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Introduction. Since the discovery of endothelin (ET-
1) by Yanigasawa1'2 and co-workers, an enormous effort 
throughout the scientific community has been directed 
toward understanding the biological significance of this 
potent vasoconstrictor peptide.3 Numerous studies aimed 
at determination of the physiology and pathophysiology 
of endothelins,3b,c as well as synthetic programs probing 
antagonism4 of the endothelin receptors and inhibition of 
a putative endothelin converting enzyme (ECE),5 have 
been undertaken. This report describes the initial findings 
of our program concerned with the design and synthesis 
of inhibitors of a putative metalloprotease, ECE, partially 
purified from rabbit lung.6,7 

ET-1 is approximately 100 times more potent than its 
precursor, big-ET-1; consequently it has been proposed 
that inhibition of a physiologically relevant ECE may be 
of therapeutic advantage in disease states characterized 
by overproduction of endothelin.3 These diseases may 
include hypertension,8 acute renal failure,9 and coronary 
or cerebral vasospasm.10 

Chemistry. Complete synthetic procedures and ana­
lytical data for the compounds presented in this commu­
nication are contained within the supplemental materials 
section. All compounds synthesized were characterized 
by *H and 31P NMR and mass spectrometry. A brief 
outline of the synthetic protocols is presented below. 

Compounds 15-22 were prepared by condensation of 
either leucyltryptophan methyl ester11 or its hydroxy 
derivative 3 (X = OH) with an appropriate phosphorus 
acid chloride12 2 followed by hydrolysis of both phosphorus 
and carboxylic esters (Scheme I). Alkaline hydrolysis of 
alkyl phosphonamide esters can be quite sluggish. There­
fore, it was decided that a more labile ester intermediate 
would be used. Accordingly, phosphorus acid dichlorides 
(either commercially available or prepared from phos­
phorus diacids, oxalyl chloride, and a catalytic amount of 
DMF12) were first treated with 1 equiv of phenolate 
followed by addition of the peptide or its oxygen analog 
3 (Scheme I). 

The protected phosphorus amides 4 (Scheme II) were 

Scheme I. Synthesis of Phosphonamide- and 
Phosphoramide-Containing Compounds" 

R = propyl, ethoxy, benzyl, 
cyclohexylmethyl 

X • NH2 HCI or OH 

Trp-OLi 

Y - NH or 0 
0 Reaction conditions: (a) CH2CI2, (COCI2) 1.1 equiv, DMF 0.1 

equiv, reflux; (b) CH2C12, phenol 1.0 equiv and EtgN 1.0 equiv in 
CH2CI2 added dropwUe; (c) THF, 4-DMAP; (d) THF/HaO, LiOH 3.1 
equiv, reflux; (e) to reaction mixture in (d) add 1.1 equiv of HCI and 
H2O and then lyophilize. 

Scheme II. Synthesis of 
3-Phosphonopropionate-Containing Compounds" 

fl 
EIO-I 

EtO n U 

" Reaction conditions: (a) THF, LDA, isobutyraldehyde, -78 °C 
to room temperature; (b) EtOH, 10% Pd/C (10 weight %), Hs 40 pei; 
(c) THF/H2O, LiOH 2.2 equiv and then HCI; (d) THF/DMF, 2 equiv 
of 4-methylmorpholine and then 1 equiv of isobutyl chloroformate 
(stir 10 min) and then Trp-OMe 1 equiv; (e) toluene, reflux 16 h; (f) 
CCU, SOCI2, and then EtOH; (g) THF/DMF, EDC, HOBt 

stable to flash chromatography. After mild alkaline 
hydrolysis (<80 °C for 2-10 h) of both the phosphorus 
and carboxylic esters, HCI was added to the reaction 
mixture to neutralize the phenolate present. The phenol 
byproduct is readily removed by lyophilization of an 
aqueous solution of phenol and the Hilithinm salt of the 
desired product 5 (Scheme I). 

The syntheses of phosphonate 9 and phosphinate 14 
began with Stobbe condensation13 of isobutyraldehyde and 
either triethyl phosphono-3-propionate (6) or diethyl (pro-
pylphosphinyl)-3-propionate14 (11), respectively (Scheme 
II). Appropriate protecting group manipulation and olefin 
reduction followed by either carbodiimide or mixed 
anhydride amide bond formation to tryptophan methyl 
ester provided the precursors to 9 and 14, respectively. 
Hydrolysis and reverse-phase (C-18) HPLC yielded 9 and 
14, both as a mixture of two diastereomere. 
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Figure 1. Phosphoramidon ICso (rabbit lung ECE) • 2 ± 0.1 
MM (value is mean ± SEM for three separate experiments). 

CH3" 

Figure 2. Ethyl phosphoramidate 15. ICso (rabbit lung ECE) 
= 109 ± 32 nM (value is mean ± SEM for three separate 
experiments). 

Results and Discussion. It has been demonstrated 
that several enzymes or classes of enzymes are capable of 
selectively cleaving the 39 amino acid precursor peptide 
between residues Trp2i and Vata to form ET-1.16 Human 
cathepsin E16 has been implicated as a possible physio­
logically relevant ECE due to its ability to selectively 
liberate ET-1 from big ET-1 without further degradation 
of either peptidic product. Corroboration of these results 
by in vivo experiments with specific inhibitors of these 
enzymes has not appeared to date. Phosphoramidon, 
iV-[(a-L-rhamnopyranosyloxy)hydroxyphosphinyl]-L-Leu-
L-Trp (Figure 1), has been reported to inhibit the 
conversion of big-ET-1 to ET-1 in vitro as well as in vivo, 
suggesting that the physiologically relevant ECE is a 
metalloprotease.15-17 

The systematic design and synthesis of analogues of 
phosphoramidon would seem to be a promising path 
toward more potent and specific inhibitors of ECE. A 
significant obstacle to this approach lies in the synthetic 
challenge associated with the synthesis of molecules 
containing a variety of chemically sensitive functional 
groups. The incompatibility of the synthetic and pro­
tection protocols for this phosphorus linked glycopeptide 
would hinder an effort to synthesize numerous analogues 
in a timely fashion. 

— 1001 

It was our contention that if certain of these groups 
could be removed without a significant loss in potency, a 
systematic investigation would be synthetically tractable. 
The initial results of our studies indicate that this is 
possible through replacement of the rhamnose moiety by 
simple alkyl groups. For example, replacement of the 
rhamnose ring in phosphoramidon by an ethoxy group 
provides inhibitor 15 (Figure 2) with an ICso of 109 uM,6 

about 60-fold less potent than phosphoramidon, but a 
synthetically more attractive target. As shown in Figure 
3, phosphoramidate 15 also inhibits the pressor response 
to big-ET-1 in the ganglion-blocked rat in a dose-
dependent manner.18 

It has been demonstrated that inhibition of metallo-
proteases by phosphorus-based inhibitors is sensitive to 
the electronic nature of the phosphorus atom.19,20 Con­
sequently, we have synthesized analogues of 15 (Table I) 
containing various phosphorus acids and amides. Propyl 
phosphonamide 17 represents a novel inhibitor with 
potency similar to phosphoramidon21 and a structure 
significantly more amenable to rapid and thorough in­
vestigation of the structural requirements for inhibition 
of ECE. Although the ICso for phosphonamide 17 is 
identical to phosphoramidon in vitro, this compound was 
5 times more potent in vivo18,22 (Figure 3). 

The relative potency for compounds 9 and 14-18 
parallels, with one exception, that described for a related 
series of thermolysin inhibitors.19'20 On the basis of the 
results for thermolysin, one would expect the phosphinic 
acid analogue 14to be of similar potency to phosphonamide 
17. This is clearly not the case for ECE. Failing to 
establish a close correlation between ECE and the more 
thoroughly studied metalloprotease thermolysin, the above 
series was expanded to better understand the enzyme/ 
inhibitor system under consideration. 

Additional pairs of inhibitors which vary only in the 
oxidation state of phosphorus (phosphoramide versus 
phosphonamide) were synthesized and tested for inhibition 
of ECE. In vitro inhibition by structures 19-22 (Figure 
4) illustrates that the phosphonamide oxidation state does 
not provide a consistent improvement in potency over the 
phosphoramide. This result suggests that the electronic 
nature of the putative transition-state analog is not solely 
responsible for relative inhibitor potency even in such 
structurally similar molecules. As Bartlett proposes,19 

differences in binding between closely related inhibitors 
cannot be accounted for by the comparison of a single 

big ET 1 10 30 mg/kg 

Photphoromidon • big ET-1 

big ET 1 10 10 mg/kg 

Compound tf* big ET*1 
big ET 0.J 1 10 mg/kg 

Compound 17+ big ET-1 

Figure 3. Effect of phosphoramidon and compounds 15 and 17 on the pressor response to big ET-1 in the ganglion-blocked anesthetized 
rat. For in vivo inhibition determinations the compounds were given intravenously 10-15 s prior to the administration of big ET-1 
at 1 nmol/kg (n • 3 or 4 for each dose). Neither phosphoramidon nor compound 17 antagonize the pressor response to ET-1 in a rat 
pressor assay. For methodological details, see reference 17. 
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Table I. ECE Inhibition by Structural Analogs of 15 

no. 

15 
16 
* 

17 
18 
14 

X 

0 
0 
0 
CH2 
CH2 
CH2 

Y 

NH 
0 
CH2 
NH 
0 
CH2 

ICM 0«M) 

109 ±32° 
J-M006 

»100<> 
2 ± 0.1" 
»100<> 
»100» 

0 IC50 data were determined in an RIA assay using big ET-1 as 
substrate (values are means ± SEM for three separate experiments). 
''This IC50 value corresponds to a compound which gave <25% 
inhibition when assayed at a 100 MM screening concentration (n -
2).c This compound was synthesized as a mixture of diastereomers 
at the point of attachment of the isobutyl side chain. 

""VP 
H 

19:X = 0, IC5o-37±2uM 

20: X = CH2, IC50 = 61 ±2^M 

t ^ \ (JO | H J 

" ° YP 
H 

21: 
22: 

X = 0, ICso = 48±5nM 
X = CH2, IC5o = 4.8±0.7^M 

Figure 4. Phosphonamidate and phosphoramidate inhibitors 
of ECE. Analogs of phosphoramidon. 

factor such as phosphorus oxy anion basicity, minor 
structural changes, or variation in solvation energy. 

Presumably, a variety of factors influenced the relative 
potency between a given phosphonamide/phosphoramide 
pair in this study. The difference in potency between 
phosphoramide and phosphonamide oxidation states for 
the three sets compared (15 vs 17,19 vs 20, and 21 vs 22) 
was greatest for the smallest group attached to phosphorus 
(propyl vs ethoxy, 15 vs 17). This may suggest that the 
relative potency in the more substituted cases (benzyl or 
cyclohexylmethyl) was dominated by increased hydro­
phobic or steric interactions with the enzyme which masked 
the effects of changing the electronic nature of phosphorus. 

Our future work in this area will include studies directed 
at gaining a better understanding of the intriguing trends 
noted above. In addition, we hope to develop SAR for 
ECE through the synthesis of phosphorus-containing 
inhibitors related to those presented in this communica­
tion. These studies should provide a more complete 
description of the structural requirements for inhibition 
of ECE. 
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Supplementary Material Available: Detailed synthetic 
procedures and analytical data as well as a description of the 
partial purification of ECE from rabbit lung and assay conditions 
(19 pages). Ordering information is given on any current 
masthead page. 
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