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The increasing number of receptor subtypes for the 
neurotransmitter serotonin (5-HT) has attracted the 
attention of many pharmaceutical companies. In partic­
ular, the discovery of high-affinity binding to the 5-HTIA 
receptor by the non-benzodiazepine anxiolytic agent 
buspirone has encouraged the development of selective 
5-HTIA receptor ligands as potential drug candidates. 
Facilitation of 5-HT neurotransmission in general has an 
anxiogenic action in animal models, and buspirone, which 
acts as a partial agonist at the 5-HTIA receptor, may 
produce its anxiolytic effect by means of either an agonist 
action at the presynaptic somatodendritic 5-HTIA receptor 
or an antagonist action at the postsynaptic 5-HTIA 
receptor. A number of selective 5-HTu receptor agonists 
have now been developed but few substantiated reports 
of selective 5-HTIA receptor antagonists have been made. 
Such compounds would be of immense value as pharma­
cological research tools.1 

Several compounds previously thought to act as 5-HTIA 
receptor antagonists have now been shown to inhibit raphe 
cell firing and decrease 5-HT release via agonist actions 
at the somatodendritic 5-HTIA receptor. These com­
pounds are now best classified as 5-HTIA receptor partial 
agonists.1 Examples of such agents are the (aminomethyl)-
benzodioxan binospirone (MDL-73005EF),2 the 0-adreno-
receptor antagonists, e.g. (-)-pindolol,3 and the arylpip-
erazines BMY-73784 and NAN-190.6 The Sandoz com­
pound SDZ 216-525 is claimed6 to be a potent, selective, 
and "silent" 5-HTIA receptor antagonist, but supporting 
pharmacological evidence regarding the action of this 
compound at the presynaptic 5-HTu receptor has not 
been presented. To the best of our knowledge, (S)-UH-
3017 is the only compound which acts as an antagonist at 
both the presynaptic and postsynaptic 5-HTJA receptor, 
but (S)-UH-301 shows only an 8-fold selectivity for 5-HTIA 
binding sites compared to D2 sites.8 

We now report initial studies from our laboratory which 
show that racemic iV-teri-butyl-3-(4-(2-methoxyphenyl)-
piperazin-l-yl)-2-phenylpropanamide dihydrochloride 
(WAY-100135,4) is a highly selective and potent antagonist 
at both the presynaptic and postsynaptic 5-HTIA receptor. 
This compound also displays no 5-HTu agonist activity.9 

We also show that the pharmacological effects of 4 reside 
mainly in the (S)-enantiomer 5. 

The synthesis of 4 and 5 is shown in Scheme I.10 Michael 
reaction of l-(2-methoxyphenyl)piperazine (1) and atropic 
acid (2)11 gives the amino acid 3. Reaction of 3 with tert-
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Table I. In Vitro Receptor Binding Profile of 4, 5, (R)-4, and 
Buspirone 

IC50 ± SEM (nM) or 
[% inhibition at 10"6 M ± SEM]« 

binding site 

5-HTu 
5 - H T I B 
5-HTic 
5-HT2 

Di 
D2 
a-1 
a-2 
P 

4 

33.9 ± 3.3 
[27 ± 6] 
[37 ± 8] 
[37 ± 12] 
[20 ± 4] 
[14 ± 3] 

1491 ± 404 
[10 ± 4] 
[20 ± 7] 

5 

15.5 ± 4.6 
[22 ± 10] 
[50 ± 6] 

1393 ± 400 
[22 ± 6] 
[20 ± 3] 

1878 ± 808 
[11 ± 6] 
[12 ± 8] 

(fl)-4 

437 ± 128 
[21 ± 10] 
[14 ±7] 
[13 ± 4] 
[2 ±2] 
[4 ±4] 

2781 ± 651 
[7 ±6] 
[7 ±6] 

buspirone 
24" 
ntc 

1000 ±300 
2150 ± 442 
ntc 

265 ± 35* 
>1000* 
MOOO* 
MOOO* 

0 Reference 17. * Data from ref 18 . ' Not tested. 

butylamine using l.l'-carbonyldiimidazole (CDI) as the 
coupling reagent produces the free base of 4, which is 
resolved by multiple recrystallizations of (-)-di-p-toluoyl-
L-tartaric acid salts in acetonitrile.12 It should be noted 
that the optical rotation of 5 in the free base form has a 
positive sign of rotation, whereas the dihydrochloride salt 
has a negative sign of rotation. The absolute configuration 
of the (-)-di-p-toluoyl-L-tartaric acid salt of 5 was deter­
mined by X-ray crystallography to be S.13 

The in vitro receptor binding profile (Table I) indicates 
that 4 is a highly selective ligand, having an IC50 value of 
34 nM at the 5-HTiA binding site and ICeo values of > 1000 
nM for a range of other 5-HT, dopamine D2, and 
noradrenergic binding sites. The (S)-enantiomer 5 has 
higher affinity than the (iJ)-enantibmer and like the 
racemate 4 shows excellent selectivity. The binding profile 
of buspirone is included in Table I for the purposes of 
comparison. 

Postsynaptic 5-HTIA receptor function was assessed 
using the 5-HTIA agonist-induced behavioral syndrome 
in the rat (extended flat body posture, forepaw treading, 
and hyperlocomotion).14 Compound 4 and its enantiomers 
at doses up to 10 mg/kg iv induce no behavioral effects 
related to 5-HTIA agonist activity. Pretreatment of rats 
with 4 30 min prior to the intravenous administration of 
the standard 5-HTIA receptor agonist 8-OH-DPAT results 
in an increase in the dose necessary for 8-OH-DPAT to 
induce the behavioral syndrome. The minimum effective 
dose (MED) of 4 to block the effect of 8-OH-DPAT is 3 
mg/kg sc. This antagonist property of 4 appears to be 
stereoselective. The (S)-enantiomer 5 has an MED value 

1993 American Chemical Society 



1510 Journal of Medicinal Chemistry, 1993, Vol. 36, No. 10 Communications to the Editor 

of 1 mg/kg sc whereas the (iJ)-enantiomer is inactive up 
to a dose of 10 mg/kg sc. 

The action of 4 at the presynaptic 5-HTu receptor was 
measured by in vivo microdialysis experiments in conscious 
freely-moving rats. Up to a dose of 10 mg/kg sc, 4 and its 
enantiomers have no significant effects on extracellular 
levels of 5-HT in the rat hippocampus within 2.5 h of drug 
administration. In contrast, BMY-7378 (5 mg/kg sc), 
buspirone (1 mg/kg sc), and 8-OH-DPAT (0.1 mg/kg sc) 
significantly decrease hippocampal levels of 5-HT to 37.6 
± 6.2,39.9 ± 15.0,and 19.2 ± 9.9% of preinjectioncontrol 
levels, respectively. The antagonist activities of 4 and the 
(S)-enantiomer 5 at the presynaptic 5 -HTIA receptor were 
shown by their abilities to block the 8-OH-DPAT-induced 
decrease of 5-HT release. Pretreatment with either 4 or 
5 at 10 mg/kg sc completely blocks the effects of 8-OH-
DPAT (0.1 mg/kg sc). In contrast, the (fl)-enantiomer 
has no significant effect on the 8-OH-DPAT response up 
to a dose of 10 mg/kg sc. These results support previous 
electrophysiological findings in anaesthetised rats which 
show 4 to have little or no intrinsic effect on raphe cell 
firing in vivo but to block the inhibition of firing caused 
by 8-OH-DPAT.1516 

In summary, 4 is a highly selective and potent antagonist 
at both presynaptic and postsynaptic 5-HTIA receptors 
with activity residing mainly in the (S)-enantiomer 5. 
Reports on anxiolytic activity in animal models, further 
pharmacological characterisation, and structure-activity 
relationships will be forthcoming. 
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