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Back propagation neural networks is a new technology useful for modeling nonlinear functions of several variables. 
This paper explores their applications in the field of quantitative structure-activity relationships. In particular, 
their ability to fit biological activity surfaces, predict activity, and determine the "functional forms" of its dependence 
on physical properties is compared to well-established methods in the field. A dataset of 256 5-phenyl-3,4-di-
amino-6,6-dimethyldihydrotriazines that inhibit dihydrofolate reductase enzyme is used as a basis for comparison. 
It is found that neural networks lead to enhanced surface fits and predictions relative to standard regression methods. 
Moreover, they circumvent the need for ad hoc indicator variables, which account for a significant part of the variance 
in linear regression models. Additionally, they lead to the elucidation of nonlinear and "cross-products" effects that 
correspond to trade-offs between physical properties in their effect on biological activity. This is the first demonstration 
of the latter two findings. On the other hand, due to the complexity of the resulting models, an understanding of 
the local, but not the global, structure-activity relationships is possible. The latter must await further developments. 
Furthermore, the longer computational time required to train the networks is somewhat inconveniencing, although 
not restrictive. 

Introductions 
The field of quantitative structure-activity relationships 

(QSAR) was introduced in the early 1960s with the pio­
neering work of Hansch and his co-workers.1'2 In a se­
quence of publications, these investigators convincingly 
demonstrated that biological activity of chemical com­
pounds is a mathematical function of their physicochemical 
characteristics such as hydrophobicity, size, and electronic 
properties. Their methods have been widely adopted in 
the pharmaceutical and agrochemical industries. 

The embodiment of these ideas into a concrete model 
is effected by fitting biological activity to linear or parabolic 
functions of physicochemical properties (X, Y,...) of the 
form 

A = C0 + C1X + C2X
2 + C3Y + C4Y

2 + ... (D 
Multiple linear regression is used to determine the values 
of C0, C1,..., which minimiize the variance between the data 
and the model. In these equations, third and higher order 
terms as well as cross-products terms corresponding to 
interactions between physicochemical properties are not 
used in practice. The most commonly used physicochem­
ical properties are linear free energy (LFE) based param­
eters like Hammett's a, Taft's Es, and Hansch's w hy­
drophobicity parameter, derived from in vitro reaction 
systems. 

Functions of several variables represent surfaces or hy-
persurfaces over the space of independent variables. In 
practice, the parabolas of eq 1 have negative curvatures, 
i.e., they are convex upward. For the special case in which 
activity depends on only two physicochemical properties, 
eq 1 corresponds to one of three possible surface shapes: 
plane, parabolically curved plane ("barnroof"), or para­
boloid of revolution ("eggshell"), depending on the terms 
that survive the statistical fitting procedure (Figure 1). 
These three shapes correspond to equations in which the 
function is linear in both variables, linear in one variable 
and parabolic in the other, or parabolic in both variables, 
respectively. 

While eq 1 has an attractively simple form, its flexibility 
is somewhat limited. The only adjustable degrees of 
freedom are the statistically calculated coefficients which 
determine the heights of the surfaces, tilts of the planes, 
curvatures of the parabolas, and location of their maxima. 
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The lack of third and higher order terms restricts the 
surface from further undulations. Furthermore, the ab­
sence of cross-product terms dictates that dependence of 
activity on a particular physicochemical property is in­
variant to the values of other properties. For example, if 
activity depends parabolically on hydrophobicity, the 
curvature of the parabola and the location of its maximum 
is invariant to the values of steric and/ or electronic terms 
in the correlation equation. The consequence of this lim­
ited flexibility is the emergence of outliers whose biological 
activities cannot be adequately accounted for solely on the 
basis of their physicochemical properties. The occurrence 
of outliers is commonplace, especially in datasets having 
more than 50-70 data points. While such "stiff" surfaces 
may, in theory, be made more "pliable" by including higher 
order and cross-product terms in eq 1, the staggering 
diversity of such terms render them unfeasible in practice. 

In order to alleviate this weakness, Hansch and his co­
workers introduced indicator variables3,4 and used them 
as adjuncts to the usual LFE parameters. Typically, such 
variables flag specific chemical structural features by as­
signing them a value of 1 for molecules having the feature 
and 0 otherwise. Geometrically, they represent two parallel 
surfaces corresponding to the values 0 and 1, which are 
separated by a "vertical" distance equal to the coefficient 
of the indicator variable in the regression equation. 
Usually, several indicator variables are required for a 
particular modeling exercise. Significantly enough, in 
many cases they account for a major part of the variance.3,4 

Since indicator variables are specifically designed to deal 
with outliers in a particular dataset, they are not useable 
for modeling other datasets. Furthermore, they are de­
veloped by several iterative cycles of modeling, identifi­
cation of outliers and determination of their commonali­
ties, assigning indicator variables, followed by remodeling. 
The laboriousness of this process increases with the size 
of the dataset. A modeling method that avoids indicator 
variables is therefore desirable. 

Neural networks is a newly emerging field of information 
processing technology that has captured the interest of 
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Figure 1. Biological activity surfaces generated by standard regression using eq 1. 

Figure 2. Complex polynomial surfaces that are able to be fit with neural networks. 

scientists from diverse fields.5-9 It evolved from attempts 
to understand and emulate the brain's information pro-

(5) Hopfield, J. J. Proc. Nat. Acad. Sci. 1982, 79, 2554. 
(6) Hopfield, J. J. Proc. Nat. Acad. Sci. 1984, 81, 3088. 
(7) Kohonen, T. Self-organization and Associative Memory, 2nd 

ed.; Springer-Verlag: Berlin, 1987. 
(8) Rumelhart, D. E.; McClelland, J. L. Parallel Distributed Pro­

cessing: Explorations in the Microstructure of Cognition; 
MIT Press: Cambridge, 1986; Vols. I and II. 

cessing capability. The brain consists of multimodule 
neural networks that extract and recombine relevant in­
formation received from their environments and are ca­
pable of making decisions that satisfy the needs of the 

(9) Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Parallel Dis-
tributed Processing, Volume 1, Foundations; Rumelhart, D. 
E., McClelland, J. L., Eds.; MIT Press: Cambridge, 1986. 
Widrow, B. Generalization and Information Storage In Net­
works of ADELINE Neurons: Self Organizing Systems; Yo-
vitt, M., Ed.; Spartan Books: New York, 1962. 
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Figure 3. Three layer back propagation neural network topology. 

organism. Such capabilities are featured by higher or­
ganisms as well as ones with only few neurons. The latter 
have been demonstrated to have robust and invariant 
feature extraction capabilities. These biological neural 
systems can be emulated with artificial neural networks, 
which can be "taught" complex nonlinear input-output 
transformations. They represent a unified and general 
purpose method for solving pattern recognition and 
functional mapping problems, providing satisfactory so­
lutions in cases where there are no viable alternatives. In 
our experience, they have proved valuable for modeling 
complex polynomial surfaces such as those exemplified in 
Figure 2. Their nonlinear feature extraction capability 
suggests their potential usefulness in QSAR problems. 

While there are several neural network topologies and 
a variety of training methods,6"9 this report utilizes a back 
propagation network (BPN) trained by the algorithm of 
Owens and Filkin,10 using a stiff differential equations 
solver. 

The objective of this paper is to compare the perform­
ance of neural networks with regression methods with 
regard to their ability to fit biological activity surfaces, 
predict activity, and explore the nonlinear aspects of the 
dependence of activity on properties. A dataset of 256 
diaminodihydrotriazines (I) that inhibit dihydrofolate 
reductase enzyme provides a basis for this comparison. 
This dataset has been extensively analyzed by QSAR ex­
perts using regression methods with and without indicator 
variables.3 

Methods 
Neural Networks. An artificial neural network (ANN) 

consists of layers of brainlike neurons with feedforward 
and feedback interconnections. During the past few years 
several ANN paradigms, such as Hopfield's5'6 and the su­
pervised back propagation network8 (BPN), have been 
developed. Topologically, the latter consists of an input, 
hidden, and output layers of neurons or nodes connected 
by bonds as shown in Figure 3. Each input layer node 
corresponds to a single independent variable with the 
exception of the bias node. Similarly, each output layer 
node corresponds to a different dependent variable. 

Associated with each node is an internal state designated 
by Sj, Sh, and om for the input, hidden, output layers, re­
spectively. Each of the input and hidden layer has an 
additional unit, termed a bias unit, whose internal state 
is assigned a value of 1. The input layer's s; values are 

(10) Owens, A. J.; Filkin, D. L. Joint IEEE/INNS International 
Joint Conference of Neural Networks, Washington, D.C., June 
11, 1989, p 381. 

(11) Sokal, R. R.; Michener, C. D. A Statistical Method for Eval­
uating Systematic Relationships, University of Kansas Sci­
ence Bulletin, 38, 1409. 

(12) SAS Institute Inc. SAS User's Guide: Statistics, Version 5 
Edition; SAS Institute Inc.: Cary, NC, 1985; Chapter 5. 

(13) Wonnacott, T. H.; Wonnacott, R. J Introductory Statistics, 
2nd ed.; Wiley: New York, 1972. 

(14) Cramer, R. D. Ill; Patterson, D. E.; Bunce, J. D. J. Am. Chem. 
Soc. 1988, 110, 5959. 

related to the corresponding independent variables by the 
scaling equation 

y. - y. 
v . v , . Si = 0.1 

V,- - V1. 
+ 0.1 (2) 

where Vi is the value of the ith independent variable, VifBiD 
and V;imax are its minimum and maximum values, re­
spectively. The state Sh of each hidden unit is calculated 
by the squashing function 

Sh(<Ph) = - ^ - (3a) 
1 + e-*i> 

<Ph = T.whiSi + dh (3b) 

where whi is the weight of the bond that connects hidden 
unit h with input unit i and 6h is the weight of the bond 
connecting hidden unit h to the input layer bias unit. The 
state om of output unit m is calculated by 

Om(Vm) = (4a) 

h 

1 + e-** 

Sh + (4b) 

where Wmh is the weight of the bond that connects output 
unit m to hidden unit h and 6m is the weight of the bond 
that connects output unit m to the hidden layer bias unit. 
The network calculated om's have values in the range [0, 
I]. 

Training of the neural network of Figure 3 is achieved 
by minimizing an error function E with respect to the bond 
weights \whi, Wmh\ 

"2 (5) E = ZEP = y2ZUapm 
P Pm 

-'pmf 

where Ep is the error of the pth training pattern, defined 
as the set of independent and dependent variables corre­
sponding to the pth data point, or chemical compound; apm 

corresponds to the experimentally measured value (Apm) 
of the mth dependent variable, in this case biological ac­
tivity, of the pth pattern, scaled by 

apm = 0 . 8 -
/"I 

*pm 
+ 0.1 (6) 

Am<min and Am max are the minimum and maximum values 
of Apm over the dataset. 

E depends on the bond weights \whi, Wmh\ through opm. 
It is minimized by following its gradient with respect to 
the weights, given by 

dE 6En 

dWmh t dWmh 

dwhi p dwhi 

whereby, using the chain rule, 
dEp dEp dopm 

— —in n \n Ci 
dWmh dopmdWmh~

[apm " W 1 W 1 

yta.) 

(7b) 

" °pm)Sph 

(8a) 

dEn 
= L-

dEp dopm 

dwhi m do 
Z(apm 

pm 

O 

dwhi 

Km(I - O0 ,)WmhSph{\ - Sph)spi (8b) 

In the latter two equations, the p index in Sph and Spi refer 
to the pth training pattern. The derivative with respect 
to dh and 8m are similarly calculated. 
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Figure 4. Standard deviation of training (•) and test (•) sets 
as a function of the number of hidden units. 

The most common procedure for minimizing E utilizes 
the delta rule,8 whereby bond weights are iteratively 
changed from their initially assigned small random values 
by 

Wmh»" = Wmh» - V1^- Oa) 

whi
n+1 - whi

n -

'dWmh 

dE 
dwhi 

(9b) 

dt 
dwhi 

dt 

dWmh 

dE 
dwhi 

The n and n + 1 superscripts designate consecutive iter­
ations in the minimization sequence, and i\ is the learning 
rate with values typically much less than 1. Similar 
equations are used for the evolution of 8h and 6m. 

In the current work, the minimization of the error 
function E was done by the algorithm of Owens and FiI-
kin10 in which eqs 9a and 9b are replaced by 

AW" dE (10a) 

(10a) 

where t corresponds to sequential training iterations. The 
set of coupled stiff differential eqs 10 are then solved by 
the algorithm of Gear.16 

Determining the Number of Hidden Units. The 
number of hidden units determines the number of ad­
justable parameters of the neural network model. Few 
hidden units may be insufficient to extract all the pertinent 
features of the data, while too many units causes the 
network to "memorize" the dataset. The optimal number 
is that which minimizes the variance of a test set, not used 
in training the network. This is illustrated in Figure 4 in 
which the variance of the 100 data point training set and 
the corresponding 32 data point test set (Figure 5) are 
graphed as a function of the number of hidden units. This 
figure reflects a typical result whereby the training-set 
variance is a decreasing function of the number of hidden 
units while the test-set variance is an upward concave 
function with a minimum. Increasing the number of 
hidden units from 1 to 3 or 4 significantly reduces the 
test-set variance, which eventually minimizes at 8 hidden 
units. It should be noted however, that the reduction in 
the test-set variance between 3 and 8 hidden units is small 
and may or may not be significant. 

Data Set. The dataset used for comparing neural 
networks (NN), multiple linear regression without indi­
cator variables (MLR), and multiple linear regression with 

(15) Gear, C. W. Numerical Initial Value Problems in Ordinary 
Differential Equation; Prentice Hall: Englewood Cliffs, NJ, 
1971. 
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Figure 5. Subgroups of the dataset of Table I. 

indicator variables (MLRI) consists of physicochemical 
properties and dihydrofolate reductase (DHFR) inhibitory 
activities of 256 2,4-diamino-6,6-dimethyl-5-phenyldi-
hydrotriazines (I) that are variously mono- and disubsti-
tuted in the ortho, meta, and para positions of the phenyl 
ring (Table I). Of these, 11 had a non-hydrogen R2 (Figure 

5). The other 245 compounds are in two categories: 132 
were tested on DHFR enzymes from Walker 256 leukemia 
tumors (Table I, Z1 = 1) and 113 were tested on DHFR 
from L1210 leukemia tumors (Table I, Z1 = 0). 

This dataset has been exhaustively analyzed by Hansen 
and Silipo using MLR.3 Their best fit equation shows that 
DHFR inhibitory activity is a function of ir3, MR4, and a 
set of six indicators variables, Z1-Z6. The first two variables 
correspond to the hydrophobicity of R3 and size of R4, 
respectively, Z1 has a value of 1 for compounds tested on 
DHFR from Walker 256 leukemia tumor and 0 for the 
enzyme from L1210 leukemia tumors. Z2 = 1 for com­
pounds with a non-hydrogen substituent at R2 and 0 
otherwise. Z3 = 1 for compounds in which R3 or R4 = Ph, 
CHPh, CONHPh, or C=CHCONHPh. Z4 = 1 for ana­
logues with the group C6H4SO2OC6H4X and 0 otherwise. 
Z6 takes a value of 1 for R3 or R4 = CH2Ph, CH2CH2Ph, 
(CH2)4Ph, (CH2J6Ph, and (CH2)40-Ph between an N-
phenyl moiety and a second phenyl ring but is 0 otherwise. 
Z6 takes a value of 1 for bridges of the type 
CH2NHCONHC6H4X, CH2CH2C(=0)N(R)C6H4X, and 
CH2CH2CH2C(=0)N(R)C6H4X (R = H or Me). 

On the other hand, the NN models were exclusively 
based on ir2, 7T3, ir4, MR2, MR3, MR4, and S<r34, corre­
sponding to the 7T values of the 2, 3, and 4, substituents, 
their MR values, and the sum of a values of the 3 and 4 
substituents. Indicator variables were not used in the NN 
models. 

Statistical Analyses. Program FIT MULTIPLE in 
RSl, BBN Software Products Corporation, MA, was used 
to perform MLR and MLRI. The best fit equations were 
selected on the basis of lowest standard deviation and 
highest correlation coefficients. Cluster analysis was 
performed using the average linkage method, due to Sokal 
and Michener,11 of procedure cluster, in the SAS suite of 
statistical programs.12 
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Table I. Structure, Experimentally Determined DHFR Inhibitory Activity, and Physicochemical Properties of 
Diaminodihydrotriazines I0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
28 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

R 

2,5-Cl2 

2-OCH3 

2,4-Cl2 

2-CH3 

2-Cl 
2-Br 
2,4,5-Cl3 

2-1 
4-CONHC6H4-4'-S02F 
4-C0NHC6H4-3'-S02F 
4-C6H6 

2-F 
3-OCH2CON(CH2CH2)20 
4-CN 
4-CH=CHCONHC6H4-4'-S02F 
3-OCH2CONMe2 

4-CH(Ph)CH2CONHC6H4-4'-S02F 
4-Cl-3-(CH2)2C6H4-4'-S02F 
4-CH=CHC0NHC6H4-3'-S02F 
3-CONHC6H4-4'-S02F 
3-NHC0CH2Br-4-0(CH2)3C6H5 

3-CH2NHCONEt2 

3-OCH3 

4-OCH2CON(Me)C6H6 

4-CH2CH(CH2CH2Ph)CONHC6H4-4'-S02F 
3-COCH2Cl 
4-CH2CH(a-C l0H7)CONHC6H4-4'-SO2F 
4-OCH2CONMe2 

4-CH2CH-(Ph-2"-OCH3)CONHC6H4-4'-S02F 
3-Cl-4-OCH2C6H10CH2OC6H4-4'-SO2F 
3-CH(CH2NHCOCH2Br)(CH2)3C6Hs 

3-CH2NHCON(CH2CH2)20 
4-COCH2Cl 
4-CH2CH(Ph-3"-OCH3)CONHC6H4-4'-S02F 
4-CH(CH2NHCOCH2Br)(CH2)3C6H5 

2,3-Cl2 

2-Cl-4-(CH2)4C6H6 

3-Cl-4-0(CH2)4OC6H4-4'-S03C6H4-4"-Cl 
3-CH2NHCOCH2Br 
3-CONHC6H4-3'-S02F 
4-CH2CONMe2 

4-0CH2C0N(CH2)4 

3-OCH2CON(Me)C6H6 

4-OCH2CONEt2 

3-CH2CH(CH2NHCOCH2Br)C6H6 

4-Cl-3-0(CH2)6OC6H4-4'-S02F 
4-CH2CONEt2 

4-Cl-3-(CH2)4C6H4-4'-S02F 
3-Cl-4-OCH2C6H4-4'-CH2OC6H4-4"-S02F 
3-OCH2CONHC6H6 

3-C6H6 

4-CH2CH(Ph)CONHC6H4-3'-S02F 
3-Cl-4-OCH2C6H4-3'-CONHC6H4-4"-S02F 
3-Cl-4-OCH2C6H4-4'-CONHC6H4-4"-S02F 
3-OCH2CONHC6H4-4'-S02F 
4-CH2CN 
H 
3-OCH2C6H4-3'-NHCOCH2Br 
4-CH2CON(Me)C6H6 

4-(CH2)2CONMe2 

3-C1-4- (CH2)4C6H3-5'-Cl-2'-S02F 
3-Cl-4-0(CH2)3OC6H4-4'-S02F 
3-NO2 

3-(CH2)2COCH2Cl 
3-(CH2)4COCH2Cl 
4-OCH2CON(CHj)6 

4-CH2CON(CH2CH2)20 
4-(CH2)6C6H4-4'-S02F 
3-Cl-4-OCH(CH3)CONHC6H4-4'-S02F 
4-CH2CH(Ph)CONHC6H4-4'-S02F 
3-Cl-4-0(CH2)20(CH2)2OC6H4-4'-S02F 
3-Cl-4-0(CH2)3C0NHC6H4-4'-S02F 
3-Cl-4-OCH2CONMe2 

3-Cl-4-0(CH2)3CONHC6H4-3'-S02F 
4-Cl-3-0(CH2)40C6H4-4'-S02F 

log 
1/C 

3.43 
3.68 
3.82 
4.00 
4.15 
4.25 
4.38 
4.62 
4.68 
4.68 
4.70 
4.74 
4.85 
5.14 
5.19 
5.44 
5.74 
5.82 
5.89 
5.96 
6.11 
6.11 
6.17 
6.17 
6.20 
6.21 
6.24 
6.26 
6.33 
6.37 
6.37 
6.43 
6.45 
6.46 
6.52 
6.52 
6.54 
6.55 
6.58 
6.60 
6.63 
6.66 
6.68 
6.72 
6.72 
6.72 
6.77 
6.77 
6.82 
6.85 
6.85 
6.89 
6.92 
6.92 
6.92 
6.92 
6.92 
6.92 
7.00 
7.05 
7.06 
7.07 
7.07 
7.10 
7.10 
7.12 
7.12 
7.12 
7.13 
7.13 
7.14 
7.15 
7.16 
7.17 
7.17 

-K2 

0.71 
-0.02 

0.71 
0.56 
0.71 
0.86 
0.71 
1.12 
0.00 
0.00 
0.00 
0.14 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.71 
0.71 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

*3 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

-1.39 
0.00 
0.00 

-1.36 
0.00 
2.71 
0.00 
1.50 

-0.37 
-0.29 
-0.02 

0.00 
0.00 

-0.16 
0.00 
0.00 
0.00 
0.71 
2.94 

-1.32 
0.00 
0.00 
0.00 
0.71 
0.00 
0.71 

-0.52 
1.50 
0.00 
0.00 
0.12 
0.00 
1.94 
4.43 
0.00 
4.01 
0.71 
0.60 
1.96 
0.00 
0.71 
0.71 
1.61 
0.00 
0.00 
1.29 
0.00 
0.00 
0.71 
0.71 

-0.28 
0.20 
1.20 
0.00 
0.00 
0.00 
0.71 
0.00 
0.71 
0.71 
0.71 
0.71 
3.92 

*4 

0.00 
0.00 
0.71 
0.00 
0.00 
0.00 
0.71 
0.00 
1.50 
1.50 
1.96 
0.00 
0.00 

-0.57 
1.99 
0.00 
3.53 
0.71 
1.99 
0.00 
2.66 
0.00 
0.00 
0.12 
4.23 
0.00 
5.02 

-1.36 
3.51 
5.16 
0.00 
0.00 

-0.16 
3.51 
2.94 
0.00 
3.66 
4.92 
0.00 
0.00 

-1.70 
-0.72 
0.00 

-0.36 
0.00 
0.71 

-0.70 
0.71 
4.33 
0.00 
0.00 
3.53 
3.16 
3.16 
0.00 

-0.57 
0.00 
0.00 

-0.19 
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3.53 
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2.38 
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0.71 
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0.10 
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0.10 
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2.41 
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4.33 
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3.56 
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0.10 
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0.10 
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0.60 
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0.10 
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8.52 
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7.25 
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Table I (Continued) 

R 
log 
1/C *"8 T4 MR8 MR3 MR4 So-M Z1 I2 I3 /4 J6 Jg 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
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105 
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114 
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119 
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131 
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150 
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3-
4-
4-
3-
3-
3-
3-
4-
3-
3-
4-
3-
4-
4-
4-
4-
4-
4-
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3-
4-
3-
3-
3-
3-
3-
4-
3-
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4 
3 
3 
4 
3 
3 
3 
3 
3 
3 
4 
3 
3 
3 
3 
4 
4 
4 
3 
3 

CH2CH(Ph-3"-Me)CONHC6H4-4'-S02F 
(CH2J2CONHC8H4-^-SO2F 
CH2CH(Ph-4"-Me)CONHC6H«-4'-S02F 
CH2CH(Ph-2"-CH3)CONHC6H4-4'-S02F 
Cl-4-0CH2CgH4-3'-C0NHC„H4-3"-S02F 
Cl-4-OCH2C6H4-2'-CONHC,H4-4"-S02F 
Cl-4-0(CH2)4CONHC„H4-4'-S02F 
Cl-4-OCH2CeH3-5'-Cl-2'-S02F 
Cl-3-0(CH2)2OC6H4-4'-S02F 
SO2F 
Cl-4-0(CH2)3NHCONHC6H4-3'-S02F 
(CH2J2CONEt2 
Cl-4-OCH2CON(CH2)4 
0CH2C0N(CH2CH2)20 
CH(CH3)CH2CONHC6H4-4'-S02F 
CH2CON(Me)CH2C6H6 
(CH2)IjCON(Me)CH2C6H8 
(CH2)2CON(CH2CH2)20 
0(CH2)3NHCONHC6H4-3'-S02F 
Cl-4-0(CH2)3NHCOC6H4-4'-S02F 
CH2CONHC„H4-4'-S02F 
C H 2 N H C O N H C 6 H 4 - ^ - S O 2 F 
(CH2)2CON(C3H7)2 
Cl-4-OCH2C6H3-6'-Cl-3'-S02F 
Cl-4-OCH2C6H3-2'-CH3-4'-S02F 
Cl-4-S(CH2)2CONHC6H4-4'-S02F 
(CH2)2C6H4-4'-S02F 
Cl-4-OCH2C6H4-4'-CONHC6H4-3"-S02F 
(CH2)2NHS02C6H4-4'-S02F 
Cl-4-SCH2CONHC„H4-4'-S02F 
Cl-4-OCH2C6H3-3'-Cl-2'-S02F 
CI-4-OCH2CONHC6H4-4'-S02F 
Cl-4-OCH2C6H4-2'-S02F 
Cl-4-OCH2C6H3-3'-Cl-4'-S02F 
Cl-4-OCH2C6H3-2'-Cl-4'-S02F 
Cl-4-0(CH2)2OC6H4-4'-S02F 
(CH2)4C6H3-2',4'-Cl2 
Cl-4-0(CH2)6OC6H4-4'-S02F 
(CH2)2CONHC6H3-3'-OMe-4'-SOsF 
Cl-4-OCH2CON(CH3)C6H4-4'-S02F 
•Cl-4-OCH2CON(CH2)6 
•Cl-4-OCH2C6H4-4'-S02NMe2 
•Cl-4-OCH2C„H3-2'-Cl-3'-S02F 
•0(CH2)4OC6H4-4'-S02F 
•Cl-3-0(CH2)3OC6H4-4'-S02F 
•Cl-4-OCH2C6H4-3'-CN 
01-4-OCH2C6H6 
•SCH2CONHC6H4-4'-S02F 
•Cl-4-OCH2C6H3-4'-Cl-2'-S02F 
CH2NHCONHC6H6 
•CH2CH(Me)CONHC6H4-4'-S02F 
•0(CH2)3OC6H4-4'-NHCOCH2Br 
(CH2)2CON(Me)C6H6 
•Cl-4-0(CH2)40C6H4-4'-S02F 
•Cl-4-0(CH2)6OC6H4-4'-S02F 
CW-OCH2C6H4-^-SO2F 
(CH2)2CONHC6H4-4'-S02F 
•Cl-4-(CH2)2CONHC6H4-4'-S02F 
•CH2NHCONHC„H4-3'-S02F 
(CH2)2NHS02C6H4-3'-S02F 
01-4-OCH2CONEt2 
•0(CH2)3OC6H4-3'-NHCOCH2Br 
•0(CH2)2OC6H4-2'-NHCOCH2Br 
•0(CH2)2OC6H4-3'-NHCOCH2Br 
•Cl-4-SCH2CONHC6H4-3'-S02F 
•Cl-4-0(CH2)4NHC0C6H4-4'-S02F 
(CH2)3CONHC6H4-4'-S02F 
•Cl-4-0(CH2)3NHCONHC6H34-4'-S02F 
•Cl-4-0(CH2)4NHCONHC6H4-3'-S02F 
•(CH2)4C6H3-3'-Cl-4'-S02F 
•Cl-4-(CH2)4C6H3-3'-Cl-4'-S02F 
(CH2)4C6H4-4'-S02F 
•CH2CONHC6H4-4'-S02F 
•0(CH2)2OC6H4-4'-NHCOCH2Br 
•Cl-4-OCH2C6H4-3'-CONMe2 
•Cl-4-OCH2C6H4-4'-S03C6H4-3"-Cl 

7.17 
7.19 
7.24 
7.24 
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7.27 
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0.00 
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0.00 
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1.84 
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2.88 
2.42 
0.71 
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-0.21 
-0.72 
-1.39 
2.07 
0.43 
0.93 
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1.84 
0.80 
2.42 
2.27 
2.74 
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3.16 
1.01 
2.24 
2.42 
1.61 
1.71 
2.42 
2.42 
3.00 
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1.75 
1.13 

-0.32 
0.88 
2.42 
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0.71 
1.09 
1.66 
2.24 
2.42 
0.00 
2.07 
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4.00 
4.50 
1.71 
1.77 
1.77 
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1.01 

-0.36 
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2.24 
1.92 
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0.49 
0.49 
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4.48 
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Table I (Continued) 
log 

R 1/C T2 T3 jr4 MR2 MR3 

152 4-OCH2CONHC6H4-^-SO2F 
153 3-Cl-4-OCH2CONHCeH4-3'-S02F 
154 3-Cl-4.0CH2C6H4-3'.S02F 
155 3-Cl-4-0CH2C6H3-6'-Cl-2'-S02F 
156 4-CH2NHCONHCeH3-3'-Me-4'-S02F 
157 4-(CH2)2C0NHC6H4-3'-S02F 
158 3,5-Cl2-4-OCH2CONHC6H4-4'-S02F 
159 3-Cl 
160 3-CF3 
161 3-Cl-4-OCH2C6H4-4'-S03C6H4-4"-Cl 
162 3-CH 2NHCONH 6H 4-3'-CON(Me) 2 
163 3-Cl-4-(CH2)4C6H4-2'-S02F 
164 3-Cl-4-(CH2)4C6H3-2'-Cl-4'-S02F 
165 3-Cl-4-CH2NHC0NHC6H3-3'-Me-4'-S02F 
166 4-0(CH2)2OC6H4-4'-S02F 
167 4-(CH2)3C0NHC6H4-2'-S02F 
168 3-Cl-4-0(CH2)2NHCONHC6H3-3'-Me-4'-S02F 
169 3-0(CH2)20C6H4-4'-S02F 
170 3-Cl-4-(CH2)4C6H3-4'-Cl-2'-S02F 
171 3-Cl-4-(CH2)2C6H4-4'-S02F 
172 3-Cl-4-(CH2)2C6H3-5'-Cl-2'-S02F 
173 3-Cl-4-(CH2)2C6Hr3'-Cl-4'-S02F 
174 3-Cl-4-OCH2CON(CH2CH2)20 
175 3-Cl-4-OCH2C6H4-3'-CON(CH2CH2)20 
176 3-Cl-4-OCH2C6H4-3'-CON(CH2)4 

177 3-CM-OCH2CON(Me)C6H6 
178 4-OCH2CONHC6H5 
179 4-(CHj)2C

6H6 
180 4-(CH2)2C0NHC6H3-3'-Me-4'-S02F 
181 3-Cl-4-CH2NHCONHC6H4-4'-S02F 
182 3-Cl-4-0(CH2)2NHCONHC6H4-4'-S02F 
183 4-(CH2)3CONHC6H4-3'-S02F 
184 4-(CH2)2COCH2Cl 
185 3-OC6H4-4'-NHCOCH2Br 
186 3-Cl-4-(CH2)4C6H6 
187 4-(CH2)4C6H3-2',4'-Cl2 
188 3-Cl-4-(CH2)4C6H6 
189 3-0(CH2)3OC6H4-4'-S02F 
190 3-(CH2)4C6H3-5'-Cl-2'-S02F 
191 4-(CH2)4C6H3-2'-Cl-4'-S02F 
192 3-Cl-4-0CH2C6H3-4'-Cl-3'-S02F 
193 3-(CH2)4C6H3-2'-Cl-4'-S02F 
194 4-OCH2CONHC6H4-3'-S02F 
195 3-Cl-4-OCH2C6H4-3'-CONHC6H6 
196 3-CH2C6H6 
197 4-(CHj)4C6H6 
198 3-Cl-4-OCH2C6H4-3'-CON(CH2)6 
199 3-CH2NHCONHC6H4-3'-OCH3 
200 4-(CH2)2CONHC6H3-4'-Me-3'-S02F 
201 3-Cl-4-(CH2)4C6H4-3'-S02F 
202 3-(CH2)4C6H3-2',4'-Cl2 
203 4-CH2NHC0NHC6H4-3'-S02F 
204 4-(CH2)2C0N(Me)-C6H4-4'-S02F 
205 3-Cl-4-(CH2)2C6H3-4'-Cl-2'-S02F 
206 4-CH2C6H6 
207 3-CH2NHC0NHC6H4-3'-Cl 
208 3-Cl-4-0(CH2)3NHCONHC6H3-3'-Me-3'-S02F 
209 4-CH2C0NHC6H4-3'-S02F 
210 4-(CH2)2CONHC6H3-6'-OMe-3'-S02F 
211 3-Cl-4-OCH2C6H4-4'-S03C6H4-3"-CF3 
212 3-CH2NHCONHC6H4-3'-N02 
213 3-(CH2)4C6H4-4'-S02F 
214 3-(CH2)4C6H4-3'-S02F 
215 3-(CH2)2C6H4-4'-S02F 
216 4-(CH2)2NHCOC6H4-4'-S02F 
217 3-Cl-4-(CH2)4C6H3-4'-Cl-3'-S02F 
218 3-Cl-4-OCH2C6H4-3'-CON(Me)C6H6 
219 3-0(CH2)2OC6H4-4'-NHCOCH2Br 
220 3-Cl-4-OCH2C6H4-3'-CONEt2 
221 3-Cl-4-(CH2)4C6H4-4'-S02F 
222 3-Br-4-OCH2CONHC6H4-4'-S02F 
223 4-(CH2)4OC6H4-4'-S02F 
224 3-(CH2)2C6H6 
225 3-CH2NHCONHC6H4-3'-CN 
226 3-Cl-4-OCH2C6H4-4'-S02OC6H6 
227 3-Cl-4-(CH2)4C6H3-3'-Cl-2'-S02F 
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Table I (Continued) 

R 
log 
1/C 7T2 ' 3 ir« MR2 MR3 MR4 2<r3,« I1 I2 h h h h 

228 4-(CH2)2CONHC6H8.2'.Me.4'-SOjF 
229 4-(CH2)2CONHC6H3-4'-OMe-3'-S02F 
230 3-Cl-4-OCH2C6H4-4'.S03C6H4-3".CN 
231 4-(CH2)«OC6H6 
232 3-Cl-4-OCH2C6H4-4'-S03C6H3-3",4"-Cl2 
233 3-(CH2)2C6H4-4'-NHCOCH2Br 
234 3-Cl-4-(CH2)2C6H3-4'-Cl-3'-S02F 
235 3-Cl-4-(CH2)2C6H3-3'-Cl-2'-S02F 
236 3-Cl-4-(CH2)sC6H3-2'-Cl-4'-S02F 
237 3-Cl-4-OCH2C6H4-4'-S03C6H4-2"-CF3 
238 3-(CHj)4OC6H6 
239 3-(CH2)AH6 
240 3-(CH2)4C6H3-4'-Cl-3'-S02F 
241 3-(CH2)4C6H4-4'-NHCOCH2Br 
242 3-Cl-4-OCH2C6H4-4'-S03C«H4-4"-CN 
243 3-Cl-4-OCH2C6H4-4'-S03C6H4-4"-OCH3 
244 3-Cl-4-OCH2CgH4-4'-S03C6H4-4"-F 
245 3-Cl-4-OCH2C6H4-4'-S03C6H4-2"-OCH3 
246 3-(CH2)4C«H4-3'-NHCOCH2Br 
247 3-Cl-4-OCH2C6H4-4'-S03C6H4-3"-CH3 
248 3-Cl-4-OCH2C6H4-4'-S03C6H4-3"-F 
249 3-Cl-4-OCH2C6H4-4'-S03C6H4-3"-OCH3 
250 3,4-Cl2 
251 3-Cl-4-OCH2C6H4-4'-S03C6H4-2"-Cl 
252 3-Cl-4-OCH2CsH4-4'-S03C6H4-4"-CON(CH3)2 
253 3-Cl-4-OCH2C6H4-4'-S03C6H4-4"-CON(CH3)2 
254 3-Cl-4-OCH2C6H4-4'-S03C6H4-2"-CN 
255 3-Cl-4-OCH2C6H4-4'-S03C6H4-2"-F 
256 3-Cl-4-OCH2C6H4-4'-S03C6H4-3"-CON(CH3)2 

8.24 
8.24 
8.24 
8.24 
8.25 
8.26 
8.27 
8.30 
8.33 
8.33 
8.35 
8.35 
8.37 
8.38 
8.39 
8.40 
8.40 
8.40 
8.41 
8.44 
8.46 
8.52 
8.54 
8.62 
8.62 
8.63 
8.70 
8.74 
8.76 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.71 
0.00 
0.71 
2.29 
0.71 
0.71 
0.71 
0.71 
3.61 
3.66 
4.42 
3.24 
0.71 
0.71 
0.71 
0.71 
3.24 
0.71 
0.71 
0.71 
0.71 
0.71 
1.71 
0.71 
0.71 
0.71 
0.71 

2.33 
1.75 
2.64 
3.61 
4.63 
0.00 
3.42 
3.42 
3.42 
4.09 
0.00 
0.00 
0.00 
0.00 
2.64 
3.19 
3.35 
3.19 
0.00 
3.77 
3.35 
3.19 
0.71 
3.92 
1.70 
1.70 
2.64 
3.35 
1.70 

0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 

0.10 
0.10 
0.49 
0.10 
0.49 
5.55 
0.49 
0.49 
0.49 
0.49 
4.52 
4.37 
5.81 
6.47 
0.49 
0.49 
0.49 
0.49 
6.47 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 

5.62 
5.84 
7.32 
4.61 
7.79 
0.10 
4.73 
4.73 
4.73 
7.19 
0.10 
0.10 
0.10 
0.10 
7.32 
7.47 
6.78 
7.47 
0.10 
7.25 
6.78 
7.47 
0.60 
7.29 
8.59 
8.59 
7.32 
6.78 
8.59 

-0.17 
-0.17 
0.10 

-0.17 
0.10 

-0.07 
0.20 
0.20 
0.20 
0.10 

-0.07 
-0.07 
-0.07 
-0.07 
0.10 
0.10 
0.10 
0.10 

-0.07 
0.10 
0.10 
0.10 
0.60 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 

1 
1 
1 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
1 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 

0 
0 
0 
1 
0 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 Reference 3. 

Comparison of Neural Networks and Regression 
Models. The best NN, MLR, and MLRI models were 
determined for each dataset in Figure 5. These were 
compared for fitting biological activity surfaces and pre­
dicting activity on the basis of criteria described below. 

A table with 256 compound rows and 21 columns cor­
responding to enzyme inhibitory activity, ir2> "31 vi< MR2, 
MR3, MR4, S(T34, their squares, and Z1-Z6 was constructed. 
Subsets of rows corresponding to different training and 
test sets (Figure 5) were selected for model development. 
MLR models were developed by determining linear com­
binations of physicochemical properties (ir2, T3, ir4, MR2, 
MR3, MR4, 2<r34, and their squares, but not indicator 
variables) that minimize the variance and maximize the 
correlation. MLRI models were similarly determined by 
including indicator variables in the analysis in addition to 
variables used in MLR. NN models were calculated with 
""2> i*3< "•*> MR2, MR3, MR4, and S(T34 as independent 
variables. Their squares were not utilized as independent 
variables on the basis that, if these and other nonlinear 
variables contributed to reducing the variance, the neural 
network will automatically include their effects. Indicator 
variables were not utilized in NN models on the basis that 
they correspond to such nonlinear effects. For datasets 
in which R2 = H, ir% and MR2 are constant, and hence were 
not used as independent variables. 

The criteria used for comparing surface fits are the 
correlation coefficient, R, coefficient of determination, R2, 
defined in the usually way,13 and the standard deviation 
of the error, <jE, defined by 

E1 = observed I log 
(• 

• - IB W 

4)-

Additionally, the number of outliers is also compared. An 
outlier is defined, somewhat arbitrarily, as a data point for 
which the absolute value of the error ||Z?,|| is greater than 
0.8. This value is expected to be greater than experimental 
error for in vitro enzyme inhibition assays. 

NN, MLR, and MLRI predictions were compared using 
two strategies. The first relied on cluster analysis11'12 to 
split a parent dataset into a predetermined number of 
clusters from which training and test sets were chosen. 
The training set was obtained by randomly selecting a 
single point from each cluster. The remaining points 
constituted the test set. As shown in Figure 5, the 132 
compounds tested on Walker's enzyme were split into two 
training/test combinations: 66/66 and 100/32. Similarly, 
the 113 compounds tested on L1210 enzyme were split into 
57/56. The identities of the data points in the three 
training/test set combinations are shown in Table II. This 
procedure ascertains that the training set is well distrib­
uted in the subspace of independent variables and that 
every point in the test set has a points in training set in 
its vicinity. NN, MLR, and MLRI models were developed 
for the training subset and used to predict activities of the 
test subset. R, R2, and aE and the number of outliers are 
compared in the Results. 

The second strategy utilized the cross-validation pro­
cedure of Cramer et al.14 The 132 point subset (Figure 5) 
was analyzed 132 times. Each time a different single data 
point was used as a test set for a training set consisting 
of the remaining 131 data points. NN, MLR, and MLRI 
models were developed for each training set and used to 
predicted the activity of the single point test set. The 
cross-validated r2 was calculated by14 

calculated H) (ID 
cross validated r2 = 

SD - press 

ST) 
(12) 

where C1 is the concentration of compound i required for 
50% DHFR inhibition and N is the number of points. 

where SD is the variance of observed biological activity 
relative to its mean and press is the average squared errors 
of the 132 test sets. The corresponding values for NN, 
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Table II. Training and Test Sets Used for Comparing the Performance of MLR, MLRI, and NN 

data 
sets0 data points11 

66tr' 

66tsc 

9, 11, 13, 14, 15, 16, 17, 20, 21, 23, 26, 28, 31, 33, 35, 39, 41, 43, 44, 50, 51, 56, 57, 59, 60, 63, 64, 65, 76, 85, 91, 96, 112, 116, 121, 
122, 127, 134, 135, 139, 149, 152, 160, 166, 174, 177, 178, 180, 184, 185, 188, 194, 196, 198, 206, 218, 223, 232, 233, 242, 243, 246, 
247, 250, 252, 256 

10, 19, 24, 25, 40, 42, 45, 47, 58, 66, 67, 70, 73, 77, 78, 79, 87, 88, 89, 90, 92, 93, 98, 104, 114, 117, 126, 128, 136, 137, 138, 142, 148, 
150, 151, 159, 161, 167, 175, 176, 182, 183, 195, 200, 203, 204, 209, 210, 211, 216, 219, 220, 226, 228, 229, 230, 237, 241, 244, 245, 
248, 249, 251, 253, 254, 255 

100trc 9, 11, 13, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26, 28, 31, 33, 35, 39, 41, 42, 43, 44, 45, 47, 50, 51, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 70, 
73, 76, 77, 78, 85, 87, 88, 89, 91, 92, 93, 96, 98, 112, 114, 116, 117, 121, 122, 127, 134, 135, 139, 148, 149, 150, 152, 159, 160, 161, 
166, 174, 175, 176, 177, 178, 180, 182, 184, 185, 188, 194, 195, 196, 198, 203, 204, 206, 209, 210, 218, 223, 226, 232, 233, 237, 242, 
243, 246, 247, 250, 252, 256 

10, 19, 40, 79, 90, 104, 126, 128, 136, 137, 138, 142, 151, 167, 183, 200, 211, 216, 219, 220, 228, 229, 230, 241, 244, 245, 248, 249, 251, 
253, 254, 255 

22, 27, 30, 32, 34, 38, 46, 48, 49, 55, 62, 68, 69, 71, 74, 80, 84, 86, 94, 101, 102, 105, 111, 113, 115, 119, 120, 123, 125, 130, 131, 132, 
140, 141, 156, 158, 162, 165, 169, 170, 171, 179, 181, 189, 191, 193, 197, 199, 202, 205, 207, 213, 215, 222, 224, 225, 239 

18, 29, 52, 53, 54, 61, 72, 75, 81, 82, 83, 95, 97, 99, 100, 103, 105, 106, 107, 108, 110, 118, 124, 129, 133, 143, 144, 145, 146, 147, 153, 
154, 155, 157, 163, 164, 168, 172, 173, 186, 187, 190, 192, 201, 208, 212, 214, 217, 221, 227, 231, 234, 235, 236, 238, 240 

" The training and test sets in this column are those of Figure 5. 6 The numbers in this column correspond to those in column 1 of Table 
I. 'Compounds with I1 = 1 and I2 = 0. ''Compounds with Z1 = 0 and I2 = 0. 

32tsc 

5 7 ^ 

56tsd 

MLR, and MLRI models are compared in the Results. 
Computation Time. The algorithms of this section 

were coded and the models computed on a VAX 8800. 
Computation times varied depending on the number of 
input and hidden units as well as the size of the dataset. 
For example, training times for the 132 point dataset 
(Figure 5) with 5 input units were 40, 75, 140, and 390 s 
for the 2, 3, 4, and 6 hidden units models, respectively. 

Results 
Fitting Biological Activity Surface. In their analysis 

of the dataset of 256 DHFR inhibitors (I) using regression, 
Hansch and Silipo3 noted that six indicator variables were 
needed in addition to the physicochemical properties of 
the R2, R3, and R4 (I) to fit the dataset of Table I. Even 
so, it was only possible to fit 244 data points, leaving 12 
outliers, which were excluded from the regression. Their 
analysis gave 

A = 6.489 + 0.680TT3 - 0.118ir3
2 + 0.230MR4 -

0.0243MR4
2 + 0.238Z1 - 2.53072 - 1.991/3 + 0.877J4 + 

0.686/, + 0.704L 

N = 244, S = 0.377, R = 0.923 (13) 

in which activity depends parabolically on hydrophobicity 
of R3 and size of R4. The coefficient of 0.238 of J1 reflects 
that the inhibitory activity surfaces corresponding to the 
two enzyme systems are parallel and separated by a 
"vertical distance" of 0.238. This separation, if significant, 
could be due to a difference in the enzyme structure or to 
systematic differences in the assay procedure of the two 
enzymes. Furthermore, the contribution of R2 to activity 
was found to be unrelated to its size, hydrophobicity, and 
electronic properties. That group lowers activity by a 
factor of approximately 340, as reflected by the coefficient 
of J2 in the above equation. I3-I6 reflect a variety of 
chemical structural features related to size, flexibility, and 
reactivity of R3 and R4. 

In order to avoid the possible complications of dealing 
with two separate enzyme surfaces, the datasets with 132 
and 113 data points corresponding to DHFR from two 
different sources (Figure 5) were compared separately. The 
topology of the corresponding neural network with 4 hid­
den units is shown in Figure 6. As pointed out in the 
Methods indicator variables were not used in the NN 
models. The results of the NN, MLR, and MLRI models 
shown in Table III indicate that, for both datasets, the 
neural network models have higher R and R2, lower aE, and 
fewer outliers. 

Biological 
Activity 

3 4 "3,4 

Figure 6. Topology of the neural network used in training 
different subsets of Table I. 

Table III. Comparison of Neural Networks and Multiple Linear 
Regression with and without Indicator Variables for Fitting 
Biological Activity Surfaces 

method" 
NN 
MLR 
MLRI 

NN 
MLR 
MLRI 
NN 
MLR 
MLRI 
NN 
MLR 
MLRI 

no. of 
data 

points 
256 
256 
256 

245 
245 
245 
132 
132 
132 
113 
113 
113 

data 
set* 
A 
A 
A 

B 
B 
B 
C 
C 
C 
D 
D 
D 

R 
0.922 
0.703 
0.879 

0.891 
0.494 
0.809 

0.903 
0.622 
0.877 
0.892 
0.517 
0.673 

R2 

0.850 
0.494 
0.773 

0.794 
0.244 
0.656 
0.815 
0.387 
0.769 

0.796 
0.268 
0.452 

"E 

0.374 
0.686 
0.460 

0.339 
0.651 
0.439 
0.385 
0.701 
0.431 
0.236 
0.447 
0.387 

no. of 
outliers0 

12 
61 
20 

10 
41 
15 
4 

23 
11 
1 
5 
5 

0NN = neural networks, MLR = multiple linear regression, 
without indicator variables; MLRI = multiple linear regression 
with indicator variables. 6A all data points in Table I: B subset of 
Table I with I2 = 0, designating R2(I) = H; C subset of Table I 
with I2 = 0 and I1 = 1 (DHFR from Walker 256 leukemia tumors); 
D subset of Table I with I2 = 0 and I1 = 0 (DHFR from L1210 
leukemia tumors). 'An outlier is a data point for which the abso­
lute value of the prediction error is greater than 0.8. 

The two dataset were combined, and the resulting da­
taset of 245 compounds as well as the entire dataset of 256 
compounds were analyzed using NN, MLR, and MLRI. 
In this case, however, it was felt that , due to possible 
difference of the active sites or differences in the assay 
procedure, the indicator variable Ix that flags the two en-
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Table IV. Comparison of Neural Networks and Multiple Linear Regression with and without Indicator Variables for Predicting 
Biological Activity 

no. of data 
points" training set test set 

method6 

NN 
MLR 
MLRI 

NN 
MLR 
MLRI 

NN 
MLR 
MLRI 

training 
set 

100 
100 
100 

66 
66 
66 

57 
57 
57 

test 
set 
32 
32 
32 

66 
66 
66 

56 
56 
56 

R 

0.913 
0.616 
0.837 

0.919 
0.627 
0.862 

0.962 
0.656 
0.766 

R2 

0.833 
0.380 
0.700 

0.844 
0.393 
0.744 

0.926 
0.426 
0.591 

ff£ 

0.358 
0.690 
0.480 

0.397 
0.780 
0.507 

0.147 
0.413 
0.349 

no. of 
outliers0 

6 
18 
9 

3 
15 
6 

0 
3 
1 

R 
0.897 
0.558 
0.902 

0.820 
0.527 
0.740 

0.721 
0.373 
0.523 

R2 

0.804 
0.312 
0.814 

0.672 
0.277 
0.547 

0.511 
0.139 
0.273 

"E 

0.372 
0.707 
0.369 

0.431 
0.671 
0.490 

0.341 
0.461 
0.430 

no. of 
outliers1 

2 
7 
2 

5 
13 
6 

1 
2 
2 

"Training and test sets were selected using cluster analysis. The 110/32 and 66/66 training/test combinations were subsets of the 132 
data points that were tested on the enzyme from Walker 256 carcinoma (Table I, J1 = 1,I2 = 0). The 57/76 training/test combinations were 
subsets of the 113 data points that were tested on the enzyme from L1210 (Table I, Z1 = 0,12 = 0). 6NN = neural networks, MLR = multiple 
linear regression, without indicator variables; MLRI = multiple linear regression with indicator variables. c An outlier is a data point for 
which the absolute value of the prediction error is greater than 0.8 

zymes should be retained. The network topology used was 
similar to that of Figure 6 with 5 hidden units and an 
additional input node corresponding to Z1. The results are 
shown in Table III. 

Predicting Biological Activity. As described in the 
Methods two tests were used to compare the predictions 
of NN, MLR, and MLRI. In the first, the dataset of 132 
compounds (Figure 5) was split into 100/32 and 66/66 
training/ test set combinations, and the dataset of 113 
compounds was split into a 57/56 combination using 
cluster analysis. NN, MLR, and MLRI models were de­
veloped on the training set and used to predict the test 
set. Table IV compares the statistics for the three train­
ing/test set combinations. This table shows that NN 
models have enhanced predictive capabilities relative to 
MLR and MLRI in addition to its enhanced surface fits. 

The second test utilized the cross-validation procedure 
described in the Methods. The cross-validated r2 calcu­
lated for NN, MLR, and MLRI are 0.787,0.30, and 0.640, 
respectively. These are consistent with the results of the 
cluster analysis tests. 

Comparison of Neural Network and Regression 
Generated Biological Activity Surfaces. Equations 14 
and 15 are the best fit MLR and MLRI equations for the 
training set of 100 data points (Figure 5). 
A = 

6.764 + 0.922Ir3 " 0.135x3
2 - 0.108MR3 + 0.091MR4 

(0.155) (0.041) (0.065) (0.035) 

N - 100, S = 0.705, R2 = 0.380 (14) 

A = 7.163 + 0.932*3 - 0.167Tr3
2 - 0.182MR3 - 1.791J3 + 

(0.112) (0.031) (0.037) (0.213) 
0.642J4 + 0.747/6 + 0.556Z6 
(0.188) (0.232) (0.198) 

N = 100, S - 0.498, R2 = 0.700 (15) 

These regression results suggest that activity depends 
parabolically on ir3 and linearly on MR3 but is otherwise 
independent of ir4, MR4, and S<T34. Furthermore, a sig­
nificant part of the variance is explained by the indicator 
variables I3, Z4, J8, and I6, which select for specific R3's and 
R4's. In eq 15, the curvature of the T3 parabola (-0.334) 
and the location of its maximum (ir3 = 2.79) as well as the 
slope of MR3 are independent of the values of the other 
variables. 

While it would be highly desirable to depict the results 
of the NN models with equations similar to 14 and 15 or 
with "drawings of the multidimensional response surfaces", 

this is not presently possible. An appreciation of the de­
pendence of activity on properties in the NN model, 
however, is achievable by calculating the network output 
as a function of one independent variable while all the 
others are held constant. The results of such calculations 
are shown in Figure 7a-e. 

Figure 7a depicts the dependence of activity on x3 as the 
remaining independent variables (ir4, MR3, MR3, MR4, 
SJ 3 4 ) are held constant at 30, 60, and 90% of their cor­
responding ranges in the dataset. This graph shows that, 
if the constant variables are held at 30% of their ranges, 
activity is a concave downward function of x3 with a 
maximum at ir3 ~ 1.5. This resembles the parabolic de­
pendence of activity on 7T3 in eqs 14 and 15, although the 
location of the maximum is different and the form of the 
curve in Figure 7a is not formally parabolic but appears 
to be of higher order. However, unlike the regression 
models, Figure 7a shows that, if the constant variables are 
held at 60 and 90% of their ranges, the curve shifts to the 
right and elicits no maximum for -2 < ir3 < 5.5. Such shifts 
in functional dependence on one independent variable with 
values of the others is clear evidence of the ability of the 
network to elucidate couplings and interactions between 
the physicochemical properties. Such capability is not 
enjoyed by regression methods. 

Figure 7c shows that activity is a nonlinearly decreasing 
function of MR3. This is similar to the negative slope of 
MR3 in eqs 14 and 15. However, unlike the regression 
results, the slopes of the curves in Figure 7c are sensitive 
to the value of all five independent variables. This is 
further evidence of the networks ability to elucidate in-
tervariable couplings. 

Furthermore, parts b, d, and e of Figure 7 show that 
activity has a strong functional dependence on ir4, MR4, 
and S(T34, which exhibit the same intervariable couplings 
as those described above. This is to be contrasted with 
the regression model which elicits no functional depen­
dence on these three variables. 

Discussion 
The development of the field of quantitative struc­

ture-activity relationship is rooted in the knowledge that 
activity of chemical compounds is determined by their 
physical properties.16 The commonly used functional form 
of eq 1 was inspired by prior observations that activity 

(16) Hansen, C; Muir, R. M.; Fujita, T.; Maloney, P. P.; Geiger, F.; 
Streich, M. J. Am. Chem. Soc. 1963, 85, 2817. 
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Figure 7. Neural network calculated activities as a function of ir3 (7a), 7r4 (7b), MR3 (7c), MR4 (7d), and 2<r3]4 (7e). In each graph 
activity is calculated as a function of one variable while the remaining four are held constant at 30% (•), 60% (A), and 90% (•) of 
their corresponding ranges in the dataset. 

increases, reaches a maximum, then decreases as oil/water 
partition coefficient increases. A parabolic function was 
chosen to model this process. Later, this was shown to be 
consistent with passive permeation in biological tissue,17 

thereby giving a mechanistic foundation for correlating in 
vivo, but not necessarily in vitro, activities with eq 1. 
Familiarity with the parabolic form led to its successful 
utilization in modeling other physicochemical properties. 

It is useful to temporarily digress and regard biological 
activity as a general mathematical function of physical 
properties, without preconceptions. Activity is measurable 
for any chemical compound. It is thus a bounded function. 
Although in principle it is conceivable that this function 
is discontinuous, no evidence exists to support this notion. 
Therefore, it is reasonable to expect that this function is 
analytic, having a Taylor series expressed by 

fix, y,...) = 

n.-On.-O 

dni+ny+-f 

\dxn'dy"y ... 

xntyn 

li,y,...-0 
[n, + nv + 

(16) 

(17) 

or, more explicitly 
f(x, y, ...) = a0 + O1X + a?y + a3x

2 + a^y2 +abxy + 
a6x

3 + a7y
s + asx

2y + a^xy2 + ... 

where / is biological activity and x and y are physical 
properties. Equation 1 is in fact a special case of eqs 16 
and 17 in which the infinite sum is truncated at nx = ny 
= 2 and all cross-product terms are eliminated. 

There have been many unpublished attempts enhance 
the capabilities of eq 1 by embellishing it with higher order 
and cross-product terms.18 However, the staggering div-

(17) Penniston, J. T.; Beckett, L.; Bentley, D. L.; Hansch, C. MoI. 
Pharmacol. 1969, 5, 333. 

(18) Hansch, C. Personal communication. 

ersity of such terms can discourage the most stalwart. To 
the best of our knowledge, such terms are not used in 
practice. In the course of the current work, regression 
models including all second-order cross-products were 
attempted, resulting in insignificant improvements. Al­
though the process of training a neural network does not 
explicitly invoke such higher order and cross-product 
terms, the results presented in the previous section clearly 
indicate that the networks are indirectly elucidating effects 
of such terms. 

Historically, the transition from linear to nonlinear 
processing with neural networks occurred with the intro­
duction of the hidden layer. Models calculated with the 
older perceptrons, or neural networks consisting solely of 
input and output layers, are equivalent to multiple linear 
regression models. Close inspection of eqs 2, 3, and 4 
indicates that the output of each hidden unit is a nonlinear 
transformation of a specific linear combination of scaled 
independent variables. Furthermore, the network's output 
is a nonlinear transformation of a linear combination of 
the hidden units' output. Thus each hidden unit is a new 
variable that is a function of the original independent 
variables. Moreover, the output is a function of the var­
iables in the "basis set" consisting of the totality of hidden 
units. Analysis of these equations indicates that the 
nonlinearity, specifically the number and severity of the 
"bends, bumps, and dips", in the resulting surfaces is re­
lated to the number of hidden units determined by min­
imizing the test-set variance (Figure 4). With too few 
hidden units, the network would be unable to extract all 
the relevant nonlinear features. Too many hidden units 
cause overfitting and "memorizing" individual data points 
rather than generalizing over the data set. 

Notwithstanding nonlinear processing capabilities and 
enhanced predictions, the goal of the QSAR program is 
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Table V. Outliers in the Training Set of 100 Compounds (Figure 5: lOOtr) Tested on DHFR from Walker 256 Carcinoma 

.R< 

NH. >A 

no.6 

I 15 
17 
206 
223 

II 9 
11 
51 
14 
25 
28 
182 
194 
209 
250 

III 233 
20 

IV 35 
24 
31 

R 
4-CH=CHCONHC6H4-4'-S02F 
4-CH(Ph)CH2CONHC6H4-4'-S02F 
4-CH2C6H6 
4-(CH2)4OC6H4-4'-S02F 

4-CONHC6H4-4'-S02F 
4-C6H6 
3-C6H6 
4-CN 
4-CH2CH(CH2CH2Ph)CONHC6H4-4'-S02F 
4-OCH2CONMe2 
3-Cl-4-0(CH2)2NHCONHC6H4-4'-S02F 
4-OCH2CONHC8H4-3'-S02F 
4-CH2CONHC6H4-3'-S02F 
3,4-Cl2 

3-(CH2)2C6H4-4'-NHCOCH2Br 
3-CONHC6H4-4'-S02F 
4-CH(CH2NHCOCH2Br)(CH2)3C6H6 

4-OCH2CON(Me)C6H6 
3-CH(CH2NHCOCH2Br)(CH2)3C6H6 

obsd 
log 
1/C 
5.19 
5.74 
8.05 
8.14 

4.68 
4.70 
6.85 
5.14 
6.20 
6.26 
7.92 
8.00 
8.06 
8.54 

8.26 
5.96 
6.52 
6.17 
6.37 

residuals" 
MLRC 

-2.04 
-1.70 

1.02 
0.90 

-2.46 
-2.28 
-0.94 
-1.67 
-1.33 
-0.73 
0.94 
0.80 
0.88 
1.19 

0.68 
-1.42 
-0.87 
-1.00 
-1.20 

MLRI" 
-0.16 
0.39 
0.16 
0.25 

-0.67 
-0.65 
0.75 

-2.00 
-0.94 
-0.88 
0.78 
0.86 
0.92 
0.89 

0.10 
0.35 

-0.62 
-0.97 
-0.83 

NN 
-0.10 
0.26 
0.28 

-0.03 

-0.21 
-0.14 
-0.48 
-0.06 
-0.41 
-0.37 
0.28 
0.25 
0.34 
0.06 
0.87 

-1.23 
-0.90 
-0.95 
-1.03 

» 3 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
1.96 
0.00 
0.00 
0.00 
0.71 
0.00 
0.00 
0.71 
2.29 
1.50 
0.00 
0.00 
2.94 

*4 

1.99 
3.53 
2.01 
4.62 

1.50 
1.96 
0.00 

-0.57 
4.23 

-1.36 
2.22 
1.61 
1.31 
0.71 
0.00 
0.00 
2.94 
0.12 
0.00» 

MR3 

0.10 
0.10 
0.10 
0.10 

0.10 
0.10 
2.51 
0.10 
0.10 
0.10 
0.49 
0.10 
0.10 
0.49 
5.55 
4.33 
0.10 
0.10 
6.94 

MR4 

5.22 
7.59 
3.00 
5.37 

4.23 
2.54 
0.10 
0.63 
8.52 
2.58 
5.77 
4.91 
4.69 
0.60 
0.10 
0.10 
7.03 
4.55 
0.10 

2,3,4 

-O.01 
-0.09 
-O.09 
-0.17 

0.36 
-O.01 
0.06 
0.66 

-0.17 
-0.27 
0.10 

-0.27 
-0.17 
0.60 

-O.07 
0.35 

-0.17 
-0.27 
-0.07 

/ 3 

1 
1 
0 
0 

1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

/ 4 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

/ 5 

0 
0 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

^6 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

"Residual = obsd (log 1/C) - calc (log 1/C). 
•* Activity calculated using eq 15. 

'Numbers in this column represent the entry in Table I. "Activity calculated using eq 14. 

efficient and facile biological activity optimization based 
on a mathematical model that relates it to physicochemical 
properties. In practice, such models are utilized in two 
ways. Most commonly, biological activities of entries in 
a functional group database are calculated with the model. 
Those predicted to have optimal activities are identified 
and pursued. Less frequently, however, novel functional 
groups or molecular structures that incorporate optimal 
physicochemical features are designed, synthesized, and 
tested. The practical usefulness of any QSAR method 
depends on the ease of accurately calculating activity from 
properties as well as providing a clear understanding of 
the quantitative and qualitative relationship between 
properties and activity. 

In regression-based methods, the relationship between 
activity and properties is expressed by linear equations 
such as 15. With neural nets on the other hand, activity 
is expressed in terms of the nonlinear functions of eqs 2-4. 
Calculating activities of a functional group database using 
either method is straightforward. 

De Novo design of functional groups is possible with the 
aid of regression-based models. The physicochemical 
variables in regression equations provide insights into the 
forces that control biological activity. Thus ir3 and MR3 
terms in eq 15 suggest that the binding site of the 3 sub-
stituent is hydrophobic and size limited. Indicator vari­
ables on the other hand reflect the effect of certain 
structural features on the magnitude of activity. Quite 
frequently they are responsible for explaining a major part 
of the variance. However, they provide little, if any, insight 
into the forces controlling activity. For example, it is not 
clear why the features flagged by J3 in eq 15 decrease 
activity whereas those flagged by I4,16, and /6 enhance it. 
That notwithstanding, the optimal physicochemical and 
structural features indicated by regression equations such 
as 15 can be readily incorporated into novel functional 
groups. 

By contrast, the closed analytic forms of eqs 2-4 do not 
give vivid insights into the relationships between activity 
and physical properties. Regression-like equations that 
describe NN surfaces, although desirable, are not currently 
avaialble. Some understanding of the relationship between 
biological activity and physical properties may be gleaned 
from Figure 7 which shows "cuts" in the corresponding 
surface. Each curve depicts the variation of activity with 
one property while the others are held constant, and the 
shape variation among the three curve in each part of 
Figure 7a-e manifests the strong intervariable coupling. 
Such figures describe the local, but not global, structure-
activity relationships, somewhat limiting the model-based 
design of novel functional groups or chemical structures. 
Efforts to alleviate this limitation are currently underway. 

In addition to enhanced predictions, the Results showed 
that, for the current dataset, NN models circumvent in­
dicator variables. The latter are used to augment size, 
hydrophobicity, and electronic parameters in regression 
models. Typically, initially one attempts to correlate ac­
tivity with the usual physicochemical properties. Data 
points are individually inspected to identify structural 
features common to outliers, which are then flagged with 
indicators variables and regression reattempted. This 
requires several modeling iterations and considerable time 
particularly with large datasets. By contrast, outliers are 
not separately handled in NN models. The procedure 
outlined in the Methods is followed using size, hydro­
phobicity, and electronic properties but not indicator 
variables as inputs. The network with the number of 
hidden units that minimizes the variance of a test set is 
the optimal model. Such models account for many MLRI 
and most MLR outliers. 

The difference between NN and regression models' 
handling of outliers is related to the shapes of the corre­
sponding surfaces. In regression models, the best surface 
over the space of physicochemical properties is first de-
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termined and has one of the shapes in Figure 1. Data 
points too far above or below it are designated outliers. An 
indicator variable creates a new surface above or below the 
former but parallel to it, tha t passes through correspond­
ingly displaced outliers. NN surfaces corresponding to few 
hidden units and large test-set variance are akin to, al­
though not identical with, regression surfaces over phys-
icochemical properties, and outliers persist. Increasing the 
number of hidden units introduces localized deformations: 
elevations and depressions, tha t pass through outliers. 
Close inspection of the resulting models reveals that if NN 
surfaces could be expressed as polynomials, such defor­
mations would correspond to high-order nonlinear and 
cross-product terms. Elucidating the NN based physico-
chemical effects that correspond to indicator variables such 
as I3-I6 in eqs 13 and 15 is highly desirable but unfortu­
nately not possible at present. 

Following the suggestion of one of the reviewers, Table 
V, which lists the outliers of the 100 data point training 
set in the different models, was constructed. All points 
in that table are MLR outliers. They are grouped into four 
groups: points that are well predicted by MLRI and NN 
models (I) and outliers in one (II, III) or both methods (IV). 
The structures of outliers in the different methods do not 
have obvious trends. 

Introduction of hidden units is tantamount to fixing the 
number of bonds whose weights are the adjustable pa­
rameters of the model. In a fully connected network, each 
hidden unit with the exception of the bias unit is linked 
to all input and output units. The number of bonds in a 
neural network is calculated by 

P= (I+I)H + (H+ I)O 

where P, I, H, and O are the numbers of adjustable pa­
rameters, input, hidden, and output units, respectively. As 
in any modeling method tha t relies on adjustable param­
eters, the ratio 

no. of datapoints 

is critical. In regression models, it is desirable to have at 
least five data points for each adjustable parameter or 
coefficient in the regression equation. No corresponding 
rule of thumb exists for NN models except that p must be 
>1 . In the examples of this paper, the optimal NN models 
have 1.8 < p < 2.2. Models with p > 2.2 were unable to 
extract all the relevant features and gave poor predictions. 
Ones in which p approached 1 overfitted the training set 
and were unable to accurately predict the test set. In other 
unpublished work in which the surfaces are nearly linear, 
optimal predictions are obtained with models having p > 
5. 

To summarize, the key strengths of neural network 
relative to regression models for the dataset in hand are 
enhanced prediction accuracy and accounting for most 
outliers without indicator variables. On the other hand, 
these models could benefit from developments that im­
prove the understanding of global structure-activity re­
lationships. The longer computational times required for 
developing neural network relative to regression models 
is somewhat inconveniencing but not limiting. 

Our experience with neural modeling of datasets from 
diverse backgrounds and origins including in vitro enzyme 
inhibitory activity, whole organism in vivo biological ac­
tivities, as well as in environmental models not related to 
biological activity optimization indicates that , if the sur­
faces are linear or nearly so, the predictions of regression 
and neural models are close. Such linear models are fre­

quently obtained, as may be expected, when the range of 
variation of independent variables is narrow. Although 
outliers in general are well accounted for with neural 
models, occasionally, albeit infrequently, they persist even 
in cases where the experimental data is of demonstrably 
high quality. 
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