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0.5 H1 H-4"), 3.70 (m, 0.5 H, H-I"), 3.00-2.50 (complex m, 1 H, 
H-5" of cis isomer cis to S and H-5" of trans isomer cis to S), 2.29 
(m, 0.5 H, H-5" of trans isomer trans to S), 1.93 (m, 0.5 H, H-5" 
of cis isomer trans to S), 1.61 (acetonide CH3), 1.44 (s, 9 H, 
BoC-CH3), 1.41 (s, 3 H, acetonide CH3); IR (neat) 3329 (N-H), 
2888 (aliphatic C-H), 1679 (C=O), 1463,1385 (O=C) cm"1. Anal. 
(C23H32N6O6S) C, H, N. 

S -(5'-Deoxy-5'-adenosyl)-1 -amino-4-mercapto-2-cyclo-
pentene (14). A 0.150-g portion of 13 was dissolved in 3 mL of 
88% formic acid and allowed to stir at room temperature for 2 
days. The reaction mixture was then diluted to 25 mL with water, 
and the aqueous layer was extracted with three 25-mL portions 
of ether and lyophilized to yield a pale yellow solid. The solid 
was then purified by chromatography on silica gel (CHCl3/ 
MeOH/NH4OH 9:2:1); fractions containing the product (Rf = 0.52) 
were pooled, 50 mL of water was added, and the mixture was 
concentrated on a rotary evaporator until the pH of the aqueous 
layer was neutral. The aqueous solution was lyophilized to afford 
pure 14 (0.093 g, 86.2% yield) as a white solid: 1H NMR (CD3OD) 
5 8.31 (s, 1 H, H-2), 8.21 (s, 1 H, H-8), 6.17 (d, 1 H, H-I'), 5.97 
(m, 1 H, H-2"), 5.80 (m, 1 H, H-3"), 5.02 (m, 1 H, H-2'), 4.79 (m, 
1 H, H-3'), 4.32 (m, 1 H, H-4'), 4.18 (m, 1 H, H-I"), 4.06 (m, 1 
H, H-4"), 3.30 (m, 2 H, H-5'), 2.97 (complex m, 2 H, H-5"); IR 
(KBr) 3336 (N-H), 3192 (O—H), 2917 (aliphatic C-H) cm"1. 
Anal. (C16H20N6O3S) C, H, N. 

£-(5'-Deoxy-5'-adenosyl)-l-ammonio-4-(methyl-
sulfonio)-2-cyclopentene Disulfate (3). Compound 14 (0.093 
g, 0.00026 mol) was dissolved in 2 mL of a 50:50 mixture of formic 
acid and acetic acid along with 0.148 g (0.065 mL, 0.001 mol) of 
iodomethane. A 0.108-g (0.00052 mol) portion of silver perchlorate 
dissolved in 1.08 mL of 50:50 formic acid/acetic acid (10% w/v) 
was then added. The reaction mixture was allowed to stir at room 
temperature overnight, after which the yellow precipitate was 
removed by centrifugation. The clear solution was diluted to 50 
mL with water and extracted with three 25-mL portions of ether, 
and the aqueous layer was lyophilized to afford a light yellow solid. 
The solid residue was chromatographed on silica gel (butanol/ 
acetic acid/water 1:1:1), and the product-containing fractions were 
pooled and diluted to 50 mL with water. The aqueous layer was 
washed with 25 mL of ether and lyophilized to give a white solid. 
The solid was dissolved in 0.1 N H2SO4, and ethanol was added 
to precipitate the product as a white solid (0.107 g, 71.6%): 1H 
NMR (CD3OD) S 8.49 (s, 1 H, H-2), 8.47 (s, 1 H, H-8), 6.46 (m, 
1 H, H-2"), 6.40 (m, 1 H, H-3"), 6.12 (d, 1 H, H-I'), 5.08 (m, 1 
H, H-2'), 4.75 (m, 1 H, H-3'), 4.58 (m, 1 H, H-4'), 3.91 (complex 
m, 2 H, H-I" and H-4"), 2.90 (complex m, 2 H, H-5"), 2.82 (s, 
3 H, CH3); IR (KBr) 3536, 3403 (N-H, O—H), 2935 (aliphatic 
C-H) cm'1. Anal. (C16H24N6O3S-2HSO4-0.5EtOH) C, H, N. 

Enzyme Purification. AdoMet-DC is isolated from Es­
cherichia coli using a modification of the methylglyoxal bis(gu-
anylhydrazone) (MGBG) Sepharose affinity column procedure 
of Anton and Kutny.21 The column is prepared by incubating 

Introduction 
The formulation of quantitative structure-activity re­

lationships (QSAR) has had a momentous impact upon 
medicinal chemistry for the past 30 years. Hansen dem­
onstrated that the biological activities of drug molecules 

MGBG with epoxy-activated Sepharose 4B at pH 11 as described. 
E. coli (3/4 log phase, Grain Processing Co., Ames, IA) are lysed 
in 5 volumes of 10 mM Tris-HCl, 0.5 mM EDTA, and 0.5 mM 
dithiothreitol, pH 8.0, by a single pass through a French press. 
A 5% solution of streptomycin sulfate is then added to give a final 
concentration of 1%, and the cell debris is removed by centri­
fugation at 20000g for 2 h. AdoMet-DC is allowed to adsorb to 
the gel by stirring the gel and the lysate supernatant together for 
1 h after bringing the MgCl2 concentration to 10 mM. Binding 
is considered complete when residual AdoMet-DC activity in the 
supernatant is determined to be 1-3% of the original value. The 
gel is then packed into a column and washed (20 mM Tris-HCl, 
10 mM MgCl2, 0.6 M KCl, 0.5 mM EDTA, and 0.5 mM dithio­
threitol, pH 8.0) until UV absorption reaches baseline. AdoM­
et-DC is then eluted using 20 mM potassium phosphate, 0.6 M 
KCl, 0.5 mM EDTA, and 0.5 mM dithiothreitol, pH 7.0, and the 
fractions of highest activity are pooled and concentrated (Amicon 
ultrafiltration cell, PM-30 membrane). Protein is measured by 
the method of Bradford.22 With this method enzyme purity is 
greater than 90%, and the specific activity is determined to be 
0.80 junol/min per mg of protein at 37 0C. 

Enzyme Assay. AdoMet-DC activity is monitored by following 
the evolution of [14C]CO2 from S-adenosyl-L-[carboxy-uC]-
methionine using a modification of the method of Markham.23 

Each reaction mixture contains 50 Mg of AdoMet-DC, 40 ixh of 
S-adenosyl-L-[carboxy-14C] methionine (0.9 mCi/mmol, 20 ̂ tM final 
concentration) in 62.5 mM Tris-HCl/100 mM MgSO4, pH 7.4, 
with a final volume of 2 mL. Radiolabeled CO2 is trapped on a 
filter disk in a vial cap soaked with 40 iiL of hyamine. After 15 
min the reaction is quenched, and the disk is placed in a scin­
tillation vial with 10 mL of scintillation cocktail and counted 
(counting efficiency 95% or greater). Each data point represents 
the average of two determinations, which in each case differ by 
less than 5%. 
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can be correlated by a linear combination of the physico-
chemical parameters of the corresponding drug. Since then 
there have been many attempts to include cross-product 
terms in the regression analysis, but this only added com­
plexity to the study and resulted in no significant im-
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provement. 
Recently there has been growing interest in the appli­

cation of neural networks in the field of QSAR. It has been 
demonstrated that this new technique is often superior to 
the traditional Hansch approach. The key strength of the 
neural networks is that with the presence of hidden layers, 
neural networks are able to perform nonlinear mapping 
of the physicochemical parameters to the corresponding 
biological activity implicity.1 This is especially true for 
the networks with a large number of nodes in the hidden 
layer, and some impressive results have been obtained.2,3 

However, there is a danger of "overfitting", that is to say 
the number of variables under the control of the neural 
networks may exceed the number of data points that are 
needed to describe the hypersurface. In such cases the 
neural network simply memorizes the entire data set and 
it is effectively a look-up table. It is doubtful that the 
network would be able to extract relevant correlation of 
the input patterns and give meaningful interpretation of 
other unknown examples. We need to stress that the 
purpose of QSAR is to understand the forces governing 
the activity of a particular class of compound, and to assist 
drug design. A look-up table will not aid medicinal 
chemists in the design of new drugs. What is needed is 
a system that is able to provide reasonable predictions for 
the compounds which are previously unknown. 

There are two advantages of adopting networks with a 
small number of hidden units. Firstly, the efficiency of 
each node increases and consequently the time of the 
computer simulation is significantly reduced. Secondly, 
and more importantly, the network can generalize the 
input patterns better, and this results in superior predictive 
power. However, caution is again needed. Just as a 
two-layer perceptron cannot solve the XOR problem (a 
perceptron may be regarded as a neural network with no 
hidden units),4 a network with insufficient hidden units 
will not be able to extract all the relevant correlation be­
tween physicochemical parameters and biological activity. 
The analysis will collapse at the point of training and again 
no reliable predictions may be obtained. 

Thus the neural networks programmer must be cautious 
about the architecture of the network being constructed. 
While the numbers of nodes in the input and output layers 
are likely to be predetermined by the nature of experi­
mental data, the freedom is really the number of hidden 
units. It has been suggested that a ratio, p, plays a crucial 
role in determining the number of hidden units being 
employed.1,5,6 The definition of p is 

number of data point in the training set 

number of variables controlled by the network 

The number of variables is simply the sum of the num­
ber of connections in the network and the number of bi-
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Figure 1. Schematic representation of a computer neuron. 

ases. A three-layer back-propagation network with / inputs 
units, H hidden units, and O output units will have H(I 
+ O) connections and H + O biases. The total number of 
adjustable parameters is therefore H(I + O) + H + O. The 
range 1.8 < p < 2.2 has been suggested as a guideline of 
acceptable p values.1 It is claimed that, for p « 1.0, the 
network simply memorizes the data; for p » 3.0, the 
network is not able to generalize. 

The p ratio has a significant impact upon the design of 
neural-network architecture. It is now possible to make 
a sensible choice of the number of hidden nodes without 
too much worry about either the overfitting effect or the 
generalization problem. Nevertheless, the suggested range 
of 1.8 < p < 2.2 is perhaps empirical, and is also likely to 
be implementation-dependent. Some correlation may 
already exist in the training patterns so that the "effective" 
number of data points may in fact be smaller than antic­
ipated. In this paper we use this range as a rough guide­
line. 

A Monte Carlo algorithm is also implemented in the 
neural-network simulator.7 This is used to search for a 
suitable set of initial starting weights. The purpose of this 
is to allow searches to be made in a larger weight-space 
and consequently the results obtained should be better 
statistically. 

Theory 
Neural Networks. Neural networks, also known as 

parallel distributed processing models, neurocomputers, 
or connectionist models, are computer-based simulations 
of living nervous systems. They consists of a large number 
of simple processing elements, analogous to biological 
neurons, which are extensively interconnected to form a 
highly parallel computer.8,9 Neural networks are only 
first-order approximations of the brain. The essential 
components of neural networks are the processing ele­
ments, the connections, and the topology (Figure 1). 

Processing Elements. The processing element is a 
simplified model of a neuron. Physiologists know that 
there are at least 150 processes being performed in bio­
logical neurons, yet only four of these functions are being 
emulated in the computer neurons. They are (a) input and 
output (I/O) function, which evaluates input signals from 
the neurons of the previous layer, determining the strength 

(7) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vettering, W. 
T. Numerical Recipes in C; Cambridge University Press: 
Cambridge, 1988. 
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Reading, MA, 1991. 

(9) McCord Nelson, M.; Illingworth, W. T. A Practical Guide to 
Neural Nets, Addison-Wesley Publishing Co.: Reading, MA, 
1991. 
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Figure 2. A multiple-layer network with a 4-x-l configuration 
as used in our study. 
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of each input, and passes the output signal to the neurons 
of the next layer; (b) summation function, which calculates 
a total for the combined input signals according to the 
equation 

net input,,, = L;weighti;outputx_lv, 

where i and j are units in layers X and X - I , respectively; 
(c) activation function, which allows the outputs to vary 
with respect to time. The result of summation is passed 
to this function before it is input to the transfer function, 
and typically it is an identity function for most current 
implementations; and (d) transfer function, which maps 
the summed input to an output value. The most com­
monly used transfer function is the logistic function 

output^ = /(net inputv) = t + e x p ( _ i t i n p u t x , } 

It is a continuous and differentiable approximation of a 
threshold function, and has values close to zero or unity 
over most of its domain. 

Connections. Analogous to the synaptic strengths of 
biological neurons, each input of the processing element 
is associated with a relative weight and it affects the impact 
of that input. This makes some input more important than 
others in the way they combine to produce an impulse. 
The physical rationale is that positive weights correspond 
to excitatory connections and negative weights inhibitory 
connections. In a simple network, the weights of the 
connections are the only parameters which are adjusted 
during the training process. Thus the knowledge contained 
in the system is stored in the strengths of these connections 
rather than in the processing elements themselves. 

Topology. Many different network topologies are 
possible: they can be feed-forward nets or feedback nets, 
single layer or multiple layers, fully connected or partially 
connected. For the bulk of practical applications, it is 
found that the multiple-layer feed-forward nets are the 
most useful, because they are relatively simple to assemble 
and present fewer problems in training. An example of 
this type of network is shown in Figure 2. 

Training. Training is the way a neural network learns. 
The methods can be divided into two types. In the un­
supervised method the input patterns are presented once 
into the network and the network settles and converges 
to a final state. In the supervised method, the error be­
tween the actual output of the net and the target output 
are computed, and on this basis the strengths of the con­
nections are modified. This process is iterated until the 

weights of the connections are optimized such that the 
overall error is minimized. At present the unsupervised 
learning is not well-understood and is still subject of much 
research interest. On the other hand, supervised learning 
has been successfully implemented in practical applica­
tions. 

Back-propagation is a widely used supervised learning 
method for multiple-layer nets, which seems to be best 
adapted for solving pattern recognition problems. This 
technique is the most widely used generalization of the 5 
rule, and the procedure involves two phases. 

The forward phase occurs when the input is presented 
and propagated forward through the network to compute 
an output value for each processing element based on its 
current set of weights. 

net inputXii = L;weight;;outputx_u 

The backward phase is a recurring difference compu­
tation performed in a backward direction. The error, S, 
for neurons in the output layer is given by 

8xi = (target output,,; - actual outputxi)/'(net inputxi) 

where f'(x) is the first derivative of the transfer function 
(and hence the requirement of it being continuous and 
differentiable). For the units in the hidden layer, a specific 
target value is unknown and it is computed in terms of the 
errors in the units in the next layer forward 

5\,i = E/Sx+ij-weight^Anet inputx,,) 

The weight between the input unit i and the output unit 
;' is then modified according to the equation 

Aweighty; = ^XjOUtPUtx.!,; 

where J; is an empirical parameter known as the learning 
rate. Theoretically, r/ needs to be infinitesimally small for 
true gradient descent of error, but in practice, it typically 
takes values from 0.1 to 1.0, and is being gradually reduced 
during the training process.10 A problem often occurs in 
the training process. Commonly the system gets stuck in 
a local minimum and fails to reach the global minimum 
state. To rectify this, researchers often add a momentum 
term, which takes into considerations of past weight 
changes, in their calculation of weight adjustments 

An+1weightf; = 7/SxJOUtPUtx-!,; + aAnweighty, 

where a is again an empirical parameter similar to »/. This 
is an attempt to bump the system past the barriers in the 
temporary pockets. Adding random noise (which ulti­
mately decays to zero) to the input patterns helps to avoid 
local minima, it also makes the network more robust to 
noisy data. Additionally, if the training examples are 
chosen in random order, it also makes the path through 
weight-space stochastic, allowing wider exploration of the 
hypersurface. 

To summarize the learning process, an input is fed into 
the network in order to calculate the error with respect to 
the desired target. This error is then used to compute the 
weight corrections layer by layer, backward through the 
net. The supervised training process is repeated until the 
error for all of the training set is minimized. Typically it 
involves thousands of iterations. After training the net­
work is fully operational. 

(10) Elrod, D. W.; Maggiora, G. M. Applications of Neural Net­
works in Chemistry. 1. Prediction of Electrophilic Aromatic 
Substitution Reactions. J. Chem. Inf. Comput. Sci. 1990,30.4, 
477-484. 
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Table I.0 Structures, Physicochemical Parameters, and Observed DHFR Inhibitory Activities of the Pyrimidines Congeners 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
U 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

X 
4-0(CH2)6CH3 

4-0(CHo)6CH3 
H 
4-NO2 
3-F 
3-0(CH2)7CH3 
3-CH2OH 
4-NH2 
3,5-(CH2OH)2 
4-F 
3-0(CH2)6CH3 
4-OCH2CH2OCH3 
4-OH 
4-Cl 
3,4-(OH)2 
3-OH 
4-CH3 
3-OCH2CH2OCH3 
3-CH20(CH2)3CH3 
3-OCH2CONH2 
4-OCF3 
3-CH2OCH3 
4-OSO2CH3 
3-Cl 
3-CH3 
4-N(CH3)2 
3-0(CH2)3CH3 
4-OCH3 
4-Br 
3-OH, 4-OCH3 
3-0(CH2)6CH3 
4-NHCOCH3 
4-0(CH2)3CH3 
4-OCH2C6H6 

MR'6 

0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.72 
0.10 
0.72 
0.10 
0.10 
0.10 
0.10 
0.10 
0.29 
0.29 
0.10 
0.79 
0.10 
0.79 
0.10 
0.79 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.29 
0.10 
0.10 
0.10 
0.10 

MR'3 

0.10 
0.10 
0.10 
0.10 
0.09 
0.79 
0.10 
0.10 
0.72 
0.10 
0.79 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.79 
0.10 
0.10 
0.10 
0.10 
0.60 
0.57 
0.10 
0.79 
0.10 
0.10 
0.10 
0.79 
0.10 
0.10 
0.10 

MR4 

3.07 
3.52 
0.10 
0.74 
0.10 
0.10 
0.10 
0.54 
0.10 
0.09 
0.10 
0.93 
0.29 
0.60 
0.29 
0.10 
0.57 
0.10 
0.10 
0.10 
0.79 
0.10 
1.70 
0.10 
0.10 
1.56 
0.10 
0.79 
0.89 
0.79 
0.10 
1.49 
2.17 
3.17 

*S 

0.00 
0.00 
0.00 
0.00 
0.23 
3.79 
0.00 
0.00 

-1.03 
0.00 
3.23 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.30 
0.00 
0.00 
0.00 
0.00 
0.67 
0.52 
0.00 
1.55 
0.00 
0.00 
0.00 
2.63 
0.00 
0.00 
0.00 

activity 
6.07 
6.10 
6.18 
6.20 
6.23 
6.25 
6.28 
6.30 
6.31 
6.35 
6.39 
6.40 
6.45 
6.45 
6.46 
6.47 
6.48 
6.53 
6.55 
6.57 
6.57 
6.59 
6.60 
6.65 
6.70 
6.78 
6.82 
6.82 
6.82 
6.84 
6.86 
6.89 
6.89 
6.89 

no. 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

X 
3-OSO2CH3 

3-OCH3 
4-C6H5 
3-Br 
3-NO2, 4-NHCOCH3 
3-OCH2C6H6 
3-CF3 
3,5-(CH3)2 
3,4-OCH2O 
3-0(CH2)7CH3, 4-OCH3 
3,5-(OCH3)2, 4-0(CH2J7CH3 
3,4-(OCH2CH2OCH3), 
3-1 
3-OCH2CH3, 4-OCH2C6H6 
3,5-(OC3H7)2 
3-OCH3, 4-OCH2C6H6 
3-OCH3, 4-OH 
3,5-(OCH2CHs)2, 4-pyrryl 
3-OCH2C6H6, 4-OCH3 
3,5-(OCH2CH3)2 
3-OC2H6, 5-OC3H7 
3-CF3, 4-OCH3 
3,5-(OCH3),, 4-N(CH3)2 
3,5-(OCH3J2 
3,4-(OCH3)2 
3-OCH3, 4-OCH2CH2OCH3 
3-OSO2CH3, 4-OCH3 
3,4,5-(CH2CH3)3 
3-OCH3, 4-OSO2CH3 
3,5-(OCH3)2, 4-SCH3 
3,4,5-(OCH3)3 
3,5-(OCH3),, 4-C(CH3)=CH2 
3,5-(OCH3)2, 4-Br 
3,5-(OCHo)2, 4-0(CH2)2OCH3 

MR'6 

0.79 
0.10 
0.10 
0.10 
0.74 
0.10 
0.10 
0.57 
0.45 
0.10 
0.79 
0.79 
0.10 
0.10 
0.79 
0.79 
0.79 
0.79 
0.10 
0.79 
0.79 
0.10 
0.79 
0.79 
0.79 
0.79 
0.79 
0.79 
0.79 
0.79 
0.79 
0.79 
0.79 
0.79 

MR'3 

0.10 
0.79 
0.10 
0.79 
0.10 
0.79 
0.50 
0.57 
0.10 
0.79 
0.79 
0.10 
0.79 
0.79 
0.79 
0.10 
0.10 
0.79 
0.79 
0.79 
0.79 
0.50 
0.79 
0.79 
0.10 
0.10 
0.10 
0.79 
0.10 
0.79 
0.79 
0.79 
0.79 
0.79 

MR4 

0.10 
0.10 
2.54 
0.10 
1.49 
0.10 
0.10 
0.10 
0.45 
0.88 
3.97 
1.93 
0.10 
3.17 
0.10 
3.17 
0.29 
1.95 
0.79 
0.10 
0.10 
0.79 
1.56 
0.10 
0.79 
1.93 
0.79 
1.03 
1.70 
1.38 
0.79 
1.56 
0.89 
1.93 

* 3 

0.00 
0.04 
0.00 
0.86 
0.00 
1.56 
0.88 
0.56 
0.00 
3.69 
0.00 
0.00 
1.12 
0.38 
1.05 
0.00 
0.00 
0.38 
1.27 
0.47 
1.05 
0.87 
0.00 
0.00 
0.00 
0.00 
0.00 
0.86 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

activity 
6.92 
6.93 
6.93 
6.96 
6.97 
6.99 
7.02 
7.04 
7.13 
7.16 
7.20 
7.22 
7.23 
7.35 
7.41 
7.53 
7.54 
7.66 
7.66 
7.69 
7.69 
7.69 
7.71 
7.71 
7.72 
7.77 
7.80 
7.82 
7.94 
8.07 
8.08 
8.12 
8.18 
8.35 

"The data were taken from ref 12. 

Monte Carlo Algorithm. This is a minimization al­
gorithm inspired by the Boltzmann probability distribu­
tion, and it is sometimes known as the Metropolis algor­
ithm. The function 

(if) probabilitytE) = exp 

is the probability of finding a system with energy E. It 
is important to realize that even at low temperature there 
is still a finite chance of finding a system at high energy. 
An overview of this algorithm is as follows. 

In a simulation, a configuration of the particles of the 
system is generated randomly and its energy is calculated. 
Another random configuration is generated and again the 
new energy is evaluated. If £new < EM, the new configu­
ration is accepted as the starting point immediately. If 
^Mw > £0id> there is a exp -CEnew - EM/kT) probability 
of acceptance. Under this general scheme, a system may 
go either uphill or downhill in energy, although the latter 
process is more likely. The temperature of the system is 
gradually reduced in the process and the downhill step 
becomes progressively dominant. It is hoped that this will 
eventually lead to a global minimum energy state. 

In an analogous way, a set of weights was randomly 
generated and the corresponding error of the input pat­
terns evaluated. The probability of accepting the new 
random set of weights is again dependent upon a similar 
exponential factor. The system is believed to be stuck at 
a "reasonable" error minimum when the number of re­
jected steps exceeds an user-defined threshold. Neural-
network techniques then take over and continue the 
minimization in the error. 

The merit of the Monte Carlo algorithm is its speed, 
especially when the working system is very large. This 
algorithm does not work on a definite error surface. It 

Figure 3. Structure of 2,4-diamino-5-(substituted-benzyl)pyri-
midines. 

means the problem of a local minimum is largely bypassed. 
Results 

We have performed a QSAR study for the inhibition of 
DHFR by 2,4-diamino-5-(substituted-benzyl)pyrimidines 
(Figure 3) using the data in Table I. This particular set 
of compounds has been extensively studied by Hansen et 
al. and is ideal for the purpose of comparison.1112 The 
neural network was simulated using a computer program 
written in the C programming language and run on a va­
riety of platforms, including 386/387 and 486 personal 
computers and Silicon Graphics and SUN workstations. 
The input data were normalized to give values between 
0.0 and 1.0. Training continued until there was no further 
decrease in overall error after a period of 50000 cycles. The 
average training time for each run was about 2 h. 
Three-layer neural networks, with four input units and one 

(11) Hansen, C; Li, R.-L.; Blaney, J. M.; Langridge, R. Comparison 
of the Inhibition of Escherichia coli and Lactobacillus casei 
Dihydrofolate Reductase by 2,4-Diamino-5-(Substituted-ben-
zyl)pyrimidines: Quantitative Structure-Activity Relation­
ships, X-ray Crystallography, and Computer Graphics in 
Structure-Activity Analysis. J. Med. Chem. 1982,25,777-784. 

(12) Selassie, C. D.; Li, R-L.; Poe, M.; Hansch, C. On the Optimi­
zation of Hydrophobic and Hydrophilic Substituent Interac­
tions of 2,4-Diamino-5-(substituted-benzyl)pyrimidines with 
Dihydrofolate Reductase. J. Med. Chem. 1991, 34, 46-54. 
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Table II. Identities of Compounds in the Training Set and the 
Test Set 

1 
15 
31 
46 
64 

6 
44 

2 
16 
32 
48 
65 

9 
47 

3 
17 
33 
50 
66 

14 
49 

Training Set (49 examples) 
4 
19 
35 
51 
67 

5 
20 
36 
53 
68 

7 
23 
37 
54 

8 10 
24 25 
39 40 
55 56 

Test Set (19 examples) 
18 
52 

21 
57 

22 
60 

27 28 
62 63 

11 
26 
42 
58 

34 

12 
29 
43 
59 

38 

13 
30 
45 
61 

41 

Table III. Comparison of Residual Variance and Rank 
Correlation Coefficient with Different p Values 

training set testing set 
configuration 

4-3-1 
4-4-1 
4-5-1 
4-6-1 
4-7-1 

P 
2.58 
1.96 
1.58 
1.32 
1.14 

RV 
0.0364 
0.0239 
0.0183 
0.0150 
0.0126 

SRCC 
0.92 
0.96 
0.96 
0.96 
0.97 

RV 
0.208 
0.187 
0.230 
0.290 
0.323 

SRCC 
0.59 
0.74 
0.67 
0.61 
0.40 

output unit, were simulated in all cases. 
In this paper the quality of QSAR was assessed by two 

statistical variables: the residual variance (RV)5 and the 
Spearman rank correlation coefficient (SRCC).13 They 
were defined by the following expressions: 

RV = 

SRCC - 1 -

L(activityobserved - activitypre(ii(;ted)
2 

number of compounds - 1 

6E(rankob9erved - rankpredicted)
2 

number of compounds [(number of compounds)2 - 1] 
High-quality QSAR work should have RV close to zero and 
SRCC close to unity. 

Comparison of Neural-Network- and Regression-
Generated Biological Activity Surface. As mentioned 
the number of hidden nodes is an important factor de­
termining the network's performance. It was desirable to 
establish a network which generalized the input patterns 
rather than merely memorizing them. A preliminary study 
was conducted to determine an appropriate number of 
hidden units. The 68 compounds were divided into two 
data sets as indicated by Table II. The first set, which 
comprised 49 compounds, served as the training set and 
the remaining 19 were used to give guidance to the accu­
racy of the trained networks. Five networks were con­
structed with configurations of 4-x-l, where x = 3-7. Each 
was simulated at least five times. The results of the sim­
ulations which gave the smallest RVs for the training set 
in each configuration are shown in Table III. 

The values of RVs of the training set and the test set 
were plotted against p, and are illustrated in Figure 4a,b. 
The plots are in accordance with expectation. The RVs 
of the training set decrease fairly linearly with p, and on 
extrapolation this line seems to pass through the origin. 
This is consistent with the earlier hypothesis that, given 
enough adjustable parameters (p -»• 0), the network would 
be able to map the complete data set (RV -* 0). The RVs 
of the test set, on the other hand, show a different trend. 
In accordance to the findings of a earlier paper by Andrea 
et al.,1 it is a nonlinear function of p and has an upward 
concave shape. It seems that the minimum was within the 
range of 1.8 < p < 2.3, but the differences in the test set 

(13) Freund, J. E. Modern Elementary Statistics; Prentice-Hall: 
Englewood Cliffs, NJ, 1988. 
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Figure 4. Residual variance of the training set and the test set. 

RVs in this range are so small that it is insensitive to p 
within this range. In the light of designing a network which 
would give reliable predictions, a neural network with 
configuration giving similar p values to the ones corre­
sponding to smallest test set variances was constructed to 
train all the 68 compounds. 

A neural network with the characteristics listed below 
was constructed for the task: 

configuration 

4-6-1 

number of 
examples p 

68 1.83 
n 

0.25 

a 

0.90 

initial range of 
weights and biases 

-1.00 to +1.00 

The results of QSAR done by this neural network and by 
regression analysis were listed in Table IV, and compar­
isons of residual variances, rank correlation, and the 
number of outliers are shown in Table V. It is clear that 
neural network outperforms regression analysis and pro­
vides superior mapping of physicochemical parameters to 
biological activities. The p value of 1.83 suggests that the 
network would not be able to memorize the data set and 
thus the mapping was believed to be an impressive result 
of generalization. 

Prediction of Biological Activities. Having estab­
lished a configuration of neural network for predictive 
purpose, a cross-validation procedure was carried out.14 In 
this process one compound was removed from the data set, 
and the remaining 67 compounds served as the training 
set to a network with a 4-6-1 configuration. After training, 
the parameters of the compound unknown to the network 
were put into the network and the predicted biological 
activity of this compound was evaluated. This procedure 
was repeated 68 times and the predicted activities of the 
entire data set were obtained. The results are shown in 
last column of Table IV. The cross-validated r2,14 RV, and 
SRCC of the predicted set are 0.724, 0.102, and 0.84, re­
spectively. It is estimated that 95% of the observed ac-

(14) Cramer, R. D., Ill; Patterson, D. E.; Bunce, J. D. Comparative 
Molecular Field Analysis (CoMFA). 1. Effect of Shape on 
Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc. 
1988, 110, 5959. 
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Table IV. Calculated Activities of the Pyrimidines by Neural Network and Regression Analysis 

no. 
1 
2 
3 
4 
S 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

observed 
activity 

6.07 
6.10 
6.18 
6.20 
6.23 
6.25 
6.28 
6.30 
6.31 
6.35 
6.39 
6.40 
6.45 
6.45 
6.46 
6.47 
6.48 
6.53 
6.55 
6.57 
6.57 
6.59 
6.60 
6.65 
6.70 
6.78 
6.82 
6.82 
6.82 
6.84 
6.86 
6.89 
6.89 
6.89 

activity calculated 
neural 

network 
6.52 
6.20 
6.27 
6.52 
6.28 
6.39 
6.26 
6.44 
6.31 
6.27 
6.48 
6.59 
6.34 
6.47 
6.55 
6.41 
6.46 
6.66 
6.93 
6.66 
6.54 
6.66 
6.80 
6.90 
6.77 
6.77 
6.87 
6.54 
6.58 
6.89 
6.60 
6.76 
6.86 
6.43 

regression 
analysis" 

6.55 
6.27 
6.21 
6.60 
6.29 
6.47 
6.79 
6.50 
6.33 
6.20 
6.58 
6.87 
6.34 
6.53 
6.52 
6.39 
6.51 
6.86 
6.94 
6.63 
6.86 
6.86 
6.87 
6.81 
6.78 
6.85 
6.63 
6.67 
6.90 
6.81 
6.70 
6.49 
6.84 
6.85 

activity predicted, 
neural network6 

6.69 
6.34 
6.18 
6.61 
6.30 
6.42 
6.58 
6.42 
7.66 
6.13 
6.50 
6.61 
6.30 
6.51 
6.61 
6.23 
6.50 
6.67 
6.98 
6.78 
6.52 
6.73 
6.86 
7.04 
6.96 
6.85 
6.91 
6.53 
6.59 
7.02 
6.61 
6.78 
6.78 
6.13 

no. 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

observed 
activity 

6.92 
6.93 
6.93 
6.96 
6.97 
6.99 
7.02 
7.04 
7.13 
7.16 
7.20 
7.22 
7.23 
7.35 
7.41 
7.53 
7.54 
7.66 
7.66 
7.69 
7.69 
7.69 
7.71 
7.71 
7.72 
7.77 
7.80 
7.82 
7.94 
8.07 
8.08 
8.12 
8.18 
8.35 

activity calculated 
neural 

network 
6.66 
6.86 
6.83 
7.00 
7.05 
6.87 
6.84 
7.06 
7.07 
7.11 
7.20 
7.62 
6.97 
7.34 
7.56 
7.49 
7.52 
7.86 
7.70 
7.74 
7.56 
7.67 
8.06 
7.69 
7.81 
7.62 
7.81 
7.74 
7.66 
8.07 
8.11 
8.06 
8.11 
8.02 

regression 
analysis" 

6.86 
6.77 
6.84 
6.98 
7.44 
6.90 
6.72 
7.23 
6.78 
6.91 
7.17 
7.52 
6.96 
7.24 
7.62 
7.15 
7.00 
7.36 
8.27 
7.14 
7.62 
7.62 
7.48 
8.12 
7.28 
7.52 
7.28 
8.15 
7.52 
8.09 
7.90 
8.12 
7.94 
8.14 

activity predicted, 
neural network6 

6.61 
6.91 
6.69 
6.97 
7.63 
6.85 
6.75 
7.29 
6.71 
7.12 
7.46 
7.73 
6.99 
7.47 
7.63 
7.63 
7.41 
7.89 
7.43 
7.69 
7.44 
7.09 
8.04 
7.57 
7.83 
7.52 
7.81 
8.13 
7.52 
8.05 
8.18 
8.04 
8.15 
7.86 

"The data were taken from ref 12. bThe number of outliers is 21 (the definition of outlier is described in the footnote of Table V). 

(a) 
8.5 T 

C). 

7.8 •• 

8.5 

7.5 

0.1 0.376 0.514 

MR'5 

0.652 0.79 0.376 0.514 
MFK) 

Figure 5. Biological activity as a function of the individual physicochemical parameter. 

tivity and the predicted activity of any similar compound 
would differ by at most 0.62. In the light of this, one can 
be confident that the neural network is able to provide 
reliable predictions of biological activities of novel pyri-
midine variants. 

Dependence of Biological Activity on the Physico-
chemical Parameters. The relative dependence of each 
parameter in affecting the biological activities was inves­
tigated. It is anticipated that the identification of the 

functional dependences of biological activity to the 
physicochemical parameters could assist medicinal chem­
ists. 

The variation of the activity was monitored by changing 
the value of one input while keeping the remaining three 
inputs of the neural network constant at a quarter of their 
maximum ranges. On the basis of the resulting plots, the 
biological activity seems to be approximately a linear 
function of MR'3 (Figure 5b) and it has nonlinear depen-
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Table V. Comparison of Residual Variance, Rank Correlation 
Coefficient, and Number of Outliers for Neural Network and 
Regression Analysis 

residual rank number 
variance correlation of outliers0 

neural network 0.029 0.94 12 
regression analysis 0.075 0.88 25 

0 An outlier had |activityoba - activitypre<i| > 0.25. 

dence upon the other three parameters. The plots suggest 
that there is a cubic dependence of MR'5 (Figure 5a) and 
a parabolic dependence of MR4 (Figure 5c). Moreover, the 
function shown in Figure 5d is different from the others, 
and it does not appear to be a simple mathematical 
function. 

In Hansch's earlier analysis on this set of compounds,12 

a correlation equation was formulated: 
log (1/K) - 0.95MR'6 + 0.89MR'3 + 0.80MR4 -

0.21MR4
2 + 1.58^3 - 1.77 log (/31O*3 + 1) + 6.65 (1) 

where log 0 - 0.175, MR4
0 = 1.85, and Tr3

0 = 0.73. 
It was interesting to note that the neural network was 

consistent with some of their findings. Firstly, both the 
neural-network model and regression analysis agreed that 
the biological activity has a linear dependence of MR'3 and 
a parabolic dependence of MR4. Secondly, if one plots the 
correlation equation adopting ir3 as the only variable and 
keeping the other three parameters as constants, one 
discovers that the appearance of this plot is extremely 
similar to the corresponding one shown in Figure 5d. 
Thirdly, the optimum values MR4

0 and T3
0 also give very 

high activities in the corresponding neural network plots. 
Both of them would yield activities above 95% of their 
maximum values in their ranges of the plots. 

The main discrepancy between the neural-network 
model and regression analysis seems to be the functional 
dependence of MR'S. The regression equation fits the 
MJf5 values with a simple linear term while the neural 
network predicts there may be a cubic relationship. An 
investigation was performed to show whether the inclusion 
of a cubic MR'5 term would improve the quality of the 
QSAR. The following correlation equation for the inhi­
bitory effects was obtained: 

log (1 /K) - 11.79MR'5
3 - 15.74MR'6

2 + 6.55MR'6 + 
0.89MR'3 + 0.80MR4 - 0.21MR4

2 + 1.581K3 -
1.77 log (/SlO'3+ D + 6.24 (2) 

where log /3 = 0.175. 
For the purpose of comparison, this equation is con­

structed in a way such that each physicochemical param-

Table VI.0 Comparison of the Calculated Activities from 
Regression Equations with a Cubic and Linear MR'S Term 

number 
7 
9 

15 
16 
30 
39 
42 
43 

observed 
activity 

6.28 
6.31 
6.46 
6.47 
6.84 
6.97 
7.04 
7.13 

cubic 
MR'5 

6.66 
6.18 
6.70 
6.56 
6.99 
7.35 
7.08 
6.77 

linear 
MR'6 

6.79 
6.33 
6.52 
6.39 
6.81 
7.44 
7.23 
6.78 

"The other 60 compounds not listed in this table have identical 
calculated activities in both correlation equations. 

eter takes the same percentage of overall variance as they 
would in eq 1. Consistent with this is the fact that the 
congeners with either the maximum value (0.79) or the 
minimum value (0.10) of MR'5 will be unaffected by the 
new equation. The calculated activities of the eight con­
geners which have activities different from those given by 
eq 1 are shown in Table VI. The improvement is no­
ticeable. The RVs of the eight compounds are 0.074 and 
0.093 for the cubic fit and the linear fit, respectively. This 
result further underlines the key strength of the neural 
network in performing this sort of implicit nonlinear 
mapping. It is deemed to be the main reason that neural 
network can outperform regression analysis in QSAR. 

Building a regression equation as complex as eq 2 cannot 
be inspired by a flash of brillance: it requires a laborious 
development phase. In regression analysis, the inclusion 
of nonlinear terms is on a trial and error basis. For neural 
networks this is not necessary. The researcher may simply 
consider the shapes of these plots and propose whether and 
how the nonlinear terms should be included in their 
analysis. 

Conclusion 
The results presented here add to the growing support 

for the use of neural networks in QSAR studies, but also 
emphasize just how much care needs to take in the design 
of the network. Not only are the results superior to re­
gression analysis when judged in statistical terms but they 
also provide accurate predictions of activities of the com­
pounds and furthermore permit the highlighting of the 
functional form those molecular parameters which play an 
important role in determining biological activity. 
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