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Back propagation neural networks is a new technology useful for modeling nonlinear functions of several variables.
This paper explores their applications in the field of quantitative structure—activity relationships. In particular,
their ability to fit biological activity surfaces, predict activity, and determine the “functional forms” of its dependence
on physical properties is compared to well-established methods in the field. A dataset of 256 5-phenyl-3,4-di-
amino-86,6-dimethyldihydrotriazines that inhibit dihydrofolate reductase enzyme is used as a basis for comparison.
It is found that neural networks lead to enhanced surface fits and predictions relative to standard regression methods.
Moreover, they circumvent the need for ad hoc indicator variables, which account for a significant part of the variance
in linear regression models. Additionally, they lead to the elucidation of nonlinear and “cross-products” effects that
correspond to trade-offs between physical properties in their effect on biological activity. This is the first demonstration
of the latter two findings. On the other hand, due to the complexity of the resulting models, an understanding of
the local, but not the global, structure—activity relationships is possible. The latter must await further developments.
Furthermore, the longer computational time required to train the networks is somewhat inconveniencing, although

not restrictive.

Introductions

The field of quantitative structure—activity relationships
(QSAR) was introduced in the early 1960s with the pio-
neering work of Hansch and his co-workers.»?2 In a se-
quence of publications, these investigators convincingly
demonstrated that biological activity of chemical com-
pounds is a mathematical function of their physicochemical
characteristics such as hydrophobicity, size, and electronic
properties. Their methods have been widely adopted in
the pharmaceutical and agrochemical industries.

The embodiment of these ideas into a concrete model
is effected by fitting biological activity to linear or parabolic
functions of physicochemical properties (X, Y, ...) of the
form

A=Co+CX+CX2+CY+CY2+... (1)

Multiple linear regression is used to determine the values
of Cy, Cy, ..., which minimiize the variance between the data
and the model. In these equations, third and higher order
terms as well as cross-products terms corresponding to
interactions between physicochemical properties are not
used in practice. The most commonly used physicochem-
ical properties are linear free energy (LFE) based param-
eters like Hammett’s o, Taft’s Es, and Hansch’s = hy-
drophobicity parameter, derived from in vitro reaction
systems.

Functions of several variables represent surfaces or hy-
persurfaces over the space of independent variables. In
practice, the parabolas of eq 1 have negative curvatures,
i.e., they are convex upward. For the special case in which
activity depends on only two physicochemical properties,
eq 1 corresponds to one of three possible surface shapes:
plane, parabolically curved plane (“barnroof™), or para-
boloid of revolution (“eggshell”), depending on the terms
that survive the statistical fitting procedure (Figure 1).
These three shapes correspond to equations in which the
function is linear in both variables, linear in one variable
and parabolic in the other, or parabolic in both variables,
respectively.

While eq 1 has an attractively simple form, its flexibility
is somewhat limited. The only adjustable degrees of
freedom are the statistically calculated coefficients which
determine the heights of the surfaces, tilts of the planes,
curvatures of the parabolas, and location of their maxima.
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The lack of third and higher order terms restricts the
surface from further undulations. Furthermore, the ab-
sence of cross-product terms dictates that dependence of
activity on a particular physicochemical property is in-
variant to the values of other properties. For example, if
activity depends parabolically on hydrophobicity, the
curvature of the parabola and the location of its maximum
is invariant to the values of steric and/or electronic terms
in the correlation equation. The consequence of this lim-
ited flexibility is the emergence of outliers whose biological
activities cannot be adequately accounted for solely on the
basis of their physicochemical properties. The occurrence
of outliers is commonplace, especially in datasets having
more than 50-70 data points. While such “stiff” surfaces
may, in theory, be made more “pliable” by including higher
order and cross-product terms in eq 1, the staggering
diversity of such terms render them unfeasible in practice.

In order to alleviate this weakness, Hansch and his co-
workers introduced indicator variables®* and used them
as adjuncts to the usual LFE parameters. Typically, such
variables flag specific chemical structural features by as-
signing them a value of 1 for molecules having the feature
and 0 otherwise. Geometrically, they represent two parallel
surfaces corresponding to the values 0 and 1, which are
separated by a “vertical” distance equal to the coefficient
of the indicator variable in the regression equation.
Usually, several indicator variables are required for a
particular modeling exercise. Significantly enough, in
many cases they account for a major part of the variance.3*
Since indicator variables are specifically designed to deal
with outliers in a particular dataset, they are not useable
for modeling other datasets. Furthermore, they are de-
veloped by several iterative cycles of modeling, identifi-
cation of outliers and determination of their commonali-
ties, assigning indicator variables, followed by remodeling.
The laboriousness of this process increases with the size
of the dataset. A modeling method that avoids indicator
variables is therefore desirable.

Neural networks is a newly emerging field of information
processing technology that has captured the interest of
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Figure 2. Complex polynomial surfaces that are able to be fit with neural networks.

scientists from diverse fields.5® It evolved from attempts
to understand and emulate the brain's information pro-
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cessing capability. The brain consists of multimodule
neural networks that extract and recombine relevant in-
formation received from their environments and are ca-
pable of making decisions that satisfy the needs of the

(9) Rumelhart, D. E,; Hinton, G. E.; Williams, R. J. Parallel Dis-
tributed Processing, Volume 1, Foundations; Rumelhart, D.
E., McClelland, J. L., Eds.; MIT Press: Cambridge, 1986.
Widrow, B. Generalization and Information Storage In Net-
works of ADELINE Neurons: Self Organizing Systems; Yo-
vitt, M., Ed.; Spartan Books: New York, 1962.



2826 Journal of Medicinal Chemistry, 1991, Vol. 34, No. 9

Output layer

Hidden layer

Input layer

Figure 3. Three layer back propagation neural network topology.

organism. Such capabilities are featured by higher or-
ganisms as well as ones with only few neurons. The latter
have been demonstrated to have robust and invariant
feature extraction capabilities. These biological neural
systems can be emulated with artificial neural networks,
which can be “taught” complex nonlinear input-output
transformations. They represent a unified and general
purpose method for solving pattern recognition and
functional mapping problems, providing satisfactory so-
lutions in cases where there are no viable alternatives. In
our experience, they have proved valuable for modeling
complex polynomial surfaces such as those exemplified in
Figure 2. Their nonlinear feature extraction capability
suggests their potential usefulness in QSAR problems.

While there are several neural network topologies and
a variety of training methods,5® this report utilizes a back
propagation network (BPN) trained by the algorithm of
Owens and Filkin,!° using a stiff differential equations
solver.

The objective of this paper is to compare the perform-
ance of neural networks with regression methods with
regard to their ability to fit biological activity surfaces,
predict activity, and explore the nonlinear aspects of the
dependence of activity on properties. A dataset of 256
diaminodihydrotriazines (I) that inhibit dihydrofolate
reductase enzyme provides a basis for this comparison.
This dataset has been extensively analyzed by QSAR ex-
perts using regression methods with and without indicator
variables.®

Methods

Neural Networks. An artificial neural network (ANN)
consists of layers of brainlike neurons with feedforward
and feedback interconnections. During the past few years
several ANN paradigms, such as Hopfield’s*® and the su-
pervised back propagation network® (BPN), have been
developed. Topologically, the latter consists of an input,
hidden, and output layers of neurons or nodes connected
by bonds as shown in Figure 3. Each input layer node
corresponds to a single independent variable with the
exception of the bias node. Similarly, each output layer
node corresponds to a different dependent variable.

Associated with each node is an internal state designated
by s;, S,, and o,, for the input, hidden, output layers, re-
spectively. Each of the input and hidden layer has an
additional unit, termed a bias unit, whose internal state
is assigned a value of 1. The input layer’s s; values are

(10) Owens, A. J,; Filkin, D. L. Joint IEEE/INNS International
Joint Conference of Neural Networks, Washington, D.C., June
11, 1989, p 381.

(11) Sokal, R. R.; Michener, C. D. A Statistical Method for Eval-
uating Systematic Relationships, University of Kansas Sci-
ence Bulletin, 38, 1409.

(12) SAS Institute Inc. SAS User’'s Guide: Statistics, Version 5
Edition; SAS Institute Inc.: Cary, NC, 1985; Chapter 5.

(13) Wonnacott, T. H.; Wonnacott, R. J Introductory Statistics,
2nd ed.; Wiley: New York, 1972,

(14) Cramer, R. D. III; Patterson, D. E.; Bunce, J. D. J. Am. Chem.
Soc. 1988, 110, 5959.
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related to the corresponding independent variables by the
scaling equation
Vi - Vi min
s; = 08—+ +0.1 2)
Vi.max - Vi.min
where V, is the value of the ith independent variable, V, i,
and V., are its minimum and maximum values, re-
spectively. The state S, of each hidden unit is calculated
by the squashing function
1

Shlen) = T+ om

on = Lwys; + 0, (3b)

(3a)

where w,; is the weight of the bond that connects hidden
unit h with input unit ; and 6, is the weight of the bond
connecting hidden unit % to the input layer bias unit. The
state o,, of output unit m is calculated by

1
1+e#n
Ym = Z‘/thsh + Gm (4b)
h

Omlen) = (4a)

where W, is the weight of the bond that connects output
unit m to hidden unit » and 6, is the weight of the bond
that connects output unit m to the hidden layer bias unit.
The network calculated 0,,’s have values in the range [0,
1].
Training of the neural network of Figure 3 is achieved
by minimizing an error function E with respect to the bond
weights {wy;, W,

E = B, = KL @y - 0,0 (5)

where E,, is the error of the pth training pattern, defined
as the set of independent and dependent variables corre-
sponding to the pth data point, or chemical compound; a,,,,
corresponds to the experimentally measured value (4,,,)
of the mth dependent variable, in this case biological ac-
tivity, of the pth pattern, scaled by
Apm - Am,min
ay, =08——F7—+ 0.1 6
i Am,max - Am.min ( )
Apmin and A, 1., are the minimum and maximum values
of A, over the dataset.
E depends on the bond weights {w,;, W,| through o,,,.
It is minimized by following its gradient with respect to
the weights, given by

oE ok,
a‘/th - § anh (7a)
oE
S e (Th)

dwyp, P Owy
whereby, using the chain rule,
JE, 8E, do,n,

T oW - —60pm IW,p = (Gpm = Opm)Opm(l = 0pm)Sph
(8a)

3E, 9E, 80,m

Owy,; B m 00pn OWp; B
2 (@pm ~ 0pm)0pm(l = 0pm) WipSpa(1 = Spp)sp; (8b)

In the latter two equations, the p index in S, and S, refer
to the pth training pattern. The derivative with respect
to 8, and 6,, are similarly calculated.
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Figure 4. Standard deviation of training (A) and test (@) sets
as a function of the number of hidden units.

The most common procedure for minimizing E utilizes
the delta rule,® whereby bond weights are iteratively
changed from their initially assigned small random values
by

dE
Wmhn+l = Wmh" - nanh (9a)
1))
wh™t = wy - ", (9b)

The n and n + 1 superscripts designate consecutive iter-
ations in the minimization sequence, and 7 is the learning
rate with values typically much less than 1. Similar
equations are used for the evolution of 6 and 6,

In the current work, the minimization of the error
function E was done by the algorithm of Owens and Fil-
kin!® in which eqs 9a and 9D are replaced by

dWo oE
a oW, (102)
dwy; oE
—d_t_ B _3w,u- (10&)

where ¢ corresponds to sequential training iterations. The
set of coupled stiff differential eqs 10 are then solved by
the algorithm of Gear.!®

Determining the Number of Hidden Units. The
number of hidden units determines the number of ad-
justable parameters of the neural network model. Few
hidden units may be insufficient to extract all the pertinent
features of the data, while too many units causes the
network to “memorize” the dataset. The optimal number
is that which minimizes the variance of a test set, not used
in training the network. This is illustrated in Figure 4 in
which the variance of the 100 data point training set and
the corresponding 32 data point test set (Figure 5) are
graphed as a function of the number of hidden units. This
figure reflects a typical result whereby the training-set
variance is a decreasing function of the number of hidden
units while the test-set variance is an upward concave
function with a minimum. Increasing the number of
hidden units from 1 to 3 or 4 significantly reduces the
test-set variance, which eventually minimizes at 8 hidden
units. It should be noted however, that the reduction in
the test-set variance between 3 and 8 hidden units is small
and may or may not be significant.

Data Set. The dataset used for comparing neural
networks (NN), multiple linear regression without indi-
cator variables (MLR), and multiple linear regression with

(15) Gear, C. W. Numerical Initial Value Problems in Ordinary
Differential Equation; Prentice Hall: Englewood Cliffs, NJ,
1971.
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Figure 5. Subgroups of the dataset of Table I.

indicator variables (MLRI) consists of physicochemical
properties and dihydrofolate reductase (DHFR) inhibitory
activities of 256 2,4-diamino-6,6-dimethyl-5-phenyldi-
hydrotriazines (I) that are variously mono- and disubsti-
tuted in the ortho, meta, and para positions of the phenyl
ring (Table I). Of these, 11 had a non-hydrogen R, (Figure

R,
R, R,

5). The other 245 compounds are in two categories: 132
were tested on DHFR enzymes from Walker 256 leukemia
tumors (Table I, I; = 1) and 113 were tested on DHFR
from L1210 leukemia tumors (Table I, I; = 0).

This dataset has been exhaustively analyzed by Hansch
and Silipo using MLR.? Their best fit equation shows that
DHFR inhibitory activity is a function of =3, MR, and a
set of six indicators variables, I,—I;. The first two variables
correspond to the hydrophobicity of Ry and size of R,,
respectively, I, has a value of 1 for compounds tested on
DHFR from Walker 256 leukemia tumor and 0 for the
enzyme from L1210 leukemia tumors. I, = 1 for com-
pounds with a non-hydrogen substituent at R, and 0
otherwise. Iy = 1 for compounds in which R, or R, = Ph,
CHPh, CONHPh, or C=CHCONHPh. I, = 1 for ana-
logues with the group C¢H,SO,0C¢H X and 0 otherwise.
I, takes a value of 1 for Ry or R, = CH,Ph, CH,CH,Ph,
(CH,),Ph, (CH,)¢Ph, and (CH,),0-Ph between an N-
phenyl moiety and a second phenyl ring but is 0 otherwise.
I, takes a value of 1 for bridges of the type
CH,NHCONHCH X, CH,CH,C(=0)N(R)C¢HX, and
CH,CH,CH,C(=0)N(R)C¢H,X (R = H or Me).

On the other hand, the NN models were exclusively
based on my, M3, My, MRz, MRs, MR4, and 20’3,4, corre-
sponding to the 7 values of the 2, 3, and 4, substituents,
their MR values, and the sum of ¢ values of the 3 and 4
substituents. Indicator variables were not used in the NN
models.

Statistical Analyses. Program FIT MULTIPLE in
RS1, BBN Software Products Corporation, MA, was used
to perform MLR and MLRI. The best fit equations were
selected on the basis of lowest standard deviation and
highest correlation coefficients. Cluster analysis was
performed using the average linkage method, due to Sokal
and Michener,!! of procedure cluster, in the SAS suite of
statistical programs.12
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Table I. Structure, Experimentally Determined DHFR Inhibitory Activity, and Physicochemical Properties of
Diaminodihydrotriazines I°

log

R 1/C Ty g L MRz MR3 MR‘ 20’3_‘ 11 12 13 14 15 16

1 2,5-Cl 343 071 000 000 060 010 010 037 1 1 0 0 O O
2 2-OCH; 368 -0.02 000 000 079 010 010 000 1 1 O O 0 O
3 24-Cl 382 071 000 071 060 010 060 023 1 1 0 0 O O
4 2-CH, 400 056 000 000 057 010 o010 000 1 1 0 O O O
5 2-Cl 415 071 000 000 060 010 010 000 1 1 0 O O O
6 2-Br 425 08 000 000 08 010 010 000 1 1 0 O O O
7 24,5-Cly 438 071 000 071 060 010 060 060 1 1 O 0O O O
8 21 462 112 000 000 139 010 010 000 1 1 O O O O
9 4-CONHCgH,-4’-SO.F 468 000 000 150 010 010 423 03 1 0 1 0 0 O
10 4-CONHCgH,-3'-SO,F 468 000 000 150 010 010 423 036 1 0 1 0 0 O
11 4-C¢H; 470 000 000 196 010 010 254 -001 1 0 1 O O O
12 2-F 474 014 000 000 009 010 010 000 1 1 O 0O O O
13 3-OCH,CON(CH,CH,),0 485 000 -139 000 010 332 010 012 1 0 0 0 0 O
14 4-CN 514 000 000 -057 010 010 063 066 1 0 0 O O O
15 4-CH=CHCONHC¢H,-4"-SO,F 519 000 000 199 010 010 522 001 1 0 1 O O O
16 3-OCH,CONMe, 544 000 -136 000 010 241 010 012 1 0 0 0O O O
17  4-CH(Ph)CH,CONHC¢H,-4"-SO,F 574 000 000 353 010 010 759 009 1 0 1 0 O O
18 4-C1-3-(CH,),C¢H,-4'-SO,F 582 000 271 071 010 439 060 016 0 0 O 0 1 O
19 4-CH=CHCONHCgH,-3'-SO,F 589 000 000 199 010 010 522 -001 1 O 1 0 0 O
20 3-CONHCgH,-4-SO,F 596 000 150 000 010 433 010 03 1 0 1 0 0 O
21 3-NHCOCH,Br-4.-0(CH,);CsH; 611 000 -037 266 010 211 415 -027 1 0 O O O O
22 3-CH;NHCONE, 611 000 -029 000 010 35 010 -007 0 0 0 O 0 O
23 3-OCH, 617 000 -002 000 010 062 010 o012 1 0 O O 0 O
24 4-OCH,CON(Me)CgH; 617 000 000 012 010 010 455 -027 1 0 0 0 O O
25 4-CH,CH(CH,CH,Ph)CONHC¢H,-4'-SO,F 620 000 000 423 010 010 852 -017 1 0 0 0 O O
26 3-COCH,CI 621 000 -016 000 010 145 010 038 1 0 0 0 0 O
28 4-CH,CH(a-C,,H,)CONHC¢H-4"-SO,F 624 000 000 502 010 010 913 -017 0 0 0 O O O
28 4-OCH,CONMe, 626 000 000 -1.36 010 010 258 -027 1 0 O O O O
29 4-CH,CH-(Ph-2”-OCHyCONHC¢H,4-SO,F 633 000 000 351 010 010 827 017 0 0 0 O O O
30 3-Cl-4-OCH,C¢H,,CH,0C¢H,-4-SO,F 637 000 071 516 010 049 725 010 0 O O O O O
31 3-CH(CH,NHCOCH,Br)(CH,);CeHj 637 000 294 000 010 694 010 007 1 0 0 0 0 O
32 3-CH,NHCON(CH.CH,),0 643 000 -1.32 0.00 010 353 010 -007 0 0 O O O O
33 4-COCH,(CI 645 000 000 016 010 010 162 050 1 0 0 0 0 0
34 4-CH,CH(Ph-3”-OCH;)CONHC¢H-4-SO,F 646 0.00 000 351 010 010 827 -017 0 0 0 O O O
35 4-CH(CH,NHCOCH,Br)(CH,),CeH; 652 000 000 294 010 010 703 -017 1 0 0 0 0 0
36 2,3-Cl, 652 071 071 000 060 049 010 037 1 1 0 O O O
37 2-Cl-4-(CH,),C¢H; 654 071 000 366 060 010 439 017 1 1 0 0 1 O
38 3-Cl-4-O(CH,),0C¢H,-4’-S0;C¢H,-4"-C] 655 000 071 492 010 049 8% 010 0 0 O O 0 O
39 3-CH,NHCOCH;Br 6.58 000 -052 000 010 257 010 007 1 0 O O O O
40 3-CONHCgH,-3’-SO,F 660 000 150 000 010 433 010 03 1 0 1 0 0 O
41 4-CH,CONMe, 663 000 000 -1.70 010 010 237 -017 1 0 0 0 O O
42 4-OCH,CON(CH,), 666 000 000 072 010 010 331 027 1 0 0 O O O
43 3.0CH;CON(Me)CgH, 668 000 012 000 010 446 010 o012 1 0 0 O 0 O
44 4-OCH,CONEt, 672 000 000 -036 010 010 351 -027 1 0 O O O O
45 3-CH,CH(CH,;NHCOCH,Br)CgH; 672 000 194 000 010 601 010 007 1 0 0 0 0 O
46 4-C1-3-0(CH,),0C¢H-4"-SO,F 672 000 443 071 010 609 060 010 0 0 O 0O O O
47 4-CH,CONE, 677 000 000 -070 010 010 329 o010 1 O O O O O
48 4-C1-3-(CH,),C¢H-4"-SO,F 677 000 401 071 010 532 060 o016 0 0 O 0 1 O
49 3-Cl-4-OCH,C¢H,-4’-CH,0C.H,-4"-SO,F 682 000 071 433 010 049 710 010 0 0 O O O O
50 3-OCH,CONHCgH; 68 000 060 000 010 400 o010 o012 1 O O O 0 O
51 3-CgHg 68 000 196 000 010 251 010 006 1 0 1 0 0 O
52 4- C 2CH(Ph)C0NHC6H‘ 3-SO,F 689 000 000 353 010 010 75 -017 0 0 0O O O O
53 3-Cl-4-OCH,C¢H,-3-CONHCH,-4"-SO,F 692 000 071 316 010 049 734 010 0 0 0 O O O
54 3-Cl-4-OCH,C¢H,-4'-CONHC¢H,-4"-SO,F 692 000 071 316 010 049 734 010 0 0 O O O O
55 3-OCH,CONHCgH4’-SO,F 692 000 161 000 010 495 010 o012 0 0 0 O 0 O
56 4-CH,CN 692 000 000 -057 010 010 101 o001 1 0 O O O O
57 H 692 000 000 000 010 010 010 000 1 O O O 0 O
58 3.0CH,C¢H,-3-NHCOCH,Br 692 000 129 000 010 524 010 012 1 0 0 0 0 0
59 4- CH2C0N(Me)C5H5 700 000 000 -019 010 010 434 017 1 0 0 O 0 O
60 4-(CH;),CONMe, 705 000 000 -1.20 010 010 28 017 1 0 O O 0 O
61 3-Cl-4-(CH,),C¢H;-5-C1-2"-SO,F 706 000 071 472 010 049 566 020 0 0 0 0 1 0
62 3-Cl-4-O(CH,);0CeH,-4'-SO,F 707 000 071 421 010 049 513 010 O 0 O O O O
63 3-NO, 707 000 -028 000 010 072 010 071 1 O 0 O O O
64 3-(CH 2)2C0CH2C1 710 000 020 000 010 238 010 007 1 0 O 0 O O
65 3-(CHp),COCH,Cl 7.10 000 120 000 010 331 010 -007 1 0 0 0 O O
66 4-OCH,CON(CH,); 712 000 000 -032 010 010 378 027 1 0 O 0 O O
67 4-CH,CON(CH,CH,),0 712 000 000 -170 010 010 327 -017 1 0 0 0 O O
68 4-(CH,)¢CeH-4-SOF 712 000 000 501 010 010 609 017 0 0 0 0 1 O
69 3-Cl-4- OCH(CH;;)CONHCBI'L 4-SO,F 713 000 071 191 010 049 537 010 O 0 0 O O O
70 4-CH,CH(Ph)CONHC¢H,-4-SO,F 713 0.00 000 353 010 010 759 017 1 0 0 O O O
71 3-Cl-4-O(CH,),0(CH,);0C¢H,-4’-80,F 714 000 071 338 010 049 58 010 0 0 0 O O O
72 3-C1-4-0(CH,);CONHC¢H,-4-SO,F 715 000 071 238 010 049 584 010 0 0 0 0 O O
73 3-C1-4-OCH,CONMe, 716 000 071 -136 010 049 258 o010 1 0 O 0 O O
74 3.Cl-4-O(CH,),CONHC¢H,-3-SO,F 717 000 071 238 010 049 58 010 0 O 0 0O O O
75 4-C1-3-O(CH,),0C¢H,-4'-SO,F 717 000 392 071 010 563 060 016 O 0 0 O 0 O
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Table I (Continued)
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log

R 1/C Ly g T4 MRg MRg MR‘ 20’3" 11 Ig 13 I‘ 15 Is

76 4.CH,CH(Ph-3"-Me)CONHC,H,-4-SO,F 7.17 000 000 409 010 010 805 017 I 0 0 0 0 O
77 3-(CH,),CONHC,H,-4"-SO,F 719 000 177 000 010 52 010 007 1 0 0 0 0 1
78 4-CH,CH(Ph-4”-Me)CONHC¢H,4-SO,F 7.24 000 000 409 010 010 805 017 1 0O 0 O O O
79 4-CH,CH(Ph-2”-CH)CONHCH,4-SO,F 7.24 000 000 409 010 010 805 —017 1 0 0O 0 0 0
80 3-Cl-4-OCH,C¢H,-3-CONHCgH,-3"-SO,F 7.24 000 071 316 010 049 734 010 0 0 O O O O
81 3-Cl-4-OCH;CeH,-2-CONHCeH,4"-SO,F 7.24 000 071 316 010 049 734 010 0 0 0 O 0 O
82 3-Cl-4-O(CHy), ONHC¢H,-4-SO,F 724 000 071 28 010 049 630 010 0 0 O O O O
83 3-Cl-4-OCH,CgHy-5'-C1-2'-SO,F 727 000 071 242 010 049 448 010 O O O O O O
84 4-Cl-3-O(CH,);0C¢H-4-SO,F 727 000 300 071 010 470 060 016 0 0 O 0 0 O
85 3-SO,F 7.27 000 005 000 010 09 010 08 1 0 0 0 O O
8 3-Cl 4 O(CH,);NHCONHCH,-3'-SO,F 728 000 071 272 010 049 618 010 0 O O O O O
87 4-(CH,),CONEt, 728 000 000 -021 010 010 376 -017 1 0 0 O 0 O
88 3-C1-4-OCH,CON(CH,), 7.29 000 071 -072 010 049 331 010 1 0 O O 0O O
89 4-OCH,CON(CH,CH,),0 7.29 000 000 -139 010 010 349 027 1 0 O O O O
90 4-CH(CHg)CH2C0NHC6H‘-4’-SOZF 729 000 000 207 010 010 562 -017 1 0 0 0 0 O
91 4-CH;CON(Me)CH,CqH, 7.30 000 000 043 010 010 48 017 1 0 O 0 O O
92  4-(CH,),CON(Me)CH,CgH, 731 000 000 093 010 010 527 017 1 0 0 0 0 0
93 4-(CH,;),CON(CH,CH,),0 7.32 000 000 -120 010 010 374 017 1 0 O O O O
94 4-O(CH,);NHCONHCH,-3'-SO,F 732 000 000 272 010 010 618 -0.27 0 0 0 0 0 0
95 3-C1-4-O(CH,);NHCOCH,-4'-SO,F 734 000 071 142 010 049 584 010 0 0 0O 0 0 O
96 3-CH,CONHCH,-4-SO,F 7.34 000 131 000 010 479 010 007 1 0 O O O O
97 4-CH,NHCONHCgH,-4-SO,F 735 000 000 18 010 010 508 017 0 0 O 0 0 1
98 4-(CH,),CON(C,H;), 735 000 000 08 010 010 469 017 1 0 0 O O O
99 3-Cl-4-OCH,Cg¢H;-6’-Cl-3-SO,F 7.38 000 071 242 010 049 448 010 0 0 O O 0 O
100 3-Cl-4-OCH,C¢H;3-2'-CHy-4'-SO,F 7.38 000 071 227 010 049 444 010 O O O O 0 O
101  3-Cl-4-S(CH,),CONHCgH,-4'-SO,F 739 000 071 274 010 049 597 037 0 0 0 0 O O
102 4-(CH,),CeH-4’-SO,F 741 000 000 271 010 010 423 —017 0 0 0 0 1 O
103  3-Cl-4-OCH,CgH,-4-CONHCgH,-3-SO,F 741 000 071 316 010 049 734 010 0 0 0 0 0 0
104 4-(CH,);NHSO,C¢H-4’-SO,F 741 000 000 101 010 010 548 017 1 0 0 0 0 O
105 3-Cl-4-SCH,CONHC¢H4’-SO,F 742 000 071 224 010 049 551 037 0 0 O 0 0 O
106 3-Cl-4-OCH,C¢H;-3'-C1-2’-SO,F 742 000 071 242 010 049 448 010 0 0 0 O O O
107 3-C1-4-OCH,CONHCH,-4'-SO,F 743 000 071 161 010 049 491 010 0 0 0 0 0 O
108 3-Cl-4-OCH,C¢H,-2'-SO,F 743 000 071 171 010 049 398 o010 0 O 0 O O O
109 3-C1-4-OCH,CgH;-3'-Cl-4’-SO,F 743 000 071 242 010 049 448 010 0 0 0 0 0 O
110  3-C1-4-OCH,CgH;-2'-Cl1-4’-SO,F 744 000 071 242 010 049 448 010 0 0 O O O O
111 3-Cl-4-O(CH,),0C4H,-4'-SO,F 7.44 000 071 300 010 049 466 010 0 O O 0 O O
112 3-(CH,),CeHy2' 4"-Cl, 745 000 508 000 010 535 010 —007 1 0 0 0 1 0
113 3-C1-4-O(CH,)4OCeH,-4"-SO,F 746 000 071 500 010 049 652 010 0 0 0 0 0 O
114 4-(CH,);CONHC¢H;-3-OMe-4'-SO,F 746 000 000 175 010 010 58 017 1 0 0 0 0 1
115 3-C1-4-OCH,CON(CHj)CeH,-4-SO,F 747 000 071 113 010 049 537 010 0 0 0 0 O O
116  3-Cl-4-OCH;CON(CH,); 747 000 071 -032 010 049 378 010 1 0 O O O O
117 3-Cl-4-OCH,C¢H,-4-SO,NMe, 748 000 071 088 010 049 527 010 1 O O O O O
118 3-C1-4-OCH,CgHy-2'-C1-3-SO,F 749 000 071 242 010 049 448 010 0 0 0 0 0 O
119 3-O(CH,),0CeH,-4-SO,F 749 000 400 000 010 562 010 012 0 0 0 0 0 O
120 4-Cl-3-0(CH;)0C,H-4-SOF 751 000 350 071 010 516 060 016 0 0 0 0 0 O
121 3-Cl-4-OCH,C¢H,-3-CN 751 000 071 109 010 049 375 010 1 0 O O O O
122 3-Cl-4-OCH,C¢H, 7.52 000 071 166 010 049 322 o010 1 O 0 O O O
123 4- SCH2C0NHC6H‘ 4-SO,F 752 000 000 224 010 010 551 000 0 0 0 0 0 O
124 3-Cl-4-OCH,C¢H,-4'-Cl1-2’-SO,F 7.52 000 071 242 010 049 448 010 0 O O O O O
125 3-CH,NHCONHCgH, 752 000 083 000 010 421 010 -0.07 0 0 0 0 1
126 4-CH,CH(Me)CONHCgH,-4'-SO,F 755 000 000 207 010 010 562 -017 1 0 0 0 0 0
127 3-O(CH,);0C¢H,-4-NHCOCH,Br 755 000 177 000 010 632 010 012 1 0 O 0 0 O
128  4-(CH,),CON(Me)CeH; 756 000 000 031 010 010 48 -017 1 0 0 0 0 1
129  3-C1-4-O(CH,),0CH,-4'-SO,F 757 000 071 400 010 049 559 010 0 0 0 O 0 O
130  3-C1-4-O(CH,);0C¢H,-4"-SO,F 757 000 071 450 010 049 605 010 0 0 0 O 0 O
131 3 C -4-OCH,C¢H,-4'-SO,F 758 000 071 171 010 049 398 010 0 O O O O O
132 4-(CH,),CONHCeH,-4-SO,F 760 000 000 177 010 010 516 -017 0 0 0 0 0 1
133 3-Cl-4-(CH2)2C0NHC5H‘-4'-502F 762 000 071 177 010 049 516 020 0 0 0 O 0 1
134 3-CH,NHCONHC,H,-3'-SO,F 7.62 000 184 000 010 516 010 -007 1 0 0 0 0 1
135 4-(CH,);NHSO,C¢H,-3'-SO,F 7.64 000 000 101 010 010 548 017 1 0 0 0 0 O
136 3-Cl-4-OCH,CONELt, 764 000 071 -036 010 049 351 o010 1 O 0 O O O
137 3-O(CH,);0C¢H,-3-NHCOCH,Br 764 000 177 000 010 632 010 012 1 0 0 0 0 0
138  3-O(CH,),0C¢H,-2-NHCOCH,Br 766 000 127 000 010 585 010 012 1 0 0 0 0 O
139 3-O(CH,);0C¢H -3-NHCOCH,Br 766 000 127 000 010 58 010 012 1 0 0 0 0 O
140 3-C1-4-SCH,CONHC,H,-3'-SO,F 766 000 071 224 010 049 551 037 0 0 0 0 0 O
141  3-Cl-4-O(CH,),NHCOC¢H,-4'-SO,F 766 000 071 192 010 049 621 010 0 0 O O 0 O
142 4-(CHy);CONHC¢H,-4-SO,F 7.66 000 000 227 o010 o010 562 -017 1L 0 0 0 0O 1
143 3-Cl-4-O(CH,;);)NHCONHC¢H34-4-SO,F 7.68 000 071 227 010 049 618 010 0 0 0 0 0 O
144 3-Cl-4-O(CH;) NHCONHCgH,-3-SO,F ~ 770 0.00 071 3.22 010 049 665 010 0 0 0 0 0 O
145 3-(CH,)C¢Hjs-3-Cl-4’-SO,F 770 000 442 000 o010 58 o010 007 0 0 O O 1 O
146 3-Cl-4-(CH,),CeHy-3'-Cl-4"-SO,F 770 000 071 442 010 049 566 020 0 0 0 0 1 0
147  4-(CH,),CeH-4-SO,F 770 000 000 371 010 010 516 -017 0 0 0 0 1 0
148 4-CH,CONHC¢H,-4’-SO,F 7.70 000 000 131 010 010 469 -017 1 0 0 O O O
149 4-O(CH,);0C¢H,-4-NHCOCH,Br 770 000 000 127 010 010 609 027 1 0 0 0 0 O
150 3-Cl-4-OCH,C¢H,-3’-CONMe, 772 000 071 015 010 049 502 010 1 0 O O O O
151 3-C1-4-OCH,CgH,-4’-S0,CeH,-3"-Cl 772 000 071 392 010 049 729 010 1 0 0 1 0 O
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152 4-OCH,CONHC¢H,-4’-SO,F 7.72 000 000 161 0.10 010 491 027 1 0 0 0 O O
153 3-Cl-4-OCH,CONHCgH,-3’-SO,F 772 000 071 161 010 049 491 010 0 0 0 0 0 O
154 3-Cl-4.0CH,C¢H,-3-SO,F 772 000 071 171 010 049 398 010 0 O O O O O
155 3-Cl-4-OCH,C¢H;-6’-Cl-2’-SO,F 772 000 071 242 010 049 448 010 O 0 O O O O
156 4-CH,NHCONHCH,-3’-Me-4’-SO,F 772 0.00 000 240 010 010 55 017 0 0 0 0 0 1
157 4-(CH,),CONHCH,-3-SO,F 774 0.00 000 177 010 010 516 017 0 0 0 0 0 1
158 3,5-Cl,-4-OCH,CONHC¢H,-4"-SO.F 774 000 071 162 010 049 491 047 0 0 0 0 O O
159 3-Cl 776 000 071 000 010 049 010 037 1 0 O O 0 O
160 3-CF, 776 000 088 000 010 051 010 043 1 O O 0 0 O
161 3-Cl-4-OCH,CeH,-4'-S0,CsH,-4"-Cl 777 000 071 392 010 049 729 010 1 O O 1 0 O
162 3-CH,NHCONH¢H,-3'-CON(Me), 777 000 068 000 010 601 010 007 0 0 O O 0 1
163 3-Cl-4-(CH,),C¢H,-2’-SO,F 777 000 071 371 010 049 516 020 0 O O O 1 O
164 3-Cl-4-(CH,),CgHy-2'-Cl-4-SO,F 797 000 071 442 010 049 566 020 0 0 0 O 1 0O
165 3-Cl-4-CH,NHCONHC;H;-3'-Me-4’-SO,F 78 000 071 240 010 049 554 020 0 0 0 0 0 1
166 4-O(CH,),0CzH,-4'-SO,F 7.80 000 000 300 010 010 467 027 1 O O O O O
167 4-(CH;),CONHC,H,-2-SO,F 7.80 0.00 000 227 010 010 562 017 1 0 0 0 0 1
168 3-Cl-4-O(CH,),NHCONHC¢H;-3-Me-4'-SO,F 7.82 0.00 071 278 010 049 618 010 0 0 0 O O O
169 3-O(CH,),0C¢H,-4’-SO,F 7.82 0.00 300 000 010 47 010 012 0 O 0 0 O O
170 3-Cl-4-(CH,),CcHgs¢'- Cl 2-80,F 782 000 071 442 010 049 566 020 0 0 O O 1 O
171 3-Cl-4-(CH,);C¢H,-4'-SO,F 785 0.00 071 271 010 049 423 020 0 0 0 O 1 0O
172 3-Cl-4-(CH,),C¢H;-5-C1-2’-SO,F 785 0.00 071 342 010 049 473 020 0 0 0 0 1 O
173 3-Cl-4-(CH,),C¢H;-3-C1-4’-SO,F 785 000 071 342 010 049 473 020 0 O O O 1 O
174 3-Cl-4-OCH,CON(CH,CH,),0 785 000 071 -139 010 049 349 010 1 0 0 O O O
175 3-Cl-4-OCH,C¢H,-3"-CON(CH,CH,),0 785 0.00 071 013 010 049 593 010 1 0 0 0 0 O
176 3-Cl-4-OCH,C;H,-3'-CON(CH,), 785 0.00 071 08 010 049 575 010 1 0 O O 0 O
177 3-Cl-4-OCH,CON(Me)C:H; 789 000 071 012 010 049 455 010 1 0 O 0 O O
178 4-OCH,CONHC H; 789 000 000 060 010 010 409 027 1 0 0 O 0 O
179 4-(CH,),C®H; 789 000 000 266 010 010 347 017 0 0 0 O 1 O
180 4-(CH,),CONHC:H;-3'-Me-4’-SO,F 789 000 000 233 010 010 562 017 1 0 O O 0 1
181 3-Cl-4-CH,NHCONHCgH,-4’-SO,F 792 000 071 184 010 049 508 020 0 0 0 0 0 1
182 3-Cl-4-O(CH,),NHCONHC¢H,-4’-SO,F 792 000 071 222 010 049 577 010 1 O O O O O
183 4-(CH,);CONHCH,-3-SO,F 792 000 000 227 010 010 562 017 1 0 0 0O O 1
184 4-(CH,),COCH,Cl 792 000 000 020 010 010 247 017 1 O O O O 0
185 3-OC¢H,-4-NHCOCH,Br 792 000 171 000 010 477 010 025 1 O O O O O
186 3-Cl-4-(CH,),C;H; 792 0.00 071 366 010 049 439 020 0 0 O O 1 ©
187 4-(CH,),C¢H;-2,4-Cl, 792 000 000 508 010 010 539 017 0 0 O O 1 O
188 3-Cl-4-(CH,),C¢H; 796 000 071 413 010 049 439 017 1 0 O O 1 O
189 3-O(CH,);0CH,-4-SO,F 796 000 350 000 010 516 010 012 0 0 0 0 0 O
190 3-(CH,),C¢H,-5-Cl-2’-SO,F 796 000 442 000 010 581 010 007 0 0 0 O 1 O
191 4-(CH,),CeHy2-Cl-4’-SO,F 796 000 000 442 010 010 566 017 0 0 0 0 1 0
192 3-Cl-4-OCH,CgH;-4-C1-3’-SO,F 800 0.00 071 242 010 049 448 010 0 0 O O O O
193 3-(CH,),C¢H,;-2’-Cl-4’-SO,F 800 000 442 000 010 58 010 007 0 0 0 0 1 0
194 4-OCH,CONHCH,-3'-SO,F 800 0.00 000 161 010 010 491 027 1 0 O O O O
195 3-Cl-4-OCH,C¢H,-3-CONHCH; 800 0.00 071 215 010 049 653 010 1 0 0 0 0 0
196 3.CH,CgH; 8.00 0.00 201 000 010 297 010 -008 1 0 0 O 1 O
197 4-(CH,,C¢H; 800 0.00 000 366 010 010 439 017 0 0 0 0 1 ©
198 3-Cl-4-OCH,C;H,-3'-CON(CH,); 802 000 071 120 010 049 621 010 1 0 O O O O
199 3-CH,NHCONHCH,-3’-OCH, 802 0.00 081 000 010 483 010 -007 0 0 0 0 0 1
200 4-(CH,);CONHC H;-4-Me-3'-SO,F 802 0.00 000 233 010 010 562 017 1 0 0 0 0 1
201  3-Cl-4-(CH,),CeH,-3'-SO,F 803 000 071 371 010 049 516 02 0 0 0 0 1 0
202 3-(CH,),C¢Hs-2’4-Cl, 803 000 508 000 010 535 010 =007 0 0 0 O 1 0
203 4-CH,NHCONHCH,-3-SO,F 804 000 000 1.84 010 010 508 -017 1 0 0 0 0 1
204 4-(CH,);,CON(Me)-CgH4'-SO,F 804 0.00 000 128 010 010 562 017 1 0 O O 0O 1
205 3-Cl-4-(CH,),C¢Hs-4'-Cl-2’-SO,F 805 000 071 342 010 049 473 020 0 0 O O 1 ©
206 4-CH,C.H; 805 000 000 201 010 010 300 009 1 O 0 O 1 O
207 3- CHzNHCONHC5H4-3’-Cl 805 0.00 154 000 010 470 010 007 0 O ¢ 0 0 1
208 3.Cl-4-O(CH,);NHCONHCH,-3-Me-3-SO,F 806 000 071 328 010 049 664 010 0 0 0 0 0 0
209 4-CH,CONHC¢H,-3-SO,F 806 000 000 131 010 010 469 017 1 O O 0 O O
210 4-(CH,);CONHC¢H,-6'-OMe-3'-SO,F 808 0.00 000 175 010 010 584 -017 1 0 0 0 0 1
211  3-Cl-4-OCH,C¢H,-4'-S03;C¢H,-3"-CF; 809 000 071 409 010 049 719 010 1 O O 1 O O
212 3.CH,NHCONHCH,-3'-NO, 810 000 055 000 010 494 010 —007 0 0 0 0 O 1
213  3-(CH,),C¢H,-4"-SO,F 810 000 371 000 010 532 010 —007 0 0 0 0 1 0
214 3-(CH,),CeH,-3-SO,F 810 0.00 371 000 010 532 010 007 0 0 0 0 1 0
215 3-(CH,),C¢H,4-SO.F 810 000 271 000 010 439 010 007 0 0 O O 1 0
216 4-(CH,);,NHCOC¢H,-4’-SO,F 811 000 000 111 010 010 516 -017 1 0 O O 0 1
217 3-Cl-4-(CH,),CgH3-4'-C1-3’-SO,F 811 0.00 071 442 010 049 566 020 0 0 O O 1 ©
218  3-Cl-4-OCH,C¢H,-3-CON(Me)CeH, 812 000 071 215 010 049 699 010 1 0 0 0 0 O
219 3-O(CH,),0C¢H,-4-NHCOCH,Br 813 000 127 000 010 58 010 o012 1 0 O O O O
220 3-Cl-4-OCH,C¢H,-3-CONEt, 814 000 071 115 010 049 595 010 1 0 O O O O
221 3-Cl-4-(CH,),CeH-4-SO,F 814 000 071 371 010 049 516 020 0 0 O O 1 O
222 3-Br-4-OCH,CONHC¢H,-4'-SO,F 814 000 08 161 010 078 491 012 0 O 0 O O O
223 4-(CH,),0C¢H,-4'-SO,F 814 000 000 462 010 010 537 -017 1 0 0 0 1 0
224 3-(CH,),C¢Hg 819 000 266 0.00 010 564 010 -007 0 0 O O 1 O
225 3- CHzNHCONHCBH‘-3’-CN 819 0.00 026 000 010 469 010 -007 0 0 O 0 0 1
226 3-Cl-4-OCH,C¢H,-4’-SO,0C:H; 820 000 071 321 010 049 679 010 1 O O 1 O O
227 3-Cl-4.(CH,),C¢H;-3'-Cl-2"-SO,F 820 000 071 442 010 049 566 020 0 0 0 0 1 O
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228 4-(CH,),CONHCgH¢-2'-Me-4'-SO;F 824 000 000 233 010 010 562 -017 1 0 O O O 1
299  4-(CH,);,CONHCgH;-4’-OMe-3'-SO,F 824 000 000 175 010 010 58 —017 1 0 0 0 0 1
230 38-Cl-4-OCH,C4H,-4"-S0,C¢H,-3" -CN 824 0.00 071 264 010 049 732 010 1 0 O 1 O O
231 4-(CH,),0CgH, 824 000 000 361 010 010 461 -017 0 0 0 O 1 O
232 3014001{2061{‘4 -S0,CeH,-3",4"-Cl, 825 000 071 463 010 049 779 010 1 0 0 1 0 0
233 3-(CH,),C¢H,4-NHCOCH,Br 826 000 229 000 010 555 010 -007 1 0 O O 1 O
234 3- C -4-(CHy),CeH3-4"-C1-3- SOzF 827 0.00 071 342 010 049 473 020 0 0 O O 1 O
235 3-Cl-4-(CH,),CgH,;-3'-Cl1-2/-SO,F 830 000 071 342 010 049 473 020 0 O O O 1 0
236 3-Cl-4-(CHy),C¢H;-2'-C1-4’-SO,F 833 000 071 342 010 049 473 020 0 0 0 0 1 O
237  3-Cl-4-OCH,CeH,-4’-S0,C¢H -2"-CF, 833 000 071 409 010 049 719 010 1 0 0 1 0 O
238 3-(CH,),0CgH; 835 000 361 000 010 452 010 007 0 0 O O 1 O
239 3-(CH,),C¢H; 835 000 366 0.00 010 437 010 007 0 0 0O 0 1 O
240 3-(CHy)(CeHy-4'-Cl-3-SO,F 837 000 442 000 010 581 010 —0.07 0 0 0 0 1 0
241 3-(CH,),CcH,-4-NHCOCH,Br 838 000 324 000 010 647 010 007 1 0 0 0 1 O
242  3-C1-4-OCH,C¢H,-4-S0,CH,-4”-CN 839 000 071 264 010 049 732 010 1 O O 1 O O
243 3-Cl-4-OCH,C¢H-4’-S0,C¢H,-4”-OCH, 840 000 071 319 010 049 747 010 1 0 0 1 0 0
244 3-Cl-4-OCH,CgH,-4'-S0;C¢H,-4”-F 840 000 071 335 010 049 678 010 1 0 O 1 O O
245 3-Cl-4-OCH,C¢H,-4’-SO,C¢H,-2”-OCH; 840 000 071 319 010 049 747 010 1 O O 1 O O
246  3-(CH,),CeH,-3-NHCOCH,Br 841 000 324 000 010 647 010 —0.07 1 0 0 0 1 0
247  3-Cl-4-OCH,CoH,-4-S0,C¢H,-3"-CH, 844 000 071 377 010 049 725 010 1 0 O 1 0 O
248 3-C1-4-OCH,C¢H,-4’-S0,C¢H,-3"-F 846 000 071 335 010 049 678 010 1 0 O 1 O O
249  3-Cl-4-OCH,CeH,-4-S0;CeH,-3"-OCH, 852 000 071 319 010 049 747 010 1 0 0 1 0 O
250 3,4-Cl, 854 000 071 071 010 049 060 060 1 O O O O O
951  3-Cl-4-OCH,CeH,-4"-S0,CeH,-2-Cl 862 000 071 392 010 049 729 010 1 0 0 1 0 O
252  3-Cl-4-OCH,CeH4'-SO,CgH,-4"-CON(CHp), 862 000 171 170 010 049 859 010 1 0 0 1 0 0
253  3-Cl-4-OCH,CeH,-4"-S0,C¢H,-4”-CON(CH,); 863 0.00 071 170 0.0 049 859 010 1 0 0 1 0 O
954  3-Cl-4-OCH,CeH,-4"-S0,C¢H,-2"-CN 870 000 071 264 010 049 732 010 1 0 0 1 0 O
255  3-Cl-4-OCH,CgH -4'-S0,CeH,-2"-F 874 000 071 335 010 049 678 010 1 0 0 1 0 O
256  3-Cl-4-OCH,CeH4'-SO,C¢H,-3"-CON(CH,), 876 000 071 170 010 049 859 010 1 0 0 1 0 O

% Reference 3.

Comparison of Neural Networks and Regression
Models. The best NN, MLR, and MLRI models were
determined for each dataset in Figure 5. These were
compared for fitting biological activity surfaces and pre-
dicting activity on the basis of criteria described below.

A table with 256 compound rows and 21 columns cor-
responding to enzyme inhibitory activity, m, 73, 7, MR,,
MR;, MR,, 203, their squares, and I;—I; was constructed.
Subsets of rows corresponding to different training and
test sets (Figure 5) were selected for model development.
MLR models were developed by determining linear com-
binations of physicochemical properties (wy, 73, 74, MR,
MR;, MR,, 203, and their squares, but not indicator
variables) that minimize the variance and maximize the
correlation. MLRI models were similarly determined by
including indicator variables in the analysis in addition to
variables used in MLR. NN models were calculated with
7 73, T4 MRy, MRs, MRy, and 2o, as independent
variables. Their squares were not utilized as independent
variables on the basis that, if these and other nonlinear
variables contributed to reducing the variance, the neural
network will automatically include their effects. Indicator
variables were not utilized in NN models on the basis that
they correspond to such nonlinear effects. For datasets
in which R, = H, m, and MR, are constant, and hence were
not used as independent variables.

The criteria used for comparing surface fits are the
correlation coefficient, R, coefficient of determination, R?,
defined in the usually way,!? and the standard deviation
of the error, o, defined by

_ 1 N 21/2
—NZ;:Ei

E‘. = observed (log 61-) - calculated (log é‘) (11)

where C, is the concentration of compound i required for
50% DHFR inhibition and N is the number of points.

Additionally, the number of outliers is also compared. An
outlier is defined, somewhat arbitrarily, as a data point for
which the absolute value of the error ||E]| is greater than
0.8. This value is expected to be greater than experimental
error for in vitro enzyme inhibition assays.

NN, MLR, and MLRI predictions were compared using
two strategies. The first relied on cluster analysis!»!? to
split a parent dataset into a predetermined number of
clusters from which training and test sets were chosen.
The training set was obtained by randomly selecting a
single point from each cluster. The remaining points
constituted the test set. As shown in Figure 5, the 132
compounds tested on Walker’s enzyme were split into two
training/test combinations: 66/66 and 100/32. Similarly,
the 113 compounds tested on L1210 enzyme were split into
57/56. The identities of the data points in the three
training/test set combinations are shown in Table II. This
procedure ascertains that the training set is well distrib-
uted in the subspace of independent variables and that
every point in the test set has a points in training set in
its vicinity. NN, MLR, and MLRI models were developed
for the training subset and used to predict activities of the
test subset. R, R% and oy and the number of outliers are
compared in the Results.

The second strategy utilized the cross-validation pro-
cedure of Cramer et al.1* The 132 point subset (Figure 5)
was analyzed 132 times. Each time a different single data
point was used as a test set for a training set consisting
of the remaining 131 data points. NN, MLR, and MLRI
models were developed for each training set and used to
predicted the activity of the single point test set. The
cross-validated r? was calculated by*¢

SD - press
SD

where SD is the variance of observed biological activity
relative to its mean and press is the average squared errors
of the 132 test sets. The corresponding values for NN,

cross validated r2 = (12)
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Table II. Training and Test Sets Used for Comparing the Performance of MLR, MLRI, and NN

data
sets®

data points®

66tre 9, 11, 13, 14, 15, 16, 17, 20, 21, 23, 26, 28, 31, 33, 35, 39, 41, 43, 44, 50, 51, 56, 57, 59, 60, 63, 64, 65, 76, 85, 91, 96, 112, 116, 121,
122, 127, 134, 135, 139, 149, 152, 160, 166, 174, 177, 178, 180, 184, 185, 188, 194, 196, 198, 206, 218, 223, 232, 233, 242, 243, 246,

247, 250, 252, 256

66ts° 10, 19, 24, 25, 40, 42, 45, 47, 58, 66, 67, 70, 73, 77, 78, 79, 87, 88, 89, 90, 92, 93, 98, 104, 114, 117, 126, 128, 136, 137, 138, 142, 148,
150, 151, 159, 161, 167, 175, 176, 182, 183, 195, 200, 203, 204, 209, 210, 211, 216, 219, 220, 226, 228, 229, 230, 237, 241, 244, 245,

248, 249, 251, 253, 254, 255

100tr° 9, 11, 13, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26, 28, 31, 33, 35, 39, 41, 42, 43, 44, 45, 47, 50, 51, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 70,
73, 76, 77, 78, 85, 87, 88, 89, 91, 92, 93, 96, 98, 112, 114, 116, 117, 121, 122, 127, 134, 135, 139, 148, 149, 150, 152, 159, 160, 161,
166, 174, 175, 176, 177, 178, 180, 182, 184, 185, 188, 194, 195, 196, 198, 203, 204, 2086, 209, 210, 218, 223, 226, 232, 233, 237, 242,

243, 246, 247, 250, 252, 256

32ts° 10, 19, 40, 79, 90, 104, 126, 128, 136, 137, 138, 142, 151, 167, 183, 200, 211, 216, 219, 220, 228, 229, 230, 241, 244, 245, 248, 249, 251,

253, 254, 255

57trd 22, 27, 30, 32, 34, 38, 46, 48, 49, 55, 62, 68, 69, 71, 74, 80, 84, 86, 94, 101, 102, 105, 111, 113, 115, 119, 120, 123, 125, 130, 131, 132,
140, 141, 156, 158, 162, 165, 169, 170, 171, 179, 181, 189, 191, 193, 197, 199, 202, 205, 207, 213, 215, 222, 224, 225, 239

56ts? 18, 29, 52, 53, 54, 61, 72, 75, 81, 82, 83, 95, 97, 99, 100, 103, 105, 106, 107, 108, 110, 118, 124, 129, 133, 143, 144, 145, 146, 147, 153,
154, 155, 157, 163, 164, 168, 172, 173, 186, 187, 190, 192, 201, 208, 212, 214, 217, 221, 227, 231, 234, 235, 236, 238, 240

3 The training and test sets in this column are those of Figure 5. ®The numbers in this column correspond to those in column 1 of Table
I. *Compounds with I, = 1 and I, = 0. *Compounds with I, = 0 and I, = 0.

MLR, and MLRI models are compared in the Results.

Computation Time. The algorithms of this section
were coded and the models computed on a VAX 8800.
Computation times varied depending on the number of
input and hidden units as well as the size of the dataset.
For example, training times for the 132 point dataset
(Figure 5) with 5 input units were 40, 75, 140, and 390 s
for the 2, 3, 4, and 6 hidden units models, respectively.

Results

Fitting Biological Activity Surface. In their analysis
of the dataset of 256 DHFR inhibitors (I) using regression,
Hansch and Silipo® noted that six indicator variables were
needed in addition to the physicochemical properties of
the Ry, Ry, and R, (I) to fit the dataset of Table I. Even
80, it was only possible to fit 244 data points, leaving 12
outliers, which were excluded from the regression. Their
analysis gave

A = 6.489 + 0.6807, - 0.1187,2 + 0.230MR, -
0.0243MR,? + 0.238], - 2.530], - 1.991], + 0.8771, +
0.6861; + 0.7041,

N =244, § = 0.377, R = 0.923 (13)

in which activity depends parabolically on hydrophobicity
of Ry and size of R,. The coefficient of 0.238 of I, reflects
that the inhibitory activity surfaces corresponding to the
two enzyme systems are parallel and separated by a
“vertical distance” of 0.238. This separation, if significant,
could be due to a difference in the enzyme structure or to
systematic differences in the assay procedure of the two
enzymes. Furthermore, the contribution of R, to activity
was found to be unrelated to its size, hydrophobicity, and
electronic properties. That group lowers activity by a
factor of approximately 340, as reflected by the coefficient
of I, in the above equation. I3-I; reflect a variety of
chemical structural features related to size, flexibility, and
reactivity of R; and R,.

In order to avoid the possible complications of dealing
with two separate enzyme surfaces, the datasets with 132
and 113 data points corresponding to DHFR from two
different sources (Figure 5) were compared separately. The
topology of the corresponding neural network with 4 hid-
den units is shown in Figure 6. As pointed out in the
Methods indicator variables were not used in the NN
models. The results of the NN, MLR, and MLRI models
shown in Table III indicate that, for both datasets, the
neural network models have higher R and R?, lower o, and
fewer outliers.

Biological
Actlvity

T T MR MFI4

o i
3 4 3 a4 bias

Figure 6. Topology of the neural network used in training
different subsets of Table 1.

Table III. Comparison of Neural Networks and Multiple Linear
Regression with and without Indicator Variables for Fitting
Biological Activity Surfaces

no. of
data  data no. of
method® points  set® R R? o  outliers®

NN 256 A 0.922 0.850 0.374 12
MLR 256 A 0.703 0.494 0.686 61
MLRI 256 A 0.879 0.773 0.460 20
NN 245 B 0.891 0.794 0.339 10
MLR 245 B 0.494 0.244 0.651 41
MLRI 245 B 0.809 0.656 0.439 15
NN 132 C 0.903 0.815 0.385 4
MLR 132 C 0.622 0.387 0.701 23
MLRI 132 C 0.877 0.769 0.431 11
NN 113 D 0.892 0.796 0.236 1
MLR 113 D 0.517 0.268 0.447 5
MLRI 113 D 0.673 0.452 0.387 5

9NN = neural networks, MLR = multiple linear regression,
without indicator variables; MLRI = multiple linear regression
with indicator variables. ® A all data points in Table I: B subset of
Table I with I; = 0, designating R;(I) = H; C subset of Table I
with I, = 0 and I; = 1 (DHFR from Walker 256 leukemia tumors);
D subset of Table I with I, = 0 and I, = 0 (DHFR from L1210
leukemia tumors). °An outlier is a data point for which the abso-
lute value of the prediction error is greater than 0.8.

The two dataset were combined, and the resulting da-
taset of 245 compounds as well as the entire dataset of 256
compounds were analyzed using NN, MLR, and MLRIL
In this case, however, it was felt that, due to possible
difference of the active sites or differences in the assay
procedure, the indicator variable I, that flags the two en-
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Table IV. Comparison of Neural Networks and Multiple Linear Regression with and without Indicator Variables for Predicting

Biological Activity
no. of data
points® training set test set
training test no. of no. of
method® set set R R? oE outliers® R R? og outliers®
NN 100 32 0.913 0.833 0.358 6 0.897 0.804 0.372 2
MLR 100 32 0.616 0.380 0.680 18 0.558 0.312 0.707 7
MLRI 100 32 0.837 0.700 0.480 9 0.902 0.814 0.369 2
NN 66 66 0.919 0.844 0.397 3 0.820 0.672 0.431 5
MLR 66 66 0.627 0.393 0.780 15 0.527 0.277 0.671 13
MLRI 66 66 0.862 0.744 0.507 6 0.740 0.547 0.490 6
NN 57 56 0.962 0.926 0.147 0 0.721 0.511 0.341 1
MLR 57 56 0.656 0.426 0.413 3 0.373 0.139 0.461 2
MLRI 57 56 0.766 0.591 0.349 1 0.523 0.273 0.430 2

®Training and test sets were selected using cluster analysis. The 110/32 and 66/66 training/test combinations were subsets of the 132
data points that were tested on the enzyme from Walker 256 carcinoma (Table I, I, = 1, I, = 0). The 57/76 training/test combinations were
subsets of the 113 data points that were tested on the enzyme from L1210 (Table I, I, = 0, I, = 0). *NN = neural networks, MLR = multiple
linear regression, without indicator variables; MLRI = multiple linear regression with indicator variables. °An outlier is a data point for
which the absolute value of the prediction error is greater than 0.8.

zymes should be retained. The network topology used was
similar to that of Figure 6 with 5 hidden units and an
additional input node corresponding to I;,. The results are
shown in Table III.

Predicting Biological Activity. As described in the
Methods two tests were used to compare the predictions
of NN, MLR, and MLRI. In the first, the dataset of 132
compounds (Figure 5) was split into 100/32 and 66,66
training/test set combinations, and the dataset of 113
compounds was split into a 57/56 combination using
cluster analysis. NN, MLR, and MLRI models were de-
veloped on the training set and used to predict the test
set. Table IV compares the statistics for the three train-
ing/test set combinations. This table shows that NN
models have enhanced predictive capabilities relative to
MLR and MLRI in addition to its enhanced surface fits.

The second test utilized the cross-validation procedure
described in the Methods. The cross-validated r? calcu-
lated for NN, MLR, and MLRI are 0.787, 0.30, and 0.640,
respectively. These are consistent with the results of the
cluster analysis tests.

Comparison of Neural Network and Regression
Generated Biological Activity Surfaces. Equations 14
and 15 are the best fit MLR and MLRI equations for the
training set of 100 data points (Figure 5).

A =
6.764 + 09227, - 0.135m,2 - 0.108MR, + 0.091MR,
(0.155) (0.0415  (0.065) (0.035)
N =100, S = 0.705, R? = 0.380 (14)
A = 7.163 + 0.932m, — 01677, - 0.182MR, - 17911, +
01120 (0.081)  (0.037)° (0.213)
0.6421, + 0.747I, + 0.5561,
0.188)  (0.232)  (0.198)
N =100, S = 0.498, R? = 0.700 (15)

These regression results suggest that activity depends
parabolically on 73 and linearly on MR, but is otherwise
independent of v, MR,, and Z¢3,. Furthermore, a sig-
nificant part of the variance is explained by the indicator
variables Iy, I, Iy, and I, which select for specific Ry's and
R/s. In eq 15, the curvature of the w3 parabola (~0.334)
and the location of its maximum (r; = 2.79) as well as the
slope of MR, are independent of the values of the other
variables.

While it would be highly desirable to depict the results
of the NN models with equations similar to 14 and 15 or
with “drawings of the multidimensional response surfaces”,

this is not presently possible. An appreciation of the de-
pendence of activity on properties in the NN model,
however, is achievable by calculating the network output
as a function of one independent variable while all the
others are held constant. The results of such calculations
are shown in Figure 7a-e.

Figure 7a depicts the dependence of activity on 3 as the
remaining independent variables (r,, MR;, MR3, MR,,
Zo3,4) are held constant at 30, 60, and 90% of their cor-
responding ranges in the dataset. This graph shows that,
if the constant variables are held at 30% of their ranges,
activity is a concave downward function of w3 with a
maximum at 73 ~1.5. This resembles the parabolic de-
pendence of activity on w3 in eqs 14 and 15, although the
location of the maximum is different and the form of the
curve in Figure 7a is not formally parabolic but appears
to be of higher order. However, unlike the regression
models, Figure 7a shows that, if the constant variables are
held at 60 and 90% of their ranges, the curve shifts to the
right and elicits no maximum for -2 < 73 < 5.5. Such shifts
in functional dependence on one independent variable with
values of the others is clear evidence of the ability of the
network to elucidate couplings and interactions between
the physicochemical properties. Such capability is not
enjoyed by regression methods.

Figure 7c shows that activity is a nonlinearly decreasing
function of MR4. This is similar to the negative slope of
MR; in egs 14 and 15. However, unlike the regression
results, the slopes of the curves in Figure 7c are sensitive
to the value of all five independent variables. This is
further evidence of the networks ability to elucidate in-
tervariable couplings.

Furthermore, parts b, d, and e of Figure 7 show that
activity has a strong functional dependence on =,, MR,,
and 2o, 4, which exhibit the same intervariable couplings
as those described above. This is to be contrasted with
the regression model which elicits no functional depen-
dence on these three variables.

Discussion

The development of the field of quantitative struc-
ture—activity relationship is rooted in the knowledge that
activity of chemical compounds is determined by their
physical properties.!® The commonly used functional form
of eq 1 was inspired by prior observations that activity

(16) Hansch, C.; Muir, R. M,; Fujita, T.; Maloney, P. P,; Geiger, F.;
Streich, M. J. Am. Chem. Soc. 1963, 85, 2817.
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Figure 7. Neural network calculated activities as a function of 73 (7a), 7, (7b), MR; (7¢), MR, (7d), and Za;,4 (7e). In each graph
activity is calculated as a function of one variable while the remaining four are held constant at 30% (m), 60% (a), and 90% (@) of

their corresponding ranges in the dataset.

increases, reaches a maximum, then decreases as oil/water
partition coefficient increases. A parabolic function was
chosen to model this process. Later, this was shown to be
consistent with passive permeation in biological tissue,!”
thereby giving a mechanistic foundation for correlating in
vivo, but not necessarily in vitro, activities with eq 1.
Familiarity with the parabolic form led to its successful
utilization in modeling other physicochemical properties.

It is useful to temporarily digress and regard biological
activity as a general mathematical function of physical
properties, without preconceptions. Activity is measurable
for any chemical compound. It is thus a bounded function.
Although in principle it is conceivable that this function
is discontinuous, no evidence exists to support this notion.
Therefore, it is reasonable to expect that this function is
analytic, having a Taylor series expressed by

f(x! Y, '-') =

® 3n,+n,+...
z¥ . f

ny=0n,=0

x"syhy,

Ax™Ay"s .. x.yw=0(n, +n,+.)!

(16)

or, more explicitly
flx,y,..) =ap+ ax + ayy + agx? + ay? +axy +
agx® + a;y% + agx?y + agxy? + ... (17)

where f is biological activity and x and y are physical
properties. Equation 1 is in fact a special case of eqs 16
and 17 in which the infinite sum is truncated at n, = n,
= 2 and all cross-product terms are eliminated.

There have been many unpublished attempts enhance
the capabilities of eq 1 by embellishing it with higher order
and cross-product terms.!® However, the staggering div-

(17) Penniston, J. T.; Beckett, L.; Bentley, D. L.; Hansch, C. Mol.
Pharmacol. 1969, 5, 333.
(18) Hansch, C. Personal communication.

ersity of such terms can discourage the most stalwart. To
the best of our knowledge, such terms are not used in
practice. In the course of the current work, regression
models including all second-order cross-products were
attempted, resulting in insignificant improvements. Al-
though the process of training a neural network does not
explicitly invoke such higher order and cross-product
terms, the results presented in the previous section clearly
indicate that the networks are indirectly elucidating effects
of such terms.

Historically, the transition from linear to nonlinear
processing with neural networks occurred with the intro-
duction of the hidden layer. Models calculated with the
older perceptrons, or neural networks consisting solely of
input and output layers, are equivalent to multiple linear
regression models. Close inspection of eqs 2, 3, and 4
indicates that the output of each hidden unit is a nonlinear
transformation of a specific linear combination of scaled
independent variables. Furthermore, the network’s output
is a nonlinear transformation of a linear combination of
the hidden units’ output. Thus each hidden unit is a new
variable that is a function of the original independent
variables. Moreover, the output is a function of the var-
iables in the “basis set” consisting of the totality of hidden
units. Analysis of these equations indicates that the
nonlinearity, specifically the number and severity of the
“bends, bumps, and dips”, in the resulting surfaces is re-
lated to the number of hidden units determined by min-
imizing the test-set variance (Figure 4). With too few
hidden units, the network would be unable to extract all
the relevant nonlinear features. Too many hidden units
cause overfitting and “memorizing” individual data points
rather than generalizing over the data set.

Notwithstanding nonlinear processing capabilities and
enhanced predictions, the goal of the QSAR program is
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Table V. Outliers in the Training Set of 100 Compounds (Figure 5: 100tr) Tested on DHFR from Walker 256 Carcinoma

o
NH,
NJ\N

R,

NHZ)\\ N ’K’

oll:)sgd residuals®
no.? R 1 / C MLR° MLREF NN m3 4 MR@ MR‘ Zva" 13 I‘ 15 Is
I 15 4-CH=CHCONHCgH,-4-SO,F 519 -2.04 -0.16 -0.10 000 199 010 522 -001 1 0 O O
17 4-CH(Ph)CH,CONHC,H,-4-SO,F 574 -170 039 026 0.00 353 010 759 —0.08 1 0 0 0
206 4-CH,C¢H; 8.05  1.02 0.16 028 000 20l 010 300 009 0 0 1 O
223 4-(CH,),0CgH,-4'-SO.F 814 090 0.25 -0.03 000 462 010 537 017 0 0 1 O
I 9 4-CONHC¢H,-4'-SO,F 468 -246 -067 -0.21 000 150 010 423 036 1 0 O O
11 4-CgH; 470 -228 065 -0.14 000 196 010 254 001 1 0 O O
51  3-CgH; 6.85 -0.94 075 -0.48 196 0.00 251 010 006 1 0 O O
14 4-CN 514 -1.67 -2.00 -0.06 0.00 -0.57 010 063 066 0 0 O O
95  4.CH,CH(CH,CH,Ph)CONHCH,4-SO,F 620 -1.33 -094 -041 000 423 010 852 -0.17 0 0 0 0
28  4-OCH,CONMe, 626 -0.73 -0.88 -0.37 0.00 -1.36 0.0 258 027 0 0 O O
182 3-Cl-4-O(CH,),NHCONHC¢H,-4'-SO,F 792  0.94 0.78 028 0.71 222 049 577 010 0 0 O O
194 4-OCH,CONHCH,-3’-SO,F 8.00  0.80 0.86 025 000 161 010 491 -027 0 0 O O
209 4-CH,CONHCgH,-3-SO.F 8.06  0.88 092 034 000 131 010 469 -017 0 0 O O
250 3,4-Cl, 854 119 089 006 071 071 049 060 060 0 0 O O
HI 233 3-(CH,),CeH,4-NHCOCH,Br 826 068 010 087 229 000 555 010 007 0 0 1 0
20 3-CONHC¢H,-4-SO,F 596 -1.42 035 -1.23 150 000 433 010 035 1 0 O O
IV 35 4-CH(CH,NHCOCH,Br)(CH,),CsHs 652 —0.87 062 090 000 294 010 703 —0.17 0 0 0 0
24  4-OCH,CON(Me)C¢H; 6.17 -1.00 -097 -095 0.00 0.2 010 455 027 0 0 0 O
31  3-CH(CH,NHCOCH,Br)(CH,);CsH; 6.37 -120 083 -1.03 294 000,694 010 —0.07 0 0 0 0

¢Residual = obsd (log 1/C) — calc (log 1/C). ®Numbers in this column represent the entry in Table . ©Activity calculated using eq 14.

4 Activity calculated using eq 15.

efficient and facile biological activity optimization based
on a mathematical model that relates it to physicochemical
properties. In practice, such models are utilized in two
ways. Most commonly, biological activities of entries in
a functional group database are calculated with the model.
Those predicted to have optimal activities are identified
and pursued. Less frequently, however, novel functional
groups or molecular structures that incorporate optimal
physicochemical features are designed, synthesized, and
tested. The practical usefulness of any QSAR method
depends on the ease of accurately calculating activity from
properties as well as providing a clear understanding of
the quantitative and qualitative relationship between
properties and activity.

In regression-based methods, the relationship between
activity and properties is expressed by linear equations
such as 15. With neural nets on the other hand, activity
is expressed in terms of the nonlinear functions of eqs 2—4.
Calculating activities of a functional group database using
either method is straightforward.

De Novo design of functional groups is possible with the
aid of regression-based models. The physicochemical
variables in regression equations provide insights into the
forces that control biological activity. Thus r3 and MR,
terms in eq 15 suggest that the binding site of the 3 sub-
stituent is hydrophobic and size limited. Indicator vari-
ables on the other hand reflect the effect of certain
structural features on the magnitude of activity. Quite
frequently they are responsible for explaining a major part
of the variance. However, they provide little, if any, insight
into the forces controlling activity. For example, it is not
clear why the features flagged by I in eq 15 decrease
activity whereas those flagged by I,, Iy, and I enhance it.
That notwithstanding, the optimal physicochemical and
structural features indicated by regression equations such
as 15 can be readily incorporated into novel functional
groups.

By contrast, the closed analytic forms of eqs 2-4 do not
give vivid insights into the relationships between activity
and physical properties. Regression-like equations that
describe NN surfaces, although desirable, are not currently
avaialble. Some understanding of the relationship between
biological activity and physical properties may be gleaned
from Figure 7 which shows “cuts” in the corresponding
surface. Each curve depicts the variation of activity with
one property while the others are held constant, and the
shape variation among the three curve in each part of
Figure 7a—e manifests the strong intervariable coupling.
Such figures describe the local, but not global, structure-
activity relationships, somewhat limiting the model-based
design of novel functional groups or chemical structures.
Efforts to alleviate this limitation are currently underway.

In addition to enhanced predictions, the Results showed
that, for the current dataset, NN models circumvent in-
dicator variables. The latter are used to augment size,
hydrophobicity, and electronic parameters in regression
models. Typically, initially one attempts to correlate ac-
tivity with the usual physicochemical properties. Data
points are individually inspected to identify structural
features common to outliers, which are then flagged with
indicators variables and regression reattempted. This
requires several modeling iterations and considerable time
particularly with large datasets. By contrast, outliers are
not separately handled in NN models. The procedure
outlined in the Methods is followed using size, hydro-
phobicity, and electronic properties but not indicator
variables as inputs. The network with the number of
hidden units that minimizes the variance of a test set is
the optimal model. Such models account for many MLRI
and most MLR outliers.

The difference between NN and regression models’
handling of outliers is related to the shapes of the corre-
sponding surfaces. In regression models, the best surface
over the space of physicochemical properties is first de-



2836 Journal of Medicinal Chemistry, 1991, Vol. 34, No. 9

termined and has one of the shapes in Figure 1. Data
points too far above or below it are designated outliers. An
indicator variable creates a new surface above or below the
former but parallel to it, that passes through correspond-
ingly displaced outliers. NN surfaces corresponding to few
hidden units and large test-set variance are akin to, al-
though not identical with, regression surfaces over phys-
icochemical properties, and outliers persist. Increasing the
number of hidden units introduces localized deformations:
elevations and depressions, that pass through outliers.
Close inspection of the resulting models reveals that if NN
surfaces could be expressed as polynomials, such defor-
mations would correspond to high-order nonlinear and
cross-product terms. Elucidating the NN based physico-
chemical effects that correspond to indicator variables such
as Is-I¢ in eqs 13 and 15 is highly desirable but unfortu-
nately not possible at present.

Following the suggestion of one of the reviewers, Table
V, which lists the outliers of the 100 data point training
set in the different models, was constructed. All points
in that table are MLR outliers. They are grouped into four
groups: points that are well predicted by MLRI and NN
models (I) and outliers in one (II, ITI) or both methods (IV).
The structures of outliers in the different methods do not
have obvious trends.

Introduction of hidden units is tantamount to fixing the
number of bonds whose weights are the adjustable pa-
rameters of the model. In a fully connected network, each
hidden unit with the exception of the bias unit is linked
to all input and output units. The number of bonds in a
neural network is calculated by

P=(I+1)H+(H+1)0

where P, I, H, and O are the numbers of adjustable pa-
rameters, input, hidden, and output units, respectively. As
in any modeling method that relies on adjustable param-
eters, the ratio

no. of datapoints
p= P

is critical. In regression models, it is desirable to have at
least five data points for each adjustable parameter or
coefficient in the regression equation. No corresponding
rule of thumb exists for NN models except that p must be
>1. Inthe examples of this paper, the optimal NN models
have 1.8 < p < 2.2. Models with p > 2.2 were unable to
extract all the relevant features and gave poor predictions.
Ones in which p approached 1 overfitted the training set
and were unable to accurately predict the test set. In other
unpublished work in which the surfaces are nearly linear,
optimal predictions are obtained with models having p >

To summarize, the key strengths of neural network
relative to regression models for the dataset in hand are
enhanced prediction accuracy and accounting for most
outliers without indicator variables. On the other hand,
these models could benefit from developments that im-
prove the understanding of global structure-activity re-
lationships. The longer computational times required for
developing neural network relative to regression models
is somewhat inconveniencing but not limiting.

Our experience with neural modeling of datasets from
diverse backgrounds and origins including in vitro enzyme
inhibitory activity, whole organism in vivo biological ac-
tivities, as well as in environmental models not related to
biological activity optimization indicates that, if the sur-
faces are linear or nearly so, the predictions of regression
and neural models are close. Such linear models are fre-
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quently obtained, as may be expected, when the range of
variation of independent variables is narrow. Although
outliers in general are well accounted for with neural
models, occasionally, albeit infrequently, they persist even
in cases where the experimental data is of demonstrably
high quality.
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50581-75-4; 29, 20092-20-0; 30, 135006-56-3; 31, 19159-89-8; 32,
50866-22-3; 33, 10161-69-0; 34, 20092-21-1; 35, 19159-90-1; 36,
20285-53-4; 37, 20285-57-8; 38, 31191-36-3; 39, 19161-83-2; 40,
19160-11-3; 41, 50581-63-0; 42, 50574-80-6; 43, 50575-17-2; 44,
50574-70-4; 45, 19159-88-7; 46, 135006-57-4; 47, 50581-80-1; 48,
31362-32-0; 49, 31191-28-3; 50, 50575-02-5; 51, 52980-48-0; 52,
21970-37-6; 53, 30937-83-8; 54, 50568-38-2; 55, 30937-81-6; 56,
50581-20-9; 57, 64706-33-8; 58, 19161-91-2; 59, 50575-03-6; 60,
50581-74-3; 61, 31444-54-9; 62, 20110-67-2; 63, 17711-74-9; 64,
19161-96-7; 65, 19161-97-8; 66, 50574-86-2; 67, 50574-79-3; 68,
28392-79-2; 69, 30885-62-2; 70, 17754-25-5; 71, 31191-27-2; 72,
28392-86-1; 73, 50581-83-4; 74, 30885-58-6; 75, 31191-34-1; 76,
17730-72-2; 77, 15422-10-3; 78, 17730-73-3; 79, 50568-39-3; 80,
30885-68-8; 81, 30885-70-2; 82, 28392-87-2; 83, 30855-24-4; 84,
31191-32-9; 85, 19160-13-5; 86, 24892-10-2; 87, 50574-69-1; 88,
50574-98-6; 89, 50574-87-3; 90, 17730-66-4; 91, 50575-26-3; 92,
50575-41-2; 93, 50574-85-1; 94, 24892-11-3; 95, 24892-14-6; 96,
15422-09-0; 97, 17794-15-9; 98, 50575-15-0; 99, 30855-19-7; 100,
135006-58-5; 101, 30885-76-8; 102, 20110-90-1; 103, 28392-85-0;
104, 17794-16-0; 105, 30885-72-4; 106, 30855-22-2; 107, 20110-65-0;
108, 30855-21-1; 109, 28392-82-7; 110, 30855-14-2; 111, 20110-66-1;
112, 14052-52-9; 113, 31191-26-1; 114, 47732-14-9; 115, 47723-35-3;
116, 50574-84-0; 117, 50575-51-4; 118, 30855-20-0; 119, 31191-31-8;
120, 31191-33-0; 121, 50575-14-9; 122, 50574-67-9; 123, 30885-74-6;
124, 30855-23-3; 125, 50699-31-5; 126, 17730-67-5; 127, 19161-89-8;
128, 50575-18-3; 129, 31191-24-9; 130, 31191-25-0; 131, 30855-13-1;
132, 15422-13-6; 133, 31066-08-7; 134, 19223-16-6; 135, 17818-13-2;
136, 50574-84-0; 137, 19161-90-1; 138, 19161-87-6; 139, 19161-86-5;
140, 50567-38-9; 141, 24892-31-7; 142, 19160-07-7; 143, 24892-12-4;
144, 22083-85-8; 145, 31362-34-2; 146, 50567-39-0; 147, 24892-92-0;
148, 15422-12-5; 149, 19223-11-1; 150, 48223-06-9; 151, 38559-98-7;
152, 17794-18-2; 153, 20110-69-4; 154, 28392-83-8; 155, 30855-25-5;
156, 47698-53-3; 157, 16048-34-3; 158, 25292-67-5; 159, 13351-02-5;
160, 1492-81-5; 161, 38559-94-3; 162, 50699-39-3; 163, 31362-29-5;
164, 31362-25-1; 165, 20091-76-3; 166, 50567-07-2; 167, 19160-09-9;
168, 22083-84-7; 169, 31191-29-4; 170, 31444-55-0; 171, 20110-68-3;
172, 135006-59-6; 173, 50567-12-9; 174, 50575-13-8; 175, 50575-71-8;
176, 50651-37-1; 177, 50575-31-0; 178, 50575-04-7; 179, 24892-89-5;
180, 17720-23-9; 181, 20091-77-4; 182, 22083-83-6; 183, 19160-08-8;
184, 10161-70-3; 185, 19161-92-3; 186, 24892-98-6; 187, 17077-18-8;
188, 24892-98-6; 189, 31191-30-7; 190, 31362-35-3; 191, 31362-23-9;
192, 30855-18-6; 193, 31362-33-1; 194, 17794-23-9; 195, 50575-75-2;
196, 4038-61-3; 197, 24892-90-8; 198, 48227-67-4; 199, 50699-33-7;
200, 47698-51-1; 201, 31362-27-3; 202, 14052-52-9; 203, 17794-22-8;
204, 17730-68-6; 205, 28392-77-0; 206, 36076-92-3; 207, 135006-60-9;
209, 19160-12-4; 210, 47732-13-8; 211, 38560-04-2; 212, 50699-35-9;
213, 22877-78-7; 214, 24988-55-4; 215, 24892-95-3; 216, 17794-17-1;
217, 31362-28-4; 218, 50575-83-2; 219, 16156-69-7; 220, 48227-67-4;
221, 24947-06-6; 222, 25292-66-4; 223, 28392-78-1; 224, 4086-50-4;
225, 50699-37-1; 226, 36983-62-7; 227, 31362-30-8; 228, 50567-40-3;
229, 47723-40-0; 230, 38560-09-7; 231, 22796-71-0; 232, 38559-99-8;
233, 16156-73-3; 234, 31362-22-8; 235, 31362-21-7; 236, 31362-17-1;
237, 38560-05-3; 238, 24892-87-3; 239, 14357-85-8; 240, 31444-56-1;
241, 19161-80-9; 242, 38560-08-6; 243, 38589-51-4; 244, 38560-00-8;
245, 38560-07-5; 246, 16156-72-2; 247, 38560-03-1; 248, 38560-01-9;
249, 38560-06-4; 250, 13344-99-5; 251, 38666-63-6; 252, 38559-95-4;
254, 38560-10-0; 255, 38560-02.0; 256, 38559-96-5; dihydrofolate
reductase, 9002-03-3.



