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Introduction 
Molecular modeling1 and protein structure determina­

tion2 are now often a part of a medicinal chemistry in­
vestigation. However, experience over the last decade has 
shown that, for the computer design of structurally novel 
molecules, we need tools beyond molecular graphics. Since 
1980 3D QSAR methods for the quantitative prediction 
of potency based on 3D properties have been developed.3 

(1) Cohen, N. C; Blaney, J. M.; Humblet, C; Gund, P.; Barry, D. 
C. Molecular Modeling Software and Methods for Medicinal 
Chemistry. J. Med. Chem. 1990, 33, 883-984. 

(2) (a) Goodford, P. J. Drug Design by the Method of Receptor 
Fit. J. Med. Chem. 1984,27,557-564. (b) Appelt, K.; Bacquet, 
R. H.; Bartlett, C. A.; Booth, C. L. J.; Freer, S. T.; Fuhry, M. 
A. M.; Gehring, M. R.; Herrmann, S. M.; Howland, E. F.; 
Janson, C. A.; Jones, T. R.; Kan, C-G; Kathardekar, V.; Lewis, 
K. K.; Marzoni, G. P.; Matthews, D. A.; Mohr, C; Moomaw, 
E. W.; Morse, C. A.; Oatley, S. H.; Ogden, R. C; Reddy, M. R.; 
Reich, S. H.; Schoettlin, W. S.; Smith, W. W.; Vamey, M. D.; 
Villafranca, J. E.; Ward, R. W.; Webber, S.; Webber, S. E.; 
Welsh, K. M.; White, J. Design of Enzyme Inhibitors Using 
Iterative Protein Crystallographic Analysis. J. Med. Chem. 
1991, 34,1925-1934. (c) Fesik, S. W.; Gampe, R. T.; Eaton, H. 
L.; Gemmecker, G.; Olenejniczak, E. T.; Neri, P.; Holzman, T. 
NMR Studies of [U-C-13]Cyclosporin-A Bound to Cyclo-
philin-Bound Conformation and Portions of Cyclosoprine In­
volved in Binding. Biochemistry 1991, 30, 6574-6583. 

(3) (a) Cramer, R. D., Ill; Patterson, D. E.; Bunce, J. D. Com­
parative Molecular Field Analysis (CoMFA). 1. Effect of 
Shape on Binding of Steroids to Carrier Proteins. J. Am. 
Chem. Soc. 1988,170,5959-5967. (b) Hopfinger, A. J. A QSAR 
Investigation of Dihydrofolate Reductase Inhibition by Baker 
Triazines Based upon Molecular Shape Analysis. J. Am. 
Chem. Soc. 1980,102, 7196-7206. (c) Boulu, L. G.; Crippen, 
G. M.; Barton, H. A.; Kwon, H.; Marietta, M. A. Voronoi 
Binding Site Model of a Polycyclic Aromatic Hydrocarbon 
Binding Protein. J. Med. Chem. 1990, 33, 771-775. (d) Rati, 
I.; Itai, A.; Iitaka, Y. A Novel Method for Superimposing 
Molecules and Receptor Mapping. Tetrahedron 1987, 43, 
5229-5236. (e) Doweyko, A. M. The Hypothetical Active Site 
Lattice. An Approach to Modelling Active Sites from Data on 
Inhibitor Molecules. J. Med. Chem. 1988, 31, 1396-1406. 

3D searching4 provides other needed capabilities—it de­
signs or recognizes potential bioactive molecules based on 
their 3D properties. Additionally, several programs use 
3D searching to design the molecules to synthesize.4-8 Of 
course, the exact molecules to be made also will be gov­
erned by ease of synthesis and projected physical prop­
erties. 

One use of 3D database searching helps one design novel 
compounds that incorporate conformational constraints. 
Such compounds might mimic the bioactive conformation 
of a ligand as established by experiment or molecular 
modeling. For example, molecular modelers often are 
asked if the computer would design morphine from 
enkephalin. A computer design of mimics of the tyrosine 
in enkephalin suggested a morphine analog 1 as a mimic 
of one conformation of enkephalin.9 As discussed below, 
the designed compounds might also be used to derive or 
test a pharmacophore model. 

3D searching also identifies existing molecules that 
match a hypothesis of the 3D requirements for bioactivity. 
It thus can be used to validate such pharmacophores and 
to suggest other existing compounds for testing to find a 

(4) Martin, Y. C; Bures, M. G.; Willett, P. Searching Databases 
of Three-Dimensional Structures. In Rev. in Computational 
Chemistry; Lipkowitz, K., Boyd, D., Eds.; VCH Publishers, 
Inc.: New York, 1990; pp 213-263. 

(5) Martin, Y. C. Computer-Aided Design of Potentially Bioactive 
Molecules by Geometric Searching with ALADDIN. Tetra­
hedron Comput. Methodol. 1990, 3,15-25. 

(6) Martin, Y. C.j Van Drie, J. H. Identifying Unique Core Mole­
cules From the Output of a 3D Database Search. In Proceed­
ings of the 2nd International Conference on Chemical Infor­
mation, Noordwijkerhout, 1990, Warr, W., Ed., Springer-
Verlag. 

(7) Moon, J.; Howe, W. J. Computer Design of Bioactive Mole­
cules: A Method for Receptor-Based de novo Ligand Design. 
Proteins: Struct. Fund. Genet. 1991, 6, 314-328. 

(8) Bohm, H. J. A New Method for the De Novo Design of En­
zyme Inhibitors. J. Comput.-Aided Mol. Des. 1992, 6, 61-78. 

(9) Martin, Y. Unpublished observations. 
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Figure 1. The bioactive conformation of the Dl agonist SKF 
38393 (dashed lines), the database molecule shown to have do­
paminergic activity (solid fine lines), and the location of the added 
phenyl in the Dl selective compound designed from it (heavy 
lines).34 

new lead. Examples of this will also be discussed. 
The potential of 3D database searching was recognized 

years ago,10"12 yet only recently have several operational 
systems been implemented.4'13"28 The current interest in 

(10) (a) Gund, P.; Wipke, W. T.; Langridge, R. Computer Searching 
of a Molecular Structure File for Pharmacophoric Patterns. 
Comput. Chem. Res., Educ, Technol. 1974, 3, 5-21. (b) Gund, 
P. Three-dimensional Pharmacophoric Pattern Searching. In 
Prog. Mol. Subcell. Biol. 1977, 11, 117-143. 

(11) Esaki, T. Quantitative Drug Design Studies. V. Approach to 
Lead Generation by Pharmacophoric Pattern Searching. 
Chem. Pharm. Bull. 1982, 30, 3657-3661. 

(12) Esaki, T. Approach to Lead Generation by Three-dimensional 
Pharmacophoric Pattern Searching: Development of a 
Graphic Module for Prediction of Pharmacological Features 
of Drugs, unpublished report, 1983. 

(13) Borman, S. Software Adds New Dimension to Structure 
Searching. Chem. Eng. News 1989, 67 (Sept 18), 28-32. 

(14) Van Drie, J. H.; Weininger, D.; Martin, Y. C. ALADDIN: An 
Integrated Tool For Computer-Assisted Molecular Design and 
Pharmacophore Recognition from Geometric, Steric, and 
Substructure Searching of Three-Dimensional Molecular 
Structures. J. Comput.-Aided Mol. Des. 1989, 3, 225-251. 

(15) Jakes, S. E.; Watts, N.; Willett, P.; Bawden, D.; Fisher, J. D. 
Pharmacophoric Pattern Matching in Files of Three-dimen­
sional Chemical Structures: Evaluation of Search Perform­
ance. J. Mol. Graphics 1987, 5, 41-48. 

(16) Jakes, S. E.; Willett, P. Pharmacophoric Pattern Matching in 
Files of Three-dimensional Chemical Structures. Selection of 
Inter-atomic Distance Screens. J. Mol. Graphics 1986, 4, 
12-20. 

(17) Brint, A. T.; Willett, P. Pharmacophoric Pattern Matching in 
Files of 3-D Chemical Structures: Comparison of Geometric 
Searching Algorithms. J. Mol. Graphics 1987, 5, 50-56. 

(18) DesJarlais, R. L.; Sheridan, R. P.; Seibel, G. L.; Dixon, J. S.; 
Kuntz, I. D.; Venkataraghavan, R. Using Shape Complemen­
tarity as an Initial Screen in Designing Ligands for a Receptor 
Binding Site of Known Three-dimensional Structure. J. Med. 
Chem. 1988, 31, 722-729. 

(19) Lewis, R. A.; Dean, P. M. Automated Site-directed Drug De­
sign: The Concept of Spacer Skeletons for Primary Structure 
Generation. Proc. R. Soc. London B 1989, 236, 185-140. 

(20) Lewis, R. A.; Dean, P. M. Automated Site-directed Drug De­
sign: The Formation of Molecular Templates in Primary 
Structure Generation. Proc. R. Soc. London B 1989, 236, 
141-162. 

(21) Bartlett, P. A.; Shea, G. T.; Telfer, S. J.; Waterman, S. CA­
VEAT: A Program to Facilitate the Structure-derived Design 
of Biologically Active Molecules. In Molecular Recognition: 
Chemical and Biological Problems; Roberts, S. M., Ed.; Royal 
Society of Chemistry: London, 1989; Vol. 78, pp 182-196. 

(22) Sheridan, R. P.; Venkataraghavan, R. Designing Novel Nico­
tinic Agonists by Searching a Database of Molecular Shapes. 
J. Comput.-Aided Mol. Des. 1987, 1, 243-256. 

(23) Rusinko, A., Ill; Sheridan, R. P.; Nilakantan, R.; Haraki, K. 
S.; Bauman, N.; Venkataraghavan, R. Using CONCORD to 
Construct a Large Database of Three-Dimensional Coordinate 
from Connection Tables. J. Chem. Inf. Comput. Sci. 1989, 29, 
251-255. 

Figure 2. The conformation of the proposed bioactive confor­
mation of residues 18-20 (the binding loop) of tendamistat (fine 
lines) and that of a molecule that has side chains in the geometric 
relationships (heavy lines). All three side chains could be in­
corporated as well as the N-terminal portion of the peptide.21 

3D database searching was fueled by the availability of 
tools for molecular modeling1 and pharmacophore map­
ping29 and by the increasing numbers of 3D protein 
structures as targets for new drugs.2 The extensive data­
base of crystallographic structures of small molecules28 and 
computer programs that generate 3D structures of small 
molecules in a few seconds3t>~32 typically provide the in­
formation to search. 3D searching is complementary to 
3D QSAR3 since it can be used to design series for 3D 
QSAR analysis and 3D QSAR can be used to rank com­
pounds suggested for synthesis or testing by 3D search­
ing.33 

(24) Sheridan, R. P.; Rusinko, A., Ill; Nilakantan, R.; Venkatara­
ghavan, R. Searching for Pharmacophores in Large Coordinate 
Databases and Its Use in Drug Design. Proc. Natl. Acad. Sci. 
1989, 86, 8125-8169. 

(25) Sheridan, R. P.; Nilakantan, R.; Rusinko, A., Ill; Bauman, N.; 
Haraki, K. S.; Venkataraghavan, R. 3DSEARCH, A System 
for Three-dimensional Substructure Searching. J. Chem. Inf. 
Comput. Sci. 1989, 29, 255-260. 

(26) Christie, B. D.; Henry, D. R.; Guner, O. F.; Moock, T. E. 
MACCS-3D: A Tool for Three-dimensional Drug Design. 
Online Inf. 90, 1990, 11-13 Dec, 137-161. 

(27) Murrall, N. W.; Davies, E. K. Conformational Freedom in 3-D 
Databases. 1. Techniques. J. Chem. Inf. Comput. Sci. 1990, 
30, 312-316. 

(28) Allen, F. H.; Davies, J. E.; Galloy, J. J.; Johnson, O.; Kennard, 
O.; Macrea, C. F.; Mitchell, E. M.; Mitchell, G. F.; Smith, J. M.; 
Watson, D. G. The Developments of Versions 3 and 4 of the 
Cambridge Database System. J. Chem. Inf. Comput. Sci. 
1991, 31, 187-204. 

(29) Martin, Y. C. Overview of Concepts and Methods in Com­
puter-Assisted Rational Drug Design. Methods Enzymol. 
1991, 203, 587-613. 

(30) Pearlman, R. S.; Rusinko, A., Ill; Skell, J. M.; Balducci, R.; 
McGarity, C. M. CONCORD, Distributed by Tripos Associ­
ates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO 
63944. 

(31) Wipke, W. T.; Hahn, M. A. AIMB: Analogy and Intelligence 
in Model Building. System Description and Performance 
Characteristics. Tetrahedron Comput. Methodol. 1988,1,141. 

(32) Dolata, D. P.; Leach, A. R.; Prout, K. WIZARD: AI in Con­
formational Analysis. J. Comput.-Aided Mol. Des. 1987, 1, 
73-85. Leach, A. R.; Dolata, D. P.; Prout, K. Automated 
Conformational Analysis and Structure Generation: Algor­
ithms for Molecular Perception. J. Chem. Inf. Comput. Sci. 
1990, 30, 31-16. Leach, A. R.; Prout, K.; Dolata, D. P. Auto­
mated Conformational Analysis: Algorithms for the Efficient 
Construction of Low-energy Conformations. J. Comput.-Aid­
ed Mol. Des. 1990,4, 271-282. Leach, A. R.; Prout, K.; Dolata, 
D. P. The Application of Artificial Intelligence to the Confor­
mational Analysis of Strained Molecules. J. Comput. Chem. 
1990, 11, 680-693. Leach, A. R.; Prout, K. Automated Con­
formational Analysis: Directed Conformational Search Using 
the A* Algorithm. J. Comput. Chem. 1990, 11, 1193-1205. 
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This review will summarize 3D searching from the 
viewpoint of a medicinal chemist. Emphasis will be 
methods that search many 3D structures. 

How Has 3D Searching Been Used in Medicinal 
Chemistry? 

Two early 3D searching programs were written to help 
solve a problem familiar to medicinal chemists,14-21 that 
is, how to design a novel structure that matches 3D re­
quirements. 

For example, by a synergism of molecular modeling and 
synthesis of conformational^ informative molecules, we 
established that the bioactive conformation of the Dl 
dopamine agonist SKF 38393 (2) is that with the phenyl 
group equatorial (Figure l).34 How does one design a 
mimic that incorporates the N, 0, and two phenyls in the 
proper geometric relationship? Structures imagined with 
molecular graphics often did not match well enough once 
built or were a high-energy conformation. Since we were 
already storing 3D coordinates in a chemical information 
database,36 we wrote a computer program for 3D searching 
of these coordinates.14 

Our search of the 3D structures of existing compounds 
identified 3-6 as dopamine D2 agonists. Molecular mod­
eling suggested where to substitute the pendent phenyl 
(Figure 1). Whereas 6 has a pK; for the Dl receptor of 4.88, 
7 is a Dl selective agonist with a pK{ 6.82.36 Thus 3D 
searching identified the lead and molecular modeling 
identified the correct derivative for synthesis. 

/ = \ P 
NN // 0=0 

(33) Lin, C. T.; Pavlik, P. A.; Martin, Y. C. Use of Molecular Fields 
to Compare Series of Potentially Bioactive Molecules Designed 
by Scientists or by Computer. Tetrahedron Comput. Metho-
dol., in press. 

(34) Martin, Y. C; Kebabian, J. W.; MacKenzie, R.; Schoenleber, 
R. Molecular Modeling-based Design of Novel, Selective, Po­
tent Dl Dopamine Agonists. In QSAR: Rational Approaches 
on the Design of Bioactive Compounds 1991; Silipo, C, Vit-
toria, A., Eds.; Elsevier: Amsterdam, 1991; pp 469-482. 

(35) Martin, Y. C; Danaher, E. B.; May, C. S.; Weininger, D. 
MENTHOR, A Database System for Three-Dimensional 
Structures and Associated Data Searchable by Substructure 
Alone or Combined with Geometric Properties. J. Comput.-
Aided Mol. Des. 1988, 2,15-29. 

(36) Schoenleber, R.; et al. U.S. Patent 4,963,568, 1990. 

Figure 3. A molecule used to derive the nicotinic pharmacophore 
hypothesis (fine lines) and a molecule designed from steric 
searching and molecular graphics (heavy lines).22 

Bartlett et al.21 had the same frustration when they tried 
to design conformationally constrained peptide mimics. 
They wanted to synthesize compounds in which the Ca-Cjj 
vectors are maintained at the same angles and distances 
as the corresponding vectors between the side chains in 
the proposed bioactive conformation of the peptide or 
protein loop, CAVEAT was written to search the Cambridge 
Structural Database.28 It finds structures in which the 
CQ-C^ vectors are maintained at the correct angles and 
distance even though the side chain might be missing or 
of the incorrect structure. The molecule to be synthesized 
is then designed by molecular graphics. 

Figure 2 shows the side-chain vectors of residues the 
a-amylase binding loop of tendamistat. Superimposed on 
it is a small molecule from the Cambridge Structural 
Database. Clearly there is a very close match of the sub-
stituent vectors in the two compounds. 

The substituent vectors in a cyclic hexapeptide also 
matched those of the tendamistat binding loop. The 
compound with the correct side chains is cyclo[Phe-Ala-
Trp-Arg-Tyr-D-Pro]. It inhibits a-amylase with a K{ of 14 
MM. The corresponding acyclic peptide has a K{ of 2 mM. 
In another study, a cyclic compound modeled after a CA­
VEAT hit inhibited thermolysin with a K{ of 7 nM. The 
corresponding acyclic compound has a K{ of 200 nM. Thus 
in both cases 3D searching helped design compounds for 
which the bioactive conformation is heavily populated. 

In addition to the design of new synthetic targets, 3D 
searching can identify new bioactivities in existing mole­
cules. It has identified two new classes of inhibitors of 
HIV-I protease, 837 and 9.38 Both used criteria derived 
from the experimental 3D structure of the enzyme. In 
another case 10 and 11 were correctly recognized to be a 
new series of plant growth regulators.39 In this case the 
search was based on a pharmacophore model. The com­
pounds identified in these three examples are active but 
not as potent as other known compounds. Thus they will 
serve as new leads for molecular modification to optimize 
potency. 

(37) DesJarlais, R. L.; Seibel, G. L.; Kuntz, I. D.; Furth, P. S.; 
Alvarez, J. C; Ortiz de Montellano, P. R.; DeCamp, D. L.; 
Babe, L. M.; Craik, C. S. Structure-based Design of Non-
peptide Inhibitors Specific for the Human Immunodeficiency 
Virus 1 Protease. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 
6644-6648. 

(38) Bures, M. G.; Erickson, J. W. Discovery of Novel Inhibitors of 
HIV-1 Protease by Three-dimensional Substructure Searching. 
Tetrahedron Comput. Methodol., in press. 

(39) Bures, M. G.; Black-Schaefer, C; Gardner, G. The Discovery 
of Novel Auxin Transport Inhibitors by Molecular Modeling 
and Three-Dimensional Pattern Analysis. J. Comput.-Aided 
Mol. Des. 1991, 5, 323-334. 
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Additionally, 3D searching was the basis of de novo 
design of molecules with potential bioactivity. For exam­
ple, Sheridan and Venkataraghavan22 used a pharmaco­
phore derived from the nicotinic agonists 12-15 (Figure 
3) to formulate a search of part of the Cambridge Struc­
tural Database.28 Hundreds of molecules fit into the union 
surface of these four molecules and have atoms at the 
location of the pharmacophore basic or quaternary nitro­
gen atom and the hydrogen-bond acceptor. 16-19 are 
examples of compounds designed by subsequent molecular 
graphics analysis of the hits.22 Figure 3 shows how one of 
the designed molecules fits onto one of the molecules in 
the lead series. 

In another automated design example, Lewis and Dean 
searched the structures of a set of ring compounds to find 
locations on templates at which to add pharmacophore 
atoms.19,20 They also identified atoms to be removed in 
order for the ligand to fit into the binding site. Their work 
is preliminary because so far they have considered 2D 
design only. 

We used dopamine agonists such as 2 and 20-22 to 
formulate a pharmacophore for the template-based design 
of potential dopaminergics.5 We performed geometric 
searches on three databases. Our program mutates the 
database molecules identified into those to be synthesized 
(see below).6 Compounds 23-29 are examples of the 
hundreds of compounds suggested; Figure 4 shows one of 
them. 

6 ^ 

MU 

6CO 

HO HO 

6cft dcP' 
The method designed eight of nine classes of known 

fused-ring phenolic dopaminergic compounds and 62 other 
classes of fused ring compounds with previously unrecog-

\ 
J 

Figure 4. The superposition of a compound used to derive our 
D2 pharmacophore model (dashed line) and a potential dopa­
minergic designed by the computer (heavy lines).6 

Figure 5. Two dopaminergic pharmacophore hypotheses derived 
from 5-hydroxy-2-aminotetralins (fine lines) and 7-hydroxy-2-
aminotetralins (dashed lines).14 In (a), the molecules are su­
perimposed over their meta OH and amino groups. In (b) they 
are superimposed over their catechol rings. The solid line shows 
that the dopaminergic agent SKF 38393 meets the O-N distance 
requirement of (a), but requires the proposal of a new binding 
site for the N in model (b). 

nized potential dopaminergic activity. In addition, at least 
200 types of structures with one rotatable carbon-carbon 
bond were designed. Because we had quantitative CoMFA 
models38 of the dopaminergic receptors, we used the 
forecast affinities to set priorities for synthesis. The low 
frequency of finding the same ring type more than once 
suggests that other searches will design many more po­
tential D2 agonists. Furthermore, compound design based 
on 3D substructure searching is equally applicable to be­
ginning and mature medicinal chemistry investigations. 

The fact that many compounds were identified created 
new problems and opportunities. It was difficult to or­
ganize the thousands of designed compounds. Originally 
this was done manually based on the 2D structures of the 
compounds. However, later we grouped the molecules by 
cluster analysis of geometric variables calculated from the 
pharmacophore and neighboring atoms.40 Multivariate 
analyses of the steric fields of the molecules33 groups them 

(40) Martin, Y. C. Opportunities and Problems of 3D Similarity of 
Molecules for the Computer Design of Bioactive Compounds. 
Abstracts of Papers, 200th National Meeting of the American 
Chemical Society, Washington, DC, Fall 1990; American 
Chemical Society: Washington, DC, 1990. 
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Table I. Sources of Requirements for 3D Searching and Design 
source of 3D 

information for 
the search question 

by similarity in shape. Thus a chemist can choose a series 
of varying shape for synthesis, testing, and CoMFA3a 

analysis. 
Lastly, by searching the 3D structures of active and 

inactive compounds, 3D searching methods can validate 
or refute a pharmacophore hypothesis (Figure 5).14'24,26 

For example, Loew et al.41 searched 3D databases to con­
firm their benzodiazepine pharmacophore. All of the 
known high-affinity classes of ligands for the benzo­
diazepine receptor matched the pharmacophore, including 
several that had not been included in the derivation of the 
model. Only inactive compounds matched constraints that 
were relaxed from the prefered pharmacophore. 3D 
searching to derive or validate a pharmacophore will ex­
pand when we can quickly search all conformations of 
molecules of interest. 

Types of 3D Structure Searching 
3D searching programs and their applications differ from 

each other in a number of respects (Table I). Each of 
these differences affects the characteristics of the molecules 
found or designed by the search. 

Geometric Searches in Which All 3D Features Are 
Required To Be Present. This typically starts with a 
geometric search. Such searches consider the intramo­
lecular relationships between geometric features such as 
points, lines, and planes (Table II) calculated from the 3D 
structure of a ligand.4 Most pharmacophore hypotheses 
are based on such geometric relationships. 

Because the calculations are intramolecular, distances 
and angles are independent of the enantiomer used. 
However, enantiomers have opposite values for torsion 
angles. If the searching program ignores the sign, then 
either enantiomer will pass the search; if it includes the 
sign, then only one enantiomer will pass. 

It is handy if the user can specify the substructural 
environment of the atoms from which the points, lines, and 

(41) Loew, G. H.; Villar, H. 0.; Jung, W.; Davies, M. F. Comput­
er-Aided Drug Design for the Benzodiazepine Receptor Site. 
In Emerging Technologies & New Directions in Drug Abuse 
Research. NIDA Res. Monograph #112. DHHSHUB Number 
(80M) 9101812; Rapaka, R., Makriyanis, A., Kuhar, M. J., Eds.; 
U.S. Government Printing Office: Washington, DC, 1991; pp 
643-661. 
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Table II. Typical Geometric Objects Calculated from the 3D 
Structure of a Database Molecule 
points located at 

nucleus of an atom or center of a lone pair 
center of mass of several atoms (such as the center of a ring) 
projected binding points 

of Hb acceptors or donors 
of charged groups 
at arbitrary locations calculated from other points, lines, 

and planes of the structure (dummy atoms) 
lines 

between any two points above 
least-square line of more than two points 
through a point (e.g. center of mass) and normal to a plane 

planes 
calculated from three points 
least squares calculated from more than three points 
calculated from two lines 

Table III. Typical Geometric Constraints 
constraint geometric objects used 
distance two points 

any atom and a point (defines a sphere) 
any atom and a line (defines a cylinder) 
any atom and a plane 

angle three points 
torsion four points, two lines, two planes, or two points and 

angles one plane (the latter three may have no solution) 

planes will be calculated. For example, if the pharmaco­
phore requires a basic nitrogen atom, neither an amide nor 
a quaternary ammonium at this site will do. On the other 
hand, for automated 3D design one might wish to specify 
atoms of geometric interest such things as "an sp3 aliphatic 
atom in a ring of any size". A broad atomic specification 
also can help in searching for hydrophobic regions or hy­
drogen-bond donors or acceptors. 

Table III lists the commonly used geometric constraints 
for describing the molecules to be identified. 

As shown in Table I, the criteria may come from the 3D 
properties of one ligand, from pharmacophore mapping of 
a set of active and inactive ligands, or from the 3D 
structure of the protein or nucleic acid target. 

Molecular modeling of an active compound might sug­
gest several possible bioactive conformations. To probe 
which is correct, one would use 3D searching to design 

how the 3D 
requirements 
are described 

how the 3D 
requirements 

are established 
results of the 

search or design refs 
geometric (see Table II) molecular graphics 

geometric (see Table II), 
superposition rule, and 
surface description by 
points, spheres or 
CoMFA coefficients 

centers of spheres that fill 
the union surface (plus 
distance between 
pharmacophore atoms) 

geometric (see Table II) 

molecular graphics and 
union surface calculation 
or CoMFA fit2" 

molecular surface analysis 
of the binding site 

molecular graphics 

geometric (see Table II) molecular graphics 

centers of spheres that fill 
the site 

molecular surface analysis 
of the binding site 

location of H-bond donor 
and acceptor atoms 

molecules that match the 14,15, 
pharmacophore 24-28,45 

molecules that match the 14, 25, 45 
pharmacophore and have 
a shape consistent with 
bioactivity 

molecules that fit into the 
union surface and fit the 
pharmacophore 

potential energy 
calculations42,43 or rules 
derived from experiment44,47 

potential energy calculations as the molecule is 
being designed 

22 

molecules that mimic the 
ligand 

molecules that fix the 
conformation 

molecules that fit into the 
binding site and occupy 
some of the sites 

molecules that hydrogen 
bond to some or all of the 
groups in the binding site 

molecules that fill the site 

14, 15, 21, 
25-28 

14, 15, 21, 
25-28 

18, 46-49, 
51, 55, 56 

8-11,14, 25-27, 
19, 20, 47 

6 

pharmacophore model from 
several active molecules 

pharmacophore model from 
several active molecules 

pharmacophore model 
from several active 
molecules 

proposed bioactive 
conformation of a ligand 

a low-energy conformation 
of a ligand 

3D structure of the protein 
or DNA binding site 

3D structure of the protein 
or DNA binding site 

3D structure of the protein 
or DNA binding site 
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Asp 25 Asp 25' 

V V 
Gly 27 0.,,, ...0 Gly 27' 

"•"••H »•*• o 
3.8A..-" 

D°nP r 15.6-7.0 A 

4.9- ,-••' 3 . 7 - \ 
6.6 k/ 6.0A '••., 

Acceptor 
Hydrophobic' 

H'' ''H 

I I 
N N 

lie 50 lie 50' 
Figure 6. The search query for HIV-1 protease inhibitors de­
signed from the 3D structure of the A-74704-protease complex. 
It required a H-bond donor and acceptor, an OH group, and a 
hydrophobic region at the indicated distances. The required 
interactions with the protein are shown by hashed lines.38 

several mimics of each. The structure-activity relation­
ships of the unconstrained molecule would suggest which 
groups are necessary to include in the mimics. 

Pharmacophore mapping with several active and inac­
tive compounds29 or a 3D QSAR analysis3 might suggest 
regions in space that an active ligand cannot occupy. In 
geometric searching these forbidden regions are specified 
with dummy atoms calculated from the structure of the 
ligand. 

An experimental 3D structure of a ligand-macromole-
cule complex might establish the geometric requirements. 
For example, geometric criteria for HIV-1 protease in­
hibition were derived from the structure of a protease-
ligand complex.38 The search shown in Figure 6 identified 
the inhibitor 9.38 Alternatively, one could remove the 
ligand from the structure of the complex, calculate the 
location of especially favorable potential interactions,4243 

and search for or design ligand molecules that match these 
criteria. One can also describe the principal features of 
the size and shape of the binding site with dummy atoms. 
However, in this case steric searching is also especially 
useful. 

Using dummy atoms in geometric searches has limited 
utility to probe whether a database molecule can fit into 
a binding site. Sometimes the location of a forbidden 
region cannot be established precisely from points within 
the database molecule. For example, notice in Figure 5a 
that the pharmacophore N and O atoms do not overlap 
exactly. Thus, the location of a dummy atom described 
by distances from these atoms will differ from molecule 
to molecule. Also, for some molecules the supplied con­
struct results in zero or two points. Lastly, unless signed 
torsion angles are included, geometric searching does not 
distinguish enantiomers. 

Prescreening To Reduce Search Time for Geome­
tric Searches. Most geometric searching systems are 
interactive for simple queries. Searching is made fast by 

(42) Goodford, P. J. A Computational Procedure for Determining 
Energetically Favorable Binding Sites on Biologically Impor­
tant Macromolecules. J. Med. Chem. 1985, 28, 849-857. 

(43) Boobbyer, D. N. A.; Goodford, P. J.; McWhinnie, P. M.; Wade, 
R. C. New Hydrogen-Bond Potentials for Use in Determining 
Energetically Favorable Binding Sites on Molecules of Known 
Structure. J. Med. Chem. 1989, 32, 1083-1094. 
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screening out the 95-99% of the compounds that have no 
chance to meet the 3D constraints.4,16,21'25"28'44 Screens are 
established corresponding to values of frequently searched 
distances or torsion angles. For example, bit 1 of the screen 
might correspond to an O-N distance of 2.0-3.0 A, but 2 
to 3.01-3.50 A, bit n to an 0 - 0 distance of 2.1-2.8 A, and 
bit n + 1 to 2.81-3.24 A, etc. CAVEAT21 uses screens based 
on the angles between the substituent vectors. At search 
time the screens that match the search query are generated 
and structures that do not match them are eliminated from 
further consideration. After screening, a geometric search 
tests if the molecules have the required features. 

Screening requires increased computer time during da­
tabase loading of molecules since one must calculate all 
the distances and/or torsion angles of the structures and 
assign the appropriate screens. Screening is not effective 
if every molecule in the database has the feature. 

Steric Searching in Conjunction with Geometric 
Searching. Ligand binding sites on macromolecules are 
of limited size and definite shape. We might know the 
shape directly from the 3D structure of the macromolecular 
target or hypothesize its smallest extent as the surface that 
encloses all superimposed active molecules. Thus, it makes 
sense to search for molecules that could fit into the sites 
of interest. Steric searches do this. The result of a steric 
search is different for enantiomers of a molecule. 

The steric searches in ALADDIN and 3DSEARCH are simply 
an automation of what one would do interactively in a 
molecular graphics program. The user supplies the loca­
tion of the points to use in the superposition. In ALADDIN,14 

one also specifies the location of the dot surface points in 
the same orientation frame or negative CoMFA45 coeffi­
cients: in 3DSEARCH25 one specifies the surface as a set of 
points with specific radii. The programs superimpose the 
database molecule and check if any atom in it intersects 
with the supplied surface representation. In ALADDIN45 the 
intersecting atoms are labeled for subsequent removal. 

Lewis and Dean19,20 also used a combined geometric-
steric searching strategy in their molecular design program 
OPTIMUS. They first calculate, from the 3D protein 
structure, the optimal location of hydrogen-bond donors 
and acceptors in a ligand. They then use geometric 
searching on generic skeletons to identify spacers that 
would hold the H-bonding atoms in place. Finally, they 
orient the spacer in the protein by placing putative 
pharmacophore atoms of the spacer at optimal positions 
of hydrogen-bonding groups. Lastly, they identify atoms 
on the spacer that are inside the protein surface, remove 
these atoms, and reestablish that the spacer still is one 
molecule. As noted above, they have published on 2D 
searches only. 

Searches in Which Not Every Query 3D Feature 
Need Match. Kuntz et al.,46 and later others,47,48 used 
clique-detection methods to find possible orientations of 

(44) Cringean, J. K.; Pepperrell, C. A.; Poirrette, A. R.; Willett, P. 
Selection of Screens for Three-Dimensional Substructure 
Searching. Tetrahedron Comput. Methodol. 1990, 33, 7-46. 

(45) Martin, Y. C; Danaher, E. B. Unpublished extensions to 
ALADDIN software. 

(46) Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, 
T. A Geometric Approach to Macromolecule-ligand Interac­
tions. J. Mol. Biol. 1982, 161, 269-288. 

(47) Kuhl, F.; Crippen, G. M.; Friesen, D. A Combinatorial Algor­
ithm for Calculating Ligand Binding. J. Comput. Chem. 1984, 
5, 24-34. 

(48) Smellie, A. S.; Crippen, G. M.; Richards, W. G. Fast Drug-
Receptor Mapping by Site-Directed Distances: A Novel Me­
thod of Predicting New Pharmacological Leads. J. Chem. Inf. 
Comput. Sci. 1991, 31, 386-392. 
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Uganda in a protein binding site. In DOCK,46 the binding 
site is described by the smallest set of spheres that fill it. 
The potential ligand is described as a set of points located 
at the atomic nuclei. The algorithm orients the ligands 
in the binding site by superimposing some of the ligand 
atoms onto some of the centers of the site-spanning 
spheres. 

A clique is a collection of points with known distances 
between them. The methods pair a ligand and a site point 
on the basis of the distance of all other points in the clique 
to them. A correspondence between the two is found when 
every distance between the included ligand points is within 
the tolerance of being equal to the corresponding distance 
between the included site points. A clique is the collection 
of these corresponding points. 

DOCK keeps only those orientations of the potential 
ligands for which all atoms are inside the surface of the 
binding site.46 The orientations are further ranked by the 
fraction of the site occupied. As noted above, later 
workers22 added the requirement that the oriented data­
base molecule must have atoms within 0.5 A of the pro­
posed locations of the pharmacophore atoms. These 
identified atoms will be manually converted into phar­
macophore atoms in the designed molecules. 

DOCK has been extended to database searching and lig­
and design.18,22 In Version 2, chemical points in the 
binding site serve as docking centers. The scoring function 
is being changed to a potential-energy calculation including 
solvation.49 

The scoring method in the original version of DOCK has 
been evaluated in a test with a 101 compounds tested as 
a-chymotrypsin inhibitors.60 Eight of the top ten scoring 
molecules are active inhibitors. The 3D searching and 
scoring method produces a statistically significant en­
hancement of active molecules compared to a random 
search. 

Other steric searching algorithms are being developed. 
For example, the program SPERM is quite fast with 50 000 
compounds searched in 2 h. In this program the 3D sur­
face of a molecule is projected on to an icosahedron. Its 
shape is described by the lengths of 32 vectors from the 
center of mass to the vertices. An active molecule or the 
superposition of several molecules forms the search query 
and database molecules are tested for shape similarity to 
it. They rank orientations and molecules by the sum of 
the squared differences of the lengths of the vectors. A 
search of 30000 compounds of the Cambridge Structural 
Database for those that mimic netropsin identified a eight 
known binders to DNA in the top 50 scoring molecules. 
The molecules identified by SPERM and DOCK are not 
identical. 

Conformational Flexibility. Clearly a 3D search will 
not be complete until we can examine all energetically 
feasible conformations of the molecules. One solution is 
to store all conformations of every molecule. This clearly 
suggests huge databases and long searches. Methods that 
use more chemical knowledge promise to be more efficient. 

DesJarlais et al.52 considered flexible ligands in DOCK. 

(49) Kuntz, I. D.; Shoichet, B.; Bodian, D.; Roe, D.; Lewis, R.; 
Huang, C; Ferrin, T.; Langridge, R. Recent Advances in Mo­
lecular Docking. Abstracts of Papers, 202nd National Meeting 
of the American Chemical Society: New York, NY, Fall 1991; 
American Chemical Society: Washington, DC, 1991. 

(50) Steward, K.; Bentley, J.; Cory, M. Docking Ligands into Re­
ceptors: The Test Case of a-Chymotrypsin. Tetrahedron 
Comput. Methodol., in press. 

(51) van Geerestein, V. J.; Grootenhuis, P. D. J.; Haasnoot, C. A. 
G. 3D Shape Fitting and 3D DB Searching by SPERM. Tet­
rahedron Comput. Methodol., in press. 

They docked the fragments on either side of the rotatable 
bond at overlapping adjacent sites on the protein and then 
checked if the bond length was proper. The user supplied 
the rotatable bond information. A similar notion can be 
used in geometric searching by specifying distances not 
between atoms on a flexible chain, but rather of each to 
some point that is expected to be conformationally in­
variant.53 A trivial example of this would be if one were 
searching for a phenol in which the orientation of the 
hydroxy hydrogen atom was important for the pharma­
cophore. Instead of using the orientation of the hydroxyl 
in the database, one could calculate the positions of dum­
my atoms at the two orientations of the H in the plane of 
the ring from the location of the O, its attached carbon, 
and the carbons attached to it. Usually, these flexible 
searches require too much information about the molecules 
being searched for them to be expected to be thorough. 

CHEMX does a rule-based conformational search on each 
molecule as it is loaded into the database.27 The low-en­
ergy conformations are used to generate the screens. Only 
the starting or first low-energy conformation is kept. Such 
conformational keying proceeds at 15-20000 structures/ 
day on an IBM RS/6000. At 3D search time, if a molecule 
passes the screen the conformational search is repeated 
to produce the target conformation. 

Haraki et al.54 compared searching using CHEMX starting 
structures and conformational flexibility vs the single 
CONCORD conformation. They made 3D databases of 22000 
compounds with known biological activities. In four of the 
five searches there were more hits if the molecules were 
allowed flexibility. However, in the case of 5HT3 agonists, 
the single CONCORD structures produced more hits and 
identified more of the compounds labeled as serotonergic. 
This difference suggests that as run, CHEMX27 did not 
search the conformations made by CONCORD.30 Haraki et 
al.54 also calculated the fraction of active compounds in 
the hit list vs in the database. In every case, the searching 
based on the single conformation produced a higher en­
hancement. Thus 3D searching on all possible confor­
mations of molecules requires careful attention to accu­
rately generating and evaluating these conformations. 

Smellie et al.48 extended the ideas in DOCK by allowing 
for conformational flexibility of the ligand. In the example 
published, the site points are the location of hydrogen bond 
donors and acceptors on a protein. The 3D structure of 
the protein fixes the distances between them. Similarly, 
the ligand atoms are described by their hydrogen-bonding 
character. 

To search all conformations of the ligand they imple­
mented the idea4 that the 3D structure of the ligand be 
described by the distance bounds matrix used in distance 
geometry.55 Accordingly, for the clique-detecting algor-

(52) DesJarlais, R. L.; Sheridan, R. P.; Dixon, J. S.; Kuntz, I. D.; 
Venkataraghavan, R. Docking Flexible Ligands to Macromo-
lecular Receptors by Molecular Shape. J. Med. Chem. 1986, 
29, 2149-2153. 

(53) Guner, O. F.; Henry, D. R.; Moock, T. E.; Pearlman, R. S. 
Flexible Queries in 3D Searching. Techniques in 3D Formu­
lation. Abstracts of Papers, 202nd National Meeting of the 
American Chemical Society, New York, NY, Fall 1991; Amer­
ican Chemical Society: Washington, DC, 1991. 

(54) Haraki, K. S.; Sheridan, R. P.; Ruskino, A., Ill; Venkatara­
ghavan, R.; Dunn, D. A.; McCulloch, D. Looking for Pharma­
cophores in 3D Databases: Does Conformational Searching 
Improve the Yield of Actives? Tetrahedron Comput. Metho­
dol., in press. 

(55) Crippen, G. M.; Havel, T. F. Distance Geometry and Molecular 
Conformation. In Chemometrics Research Studies Series; 
Bawden, D., Ed.; Research Studies Press: Letchworth (Wiley); 
New York, 1988. 
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ithm they supply the upper and lower bounds of the dis­
tance between the atoms in all possible conformations of 
the ligand. This distance bounds matrix is quickly cal­
culated from bond lengths, bond angles, and van der Waals 
radii. In principle, only the 2D structure of the molecule 
is needed. The matrix is smoothed so that for every three 
points no one side is longer than the sum of the other two 
nor shorter than their difference. This raises some lower 
bounds and lowers some upper bounds. 

There is a tentative match between site and ligand 
points when the distances to the ligand points are within 
the hydrogen-bonding tolerance of the corresponding at­
oms in the protein. These matches must be validated by 
the distance geometry embedding procedure.55 This tests 
if the distance ranges of the proposed docking correspond 
to an actual 3D structure of the ligand. In the embedding 
they included, but kept rigid, all protein atoms within 6 
A of the ligand. Only 20% of the cliques actually pass this 
step. 

Smellie et al.48 reported that the distance bounds cal­
culation and clique matching takes approximately 1 s on 
a low-end workstation. The distance bounds calculation 
is the more time consuming of the two. The subsequent 
embedding stage takes much longer than 1 s. Thus, with 
the described algorithms, searching a 60000 compound 
database would take a minimum of 20 h. However, one 
could calculate and store the distance bounds when the 
database is built to eliminate the need to calculate them 
at run time. 

Blaney reported a similar solution to the same problem 
using DOCK.56 After the matching points are found, several 
3D structures of the ligand are generated with the em­
bedding procedure. The maximum distance between site 
points sets the maximum for all upper distance bounds of 
the ligand. The final distance geometry embedding uses 
the radius and location of the spanning spheres to describe 
the protein. A test with docking methotrexate to di-
hydrofolate reductase suggests that 10-100 random fits are 
needed to approximate the experimental binding orien­
tation. Each fit takes 1.7 s on a high-performance 
workstation. Thus, 100 tries at fitting each ligand will take 
3 min. Embedding will always be necessary and with 
current algorithms it is slow. 

Recently, Clark et al.57 used the bounded distance ma­
trices to set distance screens analogous to those used for 
single conformations.44 They tested a database of 1538 
molecules against eight literature pharmacophores. A 
mean of 16 molecules passed the screening when the 
CONCORD conformation was tested but 147 passed screening 
with distance bounds. From the distance bounds search, 
a mean of 107 3D structures consistent with the pharma­
cophore could be generated. This is to be compared with 
16 for the rigid search. 

For each molecule matched in the flexible search there 
are approximately nine atom matchings possible. Thus 
although screening eliminates 90% of the molecules in the 
database, each remaining molecule potentially matches 
nine ways. Certain applications could stop with the first 
match, but others would require that all be processed. 

(56) Blaney, J. A Distance Geometry-based Approach for Docking 
Conformationally Flexible Molecules from 2D or 3D-Chemical 
Databases. Abstracts of Papers, 202nd National Meeting of 
the American Chemical Society, New York, NY, Fall 1991; 
American Chemical Society: Washington, DC, 1991. 

(57) Clark, D. E.; Willett, P.; Kenny, P. W. Pharmacophore Pat­
tern Searching in Files of Three-Dimensional Structures: Use 
of Smoothed-Distance Matrices for the Representation and 
Searching of Conformationally Flexible Molecules. J. Mol. 
Graphics, in press. 

These workers concluded that, with current algorithms, 
flexible 3D searching is at least 100X slower than rigid 3D 
searching. 

Conformational flexibility represents a challenge in both 
computer resources and in further processing the many 
hits. Advances on both fronts will make this new tool even 
more useful for medicinal chemists. 

3D Similarity. By analogy with 2D similarity searching 
methods,58 3D similarity searching ranks database mole­
cules relative to a known active molecule. Similarity 
searching requires no prior molecular graphics or phar­
macophore mapping. Therefore, these methods are useful 
in identifying compounds for testing to provide the 
structure-activity information for later pharmacophore 
mapping. 

Pepperrell, Willett, and Taylor explored the ability of 
different definitions of 3D similarity to detect molecules 
that have the same biological activity as the input mole­
cule.59 They found that a method called atom mapping 
is the most effective. This method identifies atoms in the 
database molecule that are identical in atomic number and 
most similar in intra-atomic distance profile to the atoms 
of the query molecule. The distance profile retains the 
atomic number of the atoms so that only distances between 
corresponding pairs are compared between molecules. The 
atoms of the database molecule are mapped onto the query 
molecule in order of decreasing atomic similarity. The 
overall 3D similarity is the sum of the mapped atom sim­
ilarities. For example, a search based on 30 identified 
31-35 as the four most 3D similar molecules. In contrast, 
36-39 are most similar in 2D. 

o 

30 31 32FUEt 
33 R . Me 

O 

35 ° 

C I A ^ o o KJ 
37 3 8 

Even at this early stage of development, 3D similarity 
searching is fast, 50-100 compounds per second. It thus 
would take 10 min to rank 60 000 structures. Yet if the 
list were shortened to 6000 structures by requiring certain 
substructures to be present and that there is physical 
sample to test, even today it would be interactive. 
Programs That Design New Molecules 

ALADDIN. This program includes a special language, 
MODSMI, for the automatic generation of the 2D structures 
of the compounds suggested from 3D substructure 
searching for geometric mimics.6 (The 3D structures of 
the designed molecules are generated with CONCORD.30) 
MODSMI is used to tell the computer how to transform the 
database molecules into those that meet the pharmaco-

(58) Willett, P. Similarity and Clustering Methods in Chemical 
Information Systems; Research Studies Press: Letchworth, 
1987. 

(59) Pepperrell, C. A.; Willett, P.; Taylor, R. Implementation and 
Use of an Atom-mapping Procedure for Similarity Searching 
in Databases of 3-D Chemical Structures. Tetrahedron Corn-
put. Methodol, in press. 
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Figure 7. The superposition of a database molecule and the 
known dopaminergic designed from it with ALADDIN.5 

phore requirements. The verbs "nibble", "replace", "join", 
and "axe" tell the program to remove the identified atom-
(s), to replace one set of atoms with another, to join two 
atoms to form a bond, or to change the bond order by the 
specified amount. The user also supplies the symbols of 
the atoms to be added with the "replace" command. 

The atoms that are the object of the action are identified 
by their substructure environment and whether they are 
labeled as part of a specific geometric object This provides 
a way to transform only the appropriate atoms in the 
database molecules into the pharmacophore atoms. 

In our design of dopaminergics and analgetics we iden­
tified "any aromatic atom in exactly one six-membered 
ring". For these designs, we also searched for an sp3 ali­
phatic atom not attached to an aromatic ring. If the 
distances between these two types of atoms were correct, 
we added the OH to the former and converted into a 
carbon if it were not so. We modified the latter to form 
the basic nitrogen. 

To reduce the number of geometrically similar mole­
cules, we also typically use MODSMI to remove atoms that 
do not contribute to the geometric relationships of the 
pharmacophore atoms.5 For example, side chains and 
nonpharmacophore substituents on rings are removed. We 
also usually change aliphatic ring oxygen and nitrogen 
atoms into carbon atoms and pyridyl nitrogen atoms. 

Figure 7 shows the structure of a database molecule 
superimposed over that designed by ALADDIN. 

OPTIMUS. This program automatically removes atoms 
that penetrate into the protein and checks that this re­
moval does not destroy the integrity of the ligand nor 
change its geometry substantially.19'20 It also identifies 
atoms that should be converted to hydrogen-bond donors 
or acceptors by some manual procedure. In validation 
studies, it used the 3D structure of dihydrofolate reductase 
to design the pteridine ring of methotrexate, a known 
DHFR inhibitor. It also identified an amidinophenyl 
grouping for the AAPA binding site on trypsin.20 

GROW. This computer program builds up the structure 
of a potential peptide or peptide-like ligand within a 
binding site of known 3D structure.7 It uses 3D molecular 
fragments of the building blocks in different conforma­
tions. For example, some fragments are the amides of the 
natural amino acids in each low-energy conformation of 
the side chain. The fragments are iteratively pieced to-
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gether within the binding site. Each stage of ligand growth 
is evaluated with an energy function that considers van 
der Waals, coulombic, strain, and desolvation energies. 
Every fragment is tested for a given position in the chain, 
and then the n (usually 10) best-fitting are used as starting 
structures for the next building step. The n best fit side 
chains are kept and the process repeated on the new 
growing end. The user specifies a starting point and di­
rection of addition at each stage. 

The energy function and search strategy has been va­
lidated by demonstrating that GROW reproduces the known 
binding orientations of inhibitors of rhizopuspepsin and 
HIV-1 protease. More importantly, GROW designed a 
substrate for rhizopuspepsin and a peptide inhibitor of 
renin, Kl-30 mM, which is approximately equipotent to 
molecules patterned after human angiotensinogen. 

LUDI. This program is similar to GROW and OPTIMUS in 
concept.8 Starting with a binding site of known 3D 
structure, the position of potential hydrogen bonding and 
hydrophobic groups in the binding site is estimated from 
empirical rules or data derived from the Cambridge 
Structural Database. A database of fragments is searched 
and placed at favorable positions in the binding site. Then 
a second database is searched to find spacers that bridge 
the fragments into a single molecule. The method was 
validated by showing that the crystal packing of benzoic 
acid is reproduced and that methotrexate is correctly built 
into dihydrofolate reductase. 

Sources of 3D Structures for Searching 
Unless one is using distance geometry type searches, it 

is necessary to supply 3D coordinates to search. Experi­
mental 3D data (usually crystallographic) on small mole­
cules is collected in the Cambridge Structural Database 
of ~85000 3D structures.28 Software is supplied for 3D 
searching of this database. Eyermann used its supplied 
software for geometric searches to find leads for 3D de­
sign.60 Additionally, DOCK and CAVEAT search subsets of 
this file. 

CONCORD generates a 3D structure from an input 2D 
structure in a few seconds.30 Its expert system uses 
chemical intuition and a novel strain function that op­
timizes over a single composite variable, CONCORD pre­
serves the stereochemistry from MACCS61 or stereochemical 
SMILES files62 or it will produce all stereoisomers. Small 
organic molecules are handled well, but peptides are not. 
CONCORD is the standard program for creating 3D data­
bases of corporate,5,23 commercially available,5,63 and bio­
logically active compounds,5,63 and Chemical Abstracts 
(4000000) molecules.64 Its most serious limitation is that 
one conformation does not describe the 3D properties of 
most molecules. 

AIMB also rapidly generates a 3D structure from 2D in­
put.31 It finds the smallest set of fragments that covers 

(60) Eyermann, C. J.; Lam, P. Y-S.j Kerr, J. S.; Ripka, W. C. Using 
Databases as an Aid in Developing Synthetic Targets. Ab­
stracts of Papers, 202nd National Meeting of the American 
Chemical Society, New York, NY, Fall 1991; American Chem­
ical Society: Washington, DC, 1991. 

(61) MACCS-II and MACCS-3D are software products from Mo­
lecular Design Limited, San Leandro, CA 94577. 

(62) Weininger, D.; Weininger, A. SMILES. A Chemical Language 
and Information System. 1. Introduction to Methodology and 
Encoding Rules. J. Chem. Inf. Comput. Sci. 1989, 28, 31-36. 

(63) Henry, D. R.; McHale, P. J.; Cristie, B. D.; Hillman, D. 
Building 3D Structure Databases. Experiences with MDDR-
3D and FCD-3D. Tetrahedron Comput. Methodol., in press. 

(64) Fisanick, W. Characteristics of Computer Generated 3D and 
Related Molecular Property Data for CAS Registry Sub­
stances. Tetrahedron Comput. Methodol., in press. 



2154 Journal of Medicinal Chemistry, 1992, Vol. 35, No. 12 Perspective 

the input molecule with a 2D search on molecules in a 3D 
database. In the second step it uses these to generate the 
3D coordinates. The time to build a structure decreases 
as the size of the 3D database searched increases. The 3D 
builder in the CHEMX system65 uses this concept and has 
been used to build 3D databases of biologically active 
compounds. 

WIZARD and COBRA generate "all" low-energy conforma­
tions of a molecule.32 They use 3D templates and artificial 
intelligence criticism of starting structures to generate 
conformations. 

Gasteiger et al.66 also developed a 3D structure-gener­
ating program that applies to the entire range of organic 
chemistry. It is claimed to handle macrocyclic compounds 
more satisfactorily than previous programs. 

Since these programs are so fast, here may be no ad­
vantage to storing the coordinates in databases, which use 
disk space and need to be regenerated for new versions of 
the structure generator. For example, ALADDIN can gen­
erate with CONCORD the 3D structures it is to search.45 The 
user supplies the search query and a list or database of 2D 
structures. 

Implications of 3D Searching Methods beyond 
Database Searching 

The 3D searching programs need a description of a 
pharmacophore or experimental binding site that the 
computer can process. These descriptions provide one the 
opportunity to make a database of the pharmacophores. 
Imagine a system in which the 3D structures of molecules 
proposed for synthesis would be compared with this da­
tabase of pharmacophore descriptions.67 Unanticipated 
potential biological properties might be so identified. 

Directions of the Field 
The algorithms for 3D searching are being continually 

improved. For example, the user frequently supplies a set 
of distances that implicitly constrain other distances. Clark 
et al.68 showed that, if the program generates these other 
constraints, more compounds are eliminated from con­
sideration. 

Cross et al.69 at Chemical Abstracts are investigating how 
to integrate 2D and 3D searching to gain the maximum 
search speed. They use sophisticated screens based on 2D 
substructure environment and 3D properties to eliminate 
as many compounds as possible from more detailed 
checking. Currently, their system can process 2000-6000 
structures per minute. Fisanick et al.64 are investigating 
flexibility/rigidity indices and minimum-maximum in­
teratomic distances calculated from the 2D structure of 
the molecule. These numbers can be used to set screens 

(65) Chem-X molecular modeling software, developed and distrib­
uted by Chemical Design Ltd., Oxford, England, 1991. 

(66) Gasteiger, J.; Hiller, C; Rudolph, C; Sadowski. Automatic 
Generation of 3D Atomic Coordinates for Organic Molecules. 
Tetrahedron Comput. Methodol., in press. 

(67) Martin, Y. C; Kim, K. H.; Bures, M. G. Computer-Aided Drug 
Design in the 21st Century. In Medicinal Chemistry in the 
21st Century; Wermuth, C, Koga, N., Gujral, P. D., Eds.; 
Blackwell: Boston, in press. 

(68) Clark, D. E.; Willett, P.; Kenny, P. W. Pharmacophoric Pat­
tern Matching in Files of Three-Dimensional Chemical Struc­
tures: Use of Smoothed Bounded Distances for Incompletely 
Specified Query Patterns. J. Mol. Graphics 1991, 9,157-163. 

(69) Cross, K. Comparison of Atom-by-atom 3D Search Routines 
for Searching CAS Registry Substances. Abstracts of Papers, 
202nd National Meeting of the American Chemical Society, 
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to speed up searching. Additionally, the flexibility/rigidity 
indices may be useful for property prediction. They are 
also extending the results of Clark et al.68 by including 
more known geometric properties of triangles to speed up 
the searching procedure. 

Bradshaw and Maliski70 suggested the use of the most 
restrictive paths between atoms as a means to set the 
bounds on the distance between them. The most re­
strictive paths are derived from the 2D structure of the 
molecule. For example, one would want to avoid full 3D 
searching on a structure that does not have enough atoms 
between those of interest to possibly meet the distance 
constraint. The most restrictive paths would set narrower 
distance ranges than would distance geometry triangle 
smoothing and are potentially much faster to calculate. 
They propose establishing screens using distance bounds 
generated with this procedure as the molecules are loaded 
into the database. When a 3D search is done, molecules 
that cannot meet the criteria are eliminated. Only at this 
time would one generate the 3D structures for the mole­
cules that pass. This strategy eliminates the storage of 
large 3D databases and the problem of updating them 
when a new version of the 3D generator or a totally new 
3D generator is available. It also eliminates the computer 
time used to generate 3D structures that never meet a 
screen. 

The results from 3D searching will be only as good as 
the data on which the searches were derived. Methods 
based on the 3D structure of proteins suffer from the lack 
of accuracy of these structures and from the problems of 
accurately computing the interaction energies of proposed 
ligands. We are only beginning to understand how to 
handle solvation of the unbound molecule and the active 
site. Bound water molecules and other solutes in the 
complex also complicate predictions. Other problems arise 
for searches based on pharmacophore mapping. First, one 
must derive the model. If the correct set of molecules has 
not been tested, there may be several rather than one 
model. Beyond this, the assumption of a common binding 
mode might be invalid. Continued improvements in these 
disciplines that supply the 3D information will lead to 
increased accuracy of the 3D searching results. 

Other groups are working on the design of molecules to 
fit a binding site or to match a pharmacophore.71,72 The 
build-up procedures face the problem that the number of 
designed molecules equals product of the number of parts 
that fit at each site. This can become a huge number of 
suggestions. For molecules that are built into a known 3D 
structure, energy calculations as in GROW can set priorities. 
Simulated annealing procedures to select the best side 
chains have also shown promise. However, for molecules 
that are built to match a pharmacophore, it would seem 
that some 3DQSAR method would need to be used to set 
priorities. The integration of the techniques from different 
laboratories into a useful computer program remains a 
challenge. 
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