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The response profiles of 36 para-substituted diphenylethylenes (DPEs) and triphenylacrylonitriles (TPEs) have 
been compared by multivariate analysis. The responses measured were (a) relative binding affinity (RBA) for the 
cytosol estrogen receptor (ER), (b) ability to promote the growth of the human MCF7 breast cancer cell-line, (c) 
cytotoxicity in MCF7 cells, and (d) ability to stimulate or inhibit protein kinase C (PKC) III activity under three 
different conditions of enzyme activation. The prime object of the analysis was to observe the simultaneous influence 
of diverse combinations of substituents on all these in vitro responses. To do this, the minimum spanning tree (MST) 
method was used to organize the molecules into a network in which proximate molecules are closely related with 
regard to their responses whereas remote molecules are distinct. The MST of this population of molecules had 
four main branches. E2 and its TPE mime were located in a central position within the trunk whereas the tips of 
the branches tended toward molecules of different specificity, i.e., cytotoxic molecules that bind to ER and interfere 
with PKC, noncytotoxic molecules that also bind to ER and interfere with PKC but promote cell growth, molecules 
only active on PKC, and molecules active on all parameters except PKC stimulation. A parallel MST analysis of 
the relationships among the response parameters themselves confirmed previous conclusions: For this population 
of molecules, RBAs for ER are fairly closely related to ability to promote MCF7 cell growth and only little to cytotoxicity 
(Bignon et al. J. Med. Chem. 1989, 32, 2092). Cytotoxicity is much more clearly correlated with inhibition of 
diacylglycerol-stimulated PKC activity than with RBAs for ER. PKC inhibition differs substantially depending 
upon whether the substrate is Hj histone or protamine sulfate. 

Introduction 
Present day antihormonal treatment of metastatic breast 

cancer relies heavily on the use of a single nonsteroid an-
tiestrogen, tamoxifen, that belongs to the class of the 
triphenylethylene (TPE) derivatives.1-3 Tamoxifen, its 
metabolites, and analogues have been reported to have 
many molecular targets including a nuclear receptor (the 
estrogen receptor (ER)),4 membrane receptors (possibly 
the histamine,5 dopamine, and muscarinic receptors), a 
primarily microsomal antiestrogen binding protein,6"8 

several enzymes (prostaglandin synthase,9 glutamate 
deshydrogenase10) including at least two Ca2+-dependent 
kinases (calmodulin kinase11 and protein kinase C 
(PKC)12"19). The relevance of interaction with these 
targets to growth-promotion or inhibition is not yet fully 
understood. 

Several structural analogues of tamoxifen have been 
designed,2,3 at least two of which (i.e. toremifene,20 dro-
loxifene21) are in clinical development. These compounds 
with slightly different activity profiles can inhibit the 
growth of certain tamoxifen-resistant tumors. New ster­
oidal antiestrogens with bulky or lengthy substituents in 
either C-ll,22"26 C-7,27"29 or C-1730"32 are also under in­
vestigation. 

Because the majority, if not all, patients with malignant 
endocrine tumors (e.g. breast and prostate cancer) will 
become resistant to hormone therapy and relapse, a choice 
of potent antitumor agents that interfere with multiple 

f This work was presented at the 73rd Annual Meeting of the 
Endocrine Society (Washington, June 19-22,1991). Abstract No. 
571, p 173. 

*CNRSURA401. 
'CNRS-CERCOA. 
«INSERM U58. 
x Roussel-UCLAF. 
* Present address: E.B., SANOFI, 31036 Toulouse Cedex, 

France; J.-F.M., LEPI, 75020 Paris, France; J.-P.R., 51 bd Suchet, 
75016 Paris, France. 

molecular targets implicated in cell proliferation is desir­
able. This, however, implies an ability to compare not just 
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Figure 1. Structures and code numbers of the test molecules. 

a single activity but the overall response profiles of series 
of test compounds, i.e. interaction with these molecular 
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targets, inhibition of hormone-dependent and -independ­
ent cell-lines, cytotoxicity, etc. 
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Figure 2. Stimulation and inhibition by TPEs and DPEs of MCF7 cell proliferation in the absence (•) or presence (A) of 0.1 nM 
estradiol. Rescue of cells by 100 nM E2 is indicated by the sign • . Results (mean of triplicate wells from a typical experiment, SD 
< 5%) are expressed as percent DNA after 8 days of growth in the presence of 0.1 nM estradiol (Percent DNA = 100 X (jig of DNA 
TPE/^g of DNA E2). Test compounds are identified by their number and their a,a',|8-substituent8. (The substitutions on the double 
bond of DPEs are indicated in brackets.) An asterisk (*) indicates a control value (vehicle alone). 

In previous papers, we have investigated the action of 
a large number of triphenylacrylonitriles on several bio­
chemical and biological parameters33"35 and, in particular, 
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on relative binding affinity (RBA) for ER, ability to pro­
mote human breast cancer (MCF7) cell growth and to 
inhibit estradiol (E2)-promoted cell growth, cytotoxicity 
in these ER-positive cells and in ER-negative (BT20) cells,36 

and stimulation or inhibition of PKC activity.37 The data 
have been submitted to a multivariate factorial analysis 
(correspondence analysis) in order to discern possible re­
lationships among the biological variables.38 In this paper, 
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Figure 3. Effect of high TPE or DPE concentrations (3-10 tiM) on the proliferation of MCF7 and BT^ cells. Results for triplicate 
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of DNA TPE)/0*g of DNA Ej)] X 100) and as a function of the control for the BTa, cells (=[(/ig of DNA TPE)/(jig of DNA control)] 
X 100): (•) MCF7 + TPE, (A) MCF7 + 1 J I M E 2 + TPE, (*) MCF7 control, (•) BT20 + TPE, (---) level of seeding for MCF7 cells. 
The seeding level was 20-30% for BT20 cells; 100% corresponded to about 7-10 and 3 ng of DNA for MCF7 and BT20 cells, respectively. 

our aim is to analyze the combinations of structural fea­
tures that might be directly implicated in some of these 
activities by another multivariate method (i.e. by cluster 
analysis by the minimum spanning tree (MST)).39 

Results and Discussion 
Chemistry. The synthesis of all compounds (Figure 1) 

except 20-23 has been described.33-36-40'41 Compound 20 
was obtained by reaction of l-bromo-3-methylbutane with 
the disodium derivative of 2-phenyl-3,3-bis(4-hydroxy-
phenyl)acrylonitrile; compound 21 by condensation of 
[4-[2-(diethylamino)ethoxy]phenyl]acetonitrile with 4,4'-
bis(tetrahydropyran-2-yloxy)benzopnenone in the presence 
of sodium amidure with subsequent release of the two OH 
groups; compounds 22 and 23 by condensation of (diiso-
propylamino)ethyl chloride respectively with the sodium 
derivative of 2-(4-hydroxyphenyl)-3,3-diphenylacrylonitrile 
and the disodium derivative of 2-phenyl-3,3-bis(4-
hydroxyphenyl)acrylonitrile. 

Estrogen Receptor (ER) Binding of New Com­
pounds: Action on Cell Proliferation. The biological 

(38) Ojasoo, T.; Bignon, E.; Crastes de Paulet, A.; Dorfe, J. C; Gil­
bert, J.; Miquel, J. F.; Pons, M; Raynaud, J. P. Relative in­
volvement of the estrogen receptor and protein kinase C in the 
action of a population of triphenylethylenes on MCFj cell 
proliferation as revealed by correspondence factorial analysis 
(CFA). Mol. Pharmacol., submitted for publication. 
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C. R. Acad. Sci. Serie C (Paris) 1978, 286, 151. 

activity profiles of all compounds except 20-29 have been 
published with regard to ER binding and cell prolifera­
tion.36 The activities of 20-29 are described below (Table 
I). 

Apart from compounds 20, 22, and 23 which lack a,a'-
hydroxy groups, all the other test compounds competed 
noticeably for labeled E2 binding. The most powerful 
competitors in Table I were isopropyl-substituted DPEs 
(25, 26), but their RBAs did not attain the values previ­
ously recorded for certain a.o'-dihydroxylated TPEs (e.g 
TPEs 4, 6, 8 in Table II). The presence of a DEAE on 
ring /? of a a,a'-dihydroxylated TPE (21 vs 4) decreased 
the RBA 24-fold. On the other hand, in the DPE series, 
a chlorine atom linked to the double bond in lieu of a 
hydrogen reinforced the stability of binding (25 vs 26). 

In our assay medium which contained no phenol red, E2 
promoted the growth of MCF7 cells 5-10-fold over control, 
giving a dose-response curve with a maximum at 0.1 nM. 
In the absence of E2 the cells hardly grew (doubling time 
= 110-120 h). All the new test compounds except 20, 
which has no affinity for ER, could stimulate proliferation 
over the concentration range 10 pM to 1 /uM (Figure 2). 
Several (22, 26-29) induced a maximum response ap­
proaching that of E2 (agonist effect of 93-100%), but with 
widely different ECSQS (0.16-130 nM). Others (21 and 24) 
displayed only partial agonist activity as already observed36 

with a,a'-dihydroxylated TPEs (4, 6, 8) (see Table II). 
Only 21 and 23 could substantially decrease the pro­

liferation induced by 0.1 nM E2 in a concentration-de­
pendent manner (triangles in Figure 2), the more inhibitory 
of the two being 23 with basic amino side chains in a p ­
positions. Both these compounds also had some agonist 
activity. The mixed agonist/ antagonist properties of 21 
which are comparable to those of 4s6 can be explained by 
its a,a'-dihydroxylated structure. Inhibition of prolifera-
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are the means of at least four experimental values (RBA for E2 = 100). The percent agonist effect on MCF7 cell proliferation is a function 
of the maximum response recorded with E2 (=100%) whatever the TPE concentration. The percent inhibition of MCF7 cell proliferation 
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Mg/mL phosphatidylserine (PS) with or without 0.2 itg/mL diolein (DO), or using protamine sulfate (prot. s.) as a substrate in the presence 
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tion by 21 and 23 could be reversed by addition of 100 nM 
E2 (diamonds in Figure 2). A bulky basic amino side chain 
on the ft ring as in 21 did not necessarily generate antag­
onist properties since TPEs 22 and 15 (see Table II) were 
agonists only. 

The inhibitory action of high TPE concentrations (up 
to 10 nM) on MCF7 cell proliferation, reminiscent of a 
cytostatic and/or cytolytic effect, was first measured under 
conditions that were unlikely to implicate ER, since the 
E2 concentration (10"* M) added could offset the anti­
estrogenic activity of the TPEs present at a 10-fold higher 
concentration (10~5 M) (Figure 3). The most potent 
compounds were yet again 21 and 23 followed by 22 whose 
bulky (diethylamino)ethoxy side chain is no doubt in­
strumental in generating this inhibition. In the absence 
of E2, the cytostatic action of the test compounds blunted 
any ER-mediated growth stimulation (squares in Figure 
3). Analogous antiproliferative effects were recorded in 
ER-negative BT20 cells (diamonds in Figure 3). As already 

shown for previously studied TPEs,36 the inhibition curves 
between 3 and 10 nM in BT20 cells were often parallel to 
those obtained in MCF7 cells in the presence of 10 /uM E2 
(triangles in Figure 3). 

Biological Screening Data: ER Binding, Cell Pro­
liferation, PKC Inhibition, or Stimulation. Compar­
ative data are available for 37 test compounds and 7 bio­
logical variables relating to ER binding, cell proliferation, 
cytotoxicity, and PKC III (a) activity.36-37 PKC, a Ca2+-
and phospholipid-dependent enzyme activated by di-
acylglycerol, is a protein kinase involved in cell surface 
transduction and in the control of cell proliferation and 
tumor promotion.42^44 It phosphorylates many substrates 

(42) Inoue, M.; Kishimoto, A.; Takai, Y.; Nishizuka, Y. Studies on 
a cyclic nucleotide-independent protein kinase and its pro­
enzyme in mammalian tissues. II: Proenzyme and its activa­
tion by calcium-dependent protease from rat brain. J. Biol. 
Chem. 1977, 252, 7610. 
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including RNA polymerase II, the EGF receptor, and 
several oncogene proteins which have been directly or 
inversely related to estrogen action. PKC III activity was 
measured under different experimental conditions. On the 
one hand, using histone as a substrate in the presence of 
phosphatidylserine (PS) and Ca2+ in which case maximal 
enzyme activity is obtained in the presence of the physi­
ological activator, diacylglycerol, on the other hand, using 
protamine sulfate as a substrate in which case the enzyme 
activity is Ca2+ and phospholipid independent. The results 
for six of the seven biological variables are given in Table 
II. The seventh variable arises from splitting the PS 
column into inhibition and stimulation of PKC activity, 
since it was noted that several DPEs and TPEs could 
noticeably stimulate enzyme activity. 

Multivariate Analysis by the Minimum Spanning 
Tree Method. Methodological Principles. Most com­
parisons of molecules such as the above rely on their prior 
definition in one of the following terms: (i) 3D structures 
(Dreiding models; van der Waals spheres that, like any 
other solid, can be translated into contours, vectors, pixel 
densities, skeletons, etc.; crystalline coordinates), (ii) 
chemical formulae, to be compared integrally by fitting or 
as fragments by, for instance, autocorrelation descriptors45 

or DARC-PELCO,46 (iii) spectral signatures that are dis­
continuous for mass and NMR spectra and continuous for 
UV and IR spectra and thus need to be transformed (e.g. 
sampling, Fourier transform), and (iv) quantum variables 
(isopotential map, charge or T electron densities, free va­
lence index, etc.). Algorithms similar to certain pattern 
recognition techniques are then used to identify discri­
minant structural groups. 

Since the application of these methods inevitably re­
quires the assistance of a theoretical chemist, an approach 
that enables the life-scientist if only to classify chemical 
structures unaided and observe structural affiliations 
would be most welcome. Such techniques based on cluster 
analysis47 that do not require a prior rigorous molecular 
description are indeed available. For the purposes of the 
analysis of the data in Table II, we shall describe one of 
the simpler cluster techniques, the minimum spanning tree 
(MST),39'47"49 which is used here to describe the org­
anisation of the 37 molecules when projected into a mul­
tidimensional space defined by the seven biological prop­
erties. 

The objective is to generate a 2D planar graph from the 
normalized 7D data table that best describes the near-

(43) Nishizuka, Y. The role of protein kinase C in cell surface signal 
transduction and tumor promotion. Nature 1984, 308, 693. 

(44) Nishizuka, Y. Studies and prospectives of the protein kinase 
C family for cellular regulation. Cancer 1989, 63,1892. 

(45) Broto, P.; Moreau, G.; Vandycke, C. Molecular structures: 
perception, autocorrelation descriptor and sar studies. Per­
ception of molecules: topological structure and 3-dimensional 
structure. Eur. J. Med. Chem. 1984,19, 61. 

(46) Dubois, J. E.; Laurent, D.; Bost, P.; Chambaud, S.; Mercier, C. 
SystemeDARC. Mgthode DARC/PELCO. Strategies de re­
cherche de correlations appliquees a une population d'-
adamantanamines antigrippales (DARC system. DARC/ 
PELCO method. Strategy for seeking correlations as applied 
to a population of anti'flu adamantanamines). Eur. J. Med. 
Chem.-Chim. Ther. 1976, 11, 225. 

(47) Chatfield, C; Collins, A. J. Multidimensional scaling and 
cluster analysis. In Introduction to Multivariate analysis; 
Chapman and Hall: London, 1989; p 189. 

(48) Gower, J. C; Ross, G. J. S. Minimum spanning trees and single 
linkage cluster analysis. Appl. Statist. 1969,18, 54. 

(49) Barthelemy, J. P.; Guenoche, A. Les arbres et les 
representations des proximites (Trees and proximity repre­
sentations). Masson, Paris, 1988, p 1. 

est-neighbor relationships among the test compounds. To 
do this, the raw data matrix is first converted into a sym­
metric semi-matrix of the x2 distances separating each pair 
of compounds (see the Experimental Section). From this 
starting point, in which each of the n molecules can be 
considered a group, a series of mergers are operated by 
single-link clustering that terminates with a single group 
constituted of all n molecules arranged in a network. This 
network spans all items by a set of straight lines joining 
pairs of points whose lengths are equal to the appropriate 
interpoint distances. The Prim algorithm39 we have used 
seeks the closest neighbor V̂  (shortest edge in graph 
theory) to an item (vertex V). This operation is reiterated, 
the feth step consisting in adding to the existing Vh-i edges 
the shortest edge V* which can be linked to a vertex within 
Vk.1 without forming a closed loop. After n - 1 iterations, 
a minimum spanning tree has been created. In this final 
tree, the overall activity profile varies least between a 
molecule and its nearest neighbor. The overall distance 
separating two molecules, as measured along the pathways 
generated, reveals how close is the relationship between 
them with regard to all the biological parameters measured. 
A novel activity profile leads to a branching out from the 
network. 

The criterion that the sum of the segments linking the 
molecules be as small as possible is far from trivial if one 
considers that there are nearly 500 million ways in which 
12 items can be arranged in linear order. The number of 
ways 37 molecules can be arranged into a branched net­
work is cosmic! The MST, which is the single network that 
best describes the data matrix, is thus not just a logical 
way of disposing the items but a true description of the 
inherent structure of the system under study (e.g. refs 50 
and 51). 

The clear visual impact of the MST form of data rep­
resentation and interpretation is not the least of its ad­
vantages (Figure 4): (a) The position of a molecule, i.e. 
part of a trunk or a branch, a main branch or a twig, at 
a bifurcation or within a long stem, indicates whether the 
molecule is part of a cluster of similar molecules, an in­
termediate within a stepwise progression, or a new lead 
compound. Its common denominator with other molecules 
can be deduced, (b) The MST in Figure 4 classifies the 
chemical structures on the basis of their selectivity with 
regard to the tests (see Figure 5 below) but not their ab­
solute activity levels. The pathways along the branches 
(see Figure 6 below) illustrate how the properties of the 
molecules evolve with structure. If the properties mea­
sured are interactions with specific proteins, contiguity 
between molecules can reflect analogies in active sites of 
ligands.52 (c) The full biological profile of a new molecule 
can be introduced into the system to determine the loca­
tion of this molecule with respect to the others. 

Minimum Spanning Tree of the Test Molecules. 
The MST of the test molecules (Figure 4) was constructed 
on the basis of specificity profiles as shown in Figure 5 for 

(50) Devillers, J.; Dore, J. C. Heuristic potency of the minimum 
spanning tree (MST) method in toxicology. Ecotox. Environ. 
Safety 1989, 17, 227. 

(51) Dore, J. C; Lacroix, J.; Lacroix, R.; Viel, C. De la manipulation 
informatique des formules developpees pour l'etude des rela­
tions structure-activite. Application aux medicaments anti-
parasitaires (The manipulation of information of developed 
formulas for the study of structure-activity relationships. 
Application to antiparasitic agents). J. Pharm. Belg. 1990,45, 
375. 

(52) Ojasoo, T.; Mornon, J. P.; Raynaud, J. P. Steroid hormone 
receptors. In Comprehensive Medicinal Chemistry; Emmett, 
J. C, Ed.; Pergamon Press: Oxford, 1990; Vol. 3, p 1175. 
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11E : OH, OiPr, H 

Figure 4. Minimum spanning tree of the TPE structures constructed on the basis of specificity of response. Typical specificity profiles 
are shown in Figure 5. The relative proximity of two TPEs is indicated by the nature of the line linking them: broad line, very close; 
medium line, close; fine line, distant. Clusters of molecules with highly similar activity profiles are encircled and hatched. Isolated 
molecules are just encircled. 
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Figure 5. Illustrative specificity profiles (E2, 5Z, 4, 20, and 
OH-TAM / ) forming the basis of the minimum spanning tree 
in Figure 4. 

the reference compounds E2 and 5Z and for the tip-of-the 
branch compounds 4,20, and OH-TAM Z. The MST has 
a main trunk and four branches of unequal length. At the 
center of the tree, in an offshoot off the main trunk, one 
can locate the reference molecule estradiol (E2). Its only 
neighbor, and counterpart in the TPE series, is the a,0-
dihydroxylated TPE 5Z that has the closest selectivity 
profile to E2 (Figure 5) and forms part of the main trunk. 
TPE 5Z is most closely related to TPEs 2Z and 3 (see 
cluster in Figure 4), somewhat less closely related to the 
duo DPE 28 (with a 6-carbon ring) and TPE 2E, and more 
distantly related to TPEs 9Z and 7Z. To our knowledge, 
the crystal structure of 5Z is not available but that of 7Z 
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Figure 6. Specificity profiles of the molecules along the pathway 
from OH-TAM Z to DPE 29 in the minimum spanning tree of 
Figure 4. (A) ER binding and cell proliferation, (B) PKC activity. 

has been superimposed with Eo..9,53 Superposition of either 
the a or the 0 ring of TPE 7Z with the A ring of E2 are 

(53) Pons, M.; Bignon, E.; Crastes de Paulet, A., Gilbert, J.; Ojasoo, 
T.; Raynaud, J. P. Hydroxylated triphenylacrylonitriles adopt 
a unique orientation with the binding site of the estrogen re­
ceptor. J. Steroid Biochem. 1990, 36, 391. 
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equally satisfactory although biochemical data would 
suggest that the main anchorage point of TPEs in the 
hormone binding site of ER is preferentially the a-phenolic 
ring.53 The proximity between E2 and 5Z suggests that the 
flexible TPE skeleton might be a handy prop to test the 
effects of diverse chemical substituents besides hydroxy 
groups on a variety of molecular targets as it has a greater 
number of degrees of freedom than the steroid skeleton. 
To our knowledge, there is no published evidence of PKC 
inhibition by steroid derivatives. 

Of particular note is the dispersion of the DPEs within 
the tree. DPE 28 (deacetylated cyclofenil) constitutes the 
essential link leading from the E2-mime, 5Z, toward test 
compounds that are selective PKC agents such as DPE 27 
(top left-hand branch) or that are noncytotoxic agonists 
that interact with both ER and PKC (top right-hand 
branch). On the other hand DPEs 25, 26, and 29 are 
reached by a bifurcation at 9E resulting from a more 
marked contribution of stimulation of PKC-PS activity, 
RBA and agonist activity and some cytotoxicity {IE and 
11Z) (see Figure 6 below). Some of these differences in 
specificity profiles can only be due to differences in ring 
structure: 27 has a rigid envelope-structure 5-membered 
carbon ring, 28, a flexible "flip-flap" 6-carbon ring, and 29, 
a constrained 7-carbon ring. 

Several clusters of two to four TPEs with comparable 
selectivity profiles can be identified: TPEs 4 and 8; TAM 
E and TPE 15; TPEs 14 and 21, OH-TAM E, and TAM 
Z; TPEs ISZ/E and OH-TAM Z; DPEs 25, 26, and 29. 
These clusters highlight the number of "me-too's" with 
analogous specificity profiles that have been designed 
within this small population of molecules. On the other 
hand, two TPEs are situated at the end of remote tips, i.e., 
TPEs 18 (the only metasubstituted TPE in the series) and 
20 (an a,a'-diisoaminoethyl derivative). Their activity 
profiles (lack of ER binding in both cases, but differential 
actions on agonism and PKC stimulation) are uncommon 
within this population. 

The pathways leading from TPE 9E (center) to the 
reference "anti-estrogen" OH-TAM Z (left) and to DPE 
29 (right) are depicted in Figure 6. Toward the left, one 
notes an increasing contribution with structural change 
(bulky N-containing substituents) of inhibition of Ca2+-
and phospholipid-dependent PKC phosphorylation of Hx 
histone especially in the presence of DO, appreciable but 
invariant cytotoxicity, a parabolic change in RBA for ER, 
and a steady decrease in agonist activity. Toward the right, 
the specificity profiles are very different with an interesting 
transition occurring between TPEs IE and 25. Whereas 
cytotoxicity peaks, agonism passes through a trough. 

A more evocative representation is given by the geo­
logical-type strata of Figure 7. The difference between 
the profiles in Figure 7 and those in Figure 6 lies not only 
in the representation form (cumulated values) but in the 
fact that account is taken of the overall activity of each 
molecule. Thus Figure 7 reflects not only specificity of 
effect as in Figure 6 but also amplitude of effect. It is to 
be noted, however, that as described in the legend in Table 
II the effects observed occur at different concentrations. 

Overall, one observes trends toward absence of cyto­
toxicity toward the tree-top especially in the left-hand 
branch compared to cytotoxicity at the bottom, stimulation 
of PKC in the bottom right-hand branch only, and agonism 
(cell-proliferation) virtually throughout with the notable 
exception of 20 and, to a lesser degree, of OH-TAM Z. 
This agonism is even manifest in compounds lacking any 
significant contribution from ER binding (e.g. 18, 22, 15, 
TAM E). Because the affinity of these compounds is very 
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Figure 7. Relative activity profiles of the molecules along the 
four branches of the minimum spanning tree of Figure 4 starting 
from E2 in the middle. In the top panel the first five molecules 
(5Z to 19) are common to both left and right branches; in the 
bottom panel only three molecules (5Z to 9E) are common to both 
lower branches. 
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Figure 8. Minimum spanning tree describing the relationships 
among the biological variables. The tree was constructed on the 
basis of the data in Table II. The distances between the variables 
indicate the closeness of a relationship. 

low, extremely high concentrations are needed for cell 
proliferation, but the hypothesis that ER may not be the 
sole molecular target accounting for the cell proliferation 
they induce should not be totally rejected. When agonism 
is high, cytotoxicity is low. Furthermore, a certain par­
allelism between cytotoxicity and PKC inhibition in the 
presence of diolein is apparent. On the other hand, there 
is no consistent association between PKC activity and 
growth as exemplified by the absence of agonism of 20. 

Minimum Spanning Tree of the Biological Varia­
bles. A MST was also calculated to further our under­
standing of the relationships among the biological variables 
for this population of molecules. These relationships have 
already been described in detail in a previous paper based 
on another type of multivariate analysis (correspondence 
factorial analysis (CFA)).38 The MST largely confirms the 
results of the CFA. Briefly, TPE competition for ER 
binding is related to the ability to promote MCF7 cell 
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growth and, to much lesser extents, to the ability to inhibit 
PKC phosphorylation of protamine sulfate (i.e. the pre­
sumably catalytic activity of PKC) and to kill MCF 7 cells 
at high concentrations. Although some relationship can 
be established between ER binding and T P E cytotoxicity, 
this latter parameter is more closely related to T P E in­
hibition of PKC phosphorylation of Hx histone that occurs 
in the presence of Ca2+ and phosphatidylserine (PS) (i.e. 
the presumably regulatory activity of PKC), when this 
phosphorylation is measured in the presence of diacyl-
glycerol (diolein = DO). In the absence of DO, the natural 
activator of PKC, the relationship is more distant ((0.54 
+ 0.59) vs 0.54). Stimulation of PKC is highly remote from 
the other variables and, naturally, situated at the opposite 
end of the t runk with respect to PKC inhibition. 

As noted previously,38 the two most unexpected rela­
tionships revealed by this multivariate analysis are the 
proximity of T P E cytotoxicity and PKC inhibition in the 
presence of DO and the remote position, in the vicinity of 
RBA, of inhibition of PKC phosphorylation of protamine 
sulfate. 

E x p e r i m e n t a l Sec t ion 

Melting points were determined on a Kofler apparatus and are 
uncorrected. Elemental analyses of all new compounds were 
performed in the Microanalytical Laboratory of the CNRS 
(Vernaison, France). Results were within ±0.3% of the theoretical 
values for those elements shown. 'H NMR spectra were recorded 
(S 0) at 90 or 300 MHz on a Bruker spectrometer with Me4Si as 
internal standard. IR spectra were determined with a Beckman 
ACCULAB IV. Thin-layer chromatography was performed on 
silica gel 60 F ^ precoated aluminum sheets. A Waters apparatus 
was used for analytical HPLC. 

Synthetic Procedures. 2-Phenyl-3-(4-hydroxyphenyl)-
3-[4-(isoamyloxy)phenyl]acrylonitrile (Mixture of £ and Z 
Isomers) and 2-Phenyl-3,3-bis[4-(isoamyloxy)phenyl]-
acrylonitrile (20). 2-Phenyl-3,3-bis(4-hydroxyphenyl)acrylo-
nitrile (5 g, 16 mmol) was added under a stream of nitrogen to 
a stirred solution of sodium ethoxide (368 mg Na, 0.016 atom) 
in absolute ethanol (80 mL). l-Bromo-3-methylbutane (3.02 g, 
20 mmol) was then added slowly. After heating to reflux for 7 
h, the reaction mixture was cooled and treated with H20 (100 mL), 
concentrated in vacuo, and extracted with CH2C12. The combined 
organic layers were washed and dried (Na2S04). After removal 
of the solvent, the resulting crude product (5.6 g) was chroma-
tographed on a silica gel column (eluent: CH2Cl2/EtOAc, 95:5). 
Four compounds were successively identified. (1) The bis-sub­
stituted compound 20 (0.37 g): TLC (same eluent) Rf 0.82; mp 
111 °C (EtOH). Anal. Calcd for C31H36N02: C, 82.11; H, 7.72; 
N, 3.09. Found: C, 82.08; H, 7.28; N, 2.77. (2-3) A mixture of 
E and Z isomers (2.30 g): TLC (CHC13/CH30H/TEA, 95:3:2) 
Rfi 0.60 and 0.48; mp 132-134 °C (cyclohexane); IR (CHC13) 
3570-3200 (OH), 2200 (CN) cm"1; XH NMR (CDC13) (90 MHz) 
b 0.86 (d, CH3, Z isomer, 45%), 0.93 (d, CH3, E isomer, 55%), 
1.6-2.08 (m, 3 H, CHCHj), 3.87 (t, OCH2, E isomer), 3.97 (t, OCH2, 
Z isomer), 4.98 (large s, OH), 5.46 (large s, OH), 6.48-7.42 (m, 13 
H, arom). Anal. Calcd: C, 81.46; H, 6.52; N, 3.65. Found: C, 
81.17; H, 6.68; N, 3.56. (4) The fourth compound was the starting 
bis-hydroxy derivative (1.30 g). 

2-[4-[2-(Diethylamino)ethoxy]phenyl]-3,3-bis(4-hydroxy-
phenyl)acrylonitrile (21). The synthesis was in two steps, the 
first step being the preparation of 4,4'-bis(tetrahydropyran-2-
yloxy)benzophenone. Concentrated H2SO4 (two drops) was added 
to a suspension of 4,4'-dihydroxybenzophenone (10.7 g, 50 mmol) 
in 3,4-dihydro-2H-pyran (50 mL). After stirring for 15 h at room 
temperature, the reaction mixture was extracted twice with 
benzene. The combined organic layers were treated with Na2C03 
solution (10%) until neutralization, washed with water, and dried 
(Na2S04). The solvent was removed, and the residual oil was 
crystallized (sulfuric ether/pentane, 1:3): yield 10 g (52%); mp 
103-104 °C. Anal. Calcd for C^H^A: C, 72.25; H, 6.80. Found: 
C, 72.27; H, 7.01. 

A solution of [4-[2-(diethylamino)ethoxy]phenyl]acetonitrile54 

(3.5 g, 15 mmol) in anhydrous ether (50 mL) was added dropwise 
under nitrogen to a warm suspension of sodium amidure (1.2 g, 
30 mmol) in anhydrous ether (50 mL). After heating for 2 h, the 
reaction mixture was cooled to room temperature at which point 
a solution of the above-prepared 4,4'-bis(tetrahydropyran-2-yl-
oxy)benzophenone (4 g, 10 mmol) in anhydrous ether (50 mL) 
was added. The mixture was stirred, heated under reflux for 8 
h, and then cooled before addition of water. Ether and water were 
eliminated and CH3OH was added (70 mL). After acidification 
with HC1 (30%) to pH 1 and after 2 h standing, the CH3OH was 
eliminated in vacuo with ether, and a solution of HC1 (10%) was 
added. Extraction with ether (50 mL X 2) gave an aqueous layer 
containing the basic compound which was alkalinized with 10% 
NaOH to pH 11 and treated with ether (50 mL x 2). A first 
extraction by CHC13 (100 mL) was followed by slow addition of 
diluted HC1 to pH 7-8 and reextraction (twice) with CHC13 (100 
mL X 2). The combined organic layers were washed with water 
and dried (Na2S04). After removal of solvent, the residual oil 
was crystallized from a mixture of sulfuric and petroleum ethers 
to give 2.5 g of a mixture of two compounds [TLC (CH2C12/ 
CH3OH/TEA; 20:5:0.25), Rp 0.43 and 0.25]. 20 was obtained by 
chromatography over a silica gel column (60,200-400 mesh) eluted 
by CH3CI/TEA (99:1) and increasing proportions of CH3OH (Rf 

0.43): mp 135-7 °C; IR (KBr) 3500-3000 (OH), 2200 (CN) cm"1; 
'H NMR 5 1.05 (t, 6 H, CH2Cff3), 2.77 (q, 4 H, Cff2CH3), 3.01 
(t, 2 H, Ctf3CH2N), 4.1 (t, 2 H, OCH2), 6.59-7.24 (m, 12 H, arom), 
9.85 (s, OH), 10 (s, OH). 

2-[4-[2-(Diisopropylamino)ethoxy]phenyl]-3,3-diphenyl-
acrylonitrile (22). 2-(4-Hydroxy-phenyl)-3,3-diphenylacrylo-
nitrile was prepared by demethylation of the corresponding methyl 
ether. A mixture of this phenol (4 g, 13.5 mmol), 2-(diiso-
propylamino)ethyl chloride hydrochloride (7.4 g, 37 mmol) and 
anhydrous potassium carbonate (9.30 g, 67.5 mmol) in anhydrous 
acetone (200 mL) was stirred and heated for 20 h under nitrogen. 
A mineral solid was separated by filtration. The solution was 
concentrated, and the residue was diluted with water and extracted 
with ether. The organic phase was washed, treated with a 5% 
NaOH solution, washed with water, and dried (Na2S04). After 
concentration, the residue was chromatographed on silica gel 
(elution with CHC13/CH30H, 90:10). The separated oil was 
distilled (250-5 °C (0.01 mm Hg)): »H NMR (CDC13) (90 MHz) 
a 1.04 (d, 12 H, CH3), 2.66-3.22 (m, 4 H, CH2N(CH)2), 3.86 (t, 
OCH2), 6.57-7.55 (m, 14 H, arom). Anal. Calcd for C ^ H ^ O : 
C, 82.07; H, 7.57; N, 6.60. Found: C, 82.49; H, 7.71; N, 6.59. 

2-Phenyl-3,3-bis[4-[2-(diisopropylamino)ethoxy]phenyl]-
acrylonitrile (23). 2-Phenyl-3,3-bis(4-hydroxyphenyl)acrylo-
nitrile was prepared by demethylation of the corresponding di­
methyl ether. This diphenol (5 g, 16 mmol) was added under 
nitrogen to a stirred suspension of (diisopropylamino)ethyl 
chloride hydrochloride (19.6 g, 98 mmol) and K2C03 (22.17 g, 160 
mmol) in anhydrous acetone (250 mL). Stirring and reflux were 
maintained for 22 h. After cooling, the reaction mixture was 
filtered (NaCl) and the solution was concentrated in vacuo. The 
residue was extracted with ether (200 mL X 2). The combined 
organic layers were acidified with diluted HC1. The aqueous 
solution was alkalinized with a 5% NaOH solution and extracted 
with ether (200 mL X 2). The organic solution was washed with 
water, dried (Na2S04), and concentrated. The residue was 
chromatographed twice on a silica gel column (60,200-400 mesh). 
Elution with CHC13 containing increasing proportions of CH3OH 
gave 23 as an oil (4.35 g, 48%): 'H NMR (CDC13) (90 MHz) d 
0.95 (d, 12 H, CH3), 1.02 (d, 12 H, CH3), 2.66-3.33 (m, 8 H, 2 
[(CH)(CH)NCH2]), 3.82 (t, 4 H, OCHa), 6.46-7.40 (m, 13 H, arom). 
Anal. Calcd for C37H49N302: C, 78.30; H, 8.64; N, 7.40. Found: 
C, 78.17; H, 8.48; N, 7.18. 

Biology: Other Chemicals and Materials. TAM and 4-
OH-TAM isomers were kind gifts from Dr. A. H. Todd (ICI, 
Macclesfield, England). [6,7-3H]E2 (1.85 TBq/mmol) was from 
the Commissariat a l'Energie Atomique (France). All materials 
for the binding and activity assays were obtained from the sources 

(54) Hughes, G. M. K.; Moore, P. F.; Stebbins, R. B. Some hypo-
cholesteremic 2,3,1-diphenylacrylonitriles. J. Med. Chem. 
1964, 7, 511. 
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given in the relevant publications describing the assays.3637 

Solutions of all test compounds in 95% alcohol were stored at 
4 °C in the dark for no longer than 2 weeks and checked before 
use by thin-layer chromatography (CH2Cl2/hexane, 90:10, v/v) 
or by high-performance liquid chromatography (HPLC). 

Biological Screening Methods. The relative binding affin­
ities (RBAs) of the test compounds for calf uterus cytosol estrogen 
receptor (ER) were measured after incubation for either 2 h at 
0 °C or 5 h at 25 °C by a competition method using [6,7-3H]-
17/9-estradiol (RBA of estradiol = 100%) as previously described.36 

Growth stimulation and cytotoxicity in MCF7 (ER-positive) 
human breast cancer cells were studied in 24-well tissue-culture 
cluster plates as previously described36 using culture medium 
without phenol red containing 5% dextran-coated charcoal. 

Purified Type m (a) PKC was separated from rat brain soluble 
fraction88 and assayed according to published procedures37 under 
three different activation conditions, i.e., using calf thymus Hx 
histone as substrate in the presence of 0.1 mM Ca2+, 5 mM 
magnesium acetate, 10 fiM [32P] ATP, or 2 Mg/mL of phospha-
tidylserine (PS) with or without 0.2 Mg/mL of diolein (DO), or 
using protamine sulfate as substrate in the presence of 0.5 mM 
EGTA instead of Ca2+, PS, and DO. 

Multivariate Statistical Analysis. The results in Table II 
on the responses of 37 compounds (rows) in seven tests (columns) 
were analyzed by the minimum spanning tree (MST) method.39 

First, the result for each compound was expressed as a percentage 
of the maximum value recorded in each test (multidimensional 
scaling from 1 to 100) in order to spread out the statistical weight 
attributed to each test evenly. Second, this transformed result 
was then expressed as a further percentage of the sum total of 
the transformed values recorded for the compound in the seven 
tests. In other words, for each test compound, the final contri­
butions of each biological variable to the overall response profile 
totalled 100%. Third, the transformed data matrix was converted 
into a matrix of x2 distances between pairs of compounds, i.e. the 
distances separating two molecules when there are projected into 
the 7-dimensional space defined by the orthogonal axes charac­
terising the tests (see the supplementary material). The conversion 
giving a symmetrical 37 X 37 semimatrix is performed using the 
formula 

j-llp-J\pl- P ' / J 

(55) Sekiguchi, K.; Tsukuda, M.; Ase, K.; Kikkawa, U.; Nishizuka, 
Y. Mode of activation and kinetic properties of three distinct 
forms of protein kinase C from rat brain. J. Biochem. 1988, 
103, 759. 

The square of the distances between two molecules i and i'is equal 
to the summed squares for the seven tests of the difference be­
tween the response (pij) of molecule i for test;' divided by the 
overall response profile (pi- or pi'-) of molecule i or i'for all tests; 
this difference is multiplied by the reciprocal of the profile of each 
test p-j. The x2 distances were calculated on a PC-AT compatible 
microcomputer (640 Ko of central memory) by a program written 
in BASIC Microsoft. This mathematical ploy converts the in­
dividual hierarchies of response of the 37 compounds on each of 
the seven tests into a single descriptive organisation. Third, in 
order to organize the molecules according to their similarities/ 
dissimilarities in response profiles, the shortest distance linking 
them into a network (no loops nor backtracking allowed) was 
calculated by the Prim algorithm for the construction of a min­
imum spanning tree.39 The tree is linear only if the seven variables 
are perfectly autocorrelated (e.g seven ways of measuring the same 
phenomenon). This methodology can be reasonably applied to 
data matrices for several hundred molecules and up to a mftTimiim 
of 100 biological variables. With an AT386 computer fitted with 
an arithmetical processor, the calculation time is a few minutes 
for the smaller matrices and up to several hours for a 500 X 100 
matrix. The program is available upon request from J. C. Dore. 
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