-NHC ₄ H ₉ -n	20
8e	Piv-Pla-His-Cha <u>^{OH}</u> Val-NHC ₄ H ₉ -n	7
8 f	Piv <u>^C</u> Phe-His-Cha <u>^{OH}</u> Val-NHC ₄ H ₉ - <i>n</i> ^c	6
8g	$(EtO)_2PO \stackrel{C}{\longrightarrow} Phe-His-Cha \stackrel{OH}{\longrightarrow} Val-NHC_4H_9-n^d$	4
8 h	t -BuSO ₂ ^C Phe-His-Cha \xrightarrow{OH} Val-NHC ₄ H ₉ - n^e	2
8 i	t -BuSO ₂ ^C Phe-His-Cha $\frac{OH}{V}$ Val-NHC ₄ H ₉ - $c^{e,f}$	2
8j	t -BuSO ₂ ^C Phe-His-Cha \xrightarrow{OH} Val-NHC ₄ H ₉ - $c^{e,f}$	10
8 k	t -BuSO <u></u> Phe-His-Cha <u>OH</u> Val-NHC ₄ H ₉ - n^{g}	2
81	t -BuS <u></u> Phe-His-Cha <u>OH</u> Val-NHC ₄ H ₉ - n^h	4
H-142	Pro-His-Pro-Phe-His-Leu ^{_R} Val-Ile-His-Lys	10 ^{<i>i</i>}

^a For definition of abbreviations see ref 7. Compounds 8f-h, 8k, and 8l are diastereomeric at the center contained in the Phe-mimic subunit. ^b Purified human kidney renin (250 pg/mL) was incubated (37 °C) with human angiotensinogen at pH 7.2. Test details

are described in ref 7. $^{\circ}Piv \stackrel{C}{\longrightarrow} Phe$, from acylation of 9b.

^d (EtO)₂PO<u>C</u>Phe, from acylation of 9c. ^et-BuSO₂<u>C</u>Phe, from acylation of 9d. ^fCompound 8h is a diastereometic mixture of 8i and 8j. Compounds 8i and 8j contain resolved optical isomers of 9d. ^ft BuSO^C Phe from acylation of 9a. ^ht BuSO^C Phe from

9d. ^st-BuSO^{<u>C</u>}Phe, from acylation of 9e. ^ht-BuS^{<u>C</u>}Phe, from acylation of 9f. ⁱLit.⁵ IC₅₀ = 10 nM.

alaninol followed by acid-catalyzed hydrolysis. Alternatively, the isomer contained in the final compound with greater biological activity, which presumably corresponds to the absolute configuration of L-phenylalanine, could be prepared by recrystallization of the diastereomeric salt formed with dehydroabietylamine.

Results and Discussion

The starting point in the structure-activity study summarized in Table II was the hexapeptide derivative 8a, which incorporates the amino acid side chains corresponding to positions 8–13 of human angiotensinogen. The goal of the investigation was to lower the molecular weight, minimize the number of peptide amide bonds, and enhance in vivo stability. The central dipeptide derivative Leu- $\frac{OH}{Val}$ or Cha $\frac{OH}{Val}$, which replaces the scissile amide bond and was designed to mimic the tetrahedral transition state of the enzymatic hydrolysis, was kept constant, and

the left and right side attachments were varied. On the amino side it was found that the terminal *tert*butyl carbamate group in 8a could be replaced by a pivalamide (compound 8b) and further that this amide bond could be exchanged for an ester linkage (compound 8c). This result implies that the NH of the amide at this position is not involved in an essential hydrogen bond with the enzyme. On the carboxy side of 8a it was found that the dipeptide Ile-His-NH₂ could be replaced entirely with

n-butylamide (compound 8d) without loss of in vitro potency. In addition, replacement of the central dipeptide mimic Leu^{OH}Val in 8d with Cha^{OH}Val led to enhanced potency (compound 8e). A similar increase in potency has been reported for a series of statine-containing renin inhibitors.^{6d}

Since the nitrogen of the N-terminal amide bond appeared to be unnecessary (compounds 8c and 8d), re-

⁽¹³⁾ Kienzi, H.; Gillessen, D.; Tryeciak, A.; Studer, R. O.; Kerdelhue, B.; Jutisz, M.; Lotz, W. Helv. Chim. Acta 1974, 57, 2131.
(14) (a) Kennedy, R. J.; Stock, A. M. J. Org. Chem. 1960, 25, 1901.

^{(14) (}a) Kennedy, R. J.; Stock, A. M. J. Org. Chem. 1960, 25, 1901.
(b) Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 1287.

⁽¹⁵⁾ Moriconi, E. J.; Crawford, W. C. J. Org. Chem. 1968, 33, 370.

^{(16) (}a) Ritchie, R. G. S.; Cyr, N.; Korsch, B.; Koch, H. J.; Perlin, A. S. Can. J. Chem. 1975, 53, 1424. (b) Cardillo, G.; Orena, M.; Sandri, S.; Tomasini, C. Tetrahedron 1985, 41, 163; J. Org. Chem. 1986, 51, 713. (c) Pihlaja, K.; Rossi, K. Acta Chem. Scand., Ser. B 1977, B31, 899.

Table III. Comparison of Enzyme Inhibitions for 8i

enzyme	IC ₅₀ ,ª nM
human kidney renin	2
human plasma renin	0.4
marmoset plasma renin	1
dog plasma renin	3
rat plasma renin	400
porcine pepsin	8200
bovine cathepsin D	3200

 $^{\circ}$ Plasma renin activity was measured as the rate of angiotensin I formation after incubation (37 $^{\circ}$ C) of the endogenous renin and angiotensinogen in plasma at pH 7.2. Test details are described in ref 6a.

placement with carbon was investigated, and ketone 8f was found to be an equipotent inhibitor. Potential isosteric replacements of the ketone functionality were also studied. Phosphonate 8g and sulfone 8h each showed good activity. The corresponding sulfoxide (8k) and sulfide (8l) were also equipotent. The two isomers of diastereomeric 8h, compounds 8i and 8j, were found to differ by a factor of five in potency. Overall, the structure-activity study indicates that it is possible, starting from hexapeptide analogue 8a, to remove three of the four natural amino acids and to isosterically replace an additional amide bond.

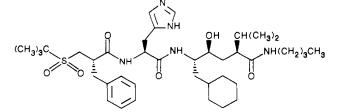
Sulfone derivative 8i wass also assayed for specificity in other enzyme systems (Table III). The inhibitor showed similar potency against human, marmoset, and dog renin, but was only weakly active against rat renin. Although renin is a member of the same enzyme family, the aspartic proteinases pepsin and cathepsin D were inhibited by 8i only at a 1000-fold higher dose.

In vivo, sulfone 8i was studied with use of salt-depleted marmosets (Table IV). After intravenous administration the compound was found to produce complete inhibition of plasma renin activity (PRA) and significant reduction of blood pressure in dose of 0.1 mg/kg and above.

Oral administration of sulfone \$i was also investigated. A dose of 1 mg/kg induced a substantial inhibition of PRA, with little influence on blood pressure. Doses of 3 mg/kg and above completely inhibited PRA and lowered blood pressure (BP). A dose of 10 mg/kg induced a significant fall in BP, which persisted over the 2-h test period.

In conclusion, structure-activity studies with hexapeptide derivative 8a as the starting material led to compound 8i, which has the length of a tetrapeptide and contains only one natural amino acid. The compound was found to be a potent and selective renin inhibitor in vitro and to effectively inhibit PRA and lower blood pressure after oral administration at a dose of 3-10 mg/kg. The compound, designated CGP 38 560 A, was therefore selected for extensive pharmacological characterization and for clinical investigation.

Experimental Section


Proton NMR spectra were determined on a Bruker WM 250 or a Varian HA 100D spectrometer with Me₄Si as the internal standard. FAB mass spectra were recorded on a VG Analytical ZAB-HF spectrometer. Optical rotations were measured with a Perkin-Elmer 291 polarimeter. Melting points were taken on a Büchi 510 melting point apparatus and are uncorrected. All compounds were prepared by methods identical with those described below. Intermediate products were used directly without further purification. The experimental procedures for the biological tests have been described previously.^{6a}

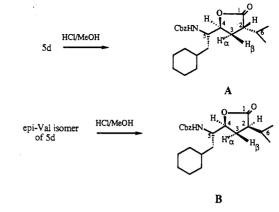
Systems used for TLC were as follows: A, 1:9 ethyl acetate-hexane; B, 1:2 ethyl acetate-hexane; C, 9:1 CH_2Cl_2 -MeOH; D, 300:10:1 CH_2Cl_2 -MeOH- H_2O ; E, 1:4 ethyl acetate-hexane; F, 1:6 ethyl acetate-hexane; G, 4:1 CH_2Cl_2 -ether; H, 4:1 CH_2Cl_2 -MeOH; I, 9:1 CH_2Cl_2 -ether; J, 1:1 ethyl acetate-hexane; K, 60:10:1 CH_2Cl_2 -MeOH-NH_4OH; L, 40:10:1 CH_2Cl_2 -MeOH-NH_4OH; M, 350:50:1 CH_2Cl_2 -MeOH--NH_4OH; N, 750:270:50:5 CH_2Cl_2 -MeOH-H_2O-acetic acid; O, 4:1 ethyl acetate-hexane; P, 90:10:1 CH_2Cl_2 -MeOH--NH_4OH; Q, 20:1 hexane-ethyl acetate; R, 70:30:5 $CHCl_3$ -MeOH--NH_4OH.

N-(**Benzyloxycarbony**])-3-cyclohexyl-L-alanine Ethyl Ester (1c). To the dicyclohexylamine salt of Z-Cha¹³ (243 g, 0.50 mol) in toluene (600 mL) and EtOH (900 mL) at 0 °C was added SOCl₂ (88.3 g, 0.74 mol) dropwise in 30 min. The reaction was stirred overnight at room temperature and filtered. The filtrate was evaporated, and the residue was purified by flash column chromatography (22.5 kg of silica gel, 2:1 ethyl acetate-hexane) to give 1c (166 g, 99%) as an oil: $R_f(A)$ 0.2; $R_f(B)$ 0.52; $[\alpha]_D$ -19.3° (c 1.2, MeOH); NMR (Me₂SO-d₆) δ 0.85-1.4 (6 H, m), 1.18 (3 H, t, J = 7 Hz), 1.14-1.7 (7 H, m), 4.08 (3 H, m), 5.05 (2 H, s), 7.35 (5 H, s), 7.32 (1 H, d, J = 8 Hz).

2-[(Benzyloxycarbonyl)amino]-3-cyclohexyl-(2S)propionaldehyde (1d). To 1c (166.1 g, 0.50 mol) in toluene (2.2 L) at -65 °C was added 836 mL of diisobutylaluminum hydride (20% in toluene, 1.0 mol) in 30 min. The reaction was stirred for 20 min at --65 °C and quenched by dropwise addition of MeOH (84 mL) over 10 min. Aqueous potassium sodium tartrate (3 L) was added, and the reaction mixture was extracted with ether (5 L). The organic phase was washed with $H_2O(2 L)$ and poured into a solution of semicarbazide hydrochloride (106 g, 0.92 mol) and sodium acetate (156.5 g, 1.9 mol) in 50% aqueous EtOH (1.3 L). After the reaction had stirred for 1 h at room temperature, the layers were separated. The aqueous phase was extracted with ether $(2 \times 1.5 \text{ L})$. The combined organic portions were dried $(MgSO_4)$ and evaporated. The crude product was purified by flash column chromatography (2 kg of silica gel, 2:1 ethyl acetatehexane) to give the semicarbazone of 1d (132.3 g, 76%): mp 63-66

Table IV. In Vivo Plasma Renin Inhibition and Blood Pressure Lowering Effects in Salt-Depleted Marmosets for 8i^a

dose, mg/kg	route of admin	% inhibition of PRA ^b		$\Delta BP,^{c} mmHg$			
		30 min	60 min	120 min	30 min	60 min	120 min
0.1	iv	100	98	94	-13	-5	-1
1	iv	100	100	100	-17	-13	-12
1	po	96	94	84	0	-5	6
3	po	95	91	97	-6	-10	8
10	po	100	100	100	-18	-23	-23


^a The in vivo tests procedures were carried out as described in ref 6a. ^b Tabulated results indicate the percent inhibition of plasma renin activity measured 30, 60, and 120 min after administration of test compound to salt-depleted marmosets (n = 4). ^c Tabulated results indicate the reduction of blood pressure measured 30, 60, and 120 min after administration of test compound to salt-depleted marmosets.

°C; $[\alpha]_D$ –16.4° (*c* 1.0, MeOH); $R_f(C)$ 0.51; NMR (Me₂SO- d_6) δ 0.85–1.45 (7 H, m), 1.62 (6 H, m), 4.17 (1 H, m), 5.04 (2 H, s), 6.24 (2 H, s) 7.07 (1 H, d, J = 2 Hz), 7.38 (5 H, s), 7.45 (1 H, d, J = 8 Hz), 9.90 (1 H, s). Anal. (C₁₈H₂₆N₄O₃) C, H, N.

To the above semicarbazone (130 g, 0.37 mol) in THF (1 L) at 0 °C were added 282 mL of 37% aqueous formaldehyde and 143 mL of 0.5 N HCl. The reaction was stirred for 2 h at room temperature and filtered. The filtrate was extracted with ether $(3 \times 300 \text{ mL})$. The combined organic portions were washed with H₂O (500 mL), 10% aqueous NaHCO₃ (500 mL), and H₂O (500 mL). The organic phase was dried $(MgSO_4)$, diluted with THF (500 mL), concentrated to 250 mL, and used immediately. Optical purities were quantitatively determined by 360-MHz ¹H NMR analysis of the diastereomeric (-)-MTPA-amides¹⁸ of the reduced and deprotected aldehyde 1d. The aldehyde was first reduced by NaBH₄ in methanol at room temperature, and the resulting alcohol was hydrogenated over 10% Pd-C for 1 h at 25 °C in methanol. The amino alcohol reacted with $(S) - (-) - \alpha$ -methoxy- α -[(trifluoromethyl)phenyl]acetyl chloride in dichloromethane at 0 °C in presence of 1 equiv of hunigs base to give quantitatively the corresponding amide. The methoxy signal for the desired (S)-cyclohexylmethyl amide appers at 3.48 ppm, the (R)-cyclohexylmethyl amide at 3.39 ppm (360-MHz ¹H NMR, CDCl₃). The purities of the used aldehyde batches were at least 90%.

1-[1-[(Benzyloxycarbonyl)amino]-2-cyclohexyl-(1S)ethyl]oxirane (2b). To NaH (18.9 g (0.43 mol) of 55% oil dispersion, washed free of oil with 3×50 mL of hexane) in THF (500 mL) was added trimethylsulfoxonium iodide (55.6 g, 0.25 mol). After being refluxed for 1 h, the reaction mixture was cooled to -70 °C, and 1d (108.6 g, 0.37 mol) in THF (250 mL) was added. The reaction was stirred for 2 h at 0 °C, poured onto ice (500 g), and extracted with ether (2.5 L). The organic phase was washed with H₂O (200 mL), dried (Na₂SO₄), and evaporated. The residue was purified by flash column chromatography (2.5 kg of silica gel, 1:4 ethyl acetate-hexane) to yield **2b** (43.3 g, 38%): $R_{f}(D)$ 0.71; $R_f(E)$ 0.16; $[\alpha]_D$ -16.4° (c 1.5, MeOH). NMR indicated an approximately 5:1 ratio of isomers. For the major isomer: NMR $(Me_2SO-d_6) \delta 0.90 (2 H, m), 1.02-1.45 (6 H, m), 1.58 (5 H, m),$ 2.48 (1 H, m), 2.68 (1 H, t, J = 2 Hz), 2.91 (1 H, m), 3.45 (1 H, m), 5.02 (2 H, s), 7.25 (1 H, d, J = 6 Hz), 7.35 (5 H, m). For the minor isomer: NMR (Me₂SO- d_6) δ 0.90 (2 H, m), 1.01–1.45 (6 H, m), 1.52–1.80 (5 H, m), 2.58 (1 H, m), 2.65 (1 H, t), 2.84 (1 H, m), 3.42-3.58 (1 H, m), 5.00-5.05 (2 H, AB system, J = 12 Hz), 7.25(1 H, d, J = 6 Hz), 7.35 (5 H, m).

3-(Benzyloxycarbonyl)-4-(cyclohexylmethyl)-2,2-dimethyl-5-(iodomethyl)-(4S,5R)-1,3-oxazolidine (3b). To 2b (42.3 g of a 5:1 isomer mixture, 0.14 mol) in MeCN (200 mL) at 0 °C was added NaI (20.9 g, 0.14 mol) followed by dropwise addition of chlorotrimethylsilane (15.1 g, 0.14 mol) over 30 min. The reaction mixture was stirred for 40 min at 0 °C, poured into ice water (700 mL), and extracted with ether (500 mL). The organic layer was washed with 5% aqueous $Na_2S_2O_3$ (750 mL) and brine (750 mL), dried (Na₂SO₄), and evaporated to give crude 3-[(benzyloxycarbonyl)amino]-4-cyclohexyl-1-iodo-2-[(trimethylsilyl)oxy]-(2R,3S)-butane (65.7 g). To the above TMS ether (65.7 g, 0.14 mol) in MeOH (290 mL) at 0 °C were added acetic acid (8.4 g, 0.14 mol) and KF (8.1 g, 0.14 mol). The reaction was stirred 4 h at room temperature, evaporated, and partitioned between 10% aqueous NaHCO₃ (750 mL) and ether (1.5 L). The aqueous phase was extracted with ether $(2 \times 400 \text{ mL})$. The combined organic portions were dried $(MgSO_4)$ and evaporated. The residue was separated by flash column chromatography (2.5 kg of silica gel, 1:9 ethyl acetate-hexane) to give the major, less polar (2R,3S) iodo alcohol (49.3 g, 78%): $R_f(E)$ 0.12; $[\alpha]_D$ -19.5° (c 0.64, MeOH); NMR (Me₂SO- d_6) δ 0.90 (2 H, m), 1.02–1.4 (6 H, m), 1.45–1.92 (5 H, m), 3.04 (1 H, m), 3.32 (1 H, m), 3.52 (1 H, m), 3.72 (1 H, m), 5.05 (2 H, dd, J = 12 Hz), 5.32 (1 H, d, J= 6 Hz), 6.90 (1 H, d, J = 8 Hz), 7.35 (5 H, m). The minor, polar 2S,3S isomer was removed during this chromatographic separation (10.0 g, 15.6%): NMR (Me₂SO- d_6) δ 0.90 (2 H, m), 1.02–1.4 (6 Scheme III^a

^aSee the Experimental Section.

H, m), 1.45-1.92 (5 H, m), 3.10 (1 H, m), 3.30 (1 H, m), 3.34 (1 H, m), 3.55 (1 H, m), 5.03 (2 H, dd, J = 12 Hz), 5.31 (1 H, d, J= 6 Hz), 7.08 (1 H, d, J = 8 Hz), 7.35 (5 H, m). To the above major isomer (49.3 g, 0.11 mol) and p-toluenesulfonic acid (1.1 g) in CH₂Cl₂ (450 mL) was added 2,2-dimethoxypropane (118 g, 1.44 mol). The reaction mixture was stirred for 3 h at room temperature and extracted with 500 mL of saturated aqueous NaHCO₃. The organic phase was dried (Na₂SO₄), evaporated, and purified by flash column chromatography (3 kg of silica gel, 1:6 ethyl acetate-hexane) to yield 3b (51.3 g, 95%): $R_{f}(\mathbf{F})$ 0.46; $[\alpha]_{D}$ 24.5° (c 1.5, MeOH); NMR (Me₂SO-d₆) δ 0.80–1.0 (2 H, m), 1.0-1.95 (11 H, m), 1.42 (3 H, s), 1.50 (3 H, s), 3.27 and 3.54 (2 H, dd, J = 7, 10 Hz), 3.95 (1 H, m) 4.02 (1 H, m), 5.08 (2 H, m), 7.38 (5 H, m). Anal. (C₂₁H₃₀NO₃I) C, H, N, I. After the minor isomer has been converted by the same procedure into its oxazolidine derivative, the final assignment of the stereochemistry of 3b and its isomer was made by comparison of the ¹³C NMR data as described in literature.¹⁶ For the major isomer 3b (the compound appears as two rotamers relative to the amide bond): ¹³C NMR (CDCl₃) δ 9.1/9.0 (CH₂C5), 42.0/41.0 (CH₂C4), 59.6/60.5 (C4), 81.3/81.1 (C5). For the minor isomer (the compound appears as two rotamers relative to the amide bond): ¹³C NMR (CDCl₃) δ 0.2 (CH₂C5), 37.3/37.0 (CH₂C4), 57.1/56.4 (C4), 78.1/77.7 (C5).

Methyl 2-[[3-(Benzyloxycarbonyl)-4-(cyclohexylmethyl)-2,2-dimethyl-(4S)-1,3-oxazolidin-5-yl]methyl]-3methyl-2(R,S)-butyrate (4c). To diisopropylamine (10.2 g, 0.10 mol) in THF (200 mL) at 0 °C was added 65.8 mL (0.10 mol) of 1.6 M n-butyllithium in hexane. After being stirred for 20 min, the reaction mixture was cooled to -70 °C and treated with methyl isovalerate (11.7 g, 0.10 mol) followed by HMPT (320 mL). After being stirred at -70 °C for 10 min, the reaction mixture was treated with 3b (43.4 g, 0.092 mol) in THF (110 mL). The reaction mixture was stirred 2.5 h at room temperature, poured into saturated aqueous NH₄Cl (1 L), and extracted with ethyl acetate (2 L). The organic phase was washed with H_2O (2 × 500 mL), dried (MgSO₄), evaporated, and purified by flash column chromatography (2.5 kg of silica gel, 1:10 ethyl acetate-hexane) to give 4c (36 g, 78%) ($R_t(E)$ 0.36, 0.34; $R_t(A)$ 0.23, 0.21) as a mixture of diastereomers: NMR (Me₂SO-d₆) δ 0.80-0.98 (8 H, m), 1.0-1.92 (14 H, m), 1.40 (3 H, s), 1.48 (3 H, s), 2.18/2.38 (1 H, 2 m), 3.56/3.58 (3 H, 2 s), 3.65-3.80 (2 H, m), 4.99-5.17 (2 H, m), 7.37 (5 H. s).

2-[[3-(Benzyloxycarbonyl)-4-(cyclohexylmethyl)-2,2-dimethyl-(4S)-1,3-oxazolidin-5-yl]methyl]-3-methyl-(2S)butyric Acid (5d). To potassium *tert*-butoxide (16.5 g, 0.15 mol) and H₂O (1.8 mL, 0.10 mol) in ether (250 mL) at 5 °C was added 4c (35.8 g, 0.078 mol) in ether (250 mL). The reaction mixture was stirred for 18 h at room temperature, poured into saturated aqueous NH₄Cl (500 mL), and extracted with ethyl acetate (2 × 500 mL). The organic phase was washed with brine (250 mL), dried (Na₂SO₄), and evaporated. The diastereomeric acids (4d) were purified by flash column chromatography (2.5 kg of silica gel, 1:4 ethyl acetate-hexane) to give 5d and isomeric acid. 5d (14.5 g, 42%): R_f (D) 0.20, R_f (G) 0.35; $[\alpha]_D$ -7.3° (c 1.4, MeOH); NMR (Me₂SO-d₆) δ 0.80-1.0 (8 H, m), 1.0-1.95 (14 H, m), 1.39 (3 H, s), 1.55 (3 H, s), 2.28 (1 H, m), 3.72 (2 H, m), 5.08 (2 H, m),

⁽¹⁷⁾ Hussain, S. A. M. T.; Ollis, W. D.; Smith, C.; Fraser Stoddart, J. J. Chem. Soc., Perkin Trans. I 1975, 1480.

⁽¹⁸⁾ Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.

7.35 (5 H, m), 12.25 (1 H, s). Isomeric acid (51.3 g, 51%): $R_f(D = 0.16, R_f(G) = 0.30; [\alpha]_D = -7.0^\circ$ (c 1.3, MeOH); NMR (Me₂SO-d₆) $\delta = 0.8-1.0$ (8 H, m), 1.0–1.92 (14 H, m), 1.37 (3 H, s), 1.55 (3 H, s), 2.02 (1 H, m), 3.72 (2 H, m), 5.07 (2 H, m), 7.38 (5 H, m), 12.20 (1 H, s). Anal. ($C_{28}H_{39}NO_5$) C, H, N. The acid 5d and its 2R isomer were converted into the corresponding γ -butyrolactones A and B (Scheme III) by stirring them in methanol–HCl 1 N (1:1). The stereochemistry of the Val side chain in lactones A and B was then assigned unambiguously by comparing proton NMR data with results of similar compounds.¹⁷ For lactone A: NMR (CDCl₃) $\delta = 0.80-0.85$ (1 H, m), 0.85-1.00 (6 H, m), 1.05-1.90 (14 H, m), 2.00-2.20 (3 H, m), 2.47 (1 H, ddd, $J_{2,3g} = 11$ Hz, $J_{2,3\alpha} = 6.5$ Hz, $J_{3\beta,4} = 6$ Hz, $J_{4,5} = 2$ Hz), 4.60 (1 H, d), 5.11 (2 H, s), 7.33 (5 H, s). For (2R)-lactone B: NMR (CDCl₃) $\delta = 0.80$ (3 H, d), 1.10-1.90 (14 H, m), 2.07-2.21 (2 H, m), 2.57 (1 H, ddd, $J_{2,3g} = 12.5$ Hz, $J_{2,3\alpha} = 9$ Hz, $J_{2,6} = 5$ Hz), 3.89-3.99 (1 H, m), 4.32-4.39 (1 H, ddd, $J_{3\alpha,4} = 6$ Hz, $J_{3\beta,4} = 10$ Hz, $J_{4.5} = 1.5$ Hz), 4.69 (1 H, dd), 5.10 (2 H, dd), 7.35 (5 H, s).

N-Z-N,O-Isopropylidene-Cha^{OH}Val-NH(CH₂)₃CH₃ (5e). To a solution of 5d (40.1 g, 90 mmol) and HOBT (17.9 g, 117 mmol) in anhydrous DMF (700mL) was added DCC (24.1 g, 117 mmol) at 0-5 °C, and the solution was kept at 0 °C for 3 days. n-Butylamine (35.5 mL, 0.36 mol) was added, and the reaction was stirred for 2 h of 0 °C and for 24 h at room temperature. The reaction mixture was diluted with 1:1 acetic acid- H_2O (50 mL), stirred for 30 min, and then concentrated to 1/3 of its original volume. The precipated urea was removed by filtration, and the filtrate was evaporated. The residue was partitioned between ethyl acetate (500 mL) and saturated NaHCO₃ solution (300 mL). The organic portion was washed with brine (100 mL), dried (Na₂SO₄), and concentrated. The crude product was purified by flash chromatography on silica gel (1:4 ethyl acetate-hexane) to yield **5e** (43.2 g, 96%) as a light yellow oil: $R_f(B)$ 0.39; $[\alpha]_D - 10.6^\circ$ (c 2.4, CHCl₃); EIMS, m/e 500 (M⁺); NMR (CDCl₃) δ 0.93 (9 H, m), 1.1-2.1 (26 H, m), 3.27 (2 H, m), 3.70 (1 H, br s), 3.76 (2 H, m), 5.0–5.2 (2 H, m), 5.62 (1 H, br s), 7.3 (5 H, m); IR (CH_2Cl_2 , cm⁻¹) 3440, 1700, and 1670. Anal. (C₃₀H₄₈N₂O₄) C, H, N.

Cha ^{OH} Val-NH(CH₂)₃CH₃ (6c). A solution of 5e (47.1 g, 94 mmol) in 95:5 MeOH-H₂O (500 mL) was hydrogenated over 10% Pd-C (5 g) for 4 h at 25 °C and atmospheric pressure. The catalyst was removed by filtration, and the colorless filtrate was evaporated. The remaining oil was dissolved in 1:1 H₂O-MeOH (400 mL) and stirred for 2 h at room temperature. The mixture was concentrated, and residual H₂O was removed by azeotropic distillation with toluene to yield 6c (30.3 g, 99%) as a colorless oil, which could be crystallized from hexane: mp 91-92 °C; $[\alpha]_D$ -27.4° (c 1.15, CHCl₃); $R_f(R)$ 0.5; FAB MS, m/e 327 (M⁺ + 1); NMR (CDCl₃) δ 0.9-1.8 (31 H, m), 1.86 (1 H, m), 2.08 (1 H, dd, J = 11.6, 8.6, 3.2 Hz), 2.57 (1 H, ddd, J = 9.1, 5.7, 3.1 Hz), 3.07 (1 H, ddd, J = 8.6, 5.7, 2.3 Hz), 3.22 (1 H, m), 3.30 (1 H, m), 5.79 (1 H, bt, J = 5.5 Hz); IR (CH₂Cl₂, cm⁻¹) 3460, 3380, 1670. Anal. (C₁₉H₃₈N₂O₂) C, H, N.

His-Cha^{OH}Val-NH(CH₂)₃CH₃ (7b). Method A. To a solution of N,N'-ditrityl-L-histidine (12.1 g, 18.9 mmol) and HOBT (2.9 g, 18.9 mmol) in DMF (120 mL) at 0 °C was added a solution of amine 6c (4.4 g, 13.5 mmol) in DMF (20 mL) followed by DCC (4.46 g, 21.6 mmol). The reaction mixture was stirred at 0-5 °C for 6 h followed by 2 days at room temperature. The precipitated urea was filtered off at 0 °C, and the solvent was evaporated. The crude ditrityl intermediate was purified by flash chromatography $(CH_2Cl_2-MeOH, 50:1)$. The trityl groups were then removed with 95% TFA (130 mL) for 30 min at 25 °C. The reaction mixture was concentrated, redissolved in 5:3:1 CH₂Cl₂-MeOH-NH₄OH (150 mL), and concentrated again. The residue was titurated with MeOH, filtered, and evaporated. The crude product (7b) was purified by flash chromatography on silica gel ($80:10:1 \rightarrow 50:10:1$ CH_2Cl_2 -MeOH-NH₄OH) and freeze-dried from t-BuOH to give 7b (4.0 g, 64%) as a white powder.

Method B. To a solution of Z-His (19.5 g, 67.5 mmol), Nhydroxynorbornane-exo-2,3-dicarboximide¹⁵ (12.3 g, 67.5 mmol) and **6c** (14.7 g, 45 mmol) in DMF (450 mL) was added DCC (13.9 g, 67.5 mmol), and the resulting mixture was stirred for 16 h at room temperature. The reaction mixture was diluted with 50% aqueous acetic acid (50 mL), stirred for 1 h at 25 °C, and concentrated to about half of its volume. The precipitated urea was removed by filtration, and the solvents were evaporated. The residue was partitioned between 4:1 CH₂Cl₂-MeOH (300 mL) and saturated NaHCO₃ solution (200 mL). The aqueous phase was reextracted (200 mL), and then the combined organic extracts were washed with brine (100 mL), dried (Na_2SO_4), and concentrated. The crude product was recrystallized from EtOAc-MeOH to give the N-benzyloxycarbonyl derivative of 7b (22.3 g, 83%) as white crystals: mp 204–205 °C; $[\alpha]_D$ –40.4° (c 0.7, EtOH); R_f (C) 0.2; FAB MS, m/e 598 (M⁺ + 1); NMR (DMSO- d_6) δ 0.9–1.8 (29 H, m), 2.09 (1 H, m), 2.77 (1 H, dd, J = 14.5, 9.0 Hz), 2.91 (1 H, dd, J = 14.5, 4.5 Hz), 3.03 (2 H, m), 3.20 (1 H, br d, J = 10.0 Hz), 3.71 (1 H, m), 4.22 (1 H, m), 4.69 (1 H, br s), 4.97 (1 H, d, J =12.8 Hz), 5.01 (1 H, d, J = 12.8 Hz), 6.79 (1 H, br s), 7.2–7.4 (6 H, m), 7.43 (1 H, d, J = 8.5 Hz), 7.52 (1 H, s), 7.76 (1 H, t, J =6.0 Hz), 11.8 (1 H, br s); IR (KBr, cm⁻¹) 3400, 3320, 1695, and 1640. Anal. $(C_{33}H_{51}N_5O_5)$ C, H, N.

A solution of Z-7b (22.0 g, 36.5 mmol) in MeOH (500 mL) was hydrogenated in the presence of 10% Pd–C (1.5 g) for 8 h at atmospheric pressure. The catalyst was removed by filtration, and the colorless filtrate was concentrated. The remaining glassy foam (18.2 g) was crystallized from EtOH–Et₂O to yield 7b (164 g, 97%) as white crystals: mp 166–167 °C: $[\alpha]_D$ –41.6° (c 1.28, EtOH; $R_f(R)$ 0.25: FAB MS, m/e 464 (M⁺ + 1); NMR (DMSO-d_6) δ 0.85–1.80 (28 H, m), 2.10 (1 H, m), 2.53 (1 H, m), 2.87 (1 H, br d, J = 15 Hz), 3.00 (1 H, m), 3.07 (1 H, m), 3.23 (1 H, m), 3.37 (4 H, m), 3.69 (1 H, m), 4.69 (1 H, br s), 6.83 (1 H, br s), 7.53 (2 H, m), 7.68 (1 H, t, J = 6 Hz), 11.82 (1 H, br s); IR (KBr, cm⁻¹) 3350, 1685. Anal. (C₂₅H₄₅N₅O₃) C, H, N.

Pivaloyl-Phe-His-Leu-^{(H}-Val-Ile-His-NH₂ (8b). To an ice-cooled solution of 4b (608 mg, 1.50 mmol) in 20 mL of DMF was added Ile-His-NH₂ (441 mg, 1.65 mmol), 1-hydroxybenzotriazole hydrate (230 mg, 1.50 mmol), and 1,3-dicyclohexylcarbodiimide (464 mg, 2.25 mmol). The mixture was stirred for 24 h with ice cooling and for 72 h at room temperature. The reaction mixture was filtered, and the filtrate was evaporated. The residue was stirred in a 94:3:3 mixture of methanol-acetic acid- H_2O (20 mL) for 1 h at 60 °C. The solvent was removed, and the residue was purified by flash chromatography (230 g of silica gel, 80:10:1 CH₂Cl-MeOH-NH₄OH) to give the product (5b) (796 mg, 81%), homogeneous by TLC (R_f (K) 0.28), used without further purification: $[\alpha]_D$ –42.3° (c 1.0, MeOH); NMR (Me_iSO-d₆) δ 0.82 (18 H, m), 1.00–1.84 (9 H, m), 1.38 (3 H, s), 1.56 (3 H, s), 2.30 (1 H, m), 2.84 (2 H, m), 3.62 (2 H, m), 4.14 (1 H, t), 4.41 (1 H, q), 5.07 (2 H, m), 6.80 (1 H, s), 7.00 (1 H, s), 7.18 (1 H, s), 7.38 (5 H, m), 7.48 (1 H, s), 7.93 (2 H, m), 12.24 (1 H, m).

A stirred solution of the above product (700 mg, 1.07 mmol) in a 9:1 mixture of methanol- H_2O was hydrogenated in the presence of 10% Pd-C (100 mg). After 0.5 h, the reaction mixture was filtered, and the filtrate was stirred for 1.5 h with 15 mL of H_2O at room temperature. The solvent was removed, and the residue was purified by flash chromatography (90 g silica gel, 40:10:1 CH₂Cl₂-MeOH-NH₄OH) to give the product (6a) (400 mg, 78%), homogeneous by TLC ($R_f(L)$ 0.22), used without further purification: NMR (Me₂SO- d_6) δ 0.82 (18 H, m), 1.12 (3 H, m), 1.42 (2 H, m), 1.67 (4 H, m), 2.26 (1 H, m), 2.41 (1 H, m), 2.86 (2 H, m), 3.02 (1 H, m), 4.14 (1 H, t), 4.41 (1 H, q), 6.76 (1 H, s), 7.00 (1 H, s), 7.18 (1 H, s), 7.48 (1 H, s), 7.78 (1 H, d), 8.00 (1 H, d), 12.30 (1 H, m).

To an ice-cooled solution of L-2-pivalamido-3-phenylpropionic acid (1.25 g, 5.0 mmol) in 40 mL of DMF was added L-histidine methyl ester dihydrochloride (1.21 g, 5.0 mmol), 1-hydroxybenzotriazole hydrate (0.77 g, 5.0 mmol), 4-methylmorpholine (1.01 g, 10.0 mmol), and 1.3-dicyclohexylcarbodiimide (1.34 g, 6.5 mmol). The mixture was stirred for 5 h with ice cooling and for 20 h at room temperature. The reaction mixture was filtered, and the filtrate was evaporated. The residue was stirred in a 94:3:3 mixture of methanol-acetic acid-H₂O (40 mL) for 1 h at 60 °C. The solvent was removed, and the residue in 100 mL of saturated aqueous NaHCO₃ was extracted with 3×100 mL of ethyl acetate. The combined organic portions were dried (Na₂SO₄) and evaporated. The residue was purified by flash chromatography (260 g of silica gel, 350:50:1 CH₂Cl₂-MeOH-NH₄OH) to give an oil (1.64 g, 81%), homogeneous by TLC ($R_f(M)$ 0.38; $R_f(N)$ 0.61). To the

Transition-State Inhibitors of Human Renin

above product (1.60 g, 4.0 mmol) in 16 mL of methanol was added 32 mL H₂O and 1.0 N aqueous NaOH (6.0 mL, 6.0 mmol). the reaction mixture was stirred for 45 min at room temperature. Aqueous HCl (1.0 N; 6.0 mL, 6.0 mmol) was added, and the reaction mixture was evaporated to give the crude product (1.80 g), containing approximately 13% NaCl, homogeneous by TLC (R_f (L) 0.06; R_f (N) 0.14), used without further purification: NMR (Me₂SO-d₆) δ 0.95 (9 H, s), 2.93 (4 H, m), 4.39 (1 H, m), 4.49 (1 H, m), 6.83 (1 H, s), 7.17 (1 H, m), 7.23 (5 H, d), 7.50 (1 H, d), 7.58 (1 H, s), 8.15 (1 H, d).

To an ice-cooled solution of the above acid (49 mg, 0.11 mmol) in 4 mL of DMF was added 6a (48 mg, 0.10 mmol), 1-hydroxybenzotriazole hydrate (17 mg, 0.11 mmol), and 1,3-dicyclohexylcarbodiimide (27 mg, 0.13 mmol). The mixture was stirred for 24 h with ice cooling and for 24 h at room temperature. The reaction mixture was filtered, and the filtrate was evaporated. The residue was stirred in a 94:3:3 mixture of methanol-acetic acid-H₂O (5 mL) for 1 h at 60 °C. The solvent was removed, and the residue was purified by flash chromatography (40 g of silica gel, 60:10:1 CH₂Cl₂-MeOH-NH₄OH) and lyophilized in 2 mL of 2-methyl-2-propanol to give the product 8b (52 mg, 61%), homogeneous by TLC ($R_f(L)$ 0.31; $R_f(N)$ 0.17): $[\alpha]_D - 38.4^\circ$ (c 1.0, MeOH); NMR (Me₂SO- d_6) δ 0.80 (18 H, m), 0.98 (9 H, s), 1.12 (3 H, m), 1.33 (4 H, m), 1.65 (2 H, m), 2.25 (2 H, m), 2.88 (4 H, m), 3.23 (2 H, m), 3.65 (1 H, m), 4.13 (1 H, t), 4.42 (3 H, m), 6.82 (2 H, d), 7.02 (1 H, s), 7.18 (7 H, m), 7.50 (1 H, d), 7.58 (2 H, m), 7.73 (1 H, m), 8.00 (1 H, d), 8.15 (1 H, m). Anal. (C₄₄H₆₈N₁₀- $O_7 \cdot 2H_2O)$ C, H, N.

Pivaloyl-L-phenyllactic Acid (9a). To a solution of L-(-)phenyllactic acid (4.00 g, 24.1 mmol) in 70 mL of MeOH-H₂O (10:1) at room temperature was added 23 mL of aqueous $CsCO_3$ (20%, 14.1 mmol). After removal of the solvent, the crude cesium salt was dissolved in DMF (37 mL), benzyl bromide (3.2 mL, 26.9 mmol) was added dropwise, and the reaction mixture was stirred at room temperature for 24 h. After filtration and removal of the solvent, the residue was suspended in H_2O (50 mL), and the benzyl ester of L-phenyllactic acid was extracted with ether (3 \times 100 mL). The organic phase was dried (Na₂SO₄) and evaporated to give a pale yellow oil (10) (6.20 g, 100%), which was used without further purification. The above oil (5.00 g, 19.5 mmol), 4-(dimethylamino)pyridine (238 mg, 1.95 mmol), and diisopropylethylamine (2.50 g, 19.5 mmol) were dissolved in CH_2Cl_2 (100 mL). Pivaloyl chloride (3.53 g, 29.2 mmol) was added dropwise at 0 °C. After being stirred at room temperature for 1 h, the reaction mixture was evaporated, and the product was chromatographed on silica gel with hexane-ethyl acetate (95:5) to give 3.8 g (57%) benzyl O-pivaloyl-L-phenyllactate as an oil $[R_{f}(E) 0.52; [\alpha]_{D} - 25.2^{\circ}$ (c 1, MeOH)], used without further purification. The above oil (2.50 g, 7.34 mmol) was dissolved in MeOH (30 mL), and this solution was hydrogenated in the presence of 0.250 g of Pd-C (10%). The solution was filtered and concentrated, giving 1.69 g (92%) of the acid 9a as a colorless oil: $R_f(H) 0.37$; NMR (Me₂SO- d_6) $\delta 1.1$ (9 H, s), 3.15 (2 H, m), 5.1 (1 H, dd), 7.25 (5 H, Ar), 12.5 (1 H, br).

2-Benzyl-3-pivaloylpropionic Acid (**9b**). To a solution of diethyl benzylmalonate (11) (100 g, 0.40 mol) and 1-bromopinacoline (78.7 g, 0.44 mol) in 1 L of DMF was added NaH (1.74 g, 0.40 mol, 55% suspension in oil) at room temperature. The reaction was stirred for 2 h. The solvent was removed, 2 L of 1 N HCl were added, and the product was extracted with CH_2Cl_2 (3×300 mL) to give a pale yellow oil (12) (134.4 g, 96%): R_f 0.30 (CH_2Cl_2); NMR (Me_2SO-d_6) δ 1.05 (9 H, s), 1.14 (6 H, t, J = 7 Hz), 2.98 (2 H, s), 3.29 (2 H, s), 4.10 (4 H, q, J = 7 Hz), 6.94 (2 H, m), 7.28 (3 H, m).

To the crude diester (12) in dioxane (670 mL) at room temperature were added H_2O (670 mL) and 2 N NaOH (578 mL). The reaction mixture was stirred for 3 h at 80 °C. After evaporation of approximately half of the solvent, 4 N HCl (500 mL) was added, and the diacid was extracted with CH_2Cl_2 (3 × 300 mL). After removal of the solvent, the crude diacid was decarboxylated by heating at 160 °C without solvent for 0.5 h. The product (9b) was crystallized in hexane (500 mL) to give colorless needles (79.6 g, 80%): mp 93–94 °C; NMR (Me₂SO-d₆) δ 1.04 (9 H, s), 2.50 (1 H, m), 2.70 (1 H, m), 2.88 (1 H, m), 2.93 (2 H, s), 7.36–7.14 (5 H, m), 12.15 (1 H, br, COOH). Anal. ($C_{15}H_{20}O_3$) C, H.

Ethyl 2-Benzyl-3-(diethoxyphosphoryl)propionate (14). A solution of EtOH (30 mL), NaOEt (4 mL of 1% solution in EtOH), α -benzylacrylic acid ethyl ester (13) (1 g, 5.26 mmol), and diethylphosphite (0.68 mL, 5.26 mmol) was stirred at 23 °C for 24 h. After addition of NaH₂PO₄·H₂O (0.2 g in 1 mL of H₂O), the solvent was evaporated. The residue in ether (100 mL) was washed with water (2 × 50 mL) and dried (Na₂SO₄). After removal of the solvent, the crude product was chromatographed on silica gel with CH₂Cl₂-ether (7:1) to give 0.75 g (43.5%) of 14 as a yellowish oil: R_f (I) 0.15; NMR (Me₂SO-d₆) δ 1.05 (3 H, t), 1.18 (6 H, t), 1.8–2.2 (2 H, m), 2.9 (3 H, m), 3.95 (6 H, m), 7.2 (5 H, m).

Benzyl 3-(diethoxyphosphoryl)-2(R, S)-propionic Acid (9c). A solution of 14 (0.745 g, 2.27 mmol) EtOH (5 mL), H₂O (4 mL), and 2 N KOH (1.13 mL) was stirred at 23 °C for 4 h and then neutralized with 2 N HCl (1.13 mL). After removal of the solvents, the crude product was chromatographed on silica gel with CH₂Cl₂-MeOH (95:5) to give 0.3g (44%) of 9c as a pale oil: $R_f(C)$ 0.46; NMR (Me₂SO-d₆) δ 1.2 (6 H, t, J = 7), 1.7 (1 H, m), 2.05 (1 H, m), 2.7-3.0 (3 H, m), 3.95 (4 H, m), 7.15-7.35 (5 H, m), 12.3 (1 H, br s). The product was used without further purification.

Piv^CPhe-His-Cha^{OH}Val-NH(CH₂)₃CH₃ (8f). A mixture of acid 9b (40 mg, 0.16 mmol), histidine derivative 7b (50 mg, 0.11 mmol), HOBT (25 mg, 0.16 mmol), and DCC (36 mg, 0.17 mmol) was stirred in DMF (2 mL) for 7 h at 0 °C, followed by 16 h at room temperature. After removal of the insoluble urea by filtration and evaporation of the solvent, the crude product was dissolved in 10 mL of MeOH-AcOH-H₂O (94:3:3) and stirred at 60 °C for 1 h. The solvent was evaporated, and the product was purified by flash column chromatography on silica gel with CH₂Cl₂-MeOH-NH₄OH (90:10:1) to give 8f as an approximately 1:1 mixture of diastereomers (55 mg, 72%): $R_f(P)$ 0.33; $[\alpha]_D$ -49.0° (c 0.50, MeOH); FAB-MS, mz M + H at 694; NMR (Me₂SO- d_6) δ 1.03/1.00 (2 s, 9 H), 3.76-3.62 (1 H, m), 4.47-4.30 (1 H, m), 4.72-4.56 (1 H, br, OH), 6.82/6.68 (2 s, 1 H, CH-imidazole), 7.31-7.07 (6 H, m), 7.53/7.50 (2 s, 1 H, CH-imidazole), 7.65 (q, 1 H, NH), 8.20/8.14 (2 d, 1 H, NH), 11.85 (1 H, br, NH-imidazole). Anal. $(C_{40}H_{63}N_5O_5 \cdot 0.5H_2O)$ C, H, N.

Ethyl 2-Benzyl-3-(tert-butylsulfonyl)propionate (16). To a solution of ethyl 2-benzylacrylate (13)¹² (60 g, 0.315 mol) in anhydrous EtOH (600 mL) was added tert-butyl mercaptan (36.6 mL, 0.315 mol) at 0-5 °C and a catalytic amount of NaH (0.7 g, 50% dispersion in oil, 0.016 mol). The resulting light yellow solution was stirred for 2 h at 0-5 °C followed by 40 h at 25 °C. The reaction mixture was diluted with H₂O (500 mL) and acidified with 2 N H_2SO_4 (10 mL), and the crude thioether 15 was directly oxidized with potassium hydrogen persulfate14 (261 g Oxone, 55% in KHSO₅, 0.945 mol), which was added in small portions at 0-5°C. The resulting white slurry was stirred for 15 h at room temperature. The insoluble salts were removed by filtration, and the organic solvent was evaporated. The remaining aqueous solution was extracted with CH_2Cl_2 (2 × 500 mL), and the combined extracts were washed with brine (100 mL), dried (Na₂SO₄), and concentrated to give 16 as a light yellow oil (91.8 g, 93%), which crystallized on standing: mp 47-48 °C; R_f (Q) 043; EIMS, m/e 312 (M⁺); NMR (CDCl₃) δ 2.95 (1 H, dd, J = 12, 8, 3.9 Hz), 3.01 (1 H, dd, J = 13.8, 7.4 Hz), 3.10 (1 H, dd, J = 13.8, 7.4 Hz),3.42 (1 H, m), 3.46 (1 H, dd, J = 12.8, 8.4 Hz), 4.12 (2 H, q, J = 12.8, 12.4 Hz)7.4 Hz), 7.25 (5 H, m); IR (film, cm⁻¹) 1735, 1300, and 1120. Anal. (C₁₆H₂₄O₄S) C, H, S.

Ethyl 2-Benzyl-3-(*tert*-butylsulfinyl)propionate (17). To a solution of 15 (4.48 g, 16 mmol) in CH₂Cl₂ (40 mL) was added the solution of *m*-chloroperbenzoic acid (3.06 g, 16 mmol) in CH₂Cl₂ (30 mL) at -78 °C. After being stirred for 2 h at -78 °C and for 17 h at 23 °C, the solution was washed with 1 N NaHCO₃ and (50 mL), H₂O (25 mL) and dried (Na₂SO₄). After removal of the solvent, the crude product was chromatographed on silica gel with ethyl acetate-hexane (1:1) to give 3.2 g (68%) of 17 as a colorless oil: R_{f} (J) 0.14; IR(CH₂Cl₂) 1723, 1205, 1172, 1033 cm⁻¹; NMR (Me₂SO-d₆) δ 1.0-1.2 (12 H, m), 2.6-3.2 (5 H, m), 4.0 (2 H, m), 7.3 (5 H, m). The product was used directly.

2-Benzyl-3-(*tert*-butylsulfinyl)propionic Acid (9e). To a solution of 17 (3.2 g, 10.8 mmol) in MeOH (30 mL) and H_2O (30 mL) was added 1 N NaOH (10.8 mL). The solution was stirred

at 23 °C for 16 h. After addition of 1 N HCl (10.8 mL) and evaporation of the solvent, the crude product was chromatographed on silica gel with CH₂Cl₂-MeOH (4:1) to give 1.52 g (52%) of **9e** as a white foam; R_f (H) 0.38. The product was used directly without further purification.

2-Benzyl-3-(tert-butylthio)propionic Acid (9f). A solution of 15 (0.5 g, 1.78 mmol), THF (5 mL), 2 N KOH (1.8 mL), and H₂O (3.2 mL) was stirred for 30 h. After addition of 2 N HCl (1.8 mL) and evaporation of the solvent, the curde product was chromatographed on silica gel with CH₂Cl₂-MeOH (19:1) to give 60 mg (13%) of 9f as a yellow oil: R_f (C) 0.57; NMR (Me₂SO-d_g) δ 1.25 (9 H, s), 2.55-2.9 (5 H, m), 7.22 (5 H, m), 12.4 (1 H, s). Anal. (C₁₄H₂₀O₂S) C, H, S.

2-Benzyl-3-(tert -butylsulfonyl)propionic Acid (9d). A solution of 16 (91.9.g, 0.3 mol) in 6 N aqueous HCl (500 mL) and acetic acid (100 mL) was heated at reflux for 15 h. The crude acid **9d**, which crystallized directly from the reaction mixture, was collected by filtration and twice recrystallized from ethyl acetate to yield **9d** (68.3 g, 80%) as white crystals: mp 147-148 °C; $R_f(B)$ 0.4; EIMS, m/e 284 (M⁺); NMR (CDCl₃) δ 1.35 (9 H, s), 2.97 (1 H, m), 3.05 (1 H, dd, J = 13.8, 7.4 Hz), 3.22 (1 H, dd, J = 13.8, 6.1 Hz), 3.45 (2 H, m), 7.25 (5 H, m), 8.5 (1 H, br s); IR (KBr, cm⁻¹) 3440, 1715, 1300, and 1110. Anal. (C₁₄H₂₀O₄S) C, H, S.

Resolution of 2-Benzyl-3-(tert-butylsulfonyl)propionic Acid (9d). Method A. From Diastereomeric Amides. The racemic acid 9d (12.5 g, 44.0 mmol), L-phenylalaninol (7.32 g, 48.4 mmol), HOBT (7.41 g, 48.4 mol) and DCC (11.80 g, 57.22 mmol) were dissolved in DMF (400 mL) and stirred at room temperature for 21 h. After removal of the insoluble urea by filtration and evaporation of the solvent, the crude product was purified by flash column chromatography (silica gel, 1:1 ethyl acetate-hexane) to give 8.00 g (19.1 mmol, 43%) of the pure unpolar diasteriomeric amide and 5.10 g (12.2 mmol, 28%) of the pure polar diasteriomeric amide as white solids. Unpolar amide: $R_{f}(0)$ 0.24; NMR $(Me_2SO-d_6) \delta 1.22 (9 H, s), 2.67-2.58 (1 H, m), 2.95-2.75 (4 H, m)$ m), 3.17-3.05 (2 H, m), 3.35-3.17 (2 H, m), 3.85 (1 H, m), 4.63 (1 H, t, OH), 7.32–7.11 (10 H, m), 7.95 (d, 1 H, NH); $[\alpha]^{22}_{D}$ +0.4° (c 1.0, MeOH). **Polar amide**: $R_f(O)$ 0.12; NMR (Me₂SO- d_6) δ 1.20 (9 H, s), 2.58-2.45 (2 H, m), 2.97-2.62 (3 H, m), 3.13-3.03 (1 H, m), 3.31–3.20 (1 H, m), 3.48–3.35 (2 H, m), 3.88 (1 H, m), 4.66 (1 H, t, OH), 7.28–7.05 (10 H, m), 8.05 (d, 1 H, NM); $[\alpha]^{22}_{D}$ -47.4° (c 1.0, MeOH).

The unpolar amide (5 g, 12.0 mmol) was dissolved in 1:3 acetic acid-6 N HCl (100 mL) and stirred for 5 h at 90 °C. After removal of the solvent, the residue was dissolved in CH₂Cl₂ (150 mL), and the L-phenylalaninol was removed by extraction with 2 N HCl (2 × 100 mL). The organic phase was evaporated to give 6.6 g of an oily residue, which was purified by flash column chromatography (silica gel 400:10:1 CH₂Cl₂-MeOH-NH₄OH) to yield the unpolar acid (3.25 g, 95%), assigned on the basis of the biological activity as having the S configuration. (S)-9d: NMR (Me₂SO-d₆) δ 1.23 (9 H, s), 2.81-2.73 (dd, 1 H, part of AB system, J = 15 Hz), 2.93-2.83 (1 H, m), 3.12-3.00 (2 H, m), 3.58-3.48 (dd, 1 H, part of AB system, J = 15 Hz), 7.30-7.10 (5 H, m, Ar); [α]_D +7.1° (c 0.98, MeOH). R-9d: [α]_D -8.6° (c 1.01, MeOH).

(S)-(+)-2-Benzyl-3-(*tert*-butylsulfonyl)propionic Acid [(S)-9d]. Method B. From Diastereomeric Salts. To a solution of the racemic acid 9d (142 g, 0.5 mol) in *i*-PrOH (2 L) were added purified (+)-dehydroabiethylamine (85.7 g, 0.3 mol) and NEt₃ (27.8 mL, 0.2 mol), and the precipitated salt was recrystallized from hot *i*-PrOH. After an additional three recrystallizations of the salt, the acid was liberated and twice recrystallized from EtOAc-hexane to give (S)-9d (25.5 g, 18%) in high optical purity (\geq 98% ee) as determined by GC analysis of its (-)-menthol ester: mp 99–101 °C; $[\alpha]_D$ +10.9° (c 0.91, CH₂Cl₂). Anal. (C₁₄H₂₀O₄S) C, H, S.

N-[(2S)-Benzyl-3-(*tert*-butylsulfonyl)propionyl]-His-Cha^{OH}Val-NH(CH₂)₃CH₃ (8i). To a solution of 7b (13.9 g, 30 mmol), HOBT (5.7 g, 36 mmol), and (S)-9d (10.2 g, 36 mmol) in DMF (300 mL) was added at 0 °C DCC (8.1 g, 39 mmol), and the resulting solution was stirred for 2 h at 0 °C followed by 18 h at room temperature. The reaction mixture was acidified with 50% aqueous acetic acid (50 mL) and stirred for 1 h at 50 °C. The suspension was concentrated to about half of its original volume, cooled to 0 °C, and filtered. The filtrate was evaporated, and the residue was partitioned between ethyl acetate (300 mL) and NaHCO₃ solution (200 mL). The organic portion was washed with brine (100 mL), dried (Na₂SO₄), and concentrated. The crude product was purified by flash chromatography (10:1 CH₂Cl₂-MeOH) and then crystallized from CH₂Cl₂-hexane to yield 8i (19.2 g, 88%) as white crystals: mp 148–149 °C; $[\alpha]_D$ –30.3° (c 0.95, MeOH); $R_f(C)$ 0.24; FAB MS, m/e 730 (M⁺ + 1); NMR (CDCl₃) δ 0.85-0.95 (9 H, m), 1.39 (9 H, s), 1.1-1.9 (19 H, m), 2.1 (1 H, m), 2.84 (1 H, dd, J = 13, 9 Hz), 2.94 (1 H, dd, J = 13, 3 Hz), 3.0-3.4 (9 H, m), 3.46 (1 H, m), 3.60 (1 H, dd, J = 12, 9 Hz), 3.81(1 H, m), 4.56 (1 H, m), 6.38 (1 H, br s), 6.43 (1 H, br d, J = 10Hz), 6.84 (1 H, br s), 7.15-7.30 (5 H, m), 7.34 (1 H, br s), 7.48 (1 H, s), 11.8 (1 H, br s); IR (KBr, cm⁻¹) 3320, 1640, 1540, 1290, and 1120. Anal. $(C_{39}H_{63}N_5O_6S)$ C, H, N, S.

Acknowledgment. The excellent technical assistance of D. Blind, M. Fruehauf, C. Handschin, R. Schuermann, S. Stutz, R. Zubiani, and N. Dettwiler is gratefully acknowledged.

Registry No. 1c, 105852-46-8; 1d, 105852-47-9; 1d (semicarbazone), 114469-32-8; (1S,2'R)-2b, 105852-48-0; (1S,2'S)-2b. 105852-30-0; (4S,5R)-3b, 105852-50-4; (4S,5S)-3b, 114469-19-1; (2S)-[4S,5S]-4b, 102522-22-5; (2R)-[4S,5S]-4c, 105852-51-5; (2S)-[4S,5S]-4c, 105857-29-2; 5b, 102522-24-7; 5d, 105852-42-4; 5d (2R diastereomer), 105864-88-8; 5e, 105852-65-1; 6a, 102522-16-7; 6c, 105852-64-0; 7b, 105852-62-8; 7b (N-Cbz derivative), 105852-63-9; 8a, 102522-26-9; 8b, 102522-56-5; 8c, 114469-20-4; 8d, 114469-21-5; 8e, 105851-89-6; 8f (diastereomer 1), 105851-79-4; 8f (diastereomer 2), 105927-79-5; 8g (diastereomer 1), 105928-01-6; 8g (diastereomer 2), 105851-92-1; 8i, 114469-22-6; 8j, 114530-03-9; 8k (diastereomer 1), 114469-23-7; 8k (diastereomer 2), 114530-05-1; 81 (diastereomer 1), 114469-24-8; 81 (diastereomer 2), 114530-06-2; 9a, 105852-83-3; 9b, 105852-66-2; 9c, 95272-47-2; 9d, 114469-25-9; (S)-9d, 114530-04-0; 9e, 114469-26-0; 9f, 114469-27-1; 10, 7622-21-1; 11, 607-81-8; 12, 114469-28-2; 13, 20593-63-9; 14, 95176-70-8; 15, 114469-29-3; 16, 114469-30-6; 17, 114469-31-7; (R)-(-)-MTPA chloride, 39637-99-5; Z-Cha-OH·DCHA, 54594-40-0; trt-His-(trt)-OH, 74853-62-6; Z-His-OH, 14997-58-1; H-Ile-His-NH₂, 102522-23-6; Piv-Phe-OH, 32909-56-1; H-His-OMe-2HCl, 7389-87-9; Piv-Phe-His-OMe, 102522-57-6; Piv-Phe-His-OH, 102522-55-4; Piv-Cl, 3282-30-2; Piv-Pla-OCH₂Ph, 105852-84-4; H-Phe-ol, 3182-95-4; (S)-CF₃CPh(OMe)CONH-(S)-CH(CH₂-c-C₆H₁₁)-CH₂OH, 114469-33-9; (S)-CF₃CPh(OMe)CONH-(R)-CH(CH₂-c- C_6H_{11})CH₂OH, 114469-34-0; Cbz-NH-(S)-CH(CH₂-c-C₆H₁₁)-(R)-CH(OSiMe₃)CH₂I, 114469-35-1; Cbz-NH-(S)-CH(CH₂-c- C_6H_{11})-(S)-CH(OSiMe₃)CH₂I, 114469-36-2; Cbz-NH-(S)-CH-(CH₂-c-C₆H₁₁)-(R)-CH(OH)CH₂I, 114469-37-3; Cbz-NH-(S)-CH-(CH₂-c-C₆H₁₁)-(S)-CH(OH)CH₂I, 114469-38-4; CH₃C(OMe)₂CH₃, 77-76-9; ČH₃CH(CH₃)CH₂COÕMe, 556-24-1; BuŇH₂, 109-73-9; PhCH₂Br, 100-39-0; CH₃C(CH₃)₂COCH₂Br, 5469-26-1; t-BuSH, 75-66-1; t-BuSO₂CH₂-(S)-CH(CH₂Ph)CO-L-Phe-ol, 114469-41-9; t-BuSO₂CH₂-(R)-CH(CH₂Ph)CO-L-Phe-ol, 114469-42-0; lactone A, 114469-39-5; lactone B, 114469-40-8; renin, 9015-94-5.