Novel Acyclonucleotides: Synthesis and Antiviral Activity of Alkenylphosphonic Acid Derivatives of Purines and a Pyrimidine

Michael R. Harnden, Ann Parkin, Martin J. Parratt," and Robert M. Perkins
SmithKline Beecham Pharmaceuticals, Great Burgh, Epsom, Surrey KT18 5XQ, U.K.

Received February 9, 1993

Abstract

A series of phosphonoalkenyl and (phosphonoalkenyl)oxy derivatives of purines and a pyrimidine were synthesized. These compounds are the first reported acyclonucleotides which incorporate the α, β-unsaturated phosphonic acid moiety as the phosphate mimic and include compounds in which the acyclic substituent is attached to $\mathrm{N}-9$ of a purine or $\mathrm{N}-1$ of a pyrimidine by either a nitrogen-carbon or a nitrogen-oxygen bond. The phosphonoalkenyl-substituted compounds 7ac, 8a-c, 9, 10, and 12 were prepared either by Mitsunobu coupling of alcohols with purine or pyrimidine derivatives or by alternative alkylations of the heterocyclic bases. The (phosphonoalkenyl)oxy derivatives $7 \mathrm{~d}-\mathrm{g}, 8 \mathrm{~d}-\mathrm{g}$, and 11 were synthesized by coupling of alcohols with 9 -hydroxypurines or a 1-hydroxypyrimidine under Mitsunobu conditions. The novel acyclonucleotides were tested for activity against herpes simplex types 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), cytomegalovirus (CMV), visna virus, and human immunodeficiency virus type 1 (HIV-1). Guanine derivatives were moderately to extremely cytotoxic, but the adenines were less toxic to cells. At the concentrations tested, (Z)-isomers in the unbranched series had no activity against herpes viruses or HIV-1. (E)-9-[(4-Phosphonobut-3-enyl)oxy]adenine (7d) displayed selective activity against HIV-1, (E)-2,6-diamino-9-(4-phosphonobut-3-enyl)purine (9) showed selective antiretrovirus activity, and (E)-9-[2-(hydroxymethyl)-4-phosphonobut-3-enyl]adenine (7c) showed selective antiherpesvirus (VZV and CMV) activity.

Introduction

In recent years it has been shown that acyclic phosphonomethoxy analogues of nucleoside 5^{\prime}-monophosphates can lead to broad-spectrum antiviral agents ${ }^{1}$ which do not require activation by viral thymidine kinase. The selectivity of these compounds is dependent upon the ability of their diphosphate derivatives (acting as triphosphate equivalents) to inhibit viral polymerases at concentrations lower than those required for inhibition of host cell DNA polymerases. ${ }^{2-4}$ Two discrete series embracing the most promising candidates emerged, namely the 9 -[2-(phosphonomethoxy)ethyl] (PME) and (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl] [(S)-HPMP] series. In the former series 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) (1) (Chart I) has selective activity against retroviruses including human immunodeficiency virus (HIV), ${ }^{5}$ the causative agent of acquired immunodeficiency syndrome (AIDS), and 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG) (5) has broad-spectrum antiviral activity. ${ }^{5}$ In the latter series (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine [(S)-HPMPA] (2) exhibits broad-spectrum anti-DNA virus activity including activity against herpes simplex virus types 1 and 2 (HSV-1 and -2), and the corresponding cytosine derivative [(S)-HPMPC] (6) has selective activity against cytomegalovirus (CMV) ${ }^{5,6}$ We have recently reported the synthesis of a series of $9-[($ phosphonomethoxy)alkoxy]purines in which the acyclic substituent is attached by an $\mathrm{N}-\mathrm{O}$ bond. Some of these compounds, such as 9 -[(2-phosphonomethoxy)ethoxy]adenine (BRL 47923) (3), have potent activity against retroviruses including HIV. ${ }^{7,8}$ This strategy has been adopted by others to produce the acetal-containing HPMPA analogue (4) which has selective activity against HSV-2 and CMV. ${ }^{9}$ Since the ethenyl unit has an appreciable electron-withdrawing effect, ${ }^{10}$ the important second dissociation constant of alkenylphosphonic acids should closely mirror those of the natural phosphate monoesters ${ }^{11}$

Chart I

and the phosphonomethoxy analogues. ${ }^{12}$ Encouragingly, the trans-alkenylphosphonic acid analogue of adenosine monophosphate (AMP) has been shown to be a substrate for rabbit muscle AMP kinase, ${ }^{13}$ though antiviral data for this type of nucleotide analogue is lacking. Acyclic nucleotide analogues incorporating the alkenylphosphonic acid group as the phosphate mimic therefore appeared to have high potential for being effective antiviral agents. In this report the synthesis and antiviral activity of a series of alkenylphosphonic acid derivatives of purines and a pyrimidine (7a-g, 8a-g, 9-12) (Chart II) are described. ${ }^{14}$ These novel acyclonucleotide analogues include both $\mathrm{N}-\mathrm{C}$ and $\mathrm{N}-\mathrm{O}$ linked derivatives.

Chemistry

The alkenylphosphonate moiety of the acyclic substituents was introduced by Wadsworth-Emmons ${ }^{15 a}$ or Peterson ${ }^{15 b}$ olefination of aldehydes 13,19 , and 23 (Scheme I). Aldehydes 13 and 19 were prepared by pyridinium chlorochromate mediated oxidation of the respective alcohols, ${ }^{16}$ and 23 was obtained by silylation of (R / S)-

Chart II

Scheme Ia

${ }^{a}$ (i) $\left[(i-\mathrm{PrO})_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{CHLi}, n$-heptane; (ii) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHLiSiMe}_{3}$, THF; (iii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{H}_{2} \mathrm{O}$ (2:1); (iv) $\mathrm{HCl}, \mathrm{MeOH}$; (v) (a) $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{CCH}_{3}, p-\mathrm{TSA}, \mathrm{THF}$, (b) $\mathrm{H}_{2} \mathrm{O}$; (vi) t - $\mathrm{BuPh}_{2} \mathrm{SiCl}$, imidazole, THF; (vii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (viii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{THF}$ (2:1:1); (ix) $t-\mathrm{BuMe}_{2} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
glyceraldehyde. Wadsworth-Emmons reaction ${ }^{17-19}$ of tetraisopropyl methylenediphosphonate with the aldehydes 13, 19, and 23 gave exclusively the (E)-alk-1enylphosphonates 14, 20, and 24. Peterson reaction of 13 with diethyl [(trimethylsilyl)methyl]phosphonate ${ }^{17,20}$ provided the chromatographically separable (Z)- and (E)alkenes 16 and 18 in the ratio of 5:2, thereby proving a useful route to both isomers. Deprotection/protection procedures were performed on intermediates 14, 16, 20 , and 24 to give the desired alcohols $15,17,22$, and 26.

Attempted base-catalyzed alkylation of purine derivatives using the mesylate derived from 15 produced only

Scheme II ${ }^{\text {a }}$

${ }^{a}$ (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{THF}$; (ii) $\mathrm{NH}_{3}, \mathrm{EtOH}$; (iii) $\mathrm{Me}_{3} \mathrm{SiBr}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{NaN}_{3}, \mathrm{DMF}$; (v) $\mathrm{PPh}_{3}, \mathrm{THF}$; (vi) $\mathrm{H}_{3} \mathrm{O}^{+}$; (vii) $\mathrm{Me}_{3} \mathrm{SiBr}$, DMF; (viii) $\mathrm{HCl}, \mathrm{MeOH}$.
the elimination product 37. However, effective coupling was achieved directly from the alcohol 15 under Mitsunobu conditions ${ }^{21}$ (Scheme II). Exclusive alkylation at the N-9 position of the purine occurred upon Mitsunobu coupling of 6 -chloropurine ${ }^{22}(27)$ with the alcohol 15 to give the product 28 in 37% yield, along with a substantial quantity of the diene 37. Similar coupling of 27 with 17 gave 30. Attempted Mitsunobu coupling using the acetate 21 produced only the diene 38. The protecting group was therefore exchanged and the tert-butyldiphenylsilyl derivative 22 coupled successfully to afford the purine derivative 33 in 28% yield along with a 56% yield of the diene 39. Dienes were observed as byproducts in all Mitsunobu reactions involving alcohols 15, 17, and 22. Treatment of 28 with ethanolic ammonia gave the adenine derivative 29. Similar treatment of 30 and 33 , however, caused partial migration of the double bond leading to inseparable mixtures of alk-1-enyl- and alk-2-enylphosphonates. The intermediates 30 and 33 , however, were both cleanly transformed into the 6 -azidopurine derivatives 31 and 34 upon treatment with the less basic reagent sodium azide. Reduction ${ }^{23}$ of the azido function of 31 gave the adenine derivative 32. Similarly, reduction of 34 gave the adenine derivative 35 which was not isolated but was deprotected to afford 36. Compounds 29,32 , and 36 were deesterified to the phosphonic acids $7 \mathrm{a}-\mathrm{c}$ using bromotrimethylsilane.
Mitsunobu reaction of 2-amino-6-chloropurine (40) with 15 and 17 gave the desired purine derivative 41 and 43 (Scheme III). However, even with 22 the sole reaction pathway was toward elimination upon attempted alkylation of 40. Acetylation of the amino group was found to partially suppress elimination, the desired product 45 being obtained in 36% yield from reaction of 22 with 2 -acet-amido-6-chloropurine (44). Compounds 41 and 43 were transformed into the guanine derivatives $8 \mathrm{a}, \mathrm{b}$ by sequential deesterification and hydrolysis. Compound 41 was also treated with ethanolic ammonia to give the 2,6 diaminopurine derivative 42 which was deesterified to the phosphonic acid 9 . Removal of the tert-butyldiphenylsilyl protecting group from 45 using methanolic hydrogen

Scheme III ${ }^{\text {a }}$

${ }^{a}$ (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{DMF}$; (ii) $\mathrm{Me}_{3} \mathrm{SiBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) HCl ; (iv) NH_{3}, EtOH; (v) $\mathrm{Me}_{3} \mathrm{SiBr}$, DMF; (vi) $\mathrm{HCl}, \mathrm{MeOH}$.
chloride concurrently removed the N-acetyl group and exchanged the 6 -chloro group for a 6 -methoxy function, giving compound 46. Deesterification conditions also caused cleavage of the 6 -methoxy function giving the phosphonic acid 8 c in 58% yield.
Reaction of 9 -hydroxy-6-N-phthalimidopurine ${ }^{7 b, 24} 47$ with the alcohols $15,17,22$, and 26 under Mitsunobu conditions furnished the coupled products $48,50,52$, and 55 (Scheme IV). Mitsunobu reactions with 9 -hydroxypurines were generally higher yielding than with purines themselves. N-Deprotection of 48 and 50 gave the unbranched adenine derivatives 49 and 51 and sequential N - and O -deprotection of 52 and 55 gave the branched derivatives 54 and 57 . The phosphonates 49, 51, 54, and 57 were deesterified to the phosphonic acids $7 \mathrm{~d}-\mathrm{g}$.
Mitsunobu coupling of 2-[bis(tert-butoxycarbonyl)-amino]-9-hydroxy-6-methoxypurine ${ }^{76,24}$ (58) with 15,17 , 22, and 26 provided the intermediates $59-61$ and 63 (Scheme V). Complete deprotection of 59-61 and 63 gave the phosphonic acids $8 \mathrm{~d}-\mathrm{g}$.
Attempted 1,6-addition of 40 to the diene 39 (Scheme VI) gave none of the desired product but interestingly afforded the diene 64 in 52% yield by allylic displacement of the tert-butyldiphenylsilyloxy moiety. ${ }^{25}$ Deesterification and hydrolysis of 64 gave the guanine derivative 10 .
N^{4}-Benzoyl-1-hydroxycytosine ${ }^{26}$ (65) was also successfully alkylated to give 66 when treated with 26 under Mitsunobu conditions (Scheme VII). The intermediate 66 was concurrently N - and O -deprotected using methanolic hydrogen chloride to give the cytosine derivative 67 which upon treatment with bromotrimethylsilane provided the phosphonic acid 11.
Preparation of the N-C linked HPMPC analogue 12 was more problematical. Cytosine itself did not couple with 22 under Mitsunobu conditions, the diene 39 being the sole product. Our success with the N-acetylpurine 44 suggested that N^{4}-acetylcytosine might couple more efficiently with 22. However, this reaction was similarly unsuccessful. A recent literature report ${ }^{27}$ of the successful Mitsunobu reaction of N^{3}-benzoyluracil with alcohols in the synthesis of carbocyclic nucleoside analogues prompted investigation of the reaction of N^{3}-benzoyluracil with 22. Although a very small amount of material was obtained and tentatively assigned as the desired product, this route could not be made viable. However, alkylation ${ }^{6}$ of cytosine 68 with the mesylate 69 under basic conditions gave the desired N -1-isomer 70 together with the less polar 0 -isomer

71 in the ratio of $2: 1$ (Scheme VIII). Isomers 70 and 71 were initially assigned by comparison of their NMR $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$) spectra with data for similarly alkylated intermediates obtained in the synthesis of PMEC and (S)HPMPC. ${ }^{6}$ Additional confirmation of the assignments was obtained from a 2D NMR ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ correlation experiment. For the product designated as the N-1-alkyl derivative 70, a three-bond coupling interaction was observed between $\mathrm{C}-1$ ' and the proton at $\mathrm{C}-6$ of the cytosine ring. Nosuch interaction was observed for the O -alkylated isomer 71. Sequential deacetalization, N -acetylation, and 0 -monomethoxytritylation gave the alcohol 74. Moffatt oxidation of $\mathbf{7 4}$ followed by Wittig reaction with diphenyl [(triphenylphosphoranylidene)methyl]phosphonate ${ }^{28-30}$ provided the alkenylphosphonate 75. Deprotection of 75 gave the diphenyl phosphonate 76. Transesterification ${ }^{31}$ of 76 using cesium fluoride in methanol gave the dimethyl phosphonate 77 which was then amenable to deesterification to the phosphonic acid 12 by bromotrimethylsilane.

Biological Results

The acyclonucleotide analogues ($7 \mathrm{a}-\mathrm{g}, 8 \mathrm{a}-\mathrm{g}, 9-12$) were tested in cell culture for activity against HSV-1 and -2, varicella zoster virus (VZV), CMV, and HIV-1. Additionally, several compounds were tested against visna virus, a lentivirus related to HIV. The results obtained for active compounds ($\mathrm{IC}_{50}<300 \mu \mathrm{M}$) are given in Table I. At the concentrations tested $\mathbf{7 b}, 7 \mathrm{c}, 7 \mathrm{~g}, 8 \mathrm{bb}, 8 \mathrm{~g}, \mathbf{1 0}, \mathbf{1 1}$, and 12 showed no significant activity. The compounds were evaluated for cytotoxicity by determination of their ability to inhibit DNA synthesis (as measured by incorporation of $\left[{ }^{3} \mathrm{H}\right]$ thymidine) in uninfected cells (Table I). The analogue 7d of BRL 47923 (3) showed selective anti-HIV activity albeit with reduced potency relative to 3^{8} (Table I). Interestingly the saturated derivative of 7 d showed no significant anti-HIV activity at concentrations up to 300 $\mu \mathrm{M} .^{32}$ Surprisingly the PMEA analogue 7a was inactive against HIV although it was moderately active against visna virus. However, the analogue 9 of 2,6 -diamino- 9 -(2-phosphonomethoxy)ethylpurine (PMEDAP) exhibited selective anti-HIV activity but was less potent than the prototype (which has an IC_{50} value of $1.0 \mu \mathrm{M}^{5,33}$). The guanine derivatives $8 \mathrm{a}, \mathrm{c}$-f displayed a variety of apparent antiviral effects. However, although many of these derivatives were not toxic to the cell monolayers used in the antiviral tests, in most cases at concentrations similar to those inhibiting virus replication they inhibit DNA synthesis in uninfected cells. It is therefore unlikely that in these cases their activity is attributable to inhibition of a virus specific process. The guanine derivative 8d proved to be a very cytotoxic compound. Similarly compound 8a [which is the direct analogue of PMEG (5)] showed a high level of cytotoxicity comparable to the value for PMEG itself ($\mathrm{CD}_{50} 8.6 \mu \mathrm{M}^{5}$). Although PMEG has selective activity against many viruses, its potential as an antipapilloma virus ${ }^{34}$ and anticancer ${ }^{35}$ agent is likely to be a manifestation of its relatively high toxicity to proliferating cells. None of the (Z)-isomers in the unbranched series showed significant activity against herpes viruses or HIV at the concentrations tested although the guanine derivative 8e showed selective activity against visna virus. Again the guanine derivatives 8 c [the analogue of 9 -[3-hydroxy-2-(phosphonomethoxy)propyl]guanine ${ }^{5}$ (HPMPG)] and 8 proved to be moderately cytotoxic compounds. The racemic adenine derivative 7c [the analogue of (S)-

Scheme IV ${ }^{\text {a }}$

${ }^{a}$ (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}$, THF; (ii) $\mathrm{MeNHNH}_{2}, \mathrm{EtOH}$; (iii) $\mathrm{Me}_{3} \mathrm{SiBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{MeNHNH}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) $\mathrm{HCl}, \mathrm{MeOH}$; (vi) $\mathrm{Me}_{3} \mathrm{SiBr}$, DMF.
Scheme Va

${ }^{a}$ (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}$, THF; (ii) $\mathrm{Me}_{3} \mathrm{SiBr}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{H}_{3} \mathrm{O}^{+}$; (iv) PPh_{3}, DEAD, DMF; (v) $\mathrm{HCl}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$; (vi) $\mathrm{Me}_{3} \mathrm{SiBr}$, DMF; (vii) $\mathrm{Me}_{3} \mathrm{SiBr}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF.

Scheme VI ${ }^{a}$

${ }^{a}$ (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$; (ii) $\mathrm{Me}_{3} \mathrm{SiBr}$, DMF; (iii) HCl .
HPMPA (2)], however, exhibited selective antiherpesvirus (particularly VZV and CMV) activity, but was less potent than the prototype (which has IC_{50} values of 0.07 and 0.49 $\mu \mathrm{M}$ against VZV and CMV, respectively ${ }^{5}$). Surprisingly (in the light of results obtained ${ }^{9}$ with 4) this activity was neither improved nor retained in the $\mathrm{N}-\mathrm{O}$ linked (S)HPMPA analogue 7 g .

The inactivity of the (Z)-isomers may be due to the cis-double bond fixing the acyclic substituent in an unfavorable orientation for interaction with at least one of the enzymes involved in phosphorylating the phosphonic

Scheme VII ${ }^{\text {a }}$

65

$R^{\prime}-\mathrm{NHBz}_{2} \mathrm{R}^{2}=\mathrm{SiMe}_{2} t-\mathrm{Bu}$
$R^{\prime}-\mathrm{NH}_{2}, \mathrm{R}^{2}=\mathrm{H}$

11
${ }^{a}$ (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{DMF}$; (ii) $\mathrm{HCl}, \mathrm{MeOH}$; (iii) $\mathrm{Me}_{3} \mathrm{SiBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF.
acids to their diphosphate forms (triphosphate equivalents), or with the viral DNA polymerase. The relatively modest performance of the (E)-isomers as selective antiviral agents is more surprising. The restriction of

Scheme VIII ${ }^{\text {a }}$

${ }^{a}$ (i) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$; (ii) $\mathrm{HCl}, \mathrm{MeOH}$; (iii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{MeOH}$; (iv) $4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$; (v) DCC, $\mathrm{CHCl}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{DMSO}$; (vi) (PhO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHPPh}_{3}$, DMSO; (vii) $\mathrm{CsF}, \mathrm{MeOH}$; (viii) $\mathrm{Me}_{3} \mathrm{SiBr}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF; (ix) Dowex 50W-X8 (Na^{+}).
conformational flexibility imposed by the double bond may be partly responsible, but other factors are also likely to be involved. The second dissociation constant, $\mathrm{p} K_{\mathrm{a}}{ }^{2}$, for compound 8 g was determined to be 6.6, thereby correlating extremely well with the values reported ${ }^{12}$ for PMEG ($\mathrm{p} \mathrm{Ka}_{\mathrm{a}}{ }^{2} 6.5$) and various analogues. Thus, as expected, the introduction of unsaturation into the alkyl chain enhances the acidity of the phosphonic acid moiety by the desired amount. However, it appears that achieving a $\mathrm{p} K_{\mathrm{a}}{ }^{2}$ comparable to that of the parent phosphate is a necessary but insufficient requirement for attaining potent and selective antiviral agents. ${ }^{12}$ Nonetheless the range of biological activities seen for these alkenylphosphonic acids suggests that this novel approach could also be used for analogues of other biologically active phosphates.

Experimental Section

Melting points were determined using a Reichert Kofler apparatus and are uncorrected. NMR spectra were recorded with a Varian EM- 39090 MHz , JEOL GX-270 270 MHz , or a Bruker AMX 400400 MHz spectrometer. IR spectra were recorded with a Perkin-Elmer 580 spectrometer and UV spectra with a Uvikon 810 spectrometer. The electron-impact (EIMS), chemical ionization (CIMS), and fast-atom bombardment (FABMS) mass spectra were recorded, and accurate masses were measured on a JEOL JMS-SX102 spectrometer; the abbreviation $\mathrm{TDE} / \mathrm{NaCl}$ is used for thiodiethanol/sodium chloride. Microanalyses were performed on a Carlo Erba Model 1106 analyzer, and where only the symbols for the elements are recorded, were within $\pm 0.4 \%$ of the calculated values. Determinations of $\mathrm{p} K_{\mathrm{a}}$ values were carried out using a Metrohm 670 Titroprocessor. All intermediates were homogeneous by TLC on silica gel $60 \mathrm{~F}_{254}$ coated glass plates. All phosphonic acids were homogeneous by TLC on cellulose F coated aluminum sheets.
3-[(tert-Butyldimethylsilyl)oxy]propanal (13). ${ }^{38}$ To a suspension of pyridinium chlorochromate ($8.50 \mathrm{~g}, 39.4 \mathrm{mmol}$) in
dichloromethane $(53 \mathrm{~mL})$, stirred at ambient temperature, was added 3 -[(tert-butyldimethylsilyl)oxy]propan-1-ol ${ }^{16}(5.00 \mathrm{~g}, 26.3$ $\mathrm{mmol})$. After 1.5 h , dry ether (50 mL) was added and the supernatant liquid was decanted from a black gum. The residual gum was washed with ether ($3 \times 50 \mathrm{~mL}$), and the combined organic portions were passed through a column of Florisil. The solvent was removed, and then the residue was taken up in dichloromethane and passed through fresh Florisil. The solvent was removed to leave crude 13 as a liquid (2.75 g) which was shown by ${ }^{1} \mathrm{H}$ NMR analysis to be $\sim 40 \%$ pure ($\sim 22 \%$ yield) and was used without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.10(6 \mathrm{H}$, s, $\left.\mathrm{CH}_{3}\right), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.63(2 \mathrm{H}, \mathrm{dt}, J=2 \mathrm{~Hz}$ and 6 Hz , $\left.\mathrm{CH}_{2}\right), 4.03\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 9.97(1 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}, \mathrm{CHO})$.
Diisopropyl [(E)-4-(tert-Butyldimethylsilyloxy)but-1enyl]phosphonate (14). To a solution of tetraisopropyl methylenediphosphonate ($2.50 \mathrm{~g}, 7.26 \mathrm{mmol}$) in n-heptane (50 mL) was added n-butyllithium (2.70 mL of 2.7 M solution in n-hexanes; 7.29 mmol) and the mixture stirred at ambient temperature under dry nitrogen for 15 min . To the solution was added crude 13 ($2.75 \mathrm{~g}, \sim 40 \%$ pure, $\sim 5.85 \mathrm{mmol}$), and the mixture was heated under reflux for 0.5 h and then stirred at ambient temperature for 64 h . The mixture was filtered, and then the solvent was removed. The residue was purified by column chromatography on silica gel eluting with dichlo-romethane-ethyl acetate ($9: 1,4: 1$) to afford 14 as a colorless oil $(1.10 \mathrm{~g}, 43 \%)$: IR (film) $\nu_{\text {max }} 2940,1625,1460,1380,1250,1105$, 980 , and $830 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.03\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right)$, $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.29\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.32$ $\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 2.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.72(2 \mathrm{H}, \mathrm{t}$, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.65\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.72(1 \mathrm{H}, \mathrm{dd}, J$ $=17$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.75(1 \mathrm{H}, \mathrm{ddt}, J=7,17$ and 20 Hz , $\mathrm{PCH}=\mathrm{CH}$); FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+} 351$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{PSi}\right) \mathrm{C}, \mathrm{H}$.
Diisopropyl [(E)-4-Hydroxybut-1-enyl]phosphonate (15). A solution of 14 ($0.84 \mathrm{~g}, 2.40 \mathrm{mmol}$) in acetic acid-water (2:1) (10 mL) was stirred at $70^{\circ} \mathrm{C}$ for 2 h . The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with acetone-hexane ($1: 1$) to give 15 as a gum $(0.43 \mathrm{~g}$, 76%); IR (film) $\nu_{\text {max }} 3380,2970,1625,1460,1380,1370,1220$, and $980 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.31\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right)$, $1.32\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.50(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 3.76\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.69\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $5.80(1 \mathrm{H}, \mathrm{dd}, J=16$ and $18 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.75(1 \mathrm{H}, \mathrm{ddt}, J=$ 7,17 , and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$); CIMS (isobutane) $m / z \mathrm{MH}^{+} 237$.
Diethyl [(Z)-4-[(tert-Butyldimethylsilyl)oxy]but-1-enyl]phosphonate (16). To a solution of diethyl [(trimethylsilyl)methyl] phosphonate ${ }^{39}$ ($5.60 \mathrm{~g}, 25.0 \mathrm{mmol}$) in dry THF (40 mL) stirred at $-78^{\circ} \mathrm{C}$ under dry nitrogen was added n-butyllithium (15.6 mL of 1.6 M solution in n-hexanes; 25.0 mmol). The mixture was stirred for 10 min before crude $13(6.59 \mathrm{~g}, \sim 40 \%$ pure, ~ 14.0 mmol) was added rapidly. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and maintained at this temperature while being neutralized by addition of 5 M hydrochloric acid. Water (20 mL) was added, and the mixture was extracted with ether $(150 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to leave an oil which was purified by column chromatography eluting with hexane-ethyl acetate ($3: 1,1: 1$) to give 16 as a colorless liquid $(4.11 \mathrm{~g}, 51 \%)$ along with diethyl [(E)-4-[(tert-butyldimethylsilyl)oxy] but-1-enyl] phosphonate (18) as a liquid ($1.65 \mathrm{~g}, 21 \%$). For 16: IR (film) $\nu_{\text {max }} 2940,1625,1390,1245,1095,1055,1030$, and $950 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.87(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30\left(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $3.73\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.10\left(4 \mathrm{H}, \mathrm{qu}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right)$, $5.70(1 \mathrm{H}, \mathrm{dd}, J=14$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.70(1 \mathrm{H}$, ddt, $J=$ $7,14$, and $54 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{PSi}\left(\mathrm{MH}^{+}\right)$ 323.1808, found 323.1808. For 18: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.03(6 \mathrm{H}$, $\left.\mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 2.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.07(4 \mathrm{H}$, $\left.\mathrm{qu}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 5.70(1 \mathrm{H}, \mathrm{dd}, J=18$ and 21 Hz , $\mathrm{PC} H=\mathrm{CH}), 6.80(1 \mathrm{H}, \mathrm{ddt}, J=7,18$, and $21 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$.
Diethyl [(Z)-4-Hydroxybut-1-enyl]phosphonate (17). A solution of $16(1.32 \mathrm{~g}, 4.09 \mathrm{mmol})$ in acetic acid-water (2:1) (35 mL) was stirred at ambient temperature for 2 h . The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with dichloromethane-methanol (19:1) to give 17 as a colorless liquid ($0.50 \mathrm{~g}, 59 \%$): IR (film) $\nu_{\text {max }}$

Table I. Antiviral Activity and Cytotoxicity in Cell Culture ${ }^{a}$

compd	anti-herpesvirus activity, $\mathrm{IC}_{50}(\mu \mathrm{M})^{b}$				anti-retrovirus activity		inhibition of cell replication, $\mathrm{CD}_{50}(\mu \mathrm{M})^{e}$		
	$\begin{aligned} & \mathrm{HSV}-1 \\ & \text { (SC16) } \end{aligned}$	$\begin{gathered} \text { HSV-2 } \\ \text { (MS) } \end{gathered}$	$\begin{aligned} & \text { VZV } \\ & \text { (Ellen) } \end{aligned}$	$\begin{gathered} \text { CMV } \\ \text { (AD169) } \end{gathered}$	$\begin{aligned} & \mathrm{IC}_{50}(\mu \mathrm{M})^{c} \\ & \text { HIV-1 }\left(\mathrm{D}_{34}\right) \end{aligned}$	$\operatorname{MIC}(\mu \mathrm{M})^{d}$ Visna virus (K184)	MRC-5 cells	PBL's	SCP cells
7a	naf	na	na	na	na	20	260		137
7c	137	91	16	35	na		189		
7d	na	na	na	na	10.2	82	330	130	
8 a	na	90	190	52	na	0.35	4.5		1.3
8 c	60	66	17	<9.0	na		20		
8d	<10	<10	<10	0.53	0.10	<0.01	0.10	0.23	0.13
8 e	na	na	na	178	na	0.10	26		11.7
8 f	295	177	15	44	8.9		19		
9	na	na	na	na	9.8	2.1	222		95
BRL 47923 (3)	na	270	280	na	0.24	8.0	173		173
zidovudine					0.006	5.6	72	13	>370
acyclovir	3.9	4.3	21	93			355		

${ }^{a}$ All assays were performed as previously described. ${ }^{7 \mathrm{~b}, 36,37}{ }^{b}$ Concentration of compound which inhibited by 50% the number of plaques (HSV-2, VZV, and CMV) or cytopathic effect (HSV-1) in infected human fibroblast (MRC-5) cells. ${ }^{c}$ The compounds were first subjected to a prescreen for determination of cytotoxicity to human peripheral blood lymphocytes (PBL's). Antiviral activity against the Diagen strain of HIV (D_{34}) was then determined at a single concentration equivalent to $1 / 10$ of the cytotoxic concentration (CD_{50}). The activity of compounds of particular interest was determined in full dose-response titrations. ${ }^{d}$ Minimum concentration which completely inhibited the cytopathic effect in infected sheep choroid plexus (SCP) cells. ${ }^{e}$ Concentration of compound which inhibited by 50% the incorporation of ${ }^{3} \mathrm{H}-\mathrm{dT}$ into uninfected cells. $/$ na $=$ not active.

3380, 2980, 1720, 1620, 1390, 1230, and $1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33\left(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.15$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.73\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.00(4 \mathrm{H}, \mathrm{qu}, J=7$ $\left.\mathrm{Hz}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 5.70(1 \mathrm{H}, \mathrm{dd}, J=14$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $6.60(1 \mathrm{H}, \mathrm{ddt}, J=7,14$, and $54 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{P}$ 209.0943, found 209.0942 .

2,2-Dimethyl-1,3-dioxane-5-carbaldehyde (19). A solution of (2,2-dimethyl-1,3-dioxan-5-yl)methanol ${ }^{16}$ ($2.04 \mathrm{~g}, 14.0 \mathrm{mmol}$) in dichloromethane (5 mL) was added dropwise to pyridinium chlorochromate ($4.4 \mathrm{~g}, 20 \mathrm{mmol}$) in dichloromethane (30 mL). The mixture was stirred at ambient temperature for 2 h and then treated with ether (30 mL). After being stirred for a further 10 \min at ambient temperature, the mixture was filtered through silica, the residue was extracted with ether $(50 \mathrm{~mL})$ and filtered, and the combined filtrates were evaporated under reduced pressure to give 19 as an oil (0.75 g) which was shown by ${ }^{1} \mathrm{H}$ NMR analysis to be $\sim 60 \%$ pure ($\sim 23 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.00-4.30$ ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}$), $9.55(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Diisopropyl [(E)-2-(2,2-Dimethyl-1,3-dioxan-5-yl)ethenyl]phosphonate (20). A solution of tetraisopropyl methylenediphosphonate ($1.07 \mathrm{~g}, 3.12 \mathrm{mmol}$) in n-heptane (25 mL) was treated with n-butyllithium $(1.15 \mathrm{ml}$ of 2.7 M solution in n-hexanes; 3.1 mmol). After the mixture was stirred at ambient temperature for 15 min , crude $19(0.75 \mathrm{~g}, \sim 60 \%$ pure, 3.12 mmol$)$, suspended in n-heptane (5 mL), was added. After the mixture was stirred at ambient temperature for 15 min , the solvent was removed and the residue was purified by column chromatography on silica gel, eluting with acetone-hexane (1:4) to give 20 as an oil ($0.88 \mathrm{~g}, 92 \%$): IR (KBr) $\nu_{\text {max }} 3386,2979,2938,2870,1740$, 1627,1470 , and $1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30(6 \mathrm{H}, \mathrm{d}, J=$ $\left.6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.33\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.42(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.65(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.85(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.79(1 \mathrm{H}$, ddd, $J=2,17$, and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.60(1 \mathrm{H}$, ddd, $J=7,17$, and 22 Hz , $\mathrm{PCH}=\mathrm{CH})$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}$.

Diisopropyl [(E)-3-(Acetoxymethyl)-4-hydroxybut-1-enyl]phosphonate (21). A solution of $20(0.73 \mathrm{~g}, 2.38 \mathrm{mmol})$ in 3% methanolic $\mathrm{HCl}(10 \mathrm{~mL})$ was stirred at ambient temperature for 1.5 h . The solvent was removed, and the residue was purified by column chromatography on silicagel eluting with ethyl acetate, increasing polarity to ethyl acetate-methanol (20:1) to give diisopropyl [(E)-4-hydroxy-3-(hydroxymethyl)but-1-enyl]phosphonate as an oil ($0.40 \mathrm{~g}, 63 \%$): IR (film) $\nu_{\text {max }} 3391,2979,2933$, $2877,1738,1630,1467$, and $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.32$ $\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.32\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right)$, $2.61(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.40\left(2 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $\left.2 \times \mathrm{OH}\right)$, $3.80\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 4.65\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.82(1 \mathrm{H}$, ddd, $J=1,17$, and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.71(1 \mathrm{H}, \mathrm{ddd}, J=7,17$, and $23 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}$.

A solution of diisopropyl [(E)-4-hydroxy-3-(hydroxymethyl)-but-1-enyl]phosphonate $(5.00 \mathrm{~g}, 18.5 \mathrm{mmol})$, trimethyl orthoac-
etate ($7 \mathrm{~mL}, 56 \mathrm{mmol}$), and p-toluenesulfonic acid monohydrate $(0.36 \mathrm{~g}, 1.9 \mathrm{mmol})$ in THF (50 mL) was stirred at room temperature for 1.5 h . The solution was treated with water (5 mL), stirred for a further 30 min , and then treated with triethylamine (0.1 mL). The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with chloroformmethanol ($30: 1$) to give 21 as an oil ($4.94 \mathrm{~g}, 85 \%$): IR (film) $\nu_{\text {max }}$ $3382,2980,2934,2877,2361,2333,1741,1631,1468$, and 1455 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.34$ $\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.40(1 \mathrm{H}$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, OH), $3.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.24(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 4.64\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.83(1 \mathrm{H}, \mathrm{ddd}, J=1,17$, and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.67(1 \mathrm{H}$, ddd, $J=8,17$, and 22 Hz , $\mathrm{PCH}=\mathrm{CH}) ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{P}\left(\mathrm{MH}^{+}\right) 309.1467$, found 309.1466. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{P} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.

Diisopropyl [(E)-3-[[(tert-Butyldiphenylsilyl)oxy]meth-yl]-4-hydroxybut-1-enyl]phosphonate (22). To a solution of $21(3.00 \mathrm{~g}, 9.70 \mathrm{mmol})$ and imidazole ($1.70 \mathrm{~g}, 25.0 \mathrm{mmol}$) in anhydrous THF (60 mL) at $0^{\circ} \mathrm{C}$ was added tert-butylchlorodiphenylsilane ($3.49 \mathrm{~g}, 12.7 \mathrm{mmol}$). After the mixture was stirred at room temperature for 3 h , the solvent was removed and the residue was partitioned between chloroform (100 mL) and brine (30 mL). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed, and the residue was purified by column chromatography on silica gel, eluting with chloroform, increasing polarity to chloroform-methanol (100:1) to give diisopropyl $[(E)-3$ -(acetoxymethyl)-4-[(tert-butyldiphenylsilyl)oxy]but-1-enyl]phosphonate as an oil $(5.00 \mathrm{~g}, 94 \%)$: IR (film) $\nu_{\max } 3071,3050,2977$, $2931,2858,1743,1630,1582,1472$, and $1425 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \cdot \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$, $1.27\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.32\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right)$, 1.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), $2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.22$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.65\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 5.76(1 \mathrm{H}$, ddd, $J=$ $1,17$, and $18 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.99(1 \mathrm{H}$, ddd, $J=7,17$, and 22 $\mathrm{Hz}, \mathrm{PCH}=\mathrm{CH}), 7.3-7.7\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{6}{ }^{-}\right.$ PSi) C, H.

A solution of diisopropyl [(E)-3-(acetoxymethyl)-4-[(tert-butyldiphenylsilyl)oxy]but-1-enyl]phosphonate ($5.00 \mathrm{~g}, 9.16$ mmol) in methanol (50 mL) was stirred with potassium carbonate ($62 \mathrm{~g}, 0.45 \mathrm{mmol}$) for 5 h at room temperature. The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with chloroform-methanol (100:1, 30:1) to give 22 as an oil ($3.40 \mathrm{~g}, 74 \%$): IR (film) $\nu_{\max } 3381,3071,3025$, $2940,2931,2858,2360,2332,1631,1585,1471$, and $1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.25(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.31(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.15\left(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH$)$, $2.65(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.80\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 4.65(2 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.76(1 \mathrm{H}$, ddd, $J=1,17$, and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.64$ (1 H, ddd, $J=8,17$, and $23 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$), 7.4-7.7 $(10 \mathrm{H}, \mathrm{m}, 2$ $\times \mathrm{C}_{6} \mathrm{H}_{5}$); HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{PSi} 504.2461$, found 504.2444 . Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{PSi} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.

Diisopropyl [(E)-3,4-Bis[(tert-butyldimethylsilyl)oxy]-but-1-enyl]phosphonate (24). To a solution of imidazole (7.7 $\mathrm{g}, 113 \mathrm{mmol}$) and D,L-glyceraldehyde ($3.0 \mathrm{~g}, 33.3 \mathrm{mmol}$) in DMF $(50 \mathrm{~mL})$ was added tert-butylchlorodimethylsilane $(12.5 \mathrm{~g}, 83.2$ mmol). The mixture was stirred at ambient temperature for 1.5 h. Hexane (250 mL) was added, and the solution was washed with 1 M hydrochloric acid (100 mL) and saturated sodium bicarbonate solution (100 mL). The organic phase was dried (MgSO_{4}) and filtered, and the solvent was removed to leave 2,3-bis[(tert-butyldimethylsilyl)oxy]propanal (23) as a colorless liquid (12.0 g) which was used without further purification.
To a solution of tetraisopropyl methylenediphosphonate (4.3 $\mathrm{g}, 12.5 \mathrm{mmol}$) in n-heptane (80 mL) stirred at $-78^{\circ} \mathrm{C}$ under dry nitrogen was added n-butyllithium (8.60 mL of 1.6 M solution in n-hexane; 13.8 mmol). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h , and then crude $23(4.0 \mathrm{~g}, \sim 12.5 \mathrm{mmol})$ was added dropwise. The solution was heated at $100^{\circ} \mathrm{C}$ for 1 h . The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with dichloromethane-methanol (99:1, 49:1) to give 24 as a colorless oil ($2.1 \mathrm{~g}, 34 \%$): IR (film) $\nu_{\max } 2935,1465$, $1395,1255,1110,1010$, and $990 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.06$ $\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{SiCH}_{3}\right), 0.90\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30(12 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.30(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.66(2 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.98(1 \mathrm{H}, \mathrm{dd}, J=17$ and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $6.83(1 \mathrm{H}$, ddd, $J=4,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{PSi}_{2}\left(\mathrm{MH}^{+}\right)$481.2935, found 481.2934. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{PSi}_{2}\right) \mathrm{C}, \mathrm{H}$.

Diisopropyl [(E)-3,4-Dihydroxybut-1-enyl]phosphonate (25). A solution of $24(2.0 \mathrm{~g}, 4.16 \mathrm{mmol})$ in acetic acid-watertetrahydrofuran ($2: 1: 1$) $(40 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 16 h . The solvent was removed, and the residue was purified by column chromatography on silica gel, eluting with dichloromethanemethanol (24:1, 9:1) to give 25 as a colorless oil ($0.57 \mathrm{~g}, 54 \%$): IR (film) $\nu_{\max } 3350,2980,1635,1470,1380,1230$, and $1100 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.21\left(12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.35(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.48\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.76(1 \mathrm{H}$, $\mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 5.17(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable CHOH$), 5.89(1 \mathrm{H}$, dd, $J=17$ and 22 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.68(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=4,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{P}$ (MH^{+}) 253.1205, found 253.1187. Anal. ($\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{P} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}$) C, H .

Diisopropyl [(E)-4-[(tert-Butyldimethylsilyl)oxy]-3-hy-droxybut-1-enyl]phosphonate (26). A solution of $25(0.55 \mathrm{~g}$, 2.18 mmol), triethylamine ($0.265 \mathrm{~g}, 2.62 \mathrm{mmol}$), tert-butylchlorodimethylsilane ($0.36 \mathrm{~g}, 2.38 \mathrm{mmol}$), and 4 -(dimethylamino)pyridine ($11 \mathrm{mg}, 0.088 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{~mL})$ was stirred at room temperature for 66 h . The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with dichloromethane-methanol ($49: 1,19: 1$) to give 26 as a colorless gum ($0.54 \mathrm{~g}, 68 \%$): IR (film) $\nu_{\text {max }} 3345,2930$, $1635,1470,1385,1250,1230$, and $1105 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($\mathrm{Me}_{2} \mathrm{SO}$ $\left.d_{6}\right) \delta 0.03\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23(12 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.13(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.50(2 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.23\left(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH$)$, $5.90(1 \mathrm{H}, \mathrm{dd}, J=18$ and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.73(1 \mathrm{H}$, ddd, $J=$ 4,18 , and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{PSi}\left(\mathrm{MH}^{+}\right)$ 367.2070 , found 367.2069 . Anal. ($\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{PSi} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$) C, H .

General Procedure for the Preparation of Compounds $28,30,33,41,43,45,48,50,52,55,59-61,63$, and 66 . A mixture of alcohol $15,17,22$, or $26(1.00 \mathrm{mmol})$, compound $27,40,44,47$, 58 , or 75 ($1.00-1.30 \mathrm{mmol}$), and triphenylphosphine $\left(\mathrm{PPh}_{3}\right)(1.30-$ 2.00 mmol) in anhydrous THF or DMF, cooled to $0^{\circ} \mathrm{C}$, was treated with diethyl azodicarboxylate (DEAD) ($1.3-2.0 \mathrm{mmol}$). After the mixture was stirred at ambient temperature for $1.3-27.5 \mathrm{~h}$, the solvent was removed and the residue was purified by column chromatography on silica gel.
(E)-6-Chloro-9-[4-(diisopropoxyphosphoryl)but-3-enyl]purine (28): obtained as a white solid in 37% yield [$2.67-\mathrm{mmol}$ scale, THF solvent (30 mL), using alcohol $15,1.0$ equiv of 27 , and 1.5 equiv of PPh_{3} and DEAD, 27.5 h , eluent: dichloromethanemethanol ($24: 1,13: 1$)]; mp $105^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\max } 266$ ($\epsilon 9260$) nm ; IR (KBr) $\nu_{\text {max }} 3435,2980,1590,1560,1330,1230$, and 1210 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.21\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.29$ $\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 2.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.45(2 \mathrm{H}, \mathrm{t}$, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.55\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.68(1 \mathrm{H}, \mathrm{dd}, J$ $=17$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.70(1 \mathrm{H}, \mathrm{ddt}, J=7,17$, and 22 Hz ,
$\mathrm{PCH}=\mathrm{CH}), 8.10(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.77(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}) ; \mathrm{FABMS}$ (thioglycerol) $m / z \mathrm{MH}^{+}$373. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(Z)-6-Chloro-9-[4-(diethoxyphosphoryl)but-3-enyl]purine (30): obtained as a gum in 64% yield [$2.67-\mathrm{mmol}$ scale, THF solvent (30 mL), using alcohol $17,1.0$ equiv of 27 and 1.5 equiv of PPh_{3} and DEAD, 16 h , eluent: dichloromethanemethanol (13:1)]; UV (EtOH) $\lambda_{\max } 265(\epsilon 8570) \mathrm{nm}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.09\left(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 3.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $3.75\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 4.48\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.67(1 \mathrm{H}$, dd, $J=13$ and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.55(1 \mathrm{H}$, ddt, $J=7,13$, and $52 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 8.67(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.78(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; EIMS $m / z \mathrm{M}^{+} 344$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{P} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-9-[2-[[(tert-Butyldiphenylsilyl)oxy]methyl]-4-(diiso-propoxyphosphoryl)but-3-enyl]-6-chloropurine (33): obtained as a gum in 28% yield along with diisopropyl $[(E)-3$ -[[(tert-butyldiphenylsilyl)oxy]methyl]-1,3-butadienyl]phosphonate (39) as an oil in 56% yield [$1.37-\mathrm{mmol}$ scale, DMF solvent (22 mL), using alcohol 22, 1.0 equiv of 27 , and 1.5 equiv of PPh_{3} and DEAD, 16 h , eluents: hexane-acetone ($4: 1 ; 2: 1$) then ethyl acetate-methanol (99:1; 9:1)]. For 33: UV (EtOH) $\lambda_{\text {max }} 265$ ($\epsilon 9215$) nm; IR (film) $\nu_{\text {max }} 2980,2930,1590,1560,1425$, 1385,1335 , and $1245 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.10(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.18(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 1.26\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 3.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.69\left(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right.$ and $2 \times$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.57(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.66(1 \mathrm{H}, \mathrm{ddd}$, $J=8,17$, and $26 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.30-7.70\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $8.00(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.73(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{PSi}$ 641.2479, found 641.2459. For 39: IR (film) $\nu_{\max } 3440,2975,2930,2855,1590,1430,1385,1250,1110,1010$, and $985 \mathrm{~cm}^{-1} ; 1 \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.25(6 \mathrm{H}$, $\left.\mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.34\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right)$, $4.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.64\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.45\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.60(1 \mathrm{H}, \mathrm{t}, J=18 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 5.71(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, H_{B} of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 7.10(1 \mathrm{H}, \mathrm{dd}, J=18$ and $23 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $7.30-7.70\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right) ;$ HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{PSi}$ $\left(\mathrm{MH}^{+}\right) 487.2433$, found 487.2429. Anal. ($\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{PSi} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$) C, H.
(E)-2-Amino-6-chloro-9-[4-(diisopropoxyphosphoryl)but3 -enyl] purine (41): obtained as agum in 35% yield [$3.81-\mathrm{mmol}$ scale, DMF solvent (30 mL), using alcohol $15,1.0$ equiv of 40 , and 2.0 equiv of PPh_{3} and DEAD, 1.3 h , eluent: dichloromethanemethanol (9:1)]; mp $150^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\text {max }} 311$ ($\epsilon 6760$), 249 ($\epsilon 5420$) and $224(\epsilon 24320) \mathrm{nm}$; IR (KBr) $\nu_{\max } 3385,3320,3208$, $1635,1615,1560,1520,1410$, and $1240 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-$ $\left.d_{6}\right) \delta 1.08\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.27\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right.$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $5.69(1 \mathrm{H}$, dd, $J=17$ and $21 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.52(1 \mathrm{H}, \mathrm{ddt}, J=$ $6,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.89\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $\left.\mathrm{NH}_{2}\right), 8.11(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{P} 388.1305$, found 388.1288 .
(Z)-2-Amino-6-chloro-9-[4-(diethoxyphosphoryl)but-3enyl]purine (43): obtained as a gum in 42% yield [2.67-mmol scale, DMF solvent (20 mL), using alcohol $17,1.0$ equiv of 40 , and 2.0 equiv of PPh_{3} and DEAD, 2.5 h , eluent: dichloromethanemethanol ($32: 1 ; 13: 1$)]; UV (EtOH) $\lambda_{\text {max }} 310(\epsilon 7890), 248$ ($\epsilon 6510$), $223(\epsilon 29880) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 3320,3205,2980,1610,1560$, $1520,1465,1410$, and $1240 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.13(6 \mathrm{H}$, $\left.\mathrm{t}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 3.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.80\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right)$, $4.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.70(1 \mathrm{H}, \mathrm{dd}, J=13$ and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $6.55(1 \mathrm{H}, \mathrm{ddt}, J=7,13$, and $52 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.90(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $\left.\mathrm{NH}_{2}\right), 8.09(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{P} 359.0922$, found 359.0914 .
(E)-2-Acetamido-9-[2-[[(tert-butyldiphenylsilyl)oxy]-methyl]-4-(diisopropoxyphosphoryl)but-3-enyl]-6-chloropurine (45): obtained as a gum in 36% yield [1.54 -mmol scale, DMF solvent (40 mL), using alcohol 22, 1.0 equiv of $44,{ }^{40}$ and 1.5 equiv of PPh_{3} and DEAD, 16 h , eluent: ethyl acetate increasing polarity to ethyl acetate-methanol (19:1)]; UV (EtOH) $\lambda_{\max } 224$ ($\epsilon 29735$), 260 ($\epsilon 8593$), and 289 ($\epsilon 9915$) nm; IR (KBr) $\nu_{\text {max }} 2980$, 2930, 1695, 1610, 1575, 1515, 1375, 1285, and $1235 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.16(6 \mathrm{H}$, pseudo-t, $J=6 \mathrm{~Hz}, 2$ $\left.\times \mathrm{CHCH}_{3}\right), 1.30\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 2.53(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCOCH}_{3}\right), 3.00(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.25-4.60(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}$ and $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.58(1 \mathrm{H}, \mathrm{t}, J=18 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $6.67(1 \mathrm{H}$, ddd, $J=8,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.50(10 \mathrm{H}, \mathrm{m}$,
$\left.2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.86(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 8.29\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, NH); HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{ClN}_{5} \mathrm{O}_{5} \mathrm{PSi} 698.2695$, found 698.2697.
(E)-9-[[4-(Diisopropoxyphosphoryl)but-3-enyl]oxy]-6- N phthalimidopurine (48): obtained as a gum in 80% yield [0.50mmol scale, THF solvent (5 mL), using alcohol $15,1.0$ equiv of 47, and 1.5 equiv of PPh_{3} and DEAD, 2 h , eluent: dichlo-romethane-methanol (49:1;16:1)]; UV (EtOH) $\lambda_{\text {max }} 273(\epsilon 14380)$ nm; IR (film) $\nu_{\text {max }} 2970,1730,1590,1570,1355,1240$, and 975 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.24$ (12H, pseudo-t, $J=6 \mathrm{~Hz}, 2 \times$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.60\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.66$ $\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.07(1 \mathrm{H}, \mathrm{dd}, J=17$ and 20 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.75(1 \mathrm{H}$, ddt, $J=6,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$), $8.00-8.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 9.00(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 9.08(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} /$ 8-H); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{P} 499.1621$, found 499.1620 .
(Z)-9-[[4-(Diethoxyphosphoryl)but-3-enyl]oxy]-6-N. phthalimidopurine (50): obtained as a gum in 60% yield [1.14mmol scale, THF solvent (11 mL), using alcohol 17, 1.0 equiv of 47, and 1.5 equiv of PPh_{3} and DEAD, 2.3 h , eluent: acetonehexane ($1: 1 ; 4.3$)]; UV (EtOH) $\lambda_{\text {max }} 271(\epsilon 14680) \mathrm{nm}$; IR (KBr) $\nu_{\max } 2980,1735,1595,1575,1360,1330,1245$, and $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.23\left(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 3.05(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 3.98\left(4 \mathrm{H}, \mathrm{dq}, J=7\right.$ and $\left.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.63(2 \mathrm{H}$, $\left.\mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.90(1 \mathrm{H}, \mathrm{dd}, J=14$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $6.75(1 \mathrm{H}$, ddt, $J=7,14$, and $52 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 8.05(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 9.05(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 9.10(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}) ;$ HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{P}\left(\mathrm{MH}^{+}\right)$472.1386, found 472.1384. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-9-[[2-[[(tert-Butyldiphenylsilyl)oxy]methyl]-4-(di-isopropoxyphosphoryl)but-3-enyl]oxy]-6- N-phthalimidopurine (52): obtained as a glass in 62% yield [$2.60-\mathrm{mmol}$ scale, THF solvent (20 mL), using alcohol 22, 1.3 equiv of 47 , and 1.3 equiv of PPh_{3} and $\mathrm{DEAD}, 18 \mathrm{~h}$, eluent: ethyl acetate-dichloromethane (1:1), increasing polarity to ethyl acetate]: IR (KBr) $\nu_{\max } 3447,3071,2978,2931,2858,1792,1737,1598,1577,1468$, 1455,1428 , and $1406 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.07(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 1.34\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 3.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, $3.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.70\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.00(1 \mathrm{H}$, ddd, $J=1,17$, and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.81(1 \mathrm{H}, \mathrm{ddd}, J=7,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.30-8.20\left(15 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}, 2-\mathrm{H} /\right.$ $8-\mathrm{H}), 9.04(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$. Anal. $\left(\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PSi} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, H, N.
(E)-9-[[1-[(tert-Butyldimethylsilyl)oxy]-4-(diisopropoxy-phosphoryl)but-3-en-2-yl]oxy]-6-N-phthalimidopurine (55): obtained as a gum in 68% yield [0.74-mmol scale, THF solvent (12 mL), using alcohol $26,1.0$ equiv of 47 , and 1.5 equiv of PPh_{3} and DEAD, 3 h , eluent: ethyl acetate-dichloromethane (1:1), increasing polarity to ethyl acetate]; UV (EtOH) $\lambda_{\max } 270$ ($\epsilon 18000$) nm ; IR (KBr) $\nu_{\max } 3435,2930,1735,1600,1575,1365$, 1250 , and $1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.10\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right)$, $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30\left(12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.99(2 \mathrm{H}, \mathrm{d}$, $\left.J=5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.64\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $6.18(1 \mathrm{H}, \mathrm{t}, J=17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.85(1 \mathrm{H}$, ddd, $J=6,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.80-8.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.30(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} /$ $8-\mathrm{H}), 9.05(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; FABMS (positive ion, TDE/ NaCl) $m / z \mathrm{MH}^{+} 630, \mathrm{MNa}^{+} 652$.
(E)-2-[Bis(tert-butoxycarbonyl)amino]-9-[[4-(diisopro-poxyphosphoryl)but-3-enyl]oxy]-6-methoxypurine (59): obtained as a gum in 62% yield [$0.40-\mathrm{mmol}$ scale, THF solvent (4 mL), using alcohol $15,1.0$ equiv of 58 , and 1.5 equiv of PPh_{3} and DEAD, 2.3 h , eluent: ethyl acetate-methanol (20:1)]; UV (EtOH) $\lambda_{\max } 255(\epsilon 12300) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 3440,3220,2975,1790$, $1600,1370,1280$, and $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.21(6 \mathrm{H}$, $\left.\mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.23\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right)$, $1.40\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$, $4.53\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.98(1 \mathrm{H}, \mathrm{dd}, J=17$ and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.25(1 \mathrm{H}, \mathrm{ddt}, J=6,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$), 8.71 (1H, s, 8-H); HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{P} 599.2720$, found 599.2724.
(Z)-2-[Bis(tert-butoxycarbonyl)amino]-9-[[4-(diethoxy-phosphoryl)but-3-enyl]oxy]-6-methoxypurine (60): obtained as a gum in 61% yield [$1.28-\mathrm{mmol}$ scale, THF solvent (15 mL), using alcohol $17,1.0$ equiv of 58 , and 1.5 equiv of PPh_{3} and DEAD, 1.5 h , eluent: acetone-hexane (1:1)]; UV (EtOH) $\lambda_{\max } 256$ (ϵ 10920) nm; IR (KBr) $\nu_{\max } 2980,2360,1790,1760,1590,1475$, 1370,1280 , and $1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.21(6 \mathrm{H}, \mathrm{t}, J$
$\left.=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.40\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.97(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 3.95\left(4 \mathrm{H}, \mathrm{qu}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.50\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.83(1 \mathrm{H}, \mathrm{dd}, J=14$ and 19 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.68(1 \mathrm{H}, \mathrm{ddt}, J=7,14$, and $52 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 8.75$ (1H, s, 8-H); CIMS $\left(\mathrm{NH}_{3}\right) m / z \mathrm{MH}^{+} 572$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{P}\right)$ C, H, N.
(E)-2-[Bis(tert-butoxycarbonyl)amino]-9-[[2-[[(tert-bu-tyldiphenylsilyl)oxy]methyl]-4-(diisopropoxyphosphoryl)-but-3-enyl]oxy]-6-methoxypurine (61): obtained as a gum in 66% yield [$1.20-\mathrm{mmol}$ scale, THF solvent (15 mL), using alcohol 22, 1.3 equiv of 58 , and 1.3 equiv of PPh_{3} and $\mathrm{DEAD}, 18 \mathrm{~h}$, eluent: hexane-acetone (2:1)]; IR (KBr) $\nu_{\text {max }} 2975,2930,2860,1790,1755$, $1735,1590,1470$, and $1425 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.06(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30\left(12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.43(18 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.92(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.15(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.40-4.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.91(1 \mathrm{H}$, ddd, $J=1,17$, and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.77(1 \mathrm{H}, \mathrm{ddd}, J=8,17$, and $25 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.30-7.85\left(11 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}, 8-\mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{PSi}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(\boldsymbol{E})-2-[Bis(tert-butoxycarbonyl)amino]-9-[[1-[(tert-bu-tyldimethylsilyl)oxy]-4-(diisopropoxyphosphoryl)but-3-en-2-yl]oxy]-6-methoxypurine (63): obtained as a gum in 75% yield [0.82 -mmol scale, THF solvent (14 mL), using alcohol 26 , 1.0 equiv of 58, and 1.5 equiv of PPh_{3} and DEAD, 3 h , eluent: ethyl acetate-methanol (30:1)]; UV (EtOH) $\lambda_{\max } 256(\epsilon 12116)$ nm ; IR (KBr) $\nu_{\max } 2975,1795,1760,1590,1475,1395,1370,1255$, 1155 , and $1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.09\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right)$, $0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30\left(12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.47(18 \mathrm{H}$, $\left.\mathrm{s}, 2 \times \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.95\left(2 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.63\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.02(1 \mathrm{H}, \mathrm{t}, J=$ $17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.75(1 \mathrm{H}$, ddd, $J=7,17$, and 22 Hz , $\mathrm{PCH}=\mathrm{CH}), 8.01(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{PSi}$ (MH^{+}) 730.3614 , found 730.3614 .
(\boldsymbol{E}) \boldsymbol{N}^{4}-Benzoyl-1-[[1-[(tert-butyldimethylsilyl)oxy]-4-(diisopropoxyphosphoryl)but-3-en-2-yl]oxy]cytosine (66): obtained as a gum in 91% yield [0.74 -mmol scale, DMF solvent (10 mL), using alcohol 26, 1.0 equiv of 65 , and 1.5 equiv of PPh_{3} and DEAD, 16 h , eluent: dichloromethane-ethyl acetate (9:1; $3: 1$), increasing polarity to dichloromethane-methanol (19:1)]; UV (EtOH) $\lambda_{\text {max }} 261$ ($\epsilon 22520$) and $306(\epsilon 10200) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 3435,2930,1690,1615,1555,1480,1330$, and $1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.07\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.30\left(12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.67(2 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.17(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.10(1 \mathrm{H}, \mathrm{t}, J=18 \mathrm{~Hz}$, $\mathrm{PCH}=\mathrm{CH}), 6.83(1 \mathrm{H}$, ddd, $J=6,18$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $7.47-8.05\left(7 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}\right), 8.95(1 \mathrm{H}$, brs, NH); FABMS (positive ion, TDE $/ \mathrm{NaCl}$) $m / z \mathrm{MH}^{+} 580, \mathrm{MNa}^{+} 602$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{PSi} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-9-[4-(Diisopropoxyphosphoryl)but-3-enyl]adenine (29). A solution of $28(0.31 \mathrm{~g}, 0.83 \mathrm{mmol})$ in saturated ethanolic ammonia (35 mL) was heated at $80^{\circ} \mathrm{C}$ in a stainless steel autoclave for 5 h . The solvent was removed, and the residue was purified by column chromatography on silicagel eluting with ethyl acetatemethanol ($3: 1$) to give 29 as a white solid ($0.205 \mathrm{~g}, 70 \%$): mp $121-122{ }^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\max } 262(\epsilon 11855) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }}$ $3320,3175,2935,1650,1600,1575,1475$, and $1240 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.29(6 \mathrm{H}, \mathrm{d}, J=$ $\left.6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 2.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.35(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.55\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.69(1 \mathrm{H}, \mathrm{dd}, J=17$ and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 5.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.70(1 \mathrm{H}, \mathrm{ddt}, J=7,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.79(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.37(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} /$ 8 -H); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{P} 354.1695$, found 354.1695 .

General Procedure for the Preparation of Compounds $7 \mathrm{a}-\mathrm{g}, 8 \mathrm{a}-\mathrm{g}$, and 9-12. A solution of compound $29,32,36,41-43$, $46,49,51,54,57,59,60,62-64,67$, or $77(1.00 \mathrm{mmol}$) in anhydrous dichloromethane, DMF, or dichloromethane-DMF mixtures was treated at ambient temperature with bromotrimethylsilane (15.020.0 mmol). After the mixture was stirred for $16-48 \mathrm{~h}$, the solvent was removed, coevaporating several times with methanol. For compounds $8 \mathrm{a}, 8 \mathrm{~b}, 8 \mathrm{~d}, 8 \mathrm{e}, 8 \mathrm{~g}$, and 10 , the residue underwent the following additional treatments prior to purification:

For compounds $8 \mathbf{a}, 8 \mathrm{~b}$, and 10 the residue was dissolved in 2 M hydrochloric acid, and the solution was heated at $100^{\circ} \mathrm{C}$ for $1.0-1.7 \mathrm{~h}$ before the cooled solution was neutralized by addition of 2.5 M sodium hydroxide solution and evaporated to dryness.

For compounds $8 \mathbf{d}, 8 \mathrm{e}$, and $\mathbf{8 g}$ the residue was dissolved in water and the solution was heated at $100^{\circ} \mathrm{C}$ for $2-30$ min before being cooled and evaporated to dryness.

The crude products (except 8d) were purified by column chromatography on C_{18} reverse-phase silica gel eluting with water; 8d was purified by recrystallization from methanol-water (4:1).
(E)-9-(4-Phosphonobut-3-enyl)adenine (7a): obtained as a white solid in 81% yield [0.31 -mmol scale, dichloromethane solvent (6 mL)]; mp 263-266 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 261$ ($\epsilon 10810$) nm ; IR (KBr) $\nu_{\text {max }} 3360,3095,1685,1605,1520,1415$, and 1228 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{NH}_{3}\right) \delta 2.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.31(2 \mathrm{H}, \mathrm{t}, J$ $\left.=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.72(1 \mathrm{H}, \mathrm{t}, J=17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.14(1 \mathrm{H}, \mathrm{tt}$, $J=7$ and $17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 8.13(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.19(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}$); FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+} 270$. Anal. ($\left.\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{P} \cdot 0.25 \mathrm{HBr}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(Z)-9-(4-Phosphonobut-3-enyl)adenine (7b): obtained as a white solid in 87% yield [$0.19-\mathrm{mmol}$ scale, dichloromethaneDMF (5:1) solvent (12 mL)]; mp $260-262{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}$ 262.5 ($\epsilon 13750$) nm ; IR (KBr) $\nu_{\text {max }} 3086,1690,1515,1415,1225$, 1145 , and $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{NH}_{3}\right) \delta 3.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $4.32\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.83(1 \mathrm{H}, \mathrm{dd}, J=13$ and 17 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.05(1 \mathrm{H}, \mathrm{ddt}, J=7,13$, and $44 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 8.17$ ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}$), 8.19 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}$); FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+} 270$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{P} \cdot 0.1 \mathrm{HBr}\right) \mathrm{C}, \mathrm{H}$, N.
(E)-9-[2-(Hydroxymethyl)-4-phosphonobut-3-enyl]adenine (7 c): obtained as a white solid in 40% yield [$0.28-\mathrm{mmol}$ scale, DMF solvent (5 mL)]; mp $>300^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 262$ ($\epsilon 10704$) nm ; IR (KBr) $\nu_{\text {max }} 3435,1695,1640,1415,1263,1229$, and $1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)-\mathrm{D}_{2} \mathrm{O}\right] \delta 2.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.37\left(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.13(1 \mathrm{H}, \mathrm{dd}, J=7$ and 14 Hz , $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.30\left(1 \mathrm{H}, \mathrm{dd}, J=7\right.$ and $\left.14 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.65(1 \mathrm{H}, \mathrm{t}, J=$ $17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.06(1 \mathrm{H}$, ddd, $J=8$ and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $8.10(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.17(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+} 300$. Anal. ($\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P} \cdot \mathrm{H}_{2} \mathrm{O}$) C, H, N.
(E)-9-(4-Phosphonobut-3-enyl)guanine (8a): obtained as a white solid in 53% yield [0.43 -mmol scale, dichloromethane solvent (8 mL)]; mp 290-294 ${ }^{\circ} \mathrm{C}$ dec; UV (MeOH) $\lambda_{\text {max }} 257$ (ϵ 8660) nm; IR (KBr) $\nu_{\text {max }} 3425,3150,2745,1740,1635,1490,1240$, and $1190 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{NH}_{3}\right) \delta 2.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.15$ $\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.78(1 \mathrm{H}, \mathrm{t}, J=17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.15$ ($1 \mathrm{H}, \mathrm{tt}, J=7$ and $18 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{C} H$), $7.80(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$; FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+}$286. Anal. ($\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5}-$ $\left.\mathrm{O}_{4} \mathrm{P} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-2,6-Diamino-9-(4-phosphonobut-3-enyl)purine (9): obtained as a white solid in 27% yield [0.39 -mmol scale, DMF solvent $(10 \mathrm{~mL})] ; \mathrm{mp}>325^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }} 256(\epsilon 6570)$ and 285 ($\epsilon 6490$) nm; IR (KBr) $\nu_{\text {max }} 3410,1710,1670,1630,1590,1420$, 1220 , and $1135 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right)+\mathrm{NH}_{3}\right] \delta 2.50(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.70(1 \mathrm{H}, \mathrm{t}, J=17 \mathrm{~Hz}$, $\mathrm{PCH}=\mathrm{CH}), 5.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.10(1 \mathrm{H}, \mathrm{tt}, J=7$ and 20 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.76(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}) ;$ FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+} 285$.
(Z)-9-(4-Phosphonobut-3-enyl)guanine (8b): obtained as a white solid in 61% yield [0.56 -mmol scale, DMF solvent (5 mL)]; $\mathrm{UV}(\mathrm{EtOH}) \lambda_{\text {max }} 255(\epsilon 6500) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 3395,3140$, $3015,2790,1695,1605,1545,1480,1375$, and $1151 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)-\mathrm{D}_{2} \mathrm{O}(1: 1)\right] \delta 2.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.10(2 \mathrm{H}, \mathrm{t}, J=7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.75(1 \mathrm{H}, \mathrm{dd}, J=13$ and $17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 5.95$ (1 H, ddt, $J=7,13$, and $50 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$), $7.84(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$; FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+}$286. Anal. ($\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P} \cdot 1.7 \mathrm{H}_{2} \mathrm{O}$) H, N; C: calcd, 34.22; found, 35.29.
(E)-9-[2-(Hydroxymethyl)-4-phosphonobut-3-enyl]guanine (8 c): obtained as a white solid in 40% yield [0.33 -mmol scale, DMF solvent (5 mL)]; mp $>300^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 256$ ($\epsilon 7402$) nm ; IR (KBr) $\nu_{\text {max }} 3425,1715,1640,1610,1480,1410$, 1380 , and $1160 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.50-6.00$ ($>3 \mathrm{H}$, br $\mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, $\mathrm{P}(\mathrm{OH})_{2}, \mathrm{OH}$ and $\left.\mathrm{H}_{2} \mathrm{O}\right), 2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.40\left(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.73(1 \mathrm{H}, \mathrm{t}$, $J=18 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.35(1 \mathrm{H}$, ddd, $J=7,17$, and 22 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.50\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.\mathrm{NH}_{2}\right), 7.60(1 \mathrm{H}$, $\mathrm{s}, 8-\mathrm{H}), 10.56\left(1 \mathrm{H}, \mathrm{br}\right.$ s, D_{2} O exchangeable, $1-\mathrm{H}$); FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+}$316. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \cdot\right.$ $\left.\mathrm{O}_{5} \mathrm{P} \cdot 0.2 \mathrm{H}_{2} \mathrm{O} \cdot 0.2 \mathrm{DMF}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-9-[(4-Phosphonobut-3-enyl)oxy]adenine (7d): obtained as a white solid in 84% yield [$0.28-\mathrm{mmol}$ scale, dichloromethane solvent (5 mL)]; mp $249-251^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}$ $260(\epsilon 11985) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 3110,2300,1695,1470,1410$, 1330 , and $1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $4.50\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.94(1 \mathrm{H}, \mathrm{dd}, J=17$ and 22 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.50(1 \mathrm{H}, \mathrm{ddt}, J=6,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.39$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 8.16(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.35(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+}$286. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P} \cdot 0.2 \mathrm{HBr}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Br}$.
(Z)-9-[(4-Phosphonobut-3-enyl)oxy]adenine (7e): obtained as a white solid in 81% yield [0.42 -mmol scale, dichloromethane solvent (10 mL)]; $\mathrm{mp} 238^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 260$ $(\epsilon 13515) \mathrm{nm}$; $\mathrm{IR}(\mathrm{KBr}) \nu_{\max } 3420,3200,3085,2970,1700,1610$, 1485,1415 , and $1335 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.94(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 4.43\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.77(1 \mathrm{H}, \mathrm{dd}, J=14$ and 17 $\mathrm{Hz}, \mathrm{PCH}=\mathrm{CH}), 6.40(1 \mathrm{H}, \mathrm{ddt}, J=7,14$, and $47 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $7.40\left(2 \mathrm{H}, \mathrm{br}\right.$ s, NH_{2}), $8.15(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.42(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+}$286. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-9-[[2-(Hydroxymethyl)-4-phosphonobut-3-enyl]oxy]adenine (7 f): obtained as a white solid in 17% yield [$0.63-\mathrm{mmol}$ scale, DMF solvent (5 mL)]; UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\text {max }} 260(\epsilon 13111) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 3434,1717,1690,1653,1640,1472$, and $1414 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.38\left(>3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\mathrm{P}(\mathrm{OH})_{2}, \mathrm{OH}$ and $\left.\mathrm{H}_{2} \mathrm{O}\right), 3.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.48$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 5.99(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}=\mathrm{CH}), 6.48(1 \mathrm{H}, \mathrm{m}$, $\mathrm{PCH}=\mathrm{CH}), 7.37\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right), 8.14(1 \mathrm{H}$, s, 2-H/8-H), 8.34 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}$). Anal. ($\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.9 \mathrm{H}_{2} \mathrm{O}$) C, H; N: calcd, 21.13 ; found 20.49 .
(E)-9-[(1-Hydroxy-4-phosphonobut-3-en-2-yl)oxy]adenine (7 g): obtained as a white solid in 50% yield [$0.27-\mathrm{mmol}$ scale, DMF solvent (4 mL)]; mp $>300^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 260$ ($\epsilon 7440$) nm; IR (KBr) $\nu_{\text {max }} 3425,3110,1695,1405,1335,1295$, 1200 , and $1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.70-5.70(>3 \mathrm{H}$, br $\mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, $\mathrm{P}(\mathrm{OH})_{2}, \mathrm{OH}$ and $\left.\mathrm{H}_{2} \mathrm{O}\right), 3.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $5.00(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.06(1 \mathrm{H}$, pseudo-t, $J=17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $6.54(1 \mathrm{H}$, ddd. $J=6,17$, and $21 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.41(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, NH_{2}), $8.16(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.29(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} /$ 8-H); FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+} 302$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.8 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-9-[(4-Phosphonobut-3-enyl)oxy]guanine (8d): obtained as a cream-colored crystals in 84% yield [0.18 -mmol scale, dichloromethane solvent (5 mL)]; mp $>330^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\text {max }}$ $255,266 \mathrm{~nm}$; IR (KBr) $\nu_{\text {max }} 3200,3120,2740,1760,1690,1635$, 1470,1235 , and $1160 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.60(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 4.40\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.92(1 \mathrm{H}, \mathrm{dd}, J=17$ and 19 $\mathrm{Hz}, \mathrm{PCH}=\mathrm{CH}), 6.50(1 \mathrm{H}, \mathrm{ddt}, J=6,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $6.60\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.90(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 10.65(1 \mathrm{H}$, br s, $1-\mathrm{H})$; FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+}$302. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(Z)-9-[(4-Phosphonobut-3-enyl)oxy]guanine (8e): obtained as a white solid in 42% yield [0.47 -mmol scale, dichloromethane solvent (15 mL)]; $\mathrm{mp} 240-242{ }^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}$ $255(\epsilon 13000) \mathrm{nm}$; $\mathrm{IR}(\mathrm{KBr}) \nu_{\max } 3390,3140,1695,1650,1610$, 1475,1385 , and $1165 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.91$ ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 4.32\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.75(1 \mathrm{H}, \mathrm{dd}, J=13$ and 17 $\mathrm{Hz}, \mathrm{PCH}=\mathrm{CH}), 6.30(1 \mathrm{H}, \mathrm{ddt}, J=7,13$, and $47 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $6.61\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.\mathrm{NH}_{2}\right), 7.95(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 10.63$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, 1-H); FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+} 302$. Anal. ($\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}$) C, H , N.
(E)-9-[[2-(Hydroxymethyl)-4-phosphonobut-3-enyl]oxy]guanine (8 f): obtained as a white solid in 17% yield [0.38 mmol scale, DMF solvent (4 mL)]; UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\text {max }} 253$ ($\epsilon 12$ 277) nm ; IR (KBr) $\nu_{\text {max }} 3422,3125,2922,2852,2752,1691,1639,1611$, $1552,1533,1474$, and $1451 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.70(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}), 3.30\left(>3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\mathrm{P}(\mathrm{OH})_{2}, \mathrm{OH}$ and $\left.\mathrm{H}_{2} \mathrm{O}\right), 3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 5.95(1 \mathrm{H}, \mathrm{t}$, $J=18 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.45(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}=\mathrm{CH}), 6.60(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, NH_{2}), $7.85(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 10.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H})$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{P} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-9-[(1-Hydroxy-4-phosphonobut-3-en-2-yl)oxy]guanine (8 g): obtained as a white solid in 36% yield [0.51 -mmol scale, dichloromethane-DMF (15:1) solvent (16 mL)]; mp >300 ${ }^{\circ} \mathrm{C} ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max } 255(\epsilon 11750) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) \nu_{\max } 3415,1700$,
$1640,1605,1475,1385$, and $1165 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta$ 2.70-5.70 ($>3 \mathrm{H}$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $\mathrm{P}(\mathrm{OH})_{2}, \mathrm{OH}$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$, $3.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.03(1 \mathrm{H}, \mathrm{t}, J=17 \mathrm{~Hz}$, $\mathrm{PCH}=\mathrm{CH}), 6.50(1 \mathrm{H}$, ddd, $J=6,17$, and $21 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.64$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.\mathrm{NH}_{2}\right), 7.84(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 10.68(1 \mathrm{H}$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $1-\mathrm{H}$); FABMS (positive ion, thioglycerol), $m / z \mathrm{MH}^{+} 318 ; \mathrm{p} K_{\mathrm{a}}{ }^{2}$ 6.6. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{P} \cdot 1.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{H}, \mathrm{N} ; \mathrm{C}$: calcd, 32.08; found, 32.49 .
(E)-9-(2-Methylene-4-phosphonobut-3-enyl)guanine (10): obtained as a cream-colored solid in 90% yield [$0.31-\mathrm{mmol}$ scale, DMF solvent (6 mL)]; mp $>315^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 272$ ($\epsilon 7885$), 255 ($\epsilon 10890$), and 233 ($\epsilon 18400$); IR (KBr) $\nu_{\max } 3435$, $1690,1635,1605,1540,1485,1395,1300$, and $1225 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)-\mathrm{D}_{2} \mathrm{O}(1: 1)\right] \delta 4.90\left(1 \mathrm{H}\right.$, br $\mathrm{s}, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.95$ (2 H , br s, $\mathrm{CH}_{2} \mathrm{~N}$), $5.53\left(1 \mathrm{H}\right.$, br s, H_{B} of $\mathrm{C}=\mathrm{CH}_{2}$), $6.10(1 \mathrm{H}, \mathrm{dd}$, $J=15$ and $18 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.92(1 \mathrm{H}, \mathrm{dd}, J=18$ and 21 Hz , $\mathrm{PCH}=\mathrm{CH}), 7.87(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 44.82\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $116.60(\mathrm{~s}), 121.91\left(\mathrm{~s}, \mathrm{C}=\mathrm{CH}_{2}\right), 123.22\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=177 \mathrm{~Hz}, \mathrm{PC}=\mathrm{C}\right)$, $140.68\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=22 \mathrm{~Hz}, C=\mathrm{CH}_{2}\right), 140.96(\mathrm{~s}), 141.64\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=\right.$ $5 \mathrm{~Hz}, \mathrm{PC}=\mathrm{C}$), 152.33 (s), 154.65 (s), 159.70 (s); FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+}$298. Anal. ($\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P} \cdot 1.3 \mathrm{H}_{2} \mathrm{O}$) C, H, N.
(E)-1-[(1-Hydroxy-4-phosphonobut-3-en-2-yl)oxy]cytosine (11): obtained as a white solid in 53% yield [0.41-mmol scale, dichloromethane-DMF (30:1) solvent (15 mL)]; mp 184$186^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 278$ ($\epsilon 8564$) nm; IR (KBr) $\nu_{\text {max }} 3340$, $1735,1675,1525,1290,1185$, and $1065 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}$ $\left.d_{6}\right) \delta$ 2.70-6.50 ($>3 \mathrm{H}$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $\mathrm{P}(\mathrm{OH})_{2}, \mathrm{OH}$ and $\left.\mathrm{H}_{2} \mathrm{O}\right), 3.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.61(1 \mathrm{H}, \mathrm{d}, J=7$ $\mathrm{Hz}, 5-\mathrm{H}), 6.03(1 \mathrm{H}, \mathrm{t}, J=17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.44(1 \mathrm{H}$, ddd, J $=5,17$, and $21 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.34\left(1 \mathrm{H}\right.$, br s, D_{2} O exchangeable, $\mathrm{NH}), 7.41\left(1 \mathrm{H}, \mathrm{br} s, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, NH$), 7.76(1 \mathrm{H}, \mathrm{d}, J=$ $7 \mathrm{~Hz}, 6-\mathrm{H}$); FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+} 278$. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-1-[2-(Hydroxymethyl)-4-phos phonobut-3-enyl]cytosine Disodium Salt (12). The phosphonic acid was obtained as a gum [0.19-mmol scale, dichloromethane-DMF (5:2) solvent $(14 \mathrm{~mL})]$. This material was dissolved in water and passed through a column of Dowex 50W-X8 $\left(\mathrm{Na}^{+}\right)$resin eluting with water to afford 12 as a white solid ($37.6 \mathrm{mg}, 62 \%$): UV $\left(\mathrm{H}_{2} \mathrm{O}\right)$ $\lambda_{\max } 275(\epsilon 5080) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 3400,1720,1660,1530,1490$, 1400,1160 , and $1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR [$\left.\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)-\mathrm{D}_{2} \mathrm{O}\right] \delta 2.62$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.62(1 \mathrm{H}, \mathrm{dd}, J=8$ and 13 $\mathrm{Hz}, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.86\left(1 \mathrm{H}\right.$, dd, $J=6$ and $13 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$, $5.68(1 \mathrm{H}, \mathrm{t}, J=17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 5.82(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 5-\mathrm{H})$, $6.10(1 \mathrm{H}$, ddd, $J=8,17$, and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.51(1 \mathrm{H}, \mathrm{d}, J$ $=7 \mathrm{~Hz}, 6-\mathrm{H}$); FABMS (positive ion, TDE/NaCl) $m / z \mathrm{MH}^{+} 320$.
(Z)-6-Azido-9-[4-(diethoxyphosphoryl)but-3-enyl]purine (31). A mixture of $30(0.33 \mathrm{~g}, 0.957 \mathrm{mmol})$ and sodium azide ($62 \mathrm{mg}, 0.957 \mathrm{mmol}$) in DMF (10 mL) was heated at $70^{\circ} \mathrm{C}$ for 2 h . The solvent was removed and the residue was purified by column chromatography, eluting with dichloromethane-methanol (33:1, 13:1) to give 31 as a colorless gum ($0.25 \mathrm{~g}, 74 \%$): IR (KBr) $\nu_{\max } 2980,2130,1640,1495,1440,1405,1370$, and $1245 \mathrm{~cm}^{-1}$; UV (EtOH) $\lambda_{\text {max }} 286(\epsilon 6240) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.09(6 \mathrm{H}$, $\left.\mathrm{t}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 3.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.77\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right)$, $4.57\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.70(1 \mathrm{H}, \mathrm{dd}, J=13$ and 19 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.60(1 \mathrm{H}, \mathrm{ddt}, J=7,13$, and $52 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 8.65$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 10.14(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{P}\left(\mathrm{MH}^{+}\right) 352.1287$, found 352.1287. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{18^{-}}\right.$ $\left.\mathrm{N}_{7} \mathrm{O}_{3} \mathrm{P} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(Z)-9-[4-(Diethoxyphosphoryl)but-3-enyl]adenine (32). To a solution of $31(0.235 \mathrm{~g}, 0.669 \mathrm{mmol})$ in THF stirred at ambient temperature was added triphenylphosphine ($0.298 \mathrm{~g}, 1.14 \mathrm{mmol}$). After 18 h , water (4 mL) was added and the solution was acidified by addition of Amberlite IR-120 (H^{+}) resin. The mixture was heated at $80^{\circ} \mathrm{C}$ for 0.5 h , neutralized by addition of sodium bicarbonate solution, and filtered. The filtrate was evaporated, and the residue was purified by column chromatography eluting with dichloromethane-methanol (19:1, 4:1) to give 32 as a white solid ($65 \mathrm{mg}, 30 \%$): mp 142-143 ${ }^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\max } 261$ (ϵ 13810) nm; IR (KBr) $\nu_{\max } 3260,3100,1665,1600,1480,1415$, 1320 , and $1245 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $\left.2 \times \mathrm{CH}_{3}\right), 3.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.00\left(4 \mathrm{H}, \mathrm{qu}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right)$, $4.33\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.70(1 \mathrm{H}, \mathrm{dd}, J=13$ and 18 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.33\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.50(1 \mathrm{H}, \mathrm{ddt}, J=7,13$, and
$51 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.97(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.37(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{P}$ 325.1304, found 325.1303.
(E)-6-Azido-9-[2-[[(tert-butyldiphenylsilyl)oxy]methyl]-4-(diisopropoxyphosphoryl)but-3-enyl]purine (34). A mixture of $33(0.244 \mathrm{~g}, 0.381 \mathrm{mmol}$) and sodium azide ($25 \mathrm{mg}, 0.381$ mmol) in DMF (7 mL) was heated at $70^{\circ} \mathrm{C}$ for 2.8 h . The solvent was removed and the residue purified by column chromatography on silica gel eluting with acetone-hexane (1:4, 1:1) to give 34 as a gum ($0.186 \mathrm{~g}, 75 \%$): UV (EtOH) $\lambda_{\max } 282(\epsilon 10363) \mathrm{nm}$; IR (film) $\nu_{\text {max }} 2980,2935,2155,1640,1375,1250$, and $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00-1.40\left(21 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $3.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.70\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 4.30-4.80(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{~N}$ and $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.58(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}=\mathrm{CH}), 6.70(1 \mathrm{H}$, $\mathrm{m}, \mathrm{PCH}=\mathrm{CH}), 7.30-7.70\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.86(0.35 \mathrm{H}, \mathrm{s}$, $2-\mathrm{H} / 8-\mathrm{H}), 8.05(0.65 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.64(0.35 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 9.44$ $(0.65 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$ [mixture of azido and tetrazolo tautomers ${ }^{41}$]; FABMS (TDE/NaCl) $m / z \mathrm{MNa}^{+} 670, \mathrm{MH}^{+} 648$.
(E)-9-[4-(Diisopropoxyphosphoryl)-2-(hydrozymethyl)-but-3-enyl]adenine (36). A solution of 34 ($0.32 \mathrm{~g}, 0.494 \mathrm{mmol}$) and triphenylphosphine $(0.194 \mathrm{~g}, 0.741 \mathrm{mmol})$ in tetrahydrofuran $(15 \mathrm{~mL})$ was stirred at ambient temperature for 21 h . The solution was heated to $70^{\circ} \mathrm{C}$, and 5 M hydrochloric acid ($0.258 \mathrm{~mL}, 1.29$ mmol) was added. After 2 h , the solvent was removed, the crude 35 was dissolved in 3% methanolic hydrogen chloride (10 mL), and the solution was stirred at ambient temperature for 2 h . The solvent was removed, the residue was dissolved in water, and the solution was neutralized by addition of aqueous sodium bicarbonate solution. The solution was evaporated to dryness, and the residue was purified by column chromatography on silica gel eluting with dichloromethane-methanol ($9: 1,6: 1$) to give 36 as a white solid ($0.124 \mathrm{~g}, 63 \%$): mp $130^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\max } 261$ ($\epsilon 13074$) nm ; IR (KBr) $\nu_{\max } 3325,2980,1645,1600,1475,1420$, 1240 , and $990 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.10(12 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.07(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.50\left(2 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.10$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$), $4.27\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right.$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.99$ $\left(1 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH$), 5.59(1 \mathrm{H}, \mathrm{dd}, J=17$ and $21 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$), $6.52(1 \mathrm{H}$, ddd, $J=8,17$, and 22 Hz , $\mathrm{PCH}=\mathrm{CH}), 7.16\left(2 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $\left.\mathrm{NH}_{2}\right), 8.07(1 \mathrm{H}$, s, 2-H/8-H), $8.12(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; CIMS $\left(\mathrm{NH}_{3}\right) 384\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-2,6-Diamino-9-[4-(diisopropoxyphosphoryl)but-3-enyl]purine (42). A solution of $41(0.37 \mathrm{~g}, 0.954 \mathrm{mmol})$ in saturated ethanolic ammonia (60 mL) was heated at $100^{\circ} \mathrm{C}$ in a stainless steel autoclave for 7 h . The solution was allowed to cool, and then the solvent was removed. The residue was purified by column chromatography on silica gel eluting with dichlo-romethane-methanol ($19: 1,9: 1$) to give 42 as a white solid (0.175 $\mathrm{g}, 50 \%$): mp $211-213^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 256(\epsilon 7860)$ and 283 ($\epsilon 9670$) nm; IR (KBr) $\nu_{\max } 3460,3325,3174,1630,1590,1470$, 1410 , and $1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.11(6 \mathrm{H}, \mathrm{d}, J=6$ $\left.\mathrm{Hz}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 1.17\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 2.50$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.12\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.33(2 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.\mathrm{NH}_{2}\right), 5.73(1 \mathrm{H}, \mathrm{dd}$, $J=17$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.55(1 \mathrm{H}, \mathrm{ddt}, J=7,17$, and 20 $\mathrm{Hz}, \mathrm{PCH}=\mathrm{CH}), 6.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.\mathrm{NH}_{2}\right), 7.68(1 \mathrm{H}$, s, 8-H); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{P} 369.1804$, found 369.1803.
(E)-2-Amino-9-[4-(diisopropoxyphosphoryl)-2-(hy-droxymethyl)but-3-enyl]-6-methoxypurine (46). A solution of $45(0.33 \mathrm{~g}, 0.473 \mathrm{mmol})$ in 7% methanolic hydrogen chloride (15 mL) was stirred at room temperature for 7 h . The solution was reduced to $1 / 3$ volume and then neutralized by addition of saturated sodium bicarbonate solution. The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with dichloromethane-methanol (19:1, 6:1) to give 46 as a colorless gum ($140 \mathrm{mg}, 72 \%$): UV (EtOH) $\lambda_{\max } 249(\epsilon 8632)$ and $283(\epsilon 9086) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 3335,2980,1610,1585,1475$, 1410,1400 , and $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.10(12 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.02(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.50\left(2 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, $3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.10-4.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right.$ and $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $4.97\left(1 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH$), 5.61(1 \mathrm{H}, \mathrm{dd}, J$ $=17$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.43\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.\mathrm{NH}_{2}\right), 6.50(1 \mathrm{H}$, ddd, $J=8,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.80(1 \mathrm{H}$, s, 8-H); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P} 414.1906$, found 414.1900 .
(E)-9-[[4-(Diisopropoxyphosphoryl)but-3-enyl]oxy]adenine (49). A mixture of $48(0.186 \mathrm{~g}, 0.370 \mathrm{mmol})$ and methylhydrazine ($18 \mathrm{mg}, 0.390 \mathrm{mmol}$) in ethanol (4 mL) was stirred at
room temperature for 1.5 h . The solvent was removed and the residue purified by column chromatography on silica gel eluting with dichloromethane-methanol (4:1) to afford 49 as agum (0.12 $\mathrm{g}, 88 \%$): UV (EtOH) $\lambda_{\text {max }} 260(\epsilon 12860) \mathrm{nm}$; IR (film) $\nu_{\text {max }} 3310$, $3170,2970,1640,1590,1290,1230$, and $980 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ($\mathrm{Me}_{2}-$ SO- d_{6}) $\delta 1.26\left(12 \mathrm{H}\right.$, pseudo-t, $\left.J=6 \mathrm{~Hz}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.67(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 4.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.05(1 \mathrm{H}, \mathrm{dd}$, $J=17$ and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.70(1 \mathrm{H}, \mathrm{ddt}, J=6,17$, and 22 $\mathrm{Hz}, \mathrm{PCH}=\mathrm{CH}), 7.38\left(2 \mathrm{H}, \mathrm{br} s, \mathrm{NH}_{2}\right), 8.14(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.36$ ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}$); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P} 369.1566$, found 369.1568 .
(Z)-9-[[4-(Diethoxyphosphoryl)but-3-enyl]oxy]adenine (51). A mixture of $50(0.305 \mathrm{~g}, 0.647 \mathrm{mmol})$ and methylhydrazine ($31.3 \mathrm{mg}, 0.679 \mathrm{mmol}$) in ethanol (7 mL) was stirred at room temperature for 1.5 h . The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with dichloromethane-methanol (19:1, 9:1) to afford 51 as a colorless gum ($0.177 \mathrm{~g}, 80 \%$): UV (EtOH) $\lambda_{\text {max }} 260(\epsilon 13045) \mathrm{nm} ;$ IR (KBr) $\nu_{\text {max }} 3320,3175,2980,1645,1595,1325,1295$, and $1240 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.22\left(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.95(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 3.97\left(4 \mathrm{H}\right.$, pseudo qu, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.46(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.85(1 \mathrm{H}, \mathrm{dd}, J=14$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.65(1 \mathrm{H}$, ddt, $J=7,14$, and $52 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.38\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 8.15$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.41(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P} 341.1253$, found 341.1253. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{20}-\right.$ $\left.\mathrm{N}_{5} \mathrm{O}_{4} \mathrm{P} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-9-[[2-[[(tert-Butyldiphenylsilyl)oxy]methyl]-4-(di-isopropoxyphosphoryl)but-3-enyl]oxy]adenine (53). A solution of $52(1.17 \mathrm{~g}, 1.5 \mathrm{mmol})$ in dichloromethane $(25 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was treated dropwise with methylhydrazine ($0.12 \mathrm{~mL}, 2.2$ $\mathrm{mmol})$. After the mixture was stirred at room temperature for 1 h , the solvent was removed and the residue was dissolved in acetone-hexane ($1: 1$) (30 mL). The mixture was filtered, the solvent was removed, and the residue was purified by column chromatography on silica gel, eluting with acetone-hexane ($1: 1$), increasing polarity to ($2: 1$), to give 53 as a gum ($0.72 \mathrm{~g}, 74 \%$): IR (KBr) $\nu_{\text {max }} 3325,3175,2978,2931,2858,2230,1641,1593$, 1471,1427 , and $1415 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.04(9 \mathrm{H}$, s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.28(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 1.33\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 2.92(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.47-4.75\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{ON}\right)$, $5.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.\mathrm{NH}_{2}\right), 5.96(1 \mathrm{H}$, ddd, $J=1,17$, and $19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.78(1 \mathrm{H}$, ddd, $J=7,17$, and 22 Hz , $\mathrm{PCH}=\mathrm{CH}), 7.30-7.75\left(11 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}, 2-\mathrm{H} / 8-\mathrm{H}\right), 8.34(1 \mathrm{H}, \mathrm{s}$, $2-\mathrm{H} / 8-\mathrm{H}$); HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{PSi} 638.2928$, found 638.2909 .
(E)-9-[[4-(Diisopropoxyphosphoryl)-2-(hydroxymethyl)-but-3-enyl] oxy]adenine (54). A solution of $53(0.27 \mathrm{~g}, 0.4 \mathrm{mmol})$ in 3% methanolic hydrogen chloride (5 mL) was heated at $60^{\circ} \mathrm{C}$ for 5.5 h . The solvent was removed in vacuo, and the residue was purified by column chromatography on silica gel eluting with chloroform-methanol ($20: 1 ; 10: 1$) to give 54 as a glass (0.14 g , 83%): IR (KBr) $\nu_{\text {max }} 3391,3204,2980,2934,1689,1642,1599$, 1468 , and $1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.23(12 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.87(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.60\left(>3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable OH 's $), 4.55\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{ON}\right), 6.07$ (1 H , ddd, $J=1,17$, and $18 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$), $6.65(1 \mathrm{H}$, ddd, $J=$ $7,17$, and $23 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.\mathrm{NH}_{2}\right), 8.23(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.46(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H})$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}\left(\mathrm{MH}^{+}\right) 400.1750$, found 400.1750 . Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.85 \mathrm{CHCl}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(\boldsymbol{E})-9-[[4-(Diisopropoxyphosphoryl)-1-hydroxybut-3-en-2-yl]oxy]adenine (57). A solution of $55(0.251 \mathrm{~g}, 0.39 \mathrm{mmol})$ and methylhydrazine ($18 \mathrm{mg}, 0.39 \mathrm{mmol}$) in ethanol (5 mL) was stirred at room temperature for 1 h . The solvent was removed, and the residue of crude (E)-9-[[1-[(tert-butyldimethylsily $)$) oxy]-4-(diisopropoxyphosphoryl)but-3-en-2-yl]oxy]adenine (56) was used without further purification.
A solution of crude $56(\sim 0.39 \mathrm{mmol})$ in 5% methanolic hydrogen chloride was stirred at room temperature for 3 h . The solution was neutralized using saturated aqueous sodium bicarbonate solution. The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with ethyl acetate-methanol $(20: 1,5: 1)$ to give 57 as a colorless gum ($0.121 \mathrm{~g}, 62 \%$): UV (EtOH) $\lambda_{\text {max }} 260(\epsilon 14650) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) \nu_{\text {max }}$ $3325,1645,1595,1295,1240$, and $990 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$
$1.33\left(12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.69(2 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.87(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.82(2 \mathrm{H}$, br s, NH_{2}) $6.14(1 \mathrm{H}, \mathrm{t}, J=17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.80(1 \mathrm{H}$, ddd, $J=6,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.91(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H} / 8-\mathrm{H}), 8.35(1 \mathrm{H}$, s, $2-\mathrm{H} / 8-\mathrm{H}$); CIMS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} \mathrm{MH}^{+} 386$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{24}{ }^{-}\right.$ $\left.\mathrm{N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(E)-9-[[4-(Diisopropoxyphosphoryl)-2-(hydroxymethyl)-but-3-enyl] oxy]guanine (62). A solution of $61(0.45 \mathrm{~g}, 0.5 \mathrm{mmol})$ in ethanol (10 mL) and 5 M hydrochloric acid ($1 \mathrm{~mL}, 5 \mathrm{mmol}$) was heated under reflux for 4.5 h . The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with chloroform-methanol ($10: 1$) to give 62 as a solid $(0.16 \mathrm{~g}, 74 \%): \mathrm{IR}(\mathrm{KBr}) \nu_{\text {max }} 3381,3160,2981,2935,2751,1685$, 1632, 1596, and $1472 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.22(12 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.82(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.30-4.60$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{ON}\right), 4.91\left(1 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH$), 6.00(1 \mathrm{H}$, ddd, $J=1,17$, and 18 Hz , $\mathrm{PCH}=\mathrm{CH}), 6.65\left(3 \mathrm{H}, \mathrm{m}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, NH_{2} and $\left.\mathrm{PCH}=\mathrm{CH}\right)$, $7.87(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 10.69\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.1-\mathrm{H}\right)$; FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+} 416, \mathrm{MNa}^{+} 438$.
(E)-2-Amino-6-chloro-9-[4-(diisopropoxyphosphoryl)-2-methylenebut-3-enyl]purine (64). A mixture of 2 -amino-6chloropurine (40) ($0.115 \mathrm{~g}, 0.678 \mathrm{mmol}), 39(0.33 \mathrm{~g}, 0.678 \mathrm{mmol})$, and potassium carbonate ($141 \mathrm{mg}, 1.02 \mathrm{mmol}$) in DMF (10 mL) was heated at $70^{\circ} \mathrm{C}$ for 16 h . The solvent was removed, and the residue was purified by column chromatography eluting with dichloromethane-methanol ($19: 1,9: 1$) to give 64 as a gum (0.13 $\mathrm{g}, 48 \%$): UV (EtOH) $\lambda_{\text {max }} 310$ ($\epsilon 7920$), 238 ($\epsilon 8680$), and 223 (ϵ 42330) nm ; IR (KBr) $\nu_{\text {max }} 3320,3210,2980,1610,1560,1520$, $1470,1410,1385,1375$, and $1240 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta$ $1.17\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 1.22(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 2 \times$ $\left.\mathrm{CHCH}_{3}\right), 4.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.92\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.06$ $\left(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.66\left(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}_{\mathrm{B}}\right.$ of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 6.08(1 \mathrm{H}$, $\mathrm{t}, J=17 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.97\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, NH_{2}), 7.04 (1 H ; dd, $J=17$ and $23 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$), $8.11(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{P}$ 399.1226, found 399.1225.
(E)-1-[[4-(Diisopropoxyphosphoryl)-1-hydroxybut-3-en2 -yl]oxy]cytosine (67). A solution of $66(0.382 \mathrm{~g}, 0.66 \mathrm{mmol})$ in 5% methanolic hydrogen chloride $(13 \mathrm{~mL})$ was stirred at room temperature for 66 h . The solution was reduced to half volume and neutralized using saturated sodium bicarbonate solution. The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with dichloromethanemethanol (9:1, 4:1) to give 67 as a hygroscopic white solid (0.170 $\mathrm{g}, 71 \%): \mathrm{mp} 70-75^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\max } 276$ ($\epsilon 6100$) nm; IR $(\mathrm{KBr}) \nu_{\max } 3395,3190,2980,1645,1485,1375$, and $1235 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.20\left(12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.60(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 4.47\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.82(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.17(1 \mathrm{H}$, $\mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, OH), $5.57(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 5-\mathrm{H})$, $6.10(1 \mathrm{H}$, pseudo-t, $J=19 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.63(1 \mathrm{H}$, ddd, $J=$ $7,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.18\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, NH), $7.24\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, NH$), 7.77(1 \mathrm{H}, \mathrm{d}, J=$ $7 \mathrm{~Hz}, 6-\mathrm{H})$; CIMS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} \mathrm{MH}^{+}$362. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P} \cdot 1.0 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2,2-Dimethyl-1,3-dioxan-5-yl)methyl Methanesulfonate (69). To a solution of (2,2-dimethyl-1,3-dioxan-5-yl)methanol ${ }^{16}$ ($5.75 \mathrm{~g}, 39.3 \mathrm{mmol}$) and triethylamine ($5.97 \mathrm{~g}, 59.0 \mathrm{mmol}$) in dichloromethane (90 mL) stirred at $-5{ }^{\circ} \mathrm{C}$ under dry nitrogen was added methanesulfonyl chloride $(5.40 \mathrm{~g}, 47.2 \mathrm{mmol})$ dropwise, maintaining the internal temperature $<^{\circ}{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before being washed with 0.5 M hydrochloric acid (40 mL) and saturated aqueous sodium bicarbonate solution (40 mL). The solution was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed to leave $8.49 \mathrm{~g}(96 \%)$ of 69 as a colorless oil which was used without further purification: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.07(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.67-4.20\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 4.42$ ($2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OS}$).

1-[(2,2-Dimethyl-1,3-dioxan-5-yl)methyl]cytosine (70). A mixture of cytosine ($4.19 \mathrm{~g}, 37.7 \mathrm{mmol}$), $69(8.45 \mathrm{~g}, 37.7 \mathrm{mmol})$, and cesium carbonate ($14.74 \mathrm{~g}, 45.2 \mathrm{mmol}$) in DMF $(100 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ for 18 h . The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with dichloromethane-methanol (19:1, 4:1) to afford 70 as a pale yellow solid ($3.94 \mathrm{~g}, 44 \%$) along with O^{2} [[2,2 -dimethyl-1,3-dioxan-5-yl)methyl]cytosine (71) as a pale yellow gum (2.12
$\mathrm{g}, \mathbf{2 3 \%}$). For 70: $\mathrm{mp} 243-246^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 275$ ($\epsilon 7800$) $\mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) \nu_{\text {max }} 3345,3110,1660,1655,1485,1380,1245,1195$, and $1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.33$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.04(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.51(2 \mathrm{H}, \mathrm{dd}, J=6.2$ and 12.0 $\left.\mathrm{Hz}, 2 \times \mathrm{H}_{\mathrm{ax}}\right), 3.83\left(2 \mathrm{H}, \mathrm{dd}, J=3.9\right.$ and $\left.12.0 \mathrm{~Hz}, 2 \times \mathrm{H}_{\text {eq }}\right), 3.70$ $\left(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.64(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 5-\mathrm{H}), 7.00$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}$), $7.48\left(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{Me}_{2}-$ SO- $\left.d_{6}\right) \delta 23.6\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 33.2(\mathrm{CH}), 48.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 61.0(2$ $\left.\times \mathrm{CH}_{2} \mathrm{O}\right), 93.1(5-\mathrm{C}), 97.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 146.3(6-\mathrm{C}), 155.9(2-\mathrm{C}),}\right.$ 165.9 (4-C); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 240.1348$, found 240.1349. Anal. ($\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$) C, H, N. For 71: UV (MeOH) $\lambda_{\text {max }} 228(\epsilon 7655) \mathrm{nm}, 272(\epsilon 6360) \mathrm{nm}$; IR (film) $\nu_{\text {max }} 3335,3205$, $3000,1640,1590,1555,1415,1365,1295,1250,1200,1155,1090$, and $1040 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.34$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.01(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.71(2 \mathrm{H}, \mathrm{dd}, J=6.3$ and 11.8 $\mathrm{Hz}, 2 \times \mathrm{H}_{\mathrm{ax}}$), $3.94\left(2 \mathrm{H}, \mathrm{dd}, J=4.1\right.$ and $11.8 \mathrm{~Hz}, 2 \times \mathrm{H}_{\text {eq }}$), 4.18 $\left(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.08(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, 5-\mathrm{H}), 6.83$ ($2 \mathrm{H}, \mathrm{br}$ s, NH_{2}), $7.85(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, 6-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{Me}_{2}-$ SO-d $\left.d_{6}\right) \delta 23.7\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{3}\right), 33.4(\mathrm{CH}), 60.5\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 64.5$ ($\mathrm{CH}_{2} \mathrm{O}$), $97.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 99.4(5-\mathrm{C}), 156.2$ (6-C), 164.7 (2-C), 165.3 (4-C); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ (MH ${ }^{+}$) 240.1348, found 240.1348. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H} ; \mathrm{N}$: calcd, 17.56; found, 16.85.

1-[3-Hydroxy-2-(hydroxymethyl) prop-1-yl]cytosine (72). A solution of $70(3.15 \mathrm{~g}, 13.16 \mathrm{mmol})$ in 5% methanolic hydrogen chloride (87 mL) was stirred at ambient temperature for 1.25 h before the solution was neutralized by addition of saturated aqueous sodium bicarbonate solution. The solution was evaporated to dryness, and the residue was partially purified by column chromatography on silica gel eluting with dichloromethanemethanol (1:1) gradually increasing polarity to methanol. The product (which contained sodium chloride) was further purified by column chromatography on C_{18} reverse-phase silica gel eluting with water to afford 72 as a white solid ($2.3 \mathrm{~g}, 88 \%$): $\mathrm{mp} 204-206$ ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 275$ ($\epsilon 7860$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.87$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), $3.32\left(4 \mathrm{H}\right.$, partially obscured by $\mathrm{H}_{2} \mathrm{O}$, d upon $\mathrm{D}_{2} \mathrm{O}$ exchange, $\left.J=6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 3.62\left(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $4.55\left(2 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.2 \times \mathrm{OH}\right), 5.65(1 \mathrm{H}, \mathrm{d}$, $J=7 \mathrm{~Hz}, 5-\mathrm{H}), 7.00\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $\left.\mathrm{NH}_{2}\right), 7.49(1 \mathrm{H}$, $\mathrm{d}, J=7 \mathrm{~Hz}, 6-\mathrm{H}$); FABMS (positive ion, thioglycerol) $m / z \mathrm{MH}^{+}$ 200. Anal. ($\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$) C, H, N.
$\mathbf{N a}^{4}$-Acetyl-1-[3-hydroxy-2-(hydroxymethyl)prop-1-yl]cytosine (73). To a solution of $72(2.17 \mathrm{~g}, 10.89 \mathrm{mmol})$ in methanol $(225 \mathrm{~mL})$ heated under reflux was added acetic anhydride (2.45 $\mathrm{g}, 24.0 \mathrm{mmol}$). After 0.5 and 1.0 h two further portions of acetic anhydride ($2.17 \mathrm{~g}, 10.89 \mathrm{mmol}$) were added. The solvent was removed, and the residue was purified by column chromatography onsilica gel eluting with dichloromethane-methanol (19:1, 5:1) to afford 73 as a white solid ($1.74 \mathrm{~g}, 66 \%$) : mp $157-159^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \lambda_{\max } 216(\epsilon 17770), 247(\epsilon 14155), 300(\epsilon 7065) \mathrm{nm}$; IR $(\mathrm{KBr}) \nu_{\max } 3410,1720,1705,1655,1630,1565,1495,1435,1375$, $1335,1305,1245,1230$, and $1180 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta$ $1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.38(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}$, collapsing to d upon $\mathrm{D}_{2} \mathrm{O}$ exchange, $\left.2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 3.79(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.54\left(2 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $2 \times \mathrm{OH}$), 7.13 $(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 5-\mathrm{H}), 7.99(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 6-\mathrm{H}), 10.79(1 \mathrm{H}$, $\mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, NH); CIMS $\left(\mathrm{NH}_{3}\right) m / z \mathrm{MH}^{+} 242$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$\boldsymbol{N}^{\mathbf{4}}$-Acetyl-1-[3-hydroxy-2-[[(4-methoxyphenyl)diphenyl-methoxy]methyl]prop-1-yl]cytosine (74). To a solution of $73(1.84 \mathrm{~g}, 7.63 \mathrm{mmol})$ and triethylamine ($1.08 \mathrm{~g}, 10.7 \mathrm{mmol}$) in DMF (25 mL) stirred at ambient temperature was added (4methoxyphenyl)chlorodiphenylmethane ($3.06 \mathrm{~g}, 9.91 \mathrm{mmol}$). The solution was stirred for 1 h . The solvent was removed, and the residue was purified by column chromatography on silica eluting with dichloromethane-methanol ($39: 1 ; 19: 1$) to afford 74 as a white solid ($2.26 \mathrm{~g}, 58 \%$): mp $110-120^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\text {max }} 206$ ($\epsilon 57770$), 236 ($\epsilon 20405$), 302 ($\epsilon 6385$) nm; IR (KBr) $\nu_{\text {max }} 3440$, $1720,1655,1560,1490,1370,1305,1250,1220$, and $1180 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.25(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.00(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.82(2 \mathrm{H}, \mathrm{d}$, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.63\left(1 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH$)$, $6.87\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, 2\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.99(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 5-\mathrm{H})$, $7.19\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, 2\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.33\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.76$ ($1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 6-\mathrm{H}$), $10.76\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, NH); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}$ (MH^{+}) 514.2342 , found 514.2333 .
(\boldsymbol{E})- \boldsymbol{N}^{4}-Acetyl-1-[4-(diphenoxyphosphoryl)-2-[[(4-meth-
oxyphenyl)diphenylmethozy]methyl]but-3-enyl]cytosine (75). To a solution of $74(1.13 \mathrm{~g}, 2.20 \mathrm{mmol})$ and dicycloherylcarbodiimide ($2.27 \mathrm{~g}, 11.0 \mathrm{mmol}$) in anhydrous DMSO (10 mL) was added dichloroacetic acid (0.1 mL). The mixture was stirred at ambient temperature for 1 h before being cooled to $0^{\circ} \mathrm{C}$. A solution of ozalic acid dihydrate ($1.11 \mathrm{~g}, 8.80 \mathrm{mmol}$) in methanol $(6 \mathrm{~mL})$ was added, and the mixture was stirred at ambient temperature for 0.5 h . The mixture was filtered, and the methanol was removed under reduced pressure before the residue was partitioned between saturated aqueous sodium chloride solution $(100 \mathrm{~mL})$ and dichloromethane ($100 \mathrm{~mL}, 2 \times 50 \mathrm{~mL}$). The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed. The residue was dissolved in anhydrous DMSO, and diphenyl[(triphenylphosphoranylidene)methyl]phosphonate ${ }^{42}$ $(1.12 \mathrm{~g}, 2.20 \mathrm{mmol})$ was added. The mixture was heated at 80 ${ }^{\circ} \mathrm{C}$ for 18 h . The solvent was removed, and the residue was partially purified by column chromatography on silica gel eluting with acetone-hexane (3:2). The product was further purified by column chromatography on silica gel eluting with dichlo-romethane-methanol ($39: 1,19: 1$) to afford 75 as a gum $(0.178 \mathrm{~g}$, 21%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, $3.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.00$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.05(1 \mathrm{H}, \mathrm{dd}, J=17$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH})$, $6.75-7.40\left(27 \mathrm{H}, \mathrm{m}, \mathrm{PCH}=\mathrm{CH}, 5-\mathrm{H}, 6-\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.4 \times \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $9.10(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}) ;$ FABMS (positive ion, TDE $/ \mathrm{NaCl}$) $\mathrm{m} / \mathrm{z} \mathrm{MH}{ }^{+}$ 742 , $\mathrm{MNa}^{+} 764$.
(E)-1-[4-(Diphenoxyphosphoryl)-2-(hydroxymethyl)but3 -enyl]cytosine (76). A solution of $75(0.178 \mathrm{~g}, 0.234 \mathrm{mmol})$ in 5% methanolic hydrogen chloride $(10 \mathrm{~mL})$ was stirred at ambient temperature for 1.8 h . The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with dichloromethane-methanol (19:1, 4:1) to afford 76 as a hygroscopic white solid ($0.10 \mathrm{~g}, 97 \%$): UV (EtOH) $\lambda_{\max } 276 \mathrm{~nm}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.87(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.20-3.50(2 \mathrm{H}, \mathrm{m}$, partially obscured by $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{OH}$), $3.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.90(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, OH$), 5.58(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 5-\mathrm{H}), 6.10$ ($1 \mathrm{H}, \mathrm{dd}, J=17$ and $23 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$), $6.85(1 \mathrm{H}$, ddd, $J=7,17$, and $23 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 7.00\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, NH$)$, $7.10\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, NH$), 7.10-7.50(11 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $2 \times \mathrm{C}_{6} \mathrm{H}_{5}$); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}\left(\mathrm{MH}^{+}\right) 428.1375$, found 428.1380 .
(E)-1-[2-(Hydroxymethyl)-4-(dimethoxyphosphoryl)but-3-enyl]cytosine (77). A mixture of 76 ($98 \mathrm{mg}, 0.229 \mathrm{mmol}$) and cesium fluoride ($0.217 \mathrm{~g}, 1.43 \mathrm{mmol}$) in methanol $(40 \mathrm{~mL})$ was stirred at ambient temperature for 24 h . The solvent was removed, and the residue was purified by column chromatography on silica gel eluting with dichloromethane-methanol ($9: 1,3: 1$) to afford 77 as a gum ($58 \mathrm{mg}, 83 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.80$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.53\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $3.57\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.87(1 \mathrm{H}, \mathrm{t}, J$ $=5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, OH$), 5.62(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 5-\mathrm{H}), 5.70$ ($1 \mathrm{H}, \mathrm{dd}, J=17$ and $20 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}$), $6.60(1 \mathrm{H}, \mathrm{ddd}, J=7,17$, and $22 \mathrm{~Hz}, \mathrm{PCH}=\mathrm{CH}), 6.90\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, NH$)$, $7.05\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, NH$), 7.50(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, 6-H).

Acknowledgment. We thank Mr. M. R. Boyd and Dr. D. N. Planterose and their colleagues for antiviral data, Dr.S.C. Connor for NMR studies, Mr. C. J. Salter for $\mathrm{p} K_{\mathrm{a}}$ data, and Dr. A. G. Brown for his support of this work.

References

(1) De Clerca, E.; Holý, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P.C. A Novel Selective Broad-Spectrum Anti-DNA Virus Agent. Nature 1986, 323, 464-467.
(2) Votruba, I.; Bernaerts, R.; Sakuma, T.; De Clercq, E.; Merta, A.; Rosenberg, I.; Holy, A. Intracellular Phosphorylation of BroadSpectrum Anti-DNA Virus Agent (S)-9-(3-Hydroxy-2-phosphonylmethoxypropyl) adenine and Inhibltion of Viral DNA Synthesis. Mol. Pharmacol. 1988, 32, 524-529.
(3) Merta, A.; Votruba, I.; Rosenberg, I.; Otmar, M.; Hřebabecky, H.; Bernaerts, R.; Holý, A. Inhibition of Herpes Simplex Virus DNA Polymerase by Diphosphates of Acyclic Phosphonylmethoxyalkyl Nucleotide Analogues. Antiviral Res. 1990, 13, 209-218.
(4) Balzarini, J.; Hoa, Z.; Herdewijn, P.; Johns, D. G.; De Clercq, E. IntracellularMetabolism and Mechanism of Anti-Retrovirus Action of 9-(2-Phosphonylmethozyethyl)adenine, a Potent Anti-Human Immunodeficiency Virus Compound. Proc. Natl. Acad.Sci.U.S.A. 1991, 88, 1499-1503.
(5) De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.; Holy, A. Antiviral Activity of Phosphonylmethoxyalkyl Derivatives of Purine and Pyrimidines. Antiviral Res. 1987, 8, 261-272.
(6) Bronson, J. J.; Ghazzouli, I.; Hitchcock, M. J. M.; Webb, R. R.; Martin, J. C. Synthesis and Antiviral Activity of the Nucleotide Analogue (S)-1-[3-Hydroxy-2-(phosphonylmethoxy)propyl]cytosine. J. Med. Chem. 1989, 32, 1457-1463.
(7) (a) Duckworth, D. M.; Harnden, M. R.; Perkins, R. M.; Planterose, D. N. 9-[2-(Phosphonomethoxy)alkoxy]purines, A New Series of Antiviral Acyclonucleotides. Nucleosides Nucleotides 1991, 10, 427-430. (b) Duckworth, D. M.; Harnden, M. R.; Perkins, R. M.; Planterose, D. N. Antiviral 9-[2-(phosphonomethoxy)alkoxy]purines. Antiviral Chem. Chemother. 1991, 2, 229-241.
(8) Perkins, R. M.; Patience, C.; Ashton, R. J.; Love, S.; Barnes, K.; Jenkins, O.; Donker, G.; Reynolds, K.; Elphick, L. M.; Planterose, D. N.; Kenig, M. D.; Darlison, S. J.; Vere Hodge, R. A.; Duckworth, D. M.; Serafinowska, H. T.; Harnden, M. R.; Weiss, R. A.; Brown, A. G. 9-[2-(Phosphonomethoxy)ethoxy]adenine, BRL 47923, A Potent and Selective Inhibitor of HIV Replication. J. Cell. Biochem., Suppl. 16E 1992, 86.
(9) Kim, C. U.; Luh, B. Y.; Martin, J. C. A Novel Synthesis of 1-Oxa-HPMPA: A Potent Antiviral Agent Against Herpesviruses. Tetrahedron Lett. 1992, 33, 25-28.
(10) Hansch, C.; Leo, A. J. Substituent Constants for Correlation Analysis in Chemistry and Biology; Wiley: New York, 1979; p 52.
(11) Blackburn, G. M. Chem. Ind. 1981, 134-138.
(12) Kim, C. U.; Luh, B. Y.; Misco, P. F.; Bronson, J. J.; Hitchcock, M. J. M.; Ghazzouli, I.; Martin, J. C. Acyclic Purine Phosphonate Analogues as Antiviral Agents. Synthesis and Structure-Activity Relationships. J. Med. Chem. 1990, 33, 1207-1213.
(13) Hampton, A.; Kappler, F.;Perini, F. Evidence for the Conformation About the C($\left.5^{\prime}\right)-0\left(5^{\prime}\right)$ Bond of AMP Complezed to AMP Kinase. Bioorg. Chem. 1976, 5, 31-35.
(14) During the course of this work some 2-alkenyl- and 1,3-dienylphosphonic acid analogues of acyclonucleotides have been reported: (a) Phadtare, S.; Zemlicka, J. Unsaturated Analogues of Acyclic Nucleoside Phosphonates: An Unusual Arbusov Reaction with Unactivated Triple Bond. Nucleosides Nucleotides 1991, 10, 275278. (b) Screenivasulu, M.; Phadtare, S.; Zemlicka, J. Unsaturated Phosphonates as Acyclic Nucleotide Analogues. Anomalous Michae-lis-Arbusov and Michaelis-Becker Reactions with Multiple Bond Systems. J. Org. Chem. 1992, 57, 2320-2327.
(15) (a) For a recent review see: Maryanoff, B. E.; Reitz, A. B. The Wittig Olefination Reaction and Modifications Involving Phos-phoryl-Stabilized Carbanions. Stereochemistry, Mechanism and Selected Synthetic Applications. Chem. Rev. 1989, 89, 863-927. (b) For a recent review, see: Ager, D. J. The Peterson Olefination Reaction. Org. React. 1990, 38, 1-223.
(16) Harnden, M. R.; Wyatt, P. G.; Boyd, M. R.; Sutton, D. Synthesis and Antiviral Activity of 9-Alkoxypurines. 1. 9-(3-Hydroxypro-poxy)- and 9-[3-Hydroxy-2-(hydroxymethyl)propoxy]purines. J. Med. Chem. 1990, 33, 187-196.
(17) Paulsen, H.; Bartsch, W. Phosphorus-Containing Carbohydrates. XII. Preparation of OlefinicSugar Phosphonates and Allenic Sugar Phosphonates. Chem. Ber. 1975, 108, 1732-1744.
(18) Gupta, A.; Sacks, K.; Khan, S.; Tropp, B. E.; Engel, R. An Improved Synthesis of VinylicPhosphonates from Ketones. Synth.Commun. 1980, 10, 299-304.
(19) Zyablikova, T. A.; Il'yasov, A. V.; Mukhametzyanova, E. K.; Shermergorn, I. M. Synthesis and Investigation of the PMR Spectra of β-Substituted Vinylphosphonates. J. Gen. Chem. USSR (Engl. Transl.) 1982, 52, 249-252.
(20) Carey, F. A.; Court, A. S. Silicon-Containing Carbanions. I. Synthesis of Vinyl Thicethers and Vinylphosphonates via SiliconModified Organolithium Reagents. J. Org. Chem. 1972, 37, 939943.
(21) Mitsunobu, O. The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. Synthesis 1981, 1-28.
(22) lwakawa, M.; Pinto, B. M.; Szarek, W. A. Synthetic Routes to Nucleoside Analogues of N-Substituted 1,3-Thiazolidines. Can. J. Chem. 1978, 56, 326-335.
(23) Vaultier, M.; Knouzi, N.; Carrie, R. Reduction of Azides to Primary Amines by a General Method Using the Staudinger Reaction. Tetrahedron Lett. 1983, 24, 763-764.
(24) Harnden, M. R.; Wyatt, P. G. Synthesis of 9-Hydroxypurines: Intermediates to Novel Antiviral Acyclonucleosides. Tetrahedron Lett. 1990, 31, 2185-2188.
(25) Midgley, J. M.; Millership, J. S.; Whalley, W. B. The Chemistry of Fungi. Part LXXVII. The Trimethylsilyloxy-substituent as a Leaving Group. J. Chem. Soc., Perkin Trans. 1 1976, 1384-1385.
(26) Parkin, A. Analogues of Acyclonucleoside Diphosphates. The Synthesis of a Series of Diphosphonate Derivatives of Pyrimidines and Purines. J. Chem. Soc., Perkin Trans. 1 1991, 2983-2990.
(27) Jenny, T. F.; Previsani, N.; Benner, S. A. Carbocyclic Analogues of Nucleosides via Modified Mitsunobu Reactions. Tetrahedron Lett. 1991, 32, 7029-7032.
(28) Martin, J. C.; Verheyden, J. P. H. Synthesis of 4^{\prime}-(Hydroxymethyl)guanosine and a Phosphonate Analogue of Guanylic Acid. Nucleosides Nucleotides 1988, 7, 365-374.
(29) Prisbe, E. J.; Martin, J. C.; McGee, D. P. C.; Barker, M. F.; Smee, D. F.; Duke, A. E.; Matthews, T. R.; Verheyden, J. P. H. Synthesis and Antiherpes Virus Activity of Phosphate and Phosphonate Derivatives of 9-[(1,3-Dihydroxy-2-propoxy)methyl]guanine. J. Med. Chem. 1986, 29, 671-675.
(30) Jones, G. H.; Moffatt, J. G. The Synthesis of 6'-Deoxyhomonu-cleoside-6'-phosphonic Acids. J. Am. Chem. Soc. 1968, 90, 53375338.
(31) Lejczak, B.; Kafarski, P.; Szewczyk, J. Transesterification of Diphenyl Phosphonates using the Potassium Fluoride/Crown Ether/Alcohol System; Part 2. The Use of Diphenyl 1-Aminoalkanephosphonates in Phosphonopeptide Synthesis. Synthesis 1982, 412-414.
(32) Serafinowska, H. T., SmithKline Beecham Pharmaceuticals. Unpublished results.
(33) Pauwels, R.; Balzarini, J.; Schols, D.; Baba, M.; Desmyter, J.; Rosenberg, I.; Holý, A.; De Clercq, E. Phosphonylmethoxyethyl Purine Derivatives, a New Class of Anti-Human Immunodeficiency Virus Agents. Antimicrob. Agents Chemother. 1988, 1025-1030.
(34) Kreider, J. W.; Balogh, K.; Olson, R. O.; Martin, J. C. Treatment of Latent Rabbit and Human Papillomavirus Infections with 9-(2Phosphonylmethoxy)ethylguanine (PMEG). Antiviral Res. 1990, 14, 51-58.
(35) Rose, W. C.; Crosswell, A. R.; Bronson, J. J.; Martin, J. C. In Vitro Antitumor Activity of $9-[(2-\mathrm{Phosph}$ onylmethoxy)ethyl]guanineand Related Phosphonate Nucleotide Analogues. J. Nat. Cancer Inst. 1990, 82, 510-512.
(36) Boyd, M. R.; Bacon, T. H.; Sutton, D.; Cole, M. Antiherpesvirus Activity of 9-(4-Hydroxy-3-hydroxymethylbut-1-yl)guanine (BRL 39123) in Cell Culture. Antimicrob. Agents Chemother. 1987, 31, 1238-1242.
(37) Harnden, M. R.; Jennings, L. J. Antiviral 9-[2-(Phosphonomethylthio) alkozy]purines. Antimicrob. Agents Chemother. In press.
(38) Harnden, M. R.; Jarvest, R. L. Synthesis of (9-Hydrozyalkylamino)guanines, Novel Antiviral Acyclonucleosides. Tetrahedron Lett. 1988, 29, 5995-5998.
(39) Gilbert, A. R. Organosilicon Compounds Containing Phosphorus. U.S. Patent 2,768,193; 1956; Chem. Abstr. 1957, 51, 5816h.
(40) Bowles, W. A.; Schneider, F. H.; Leland, R. L.; Robins, R. K. Synthesis and Antitumor Activity of 9-(Tetrahydro-2-furanyl)purine Analogues of Biologically ImportantDeoxynucleosides. J.Med. Chem. 1963, 6, 471-480.
(41) Temple, C.; Kussner, C. L.; Montgomery, J. A. Studies on the Azidoazomethine-Tetrazole Equilibrium. J. Org. Chem. 1966, 31, 2210-2215.
(42) Jones, G.H.; Hamamura, E. K.; Moffatt, J. G. A New Wittig Reagent Suitable for the Synthesis of α, β-Unsaturated Phosphonates. Tetrahedron Lett. 1968, 5731-5734.

