(S)-N-tert-Butyl-3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenylpropanamide [(S)-WAY-100135]: A Selective Antagonist at Presynaptic and Postsynaptic 5-HT_{1A} Receptors

Ian A. Cliffe,^{*} Christopher I. Brightwell, Allan Fletcher,[†] Elaine A. Forster,[†] Howard L. Mansell, Yvonne Reilly,[†] Carol Routledge,[†] and Alan C. White

Departments of Medicinal Chemistry and Biomedical Research, Wyeth Research (UK), Huntercombe Lane South, Taplow, Berkshire, SL6 0PH, England

Received March 4, 1993

The increasing number of receptor subtypes for the neurotransmitter serotonin (5-HT) has attracted the attention of many pharmaceutical companies. In particular, the discovery of high-affinity binding to the 5-HT_{1A} receptor by the non-benzodiazepine anxiolytic agent buspirone has encouraged the development of selective 5-HT_{1A} receptor ligands as potential drug candidates. Facilitation of 5-HT neurotransmission in general has an anxiogenic action in animal models, and buspirone, which acts as a partial agonist at the 5- HT_{1A} receptor, may produce its anxiolytic effect by means of either an agonist action at the presynaptic somatodendritic 5-HT_{1A} receptor or an antagonist action at the postsynaptic 5-HT_{1A} receptor. A number of selective 5- HT_{1A} receptor agonists have now been developed but few substantiated reports of selective 5-HT_{1A} receptor antagonists have been made. Such compounds would be of immense value as pharmacological research tools.¹

Several compounds previously thought to act as 5-HT_{1A} receptor antagonists have now been shown to inhibit raphe cell firing and decrease 5-HT release via agonist actions at the somatodendritic 5- HT_{1A} receptor. These compounds are now best classified as 5-HT_{1A} receptor partial agonists.¹ Examples of such agents are the (aminomethyl)benzodioxan binospirone (MDL-73005EF),² the β -adrenoreceptor antagonists, e.g. (-)-pindolol,³ and the arylpiperazines BMY-7378⁴ and NAN-190.⁵ The Sandoz compound SDZ 216-525 is claimed⁶ to be a potent, selective, and "silent" 5- HT_{1A} receptor antagonist, but supporting pharmacological evidence regarding the action of this compound at the presynaptic 5- HT_{1A} receptor has not been presented. To the best of our knowledge, (S)-UH-301⁷ is the only compound which acts as an antagonist at both the presynaptic and postsynaptic 5-HT_{1A} receptor, but (S)-UH-301 shows only an 8-fold selectivity for 5-HT_{1A} binding sites compared to D_2 sites.⁸

We now report initial studies from our laboratory which show that racemic *N-tert*-butyl-3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenylpropanamide dihydrochloride (WAY-100135, 4) is a highly selective and potent antagonist at both the presynaptic and postsynaptic 5-HT_{1A} receptor. This compound also displays no 5-HT_{1A} agonist activity.⁹ We also show that the pharmacological effects of 4 reside mainly in the (S)-enantiomer 5.

The synthesis of 4 and 5 is shown in Scheme I.¹⁰ Michael reaction of 1-(2-methoxyphenyl) piperazine (1) and atropic acid (2)¹¹ gives the amino acid 3. Reaction of 3 with *tert*-

Scheme I

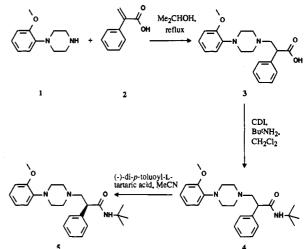


 Table I. In Vitro Receptor Binding Profile of 4, 5, (R)-4, and Buspirone

	IC ₅₀ ± SEM (nM) or [% inhibition at 10 ⁻⁶ M ± SEM] ^a			
binding site	4	5	(R)- 4	buspirone
5-HT1A	33.9 ± 3.3	15.5 ± 4.6	437 ± 128	24 ^b
5-HT _{1B}	$[27 \pm 6]$	$[22 \pm 10]$	$[21 \pm 10]$	nt ^c
$5 - HT_{1C}$	[37 ± 8]	$[50 \pm 6]$	$[14 \pm 7]$	1000 ± 300
$5 - HT_2$	$[37 \pm 12]$	1393 ± 400	$[13 \pm 4]$	2150 ± 442
D_1	$[20 \pm 4]$	$[22 \pm 6]$	$[2 \pm 2]$	nt ^c
D_2	$[14 \pm 3]$	$[20 \pm 3]$	$[4 \pm 4]$	265 ± 35 ^b
α-1	1491 ± 404	1878 ± 808	2781 ± 651	>1000 ^b
α-2	$[10 \pm 4]$	$[11 \pm 6]$	[7 ± 6]	>1000 ^b
β	[20 ± 7]	$[12 \pm 8]$	[7 ± 6]	>1000 ^b

^a Reference 17. ^b Data from ref 18. ^c Not tested.

butylamine using 1,1'-carbonyldiimidazole (CDI) as the coupling reagent produces the free base of 4, which is resolved by multiple recrystallizations of (-)-di-*p*-toluoyl-L-tartaric acid salts in acetonitrile.¹² It should be noted that the optical rotation of 5 in the free base form has a positive sign of rotation, whereas the dihydrochloride salt has a negative sign of rotation. The absolute configuration of the (-)-di-*p*-toluoyl-L-tartaric acid salt of 5 was determined by X-ray crystallography to be $S.^{13}$

The *in vitro* receptor binding profile (Table I) indicates that 4 is a highly selective ligand, having an IC₅₀ value of 34 nM at the 5-HT_{1A} binding site and IC₅₀ values of >1000 nM for a range of other 5-HT, dopamine D₂, and noradrenergic binding sites. The (S)-enantiomer 5 has higher affinity than the (R)-enantiomer and like the racemate 4 shows excellent selectivity. The binding profile of buspirone is included in Table I for the purposes of comparison.

Postsynaptic 5-HT_{1A} receptor function was assessed using the 5-HT_{1A} agonist-induced behavioral syndrome in the rat (extended flat body posture, forepaw treading, and hyperlocomotion).¹⁴ Compound 4 and its enantiomers at doses up to 10 mg/kg iv induce no behavioral effects related to 5-HT_{1A} agonist activity. Pretreatment of rats with 4 30 min prior to the intravenous administration of the standard 5-HT_{1A} receptor agonist 8-OH-DPAT results in an increase in the dose necessary for 8-OH-DPAT to induce the behavioral syndrome. The minimum effective dose (MED) of 4 to block the effect of 8-OH-DPAT is 3 mg/kg sc. This antagonist property of 4 appears to be stereoselective. The (S)-enantiomer 5 has an MED value

[†] Department of Biomedical Research.

of 1 mg/kg sc whereas the (R)-enantiomer is inactive up to a dose of 10 mg/kg sc.

The action of 4 at the presynaptic 5-HT_{1A} receptor was measured by in vivo microdialysis experiments in conscious freely-moving rats. Up to a dose of 10 mg/kg sc, 4 and its enantiomers have no significant effects on extracellular levels of 5-HT in the rat hippocampus within 2.5 h of drug administration. In contrast, BMY-7378 (5 mg/kg sc), buspirone (1 mg/kg sc), and 8-OH-DPAT (0.1 mg/kg sc) significantly decrease hippocampal levels of 5-HT to 37.6 \pm 6.2, 39.9 \pm 15.0, and 19.2 \pm 9.9% of preinjection control levels, respectively. The antagonist activities of 4 and the (S)-enantiomer 5 at the presynaptic 5-HT_{1A} receptor were shown by their abilities to block the 8-OH-DPAT-induced decrease of 5-HT release. Pretreatment with either 4 or 5 at 10 mg/kg sc completely blocks the effects of 8-OH-DPAT (0.1 mg/kg sc). In contrast, the (R)-enantiomer has no significant effect on the 8-OH-DPAT response up to a dose of 10 mg/kg sc. These results support previous electrophysiological findings in anaesthetised rats which show 4 to have little or no intrinsic effect on raphe cell firing in vivo but to block the inhibition of firing caused by 8-OH-DPAT.^{15,16}

In summary, 4 is a highly selective and potent antagonist at both presynaptic and postsynaptic 5-HT_{1A} receptors with activity residing mainly in the (S)-enantiomer 5. Reports on anxiolytic activity in animal models, further pharmacological characterisation, and structure-activity relationships will be forthcoming.

References

- (1) Cliffe, I. A.; Fletcher, A.; Dourish, C. T. The evolution of silent selective 5-HT_{1A} receptor antagonists. Curr. Drugs – Serotonin 1993. 99-124
- (2) 8-[2-((2,3-Dihydro-1,4-benzodioxin-2-yl)methylamino)ethyl]-8azaspiro[4.5]decane-7,9-dione methanesulfonate. See: Sprouse, azaspirot-...juecane-.,s-dione metanesultonate. See: Sprouse, J. S. Inhibition of dorsal raphe cell firing by MDL 73005EF, anovel 5-HT_{1A} receptor ligand. *Eur. J. Pharmacol.* 1991, 201, 163-169.
 (3) Sharp, T.; Bramwell, S. R.; Hjorth, S.; Grahame-Smith, D. G. Pharmacological characterization of 8-OH-DPAT-induced inhi-
- bition of rat hippocampal 5-HT release in vivo as measured by microdialysis. Br. J. Pharmacol. 1989, 98, 989-997.
- 8-[2-(4-(2-Methoxyphenyl)-1-piperazinyl)ethyl]-8-azaspiro[4.5]-decane-7,9-dione dihydrochloride. See: Sharp, T.; Backus, L. I.; (4) Hjorth, S.; Bramwell, S. R.; Grahame-Smith, D. G. Further investigation of the in vivo pharmacological properties of the putative 5-HT_{1A} antagonist, BMY7378. Eur. J. Pharmacol. 1990, 176, 331-340.
- 1-(2-Methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine. See: Greuel, J. M.; Glaser, T. The putative 5-HT_{1A} receptor (5)antagonists NAN-190 and BMY7378 are partial agonists in the rat dorsal raphe nucleus in vitro. Eur. J. Pharmacol. 1992, 211, 211-219
- (6) Methyl 4-[4-(4-(1,1,3-trioxo-2H-1,2-benzisothiazol-2-yl)butyl)-1piperazinyl] 1H-indole 2-carboxylate. See: Hoyer, D.; Schoeffter, P.; Palacios, J. M.; Kalkman, H. O.; Bruinvels, A. T.; Fozard, J. R.; Siegel, H.; Seiler, M. P.; Stoll, A. SDZ 216-525. A selective, potent and silent 5-HT1A receptor antagonist. Br. J. Pharmacol. 1992, 105, 29P.
- (S)-5-Fluoro-8-hydroxy-2-(dipropylamino)tetralin. See: Bjork, L.; Cornfield, L. J.; Nelson, D. L.; Hillver, S.-E.; Arden, N.-E.; Lewander, T.; Hacksell, U. Pharmacology of the novel 5-hydroxytryptamine1A receptor antagonist (S)-5-fluoro-8-hydroxy-2-(dipropylamino)tetralin: inhibition of (R)-8-hydroxy-2-(dipropylamino)-tetralin-induced effects. J. Pharmacol. Exp. Ther. 1991, 258, 58-
- (8) Hillver, S.-E.; Bjork, L.; Li, Y.-L.; Svensson, B.; Ross, R.; Anden, N.-E.; Hacksell, U. (S)-5-Fluoro-8-hydroxy-2-(dipropylamino)tetralin: a putative 5-HT_{1A}-receptor antagonist. J. Med. Chem. 1990, 33, 1541–1544.
- Preliminary data on the racemate have been presented in prelim-inary form. See: Fletcher, A.; Bill, D. J.; Bill, S. J. Brammer, N. T.; Cliffe, I. A.; Forster, E. A.; Reilly, Y.; Lloyd, G. K. WAY-100135: A novel and highly selective 5-HT_{1A} receptor antagonist. Soc. Neurosci Abstr. 1991, 17, 92. (10) All compounds exhibited ¹H NMR and IR spectra in accordance
- with their assigned structures. Elemental analyses of new compounds were within $\pm 0.3\%$ of the theoretical values for C, H, and N. Compound 3: mp 160-163 °C [Anal. ($C_{20}H_{24}N_2O_3 \cdot 0.5H_2O$) C,

H, N]. Compound 4: mp 230-231 °C [Anal. (C24H33N3O22HCl) C, H, N]. 5 dihydrochloride salt: mp 207-213 °C; [α]²⁸D-48.8° (c 1.0, MeOH) [Anal. (C24H33N3O2-2HCl) C, H, N]; free base is an oil $[\alpha]^{26}$ +8° (c 0.5, CHCl₃). (R)-4 dihydrochloride salt: mp 204-214 °C; [α]²⁶_D +49.7° (c 1.0, MeOH) [Anal. (C₂₄H₃₈N₃O₂·2HCl) C, H, N]; free base is an oil $[\alpha]^{24}$ _D -7.4° (c 0.7, CHCl₃).

- (11) Atropic acid was prepared by dehydration of tropic acid in 10 N NaOH at reflux for 14 h, followed by acidification with aqueous HCl. See: Raper, H.S. The resolution of hydratopic acid. J. Chem. Soc. 1923, 123, 2557-2559.
- (12) Enantiomeric purities were assessed using a Hichrom CHI-D-PGC 250A HPLC column with hexane-propan-2-ol (90:10) as the mobile phase and UV detection at 254 nm.
- (13) Professor M. B. Hursthouse and Dr. C. W. Lehmann, School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff, CF1 3TB, Wales. Unpublished results.
- (14) Antagonist evaluation was carried as described previously (see: Fletcher, A.; Forster, E. A. Induction of the 5-HT syndrome in the rat following the intravenous administration of 5-HT_{1A} ligands. Br. J. Pharmacol. 1989, 96, 304P). Groups of at least 10 rats received vehicle or test compound and an ED50 for 8-OH-DPAT to induce a behavioral syndrome was determined in each treatment group using the sequential up/down technique of Kimball, A.W.; Burnett, W. T.; Doherty, D. G. (Chemical protection against ionising radiation. 1. Sampling methods for screening compounds in radiation protection studies with mice. Radiation Res. 1957, 7, 1). ED₅₀ values (with 95% confidence limits) were considered to be significantly different if the confidence limits did not overlap. MED values were defined as the lowest dose tested which significantly increased the ED₅₀ for 8-OH-DPAT relative to vehicle controls.
- (15) Jones, D. E.; Haskins, J. T. Neurophysiological studies of WAY-100135: a novel and highly selective 5-HT_{1A} receptor antagonist. Soc. Neurosci. Abstr. 1991, 17, 91.
- (16) Golbert, A.; Rivet, J.-M.; Lejeune, F.; Millan, M. J. Comparative actions of novel 5-HT1A antagonists and S 14671, a high efficacy 5-HT_{1A} agonist, at presynaptic autoreceptors. J. Psychopharmacol. In press. (Presented at the joint meeting of the British Association for Psychopharmacology and the European Behavioural Pharmacology Society held at Cambridge, UK, 2–7 August, 1992.)
- (17) Mean IC₅₀ \pm standard error or mean percent inhibition at 10⁻⁶ M of at least three experiments performed in triplicate. $5-HT_{1A}$ binding affinities were determined using [3H]-8-OH-DPAT in rat hippocampus (Alexander, B. S.; Wood, M. D. [3H]-8-OH-DPAT labels the 5-hydroxytryptamine uptake recognition site and the 5-HT_{1A} binding site in the rat striatum. J. Pharm. Pharmacol. 1988, 40, 888–891); 5-HT_{1B} binding affinities were determined using [3H]-5-HT in rat striatum (Alexander, B. S.; Blurton, P. A.; Wood, M. D. Regional and pharmacological characteristics of multiple (³H)-5-HT binding sites in rat brain membranes. Br. J. Pharmacol. 1986, 87, 22P); 5-HT_{1C} binding affinities were determined using [³H]-5-HT in rat striatum (Alexander, B. S.; Blurton, P. A.; Wood, M. D. Regional and pharmacological characteristics of multiple [³H]-5-HT binding sites in rat brain membranes. Br. J. Pharmacol. 1986, 87, 22P); 5-HT₂ binding affinities were determined using [³H]-DOB in rat frontal cortex (Lyon, R. A.; Davis, K. H.; Titeler, M. ³H-DOB (4-bromo-2,5-dimethoxyphenylisopropylamine) labels a guanyl nucleotide-sensitive state of cortical 5-HT2 receptors. Mol. Pharmacol. 1987, 31, 194-199); dopamine D1 binding affinities were determined using [³H]-SCH-23390 in rat striatum (Billard, W.; Ruperto, V.; Crosby, G.; Iorio, L. C.; Barnett, A. Characterization of the binding of ⁸H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sci. 1984, 35, 1885-1893); dopamine D₂ binding affinities were determined using [³H]spiperone in rat striatum (Seeman, P.; Ulpian, C.; Wreggett, K. A.; Wells, J. W. Dopamine receptor parameters detected by [3H]spiperone depend on tissue concentration: analysis and examples. J. Neurochem. 1984, 43, 221–235); noradrenergic α -1 binding affinities were determined using [3H]prazosin in rat whole cortex (Morrow, A. L.; Creese, I. Characterization of alpha-1 adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4101 and [3H]prazosin binding. Mol. Pharmacol. 1986, 29, 321-330); noradrenergic α-2 binding affinities were determined using [3H]-UK-14304 in rat whole cortex (Loftus, D. J.; Stolk, J. M.; U'Prichard, D. C. Binding of the imidazoline UK-14,304, a putative full alpha 2-adrenoceptor agonist, to rat cerebral cortex membranes. Life Sci. 1984, 35, 61-69); noradrenergic β binding affinities were determined using [³H]-DHA in rat whole cortex (Williams, L. T.; Lefkowitz, R. J. Receptor binding studies in adrenergic pharmacology; Raven Press: New York, 1987).
- (18) New, J. S. The discovery and development of buspirone: a new approach to the treatment of anxiety. Med. Chem. Rev. 1990, 10, 283-326.