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methyl ether, 138854-08-7; 42 allyl ether, 138854-09-8; 43a, 
138853-84-6; 43b, 138853-85-7; 43b hydrogenated, 139201-46-0; 
44,139201-47-1; 45,138854-18-9; 45 4-cyanophenoxy derivative, 
138854-19-0; 46, 133174-26-2; 46 benzyl ether, 138854-30-5; 47, 
139201-48-2; 47 benzyl ether, 138854-35-0; 48,139201-49-3; 49, 
138853-91-5; 49 benzyl ether, 138854-20-3; 50, 139201-50-6; 50 
benzyl ether, 139201-51-7; 51, 138853-98-2; 51 benzyl ether, 
139201-52-8; 52,139201-53-9; 53,139201-54-0; 53 benzyl ether, 
methyl ester, 138854-21-4; 53 methyl ester, 138854-22-5; 54, 
139201-55-1; 55,139201-56-2; 56,138854-29-2; 57,139201-57-3; 
58,139201-58-4; 59,139201-59-5; 60,139201-60-8; 61,139201-61-9; 
62, 10242-08-7; 63, 23145-19-9; 63 alcohol, 37603-26-2; (JE)-64, 
139201-62-0; (Z)-64, 139201-64-2; (£)-64 alcohol, 139201-63-1; 
(Z)-64 alcohol, 139201-65-3; 65,138853-86-8; 66,138853-90-4; 67, 
119794-95-5; 68,139201-66-4; 69,139201-67-5; 70,139242-71-0; 
70 tri-O-acetyl methyl ester, 139201-68-6; LTB4, 71160-24-2; 
p-(OEt)2P(0)CH2C(0)C6H4Cl, 18276-82-9; allyl bromide, 106-95-6; 
3-methyl-2-buten-l-yl 4-methoxyphenyl ether, 34125-69-4; 3-
methyl-2-buten-l-ol, 556-82-1; 2-(l,l-dimethyl-2,3-epoxy-
propyl)-4-methoxyphenyl n-butyrate, 138854-48-5; 2,3-dihydro-
3,3-dimethyl-2-(hydroxymethyl)-5-benzofuranol, 138854-50-9; 
(4-methoxyphenyl)magnesium bromide, 13139-86-1; 4-bromo-
anisole, 104-92-7; 5-(benzyloxy)-2,3-dihydro-3,3-dimethyl-2-[l-
hydroxy-l-(4-methoxyphenyl)methyl]benzofuran, 139201-69-7; 

Intriguing Structure-Activity Relations Underlie 
the Potent Inhibition of HIV Protease by 
Norstatine-Based Peptides1 

Human immunodeficiency virus (HIV) protease repre­
sents a compelling anti-viral target in that potent and 
specific inhibitors of this enzyme can be designed rationally 
using contemporary mechanistic and structural motifs.1-3 

Indeed, cell culture studies using inhibitors of HIV pro­
tease have established that this enzyme is essential for viral 
replication and infectivity, thereby providing a plausible 
biochemical rationale for the treatment of AIDS.4 In 
accord with its role as an aspartyl proteinase, the enzyme 
has been profoundly inhibited by numerous peptide ana­
logues incorporating features which mimic the proposed 
tetrahedral intermediates that are formed upon hydration 
of amide substrates of this class of proteinases.5"11 

Yet, examples of (hydroxymethyl)carbonyl-based in­
hibitors (e.g. norstatine) of HIV protease have been con­
spicuously lacking until recently, when Raju and Desh-
pande12 reported a number of moderately potent com­
pounds K{ > 3.3 MM, and Mimoto et al.13 described a 
heptapeptide, as well as a truncated variant,14 with potent 
activity against synthetic [Ala67,96] HIV protease. Their 
reports have prompted us to disclose a series of small 
phenylnorstatine-based peptides extending from the P2 to 
P / positions, and having N and C terminals protected. 
With L-proline at the P / position and S stereochemistry 
of the (hydroxymethyl)carbonyl component (Table I), 
these inhibitors, prepared according to Scheme I,1516 ex­
hibit impressive potency in the nanomolar range (ICso = 
0.58-7.4 nM).17 

Specifically, the truncated peptide (1) possesses sub-
micromolar activity (ICso = 460 nM), which can be im-
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5-(allyloxy)-2,3-dihydro-3,3-dimethyl-2-(4-methoxybenzyl)-
benzofuran, 139201-70-0; diethyl (4-methoxybenzyl)phosphonate, 
1145-93-3; benzyl chloride, 100-44-7; 5-(benzyloxy)-2,3-dihydro-
3,3-dimethyl-2-[2-(4-methoxyphenyl)ethenyljbenzofuran, 
138854-03-2; 5-(allyloxy)-2,3-dihydro-3,3-dimethyl-2-[2-(4-meth-
oxyphenyl)ethyl]benzofuran, 139201-71-1; 5-(allyloxy)-2,3-di-
hydro-3,3-dimethyl-2-methoxybenzofuran, 138854-53-2; 6-allyl-
2,3-dihydro-2,5-dihydroxy-3,3-dimethylbenzofuran, 138854-62-3; 
(carbethoxymethylene)triphenylphosphorane, 1099-45-2; 6-
propyl-2-(carbethoxymethyl)-2,3-dihydro-3,3-dimethyl-5-benzo-
furanol, 139201-72-2; methyl 3-mercaptopropionate, 2935-90-2; 
2-mercaptopyridine, 2637-34-5; [4-(metnyl1bio)phenyI]magnesium 
bromide, 18620-04-7; 4-bromothioanisole, 104-95-0; phenol, 108-
95-2; diethyl (2-oxo-2-phenylethyl)phosphonate, 3453-00-7; phenyl 
acetaldehyde, 122-78-1; 3-phenoxypropionaldehyde, 22409-86-5; 
methyl 4-hydroxybenzoate, 99-76-3; 4-cyanophenol, 767-00-0; 
4-mercaptopyridine, 4556-23-4; 2-mercaptobenzothiazole, 149-30-4; 
2,4-dihydroxy-3-propyl phenylmethyl ketone, 40786-69-4; 2-
methoxy-3-carbomethoxy-7-mercaptoquinoline, 95903-63-2; 
benzaldehyde, 100-52-7; (4-chlorobenzyl)triphenylphosphonium 
chloride, 1530-39-8; 2,3-dihydro-6-(3-phenoxypropyl)-2-(2-phen-
ethyl)-5-benzofuranol, 133174-26-2; methyl (tri-O-acetyl-a-D-
glucopyranosyl bromide)uronate, 21085-72-3; 5-lipoxygenase, 
80619-02-9. 

proved by extending the main chain in the N-terminal 
direction with either valine or asparagine at the P2 position. 
Subnanomolar inhibition is achieved by capping the N-
terminus with a (naphthyloxy)acetyl protecting group (cf. 
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Table 1° 
stereochem 

at -CH(OH)- structure IC» (nM) 
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Z-Phe-*[CH(OH)C(0)N]Pro-NH'Bu 460 
Z-Phe-tftCrKOHJCHaNlPro-O'Bu 6500" 
Z-Phe-*[C(0)C(0)N]Pro-NH«Bu 600 

Z-Asn-Phe-*[CH(OH)C(0)N]Pro-NHtBu 7.4 (K{ = 4)c 

Z-A8n-Phe-*[CH(OH)C(0)N]Pro-NH*Bu 3100 
Z-Asn-Phe-*[C(0)C(0)N]Pro-NHtBu 20 
Z-Val-Phe-*[CH(OH)C(0)N]Pro-NH'Bu 4.3 
Z-Asn-Phe-*[CH(OH)C(0)N]PIC-NH'Bu 26 
Z-Asn-Phe-*[CH(OH)C(0)N]DIQ-NH'Bu 84 

NoA-Asn-Phe-¥[CH(OH)C(0)N]Pro-NH'Bu 0.58 (if, = 0.4) 
NoA-Val-Phe-*[CH(OH)C(0)N]Pro-NHtBu 1.9 

2-NoA-Asn-Phe-*[CH(OH)C(0)N]Pro-NHtBu 1.3 
QC-Asn-Phe-¥[CH(OH)C(0)N]Pro-NH'Bu 1.1 (K-, = 0.9) 
QC-Asn-Phe-*[CH(OH)C(0)N]DIQ-NH'Bu 27 

Z-Asn-Phe-*[CH(OH)CH2N]Pro-OlBu 140,6 51,'' 130" 
Z-Asn-Phe-¥[CH(OH)CH2N]Pro-Ile-Val-OMe »100 t 

Boc-Asn-Phe-*[CH(OH)CH2N]Pro-Ile-Val-OMe 850" 
Z-Asn-Phe-¥[CH(OH)CH2N]Pro-OtBu 300,6 450,d 180" 
Z-Asn-Phe-*[CH(OH)CH2N]Pro-Ile-Val-OMe 136 

Boc-Asn-Phe-*[CH(OH)CH2N]Pro-Ile-Val-OMe 16"* 
Z-Asn-Phe-¥[CH(OH)C(0)N]Pro-Ile-Val-OMe 3.1 
Z-Asn-Phe-*[CH(OH)C(0)N]Pro-Ile-Val-OMe 25 

"Abbreviations: PIC, piperidin-2(S)-ylcarbonyl; DIQ, [(4aS,8aS)-decahydroisoquinolin-3(S)-yl]carbonyl; NoA, (naphthyloxy)acetyl; QC, 
quinolin-2-ylcarbonyl. b Value reported by Roche group,6,19 CK; values were determined by Dixon analysis. d Values determined by Rich et 
al.6 'This work. 

10). For such proline-based inhibitors, the Px-carbonyl Scheme I 
imparts incremental gains in potency as exemplified by Ph 
ICgo values for norstatines 1 and 4 vs hydroxyethylamines ( 
2 and 15, respectively. ZNH'^YC 

It is also interesting to note that the keto amides 3 and OH 
6 are active with potencies comparable to those of the 

1 H2, Pd/C. E!OH 
2 Z-asn-ONp. THF 
3. NaOH, dioxane ,-v 
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10 

corresponding norstatine analogues 1 and 4, respectively. 
For an interaction which might be assumed to be analo­
gous, Rich has established that the inhibition of pepsin 
by peptidyl ketones is due to the formation of a tight 
binding hydrate catalyzed by the enzyme.18 

The most active epimer of each pair of norstatine ste­
reoisomers has the S configuration around its essential 
carbinol function, which is identical in absolute configu­
ration to that observed for potent members of the corre-

Herranz, R.; Castro-Pichel, J.; Garcia-L6pez, T. Tributyltin 
Cyanide, a Novel Reagent for the Stereoselective Preparation 
of 3-Amino-2-hydroxy Acids via Cyanohydrin Intermediates. 
Synthesis 1989, 703-706. 
Protease from the BRU strain of HIV-1 virus was expressed 
microbially and used to monitor the HIV-1 protease-mediated 
hydrolysis of an octapeptide substrate, VSQN-/3-Naphthyl-
alanine-PIV, by modifications to the method of Heimbach, J. 
C; Garsky, V. M.; Michelson, S. R.; Dixon, R. A. F.; Sigal, I. 
S.; Darke, P. L. Affinity Purification of the HIV-1 Protease. 
Biochem. Biophys. Res. Commun. 1989,164, 955-960. 
Rich, D. H.; Bernatowicz, M. S.; Schmidt, P. G. Direct 13C 
NMR Evidence for a Tetrahedral Intermediate in the Binding 
of a Pepstatin Analogue to Porcine Pepsin. J. Am. Chem. Soc. 
1982, 104, 3535-3536. 
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Table II. Variations in the P / Substituent: Effects on Potency 
Are Not Parallel for Hydroxyethylamine Isosteres and 
Hydroxyamide Isosteres0 

R= - N p R= _Q R= J^J 
CO-NH'Bu CO-NH'Bu CO-NH'Bu 

210nM6(23) 18 nM6 (24) <2.7 nM° (25) 

Z-Asn-NH^><^R 
OH 

fS*N 7nM(4) 26nM(8) 84 nM (9) 

Z-Asn-NH^Nr^R 
OH 

"All Pi chiral centers in the table are S. 'Values reported by 
Roche group.6 

sponding hydroxyethylamine series prepared by Roche 
chemists (designated R in that series according to priority 
rules).5 However, by contrast with the epimeric hydrox-
yethylamines, 15 and 18, which have comparable activities, 
the ICgo values of norstatine epimers 4 and 5 differ sig­
nificantly from each other (by a factor of 420). Further­
more, for the comparably potent epimeric hydroxyethyl-
amines 15 and 18, divergent effects on potency have been 
observed upon extension of such P^-terminal peptides to 
P3' with He-Val (cf. 15 vs 16 or 17, whereby ICso increases 
significantly, with 18 vs 19 or 20, whereby IC50 decreases 
significantly).6'19 Lengthening of norstatine inhibitors 4 
and 5 in the same fashion dramatically increases the po­
tency of the R diastereomer, and leaves the IC^, of the 5 
epimer essentially unchanged (Table I). 

Another intriguing difference between the two systems 
is made manifest by replacing the pyrrolidine function with 
a homologous six-member ring (Table II). Roberts et al.5 

observed large incremental increases in potency with PIC 
[piperidin-2(S)-yl]carbonyl and DIQ [(4aS,8aS)-deca-
hydroisoquinolin-3(S)-yl]carbonyl replacements of proline 
(compounds 24 and 25, respectively). The trend we ob­
serve for norstatine-containing analogues (8,9, and 14) runs 
counter to that reported for the hydroxyethylamine series. 
One possible explanation is that residues in the norstatine 
series are oriented differently in the P / pocket than are 
residues in the hydroxyethylamine series, because of the 
need to maintain a specific interaction for the Px carbonyl. 

Intrinsic conformational effects may also contribute to 
the reduced potency (relative to proline) of this subset of 
inhibitors (8,9, and 14). Six-member rings would normally 
assume thermodynamically favorable chair conformations 
placing substituents in equatorial positions to minimize 
steric interactions, as observed for DIQ at the P{ position 
of tight binding hydroxyethylamine isosteres.19 However, 
in the norstatine series, because of A<1,3) strain,2**"26 serious 
repulsive interactions between the £er£-butylamide sub-

(19) Krohn, A.; Redshaw, S.; Ritchie, J. C; Graves, B. J.; Hatada, 
M. H. Novel Binding Mode of Highly Potent HlV-Proteinase 
Inhibitors Incorporating the (R)-Hydroxyethylamine Isostere. 
J. Med. Chem. 1991, 34, 3340-3342. 

(20) Johnson, F. Allylic Strain in Six-Membered Rings. Chem. Rev. 
1968, 68, 375-413. 

(21) Hoffmann, R. W. Allylic 1,3-Strain as a Controlling Factor in 
Stereoselective Transformations. Chem. Rev. 1989, 89, 
1841-1860. 

stituent and the adjacent iV-acyl function must force the 
saturated rings in 8, 9, and 14 to deviate from normally 
preferred chairlike conformations carrying substituents 
equatorial. Therefore, even if rings in both series were 
similarly oriented in the Px' pocket, the conformational 
requirements of the piperidine rings in the norstatine series 
might not permit optimal placement of functionality in the 
region of IV for tight binding to the enzyme. 

In summary, suitably designed norstatine peptides 
possess a unique structure-activity profile and are potent 
inhibitors of HIV-1 protease. A reasonable working hy­
pothesis is that the hydroxyamide carbonyl, by virtue of 
its proximity to essential carboxyl groups of the aspartyl 
protease, or alternatively, to a nearby water molecule27 that 
connects inhibitors to the flap region, imposes constraints 
on the complex which accout for (1) the enhanced potency 
of 1 over 2 and (2) the unusual structure-activity rela­
tionships reported herein. A complete description of our 
investigations in this series will be discussed in a forth­
coming full paper. 
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