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Oxygenated sterols are potent regulators of 3-hydroxy-
3-methylglutaryl coenzyme A (HMG-CoA) reductase ac­
tivity in mammalian cells.1'2 15-Oxygenated sterols are 
particularly active in the regulation of HMG-CoA reduc­
tase activity and of cholesterol biosynthesis.1"7 One 15-
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138383-19-4; 15k free base, 138335-56-5; 151 free base, 128573-80-8; 
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oxygenated sterol, 3/3-hydroxy-5a-cholest-8(14)-en-15-one 
(1), is highly active in lowering not only the levels of 
HMG-CoA reductase activity in cultured mammalian cells 
but also tha t of two other key enzymes involved in the 
formation of mevalonic acid, i.e., cytosolic acetoacetyl-CoA 
thiolase and HMG-CoA synthase.5 In addition to its in­
hibitory action on cholesterol biosynthesis, 1 has. been 
shown to be a potent inhibitor of cholesterol absorption 
in intact rats.8,9 The 15-ketosterol serves as a substrate 
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Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. Charac­
terization of /3,7-unsaturated analogs of 3/8-hydroxy-5a-
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cells. J. Lipid Res. 1991, 32, 1215-1227. 
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for acyl coenzyme Axholesterol acyltransferase (ACAT) 
and inhibits the oleoyl-CoA-dependent esterification of 
cholesterol in hepatic and jejunal microsomes.10 Oral 
administration of 1 to rats has been shown to cause a 
reduction of ACAT activity of jejunal microsomes.11 The 
15-ketosterol has been shown to lower serum cholesterol 
levels upon oral administration to animals.12-14 

Delineation of the metabolism of 1 is critical to an un­
derstanding of its actions. 1 is convertible to cholesterol 
upon incubation with rat liver subcellular preparations16,16 

and upon oral or intravenous administration to rats and 
baboons,9,17"20 and a pathway for the overall conversion of 
1 to cholesterol has been presented.16 Cholesterol and its 
esters have been shown to be the major metabolites of 1 
found in tissues and blood after its intravenous adminis­
tration to bile duct-cannulated rats.17 However, a quan-

(9) Brabson, J. S.; Schroepfer, G. J., Jr. Inhibitors of sterol syn­
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activity of jejunal microsomes of the rat. Biochem. Biophys. 
Res. Commun. 1987,148, 920-925. 

(12) Schroepfer, G. J., Jr.; Monger, D.; Taylor, A. S.; Chamberlain, 
J. S.; Parish, E. J.; Kisic, A.; Kandutsch, A. A. Inhibitors of 
sterol synthesis. Hypocholesterolemic action of dietary 5a-
cholest-8(14)-en-30-ol-15-one in rats and mice. Biochem. Bio­
phys. Res. Commun. 1977, 78, 1227-1233. 

(13) Schroepfer, G. J., Jr.; Parish, E. J.; Kisic, A.; Jackson, E. M.; 
Farley, C. M.; Mott, G. E. 5a-Cholest-8(14)-en-30-ol-15-one, a 
potent inhibitor of sterol biosynthesis, lowers serum cholesterol 
and alters the distribution of cholesterol in lipoproteins in 
baboons. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 3042-3046. 

(14) Schroepfer, G. J., Jr.; Sherrill, B. C; Wang, K.-S.; Wilson, W. 
K.; Kisic, A; Clarkson, T. B. 5a-Cholest-8(14)-en-3/S-ol-15-one 
lowers serum cholesterol and induces profound changes in the 
levels of lipoprotein cholesterol and apoproteins in monkeys 
fed a diet of moderate cholesterol content. Proc. Nat. Acad. 
Sci. U.S.A. 1984, 81, 6861-6865. 

(15) Monger, D. J.; Parish, E. J.; Schroepfer, G. J., Jr. 15-
Oxygenated sterols. Enzymatic conversion of [2,4-3H]5a-
Cholest-8(14)-en-3j3-ol-15-one to cholesterol in rat liver homo-
genate preparations. J. Biol. Chem. 1980, 255,11122-11129. 

(16) Monger, D. J.; Schroepfer, G. J., Jr. Inhibitors of cholesterol 
biosynthesis. Further studies of the metabolism of 5a-
cholest-8(14)-en-3/3-ol-15-one in rat liver preparations. Chem. 
Phys. Lipids 1988, 47, 21-46. 

(17) Schroepfer, G. J., Jr.; Chu, A. J.; Needleman, D. H.; Izumi, A.; 
Nguyen, P. T.; Wang, K.-S.; Little, J. M.; Sherrill, B. C; Kisic, 
A. Inhibitors of sterol synthesis. Metabolism of 5a-cholest-8-
(14)-en-3jS-ol-15-one after intravenous administration to bile 
duct-cannulated rats. J. Biol. Chem. 1988, 263, 4110-4123. 

(18) Schroepfer, G. J., Jr.; Kisic, A.; Izumi, A.; Wang, K.-S.; Carey, 
K. D.; Chu, A. J. Inhibitors of sterol synthesis. Metabolism of 
[2,4-3H]5a-cholest-8(14)-en-3/3-ol-15-one after intravenous ad­
ministration to a nonhuman primate. J. Biol. Chem. 1988,263, 
4098-4109. 

(19) Schroepfer, G. J., Jr.; Christophe, A.; Chu, A. J.; Izumi, A.; 
Kisic, A.; Sherrill, B. C. Inhibitors of sterol synthesis. A major 
role of chylomicrons in the metabolism of 5a-cholest-8(14)-
en-3/S-ol-15-one in the rat. Chem. Phys. Lipids 1988,48, 29-58. 
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Figure 1. Conversion of 3/8-acetoxy-5a-cholest-8(14)-en-15-one 
to 3/S,25-dihydroxy-5a-cholest-8(14)-en-15-one: (a) (CF3CO)20, 
H202, H2SO4; triethylamine, CH3OH (ref 28); (b) periodinane; (c) 
isopropyltriphenylphosphonium iodide, butyuitbium; (d) Hg(0-
Ac)2; NaBH4; (e) K2C03; CH3OH. 

Table I. Effects of 3/3,25-Dihydroxy-5a-cholest-8(14)-en-15-one 
(2) and 3j8-Hydroxy-5a-cholest-8(14)-en-15-one (1) on the Levels 
of HMG-CoA Reductase Activity in CHO-K1 Cells 

sterol 
concentration, pM 

0.0 
0.1 
0.25 
0.5 
1.0 
2.5 

HMG-CoA reductase activity 
(% of control activity)0 

2 
100.0 ± 2.0" 
63.4 ± 0.2 
33.5 ± 1.0 
32.2 ± 0.9 
34.2 ± 2.8 
21.5 ± 1.2 

1 
100.0 ± 1.4C 

61.9 ± 1.2 
52.1 ± 1.3 
42.2 ± 2.0 
35.8 ± 0.6 
24.4 ± 0.8 

° Variation is expressed as SD of triplicate assays for the experi­
mental values. 6'cMean values for controls were 1265 and 854 pmol 
min"1 mg"1 protein, respectively. 

titatively more important fate of 1 under these conditions 
is very rapid conversion to polar metabolites which are 
excreted in bile17,19 and of which a significant fraction 
undergoes enterohepatic circulation.17 In initial studies 
of the nature of the polar metabolites of 1, we have shown 
that hydroxylation at C-26 and C-25 occurs upon its in­
cubation with rat liver mitochondria in the presence of 
NADPH.21 (25/J)-3/3,26-Dihydroxy-5a-cholest-8(14)-en-
15-one, prepared by chemical synthesis, was shown to be 
highly active in lowering the levels of HMG-CoA reductase 
activity in CHO-K1 cells.22 

The purposes of the present study were to synthesize 
3/3,25-dihydroxy-5a-cholest-8(14)-en-15-one (2) and to 
evaluate its action on HMG-CoA reductase activity in 
cultured mammalian cells. 

(21) St. Pyrek, J.; Vermilion, J. L.; Stephens, T. W.; Wilson, W. K.; 
Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. Charac­
terization of side chain oxygenated derivatives formed upon 
incubation of 3/3-hydroxy-5a-cholest-8(14)-en-15-one with rat 
liver mitochondria. J. Biol. Chem. 1989, 264, 4536-4543. 

(22) Kim, H.-S.; Wilson, W. K.; Needleman, D. H.; Pinkerton, F. 
D.; Wilson, D. K.; Quiocho, F. A.; Schroepfer, G. J., Jr. Inhib­
itors of sterol synthesis. Chemical synthesis, structure, and 
biological activities of (25R)-30,26-dihydroxy-5a-cholest-8-
(14)-en-15-one, a metabolite of 30-hydroxy-5a-cholest-8(14)-
en-15-one. J. Lipid Res. 1989, 30, 247-261. 
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The development of an efficient chemical synthesis of 
2 presents a significant challenge. The realization of this 
goal requires the construction of two functional domains, 
i.e., the A8(u)-15-ketone system and the 25-hydroxy-sub-
stituted sterol side chain. Two approaches can be con­
sidered: (a) introduction of the A^^-lS-ketone function­
ality into a 25-hydroxysterol such as 25-hydroxycholesterol, 
and (b) introduction of the 25-hydroxyl group into a 
A8(w)-15-ketosterol. The former approach, for which 
analogy can be found in our previous synthesis of 
(25fl)-3/3,26-dihydroxy-5a-cholest-8(14)-en-15-one from 
(25i?)-26-hydroxycholesterol,22 would be limited by the 
need to prepare significant amounts of 25-hydroxychole­
sterol and the multiple steps required for its conversion 
to 2. The latter approach, direct hydroxylation of 1, rep­
resents a case of specific oxidation at an unactivated 
carbon atom of the sterol side chain, a continuing challenge 
in synthetic organic chemistry. Several approaches29'27 for 
direct hydroxylation at C-25 have been described but these 
were not pursued because of reported low yields and/ or 
unsuitability to the case of a A8(14)-15-ketosteroL Our 
current effort concentrated on exploitation of our recent 
demonstration of a specific, very high yield side-chain 
oxidation of l,28 for which an efficient synthesis has been 
described.29 Oxidation of the acetate of 1 with a mixture 
of trifluoroacetic anhydride, hydrogen peroxide, and sul­
furic acid, followed by treatment of the crude product with 
triethylamine and methanol, provided 30-acetoxy-24-
hydroxy-5a-chol-8(14)-en-15-one (3) in 61 % yield.28 

The availability of 3, selectively protected at C-3, pro­
vided a key intermediate for the chemical synthesis of 2. 
Oxidation of the 24-hydroxyl function of 3 with Dess-
Martin reagent30 gave the aldehyde 431 in 91% yield. 

(23) Barton, D. H. R.; Boivin, J.; Lalandis, P. Functionalisation of 
saturated hydrocarbons. Part 13. Further studies on the Gif 
oxidation of cholestane derivatives. J. Chem. Soc, Perkin 
Trans. 1 1989, 463-468. 

(24) Onto, K.; Satoh, S.; Suginome, H. A long-range intramolecular 
functionalization by alkoxyl radicals: a long-range intramo­
lecular hydroxylation of C(25) of cholestane side chain. J. 
Chem. Soc, Chem. Commun. 1989,1829-1831. 

(25) Groves, J. T.; Neumann, R. Enzymic regioselectivity in the 
hydroxylation of cholesterol catalyzed by a membrane-span­
ning metalloporphyrin. J. Org. Chem. 1988, 53, 3891-3893. 

(26) Rotman, A.; Mazur, Y. C-25 hydroxylation of cholesterol de­
rivatives. J. Chem. Soc, Chem. Commun. 1974,15. 

(27) Cohen, Z.; Mazur, Y. Dry ozonation of steroids. C-25 func­
tionalization of cholestane derivatives. J. Org. Chem. 1979,44, 
2318-2320. 

(28) Herz, J. E.; Swaminathan, S.; Wilson, W. K.; Schroepfer, G. J., 
Jr. Inhibitors of sterol synthesis. An efficient and specific side 
chain oxidation of 30-hydroxy-5a-cholest-8(14)-en-15-one. 
Facile access to its metabolites and analogs. Tetrahedron Lett. 
1991 32 3923-3926 

(29) Wilson, W. K.; Wang, K.-S.; Kisic, A.; Schroepfer, G. J„ Jr. 
Concerning the chemical synthesis of 3/S-hydroxy-5a-cholest-
8(14)-en-15-one, a novel regulator of cholesterol metabolism. 
Chem. Phys. Lipids 1988, 48, 7-17. 

(30) Dess, D. B.; Martin, J. C. Readily accessible 12-1-5 oxidant for 
the conversion of primary and secondary alcohols to aldehydes 
and ketones. J. Org. Chem. 1983, 48, 4155-4156. 

(31) Oxidation of 3 (565 mg; 1.36 mmol) in CH2C12 (10 mL) with 
periodinane30 (1.26 g; 2.99 mmol) for 3 h at 25 °C gave, after 
silica gel column chromatography (solvent, 10% ethyl acetate 
in hexane), 3/3-acetoxy-15-oxo-5a-chol-8(14)-en-24-al (4) in 
91% yield: mp 162-164 °C; IR (KBr) 1723,1697,1628 cm"1; 
MS 414 (37%; M+) calcd for C a s H ^ 414.2770, found 
414.2757; 13C NMRI 73.0 (C-3), 40.6 (C-23), 202.2 (C-24); sin­
gle component on TLC (solvent, 40% ethyl acetate in hexane). 

Wittig olefination of 4 with isopropyltriphenyl-
phosphonium iodide gave the desired A24 analogue 532 of 
the acetate of 1. Oxymercuration, following the procedure 
of Morisaki et al.,33 proceeded in high yield to give the 
25-hydroxy derivative 6s4 despite the presence of the 
A8(14)-15-ketone functionality. Mild alkaline hydrolysis35 

of 6 gave the desired 30,25-dihydroxy-5a-cholest-8(14)-
en-15-one (2).36 The overall yield of 2 from the acetate 
of 1 was 36%. 

The 30,25-dihydroxy-15-ketosterol 2 was highly active 
in lowering the levels of HMG-CoA reductase activity in 
CHO-K1 cells (Table I).37 It should be noted that 1, 
26-hydroxycholesterol, and 25-hydroxycholesterol are 
among the most potent of oxysterols in the lowering of 
HMG-CoA reductase activity in cultured mammalian 
cells.6 The results presented herein, coupled with those 
described previously,22 demonstrate that hydroxylation of 
1 at C-26 or C-25 leads to metabolites of very high activity, 
findings which indicate the importance of these metabo­
lites in considerations of the overall actions of 1 in intact 
animals or in cells in which they are formed. 
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(32) 3|8-Acetoxy-5a-cholesta-8(14),24-dien-15-one (5) was prepared 
in 71% yield by condensation of 4 (502 mg; 1.21 mmol) with 
the ylide prepared from isopropyltriphenylphosphonium iod­
ide (839 mg; 1.99 mmol) and butyllithium (1.27 mmol) in THF 
at -78 °C for 15 min followed by stirring at 0 °C for 2 h and 
silica gel column chromatography (solvent, 4% ethyl acetate 
in hexane): mp 129-130 8C; IR (KBr) 1738,1699,1624 cm"1; 
MS 440 (32%; M+) calcd for C^rl^Oa 440.3291, found 
440.3275; 13C NMR & 24.4 (C-23), 124.5 (C-24), 131.4 (C-25), 
25.6 (C-26), 17.6 (C-27); single component on TLC (solvent, 
40% ethyl acetate in hexane). 

(33) Morisaki, M.; Rubio-Lightbourn, J.; Ikekawa, N. Synthesis of 
active forms of vitamin D. I. A facile synthesis of 25-
hydroxycholesterol. Chem. Pharm. Bull. 1973, 21, 457-458. 

(34) Mercuric acetate (147 mg; 0.461 mmol) in a 1:1 mixture (0.6 
mL) of THF and water was added to 5 (131 mg; 0.297 mmol) 
in THF (0.6 mL). After stirring at 0 °C for 4 h and then at 25 
°C for 5 h, the mixture was treated with NaBH4 (550 mg) in 
3 N NaOH for 5 min, and, after standard workup, subjected 
to silica gel column chromatography (solvent, 16% ethyl ace­
tate in hexane) to give 30-acetoxy-25-hydroxy-5a-cholest-8-
(14)-en-15-one (6) in 87% yield: mp 151.0-152.5 °C; IR (KBr) 
1736, 1701, 1626 cm"1; MS 458 (51%; M) calcd for C^H^A 
458.3396, found 458.3393; 13C NMR 5 73.1 (C-3), 44.2 (C-24), 
70.8 (C-25); single component on TLC (solvent, 50% ethyl 
acetate in hexane). 

(35) K2C03 (20 mg) in methanol (2 mL); 4 h at 25 °C. 
(36) 2: mp 177-179 °C; IR (KBr) 1701,1683,1622,1607 cm"1; MS 

416 (64%; M+) calcd for C^H^Oa 416.3291, found 416.3303; 
13C NMR 6 70.8 (C-3), 37.7 (C-4), 31.1 (C-2), 71.0 (C-25); single 
component on TLC (solvents, 70% ethyl acetate in hexane and 
40% acetone in benzene). 

(37) The effects of 1 and 2 on the elevated levels of HMG-CoA 
reductase activity induced by transfer of the cells to lipid-de-
ficient media were assayed as described previously.7 
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