2-(Alkylamino)nicotinic Acid and Analogs. Potent Angiotensin II Antagonists ${ }^{1}$

Martin Winn,* Biswanath De, Thomas M. Zydowsky, Robert J. Altenbach, Fatima Z. Basha, Steven A. Boyd, Michael E. Brune, Steven A. Buckner, DeAnne Crowell, Irene Drizin, Arthur A. Hancock, Hwan-Soo Jae, Jeffrey A. Kester, Jang Y. Lee, Robert A. Mantei, Kennan C. Marsh, Eugene I. Novosad, Karen W. Oheim, Saul H. Rosenberg, Kazumi Shiosaki, Bryan K. Sorensen, Ken Spina, Gerard M. Sullivan, Andrew S. Tasker, Thomas W. von Geldern, Robert B. Warner, Terry J. Opgenorth, Daniel J. Kerkman, and John F. DeBernardis

Abbott Laboratories, Cardiovascular Research Division, Pharmaceutical Products Division, Abbott Park, Illinois 60064
Received February 25, 1993

Abstract

A series of pyridines and other six-membered ring heterocycles connected to a biphenylyltetrazole with a-CH ${ }_{2}-\mathrm{NR}^{\prime}-\operatorname{link}$ (1) were discovered to be potent angiotensin II antagonists. In the pyrimidine carboxylic acid series ($\mathrm{W}=\mathrm{CR}, \mathrm{X}=\mathrm{N}, \mathrm{Y}=\mathrm{CH}, \mathrm{Z}=\mathrm{COOH}$), compounds with an alkyl group (R^{\prime}) on the exocyclic nitrogen were much more potent than compounds with an alkyl group (R) on the heterocyclic ring. The corresponding pyridine, pyridazine, pyrazine, and 1,2,4-triazine carboxylic acids also showed potent in vitro angiotensin II antagonism. The pyridine (W, X, Y $=\mathrm{CH}, \mathrm{Z}=\mathrm{COOH}, \mathrm{R}^{\prime}=n-\mathrm{C}_{3} \mathrm{H}_{7}$) demonstrated potent in vitro activity ($\mathrm{p} A_{2}=10.10$, rabbit aorta, and $K_{i}=0.61 \mathrm{nM}$, receptor binding in rat liver) as well as exceptional oral antihypertensive activity and bioavailability. Any nonacidic replacement for the carboxylic acid was detrimental for activity.

The renin-angiotensin system (RAS) is known to play an important role in cardiovascular regulation. On the basis of the success of the angiotensin-converting enzyme inhibitors as antihypertensive drugs, there has been intense effort in the pharmaceutical industry to discover renin inhibitors and angiotensin II (A-II) antagonists as alternative means of inhibiting the RAS. The development of nonpeptide A-II antagonists was initiated by Takeda chemists, who reported on imidazoles such as 2a, which possessed weak activity. ${ }^{2}$ DuPont scientists subsequently discovered the importance of linking the imidazole to a biphenylyltetrazole moiety, leading to the discovery of the orally active DUP-753 (Losartan 2b), ${ }^{3}$ which is in clinical trials.

Figure 1.
Since then, there have been many other reports of A-II antagonists that contain an alkyl-substituted nitrogen heterocycle connected to a biphenylyltetrazole by a methylene or an ether link. Examples of these heterocycles include imidazo[4,5-b]pyridine (3), ${ }^{4}$ pyrazolo[$1,5-a$]pyrimidine (4), ${ }^{5}$ pyrazole (5), ${ }^{6,7}$ quinoline (6), ${ }^{8} 1,5$-naphthyridine (7), ${ }^{9}$ and triazolones (8). ${ }^{10}$

At the start of our work, only the imidazole-containing A-II antagonists 2a-d were known. We chose to examine

[^0]
Scheme I

related compounds based on six membered ring heterocycles. From the published structures, it appeared that a target compound should incorporate a carboxylic acid, an alkyl group, and a tetrazole-substituted biphenyl moiety, each attached to the central heterocycle. What remained to be determined, however, was the exact placement of these groups on a six membered ring, and the optimum choice for the heterocycle itself.

Heterocycles that incorporated a number of these features, such as pyrimidines 9^{11} (Scheme II) and pyridines 29 (Scheme VI), were readily synthesized. Furthermore, they contained a reactive chlorine through which the biphenylyltetrazole group could be easily attached via a heteroatom linkage. A nitrogen was chosen for this purpose since an amine was sufficiently reactive to add to the activated heterocycles and the nitrogen would also provide a region for additional structure exploration.

Chemistry

The chloropyrimidines 9^{11} were directly coupled (see Scheme II) with amino derivatives of the biphenylyltetrazole (12 and 13). These were prepared from the known (bromomethyl) biphenylyltetrazole ${ }^{12}$ (see SchemeI). The trityl-protected compounds (14) were deprotected under acidic conditions to give the esters, which were then hydrolyzed with base to the carboxylic acids 16. Alcohols 17 were obtained by reduction of 14 with LiAlH_{4} followed by detritylation with acid. When $\mathrm{R}=\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}, 9$ could not be prepared from the corresponding hydroxyl compound without cleaving the ether. Instead the product

Scheme II

Scheme III

Scheme IV

Scheme V

was made by way of the methanesulfonate intermediate (see Scheme II). Similarly, 1,2,4-triazines, pyrazines, and pyridazines were prepared from esters 18,21 , and 25 , respectively, using halogen or benzenesulfonate leaving groups (see Schemes III-V).
The chloronicotinates 29 ($\mathrm{R}=\mathrm{H}, \mathrm{Me}$, and Cl) did not react with the secondary amine 12 . Therefore these pyridines were constructed in two steps (Scheme VI). Reaction of primary amines with 29 yielded 2-(alkylamino)nicotinates 30 , which were alkylated with bromide 10 to give the protected compounds 31 . When $R=6-F, 5-F$, or 5 -I, the 2 -chloro group in 29 could be directly displaced with the secondary amine 12 . Ethyl 2,6-difluoronicotinate ${ }^{14}$ reacted with 12 in the desired 2-position, based on the diagnostic splitting observed between the $6-\mathrm{F}$ and $5-\mathrm{H}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. The 5 -fluoro compound was prepared from the known ${ }^{15}$ compound 34, by displacement with methyl mercaptan in the 6 -position (structure de-

Scheme VI

Scheme VII

termination by \mathbf{X}-ray) and subsequent desulfurization of 35 with Raney nickel to give 29 ($R=5-F$).

The other substituents $\left(\mathrm{Cl}, \mathrm{I}, \mathrm{NO}_{2}\right)$ at the 5 -position of the nicotinic acid were introduced by way of electrophilic substitution on 36 (see scheme VI). The 5-phenyl analog was conveniently made by a palladium-catalyzed coupling reaction of the 5 -iodo ester 31 with phenyl boronic acid. The 6-hydroxy compound was prepared from the 6 -fluoro compound as shown.

The 5-carbethoxy group in 31 was converted to $\mathrm{CH}_{2}-$ $\mathrm{OH}, \mathrm{CHO}, \mathrm{CH}(\mathrm{OH}) \mathrm{Me}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{COCH}_{3}$, and CONHSO ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ groups as outlined in Scheme VII. The starting material for the synthesis of the $3-\mathrm{CN}, \mathrm{CONH}_{2}$, and $\mathrm{CH}_{2} \mathrm{NHSO}_{2} \mathrm{CF}_{3}$ analogs was 2-chloronicotinitrile

Scheme VIII

Scheme IX

Scheme X

(Scheme IX). 3-Nitro-2-chloropyridine reacted with 12 to yield the nitro compound 59, which was converted into a wide variety of 3 nitrogen-substituted nicotinic acid analogs as shown in Scheme X. Commercially available 2-amino-3-(benzyloxy)pyridine (63) was transformed into several 3-oxygen-substituted analogs as shown in Scheme XI.

Scheme XI

Scheme XII

Scheme XIII

All of the above compounds possessed a common alkylamino linking group which was flanked on one side by a carboxyl or other polar group, and on the other side by a ring nitrogen. To study the effect of varying the position of the ring nitrogen and carboxylic acid relative to the linking group, other pyridines and pyrimidines were synthesized (Scheme VIII). The methods used were as follows: (1) direct secondary amine 12 displacement of a halo heterocycle (i.e. 40 and 53); (2) sequential displacement and alkylation (i.e. 43 and 49); and (3) double alkylation of a heterocyclic primary amine (46 and 56). The simple methyl and unsubstituted pyrimidine analogs were synthesized from the known starting materials 64, 66, and 68 (Scheme XII).

Table I. Pyrmidine, Pyrazine, Pyridazine, and Triazine Carboxylic Acids

			 23, $R=\mathrm{Cl}$ 24, $R=H$		
no.	R	R'	$\mathrm{p} A_{2}{ }^{\text {a }}$	$\mathrm{mp}^{\text {b }}\left({ }^{\circ} \mathrm{C}\right)$	formula ${ }^{\text {c }}$
16a	H	H	5.61 (0.08) 2	a	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.65 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
16b	CH_{3}	H	7.50 (0.11) 2	211-212	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$
16 c	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	8.30 (0.04) 2	200-202	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
16d	$\mathrm{C}_{3} \mathrm{H}_{7}$	H	8.27 (0.37) 2	223-225	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl}$
160	$\mathrm{C}_{4} \mathrm{H}_{9}$	H	7.91 (0.23) F	193-195	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.33 \mathrm{H}_{2} \mathrm{O}$
16 f	$\mathrm{C}_{6} \mathrm{H}_{11}$	H	7.23 (0.07) 2	166-168	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$
16 g	$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}$	H	6.81 (0.01) 2	235	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
16h	$\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	7.15 (0.02) 2	165-169	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$
161	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	7.96 (0.02) 2	a	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.70 \mathrm{H}_{2} \mathrm{O}$
16 j	CH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	9.60 (0.19) F	$\stackrel{1}{2}$	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2}-0.75 \mathrm{H}_{2} \mathrm{O}$
16 k	CH_{3}	$\mathrm{C}_{4} \mathrm{H}_{9}$	8.81 (0.16) Fg	155-158	$\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
161	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{11}$	8.73 (0.05) 2	a	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}^{d}$
16 m	CH_{3}	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	8.32 (0.14) F	a	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.5 \mathrm{HCl}^{d}$
16 n	CH_{3}	$\mathrm{CH}_{2} \mathrm{CHMe}_{2}$	7.50 (0.04) 2	a	$\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.5 \mathrm{HCl}^{d}$
160	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}_{2}$	8.85 (0.03) 2	a	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.5 \mathrm{HCl}$
16 p	CH_{3}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$	8.50 (0.01) 2	a	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$
16 q	$\stackrel{\mathrm{H}}{\mathrm{H}}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	9.68 (0.09(F	a	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.35 \mathrm{H}_{2} \mathrm{O}$
16 r	H	$\mathrm{C}_{4} \mathrm{H}_{9}$	9.57 (0.16) F	a	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl}{ }^{-}$
16s	$\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.52 (0.04) 2	a	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$
16 t	CF_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.79 (0.09) 2	a	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2}-0.1 \mathrm{H}_{2} \mathrm{O}$
164	$\mathrm{CH}_{3} \mathrm{~S}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	8.38 (0.11) 2	a	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
55	H	$\mathrm{C}_{4} \mathrm{H}_{9}$	7.95 (0.06) 2	a	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{7} 0.25 \mathrm{H}_{2} \mathrm{O}$
52		$\mathrm{C}_{4} \mathrm{H}_{8}$	8.48 (0.04) 2	a	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O} \cdot 0.1 i-\mathrm{PrOH}$
20	CH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.00 (0.07) F	a	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}^{\prime}$
28a	CH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.90 (0.03) 3	102-104	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$
28b	H	$\mathrm{C}_{4} \mathrm{H}_{9}$	9.70 (0.10) 6	a	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2}$
23a	Cl	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.31 (0.08) 2	a	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{7} \mathrm{O}_{2} \cdot \mathrm{O} .25 i-\mathrm{PrOH}$
23b	Cl	$\mathrm{C}_{4} \mathrm{H}_{9}$	9.04 (0.12) 2	a	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{7} \mathrm{O}_{2} \cdot 0.25 i-\mathrm{PrOH}$
24 a	H	$\mathrm{C}_{3} \mathrm{H}_{7}$	9.69 (0.20) 6	a	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.25 i-\mathrm{PrOH}$
24b	H	$\mathrm{C}_{4} \mathrm{H}_{9}$	10.25 (0.15) 4	a	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$

${ }^{a} \mathrm{p} A_{2}$ in rabbit aorta (standard error), no. of determinations for estimated $\mathrm{p} A_{2}$, or F for full $\mathrm{p} A_{2}$. Slope for full $\mathrm{p} A_{2}$ is between 0.95 and 1.15 unless otherwise noted. See Experimental Section. ${ }^{b}$ "a" denotes amorphous or no attempt was made to crystallize the compound. ${ }^{c}$ Analysis for C, H, and N are within $\pm 0.4 \%$ of theory. ${ }^{d}$ Nitrogen low by 0.4 to 1.0%. ${ }^{e}$ C: calcd, 59.29 ; found, $60.07 .{ }^{f} \mathrm{H}$: calcd, 5.15 ; found, 5.68 . ${ }^{8}$ Slope $=1.21$.

The benzoic and salicylic acid analogs of the phenyltetrazole were synthesized as outlined in Scheme XIII. Starting material 70^{12} was used in place of 10 to prepare the carboxylic acid 71. The salicylic acid was synthesized by a palladium coupling of triflate 73 with tolyl boronic acid to give biphenyl 74 which was ultimately converted to the desired compound 76.

Biology

Antagonism of Angiotensin II in the Rabbit Aorta. The compounds were evaluated for their potency in antagonizing the ability of angiotensin II to contract the rabbit aorta. Potencies were calculated as $\mathrm{p} A_{2}$ values, the definition of which is as follows. If at drug concentration of 10^{-x} molar in the bath, one must double the concentration of angiotensin II to get the same effect on the rabbit aorta that one gets without the drug, then the $\mathrm{p} A_{2}$ is x. The higher the $\mathrm{p} A_{2}$ value, the more potent the drug. The standard error in the $\mathrm{p} A_{2}$ determination varies, but we would consider a pA_{2} difference of 0.25 between two compounds to be meaningful. See the Experimental Section for the difference between a full and estimated $\mathrm{p} A_{2}$, and for the definition of the slope.

Our first series of compounds were the $\mathrm{CH}_{2} \mathrm{NH}$ linked 2-alkyl pyrimidine carboxylic acids (Table I, compounds $16 \mathrm{a}-\mathrm{g}$). The 2 -ethyl and 2-propyl compounds had pA_{2} values of 8.27 and 8.30 , respectively, in the rabbit aorta, and thus were comparable in vitro to DUP-753. Shorter
or longer alkyl groups weakened activity. The corresponding esters and alcohols (Table II) were roughly 3-fold weaker.

Conversion of the secondary amine in the linking group to a tertiary amine improved in vitro potency. Highly potent A-II antagonists were achieved with the n-propyl $16 q$ and n-butyl $16 r$ derivatives. The optimal substituent in the 2 -position was hydrogen. Pyrimidine isomers (52 and 55) were much less potent.
The methyltriazine 20 was less active than the corresponding pyrimidine 16 j , while the pyrazine 28 b and pyridazine 24b were equal or slightly more active than the corresponding pyrimidine 16 k . A chlorine on the pyridazine ring (23) reduced potency.

Removing one of the nitrogens in the pyrimidine ring resulted in the pyridine series which proved to be 5 -fold more potent (compare 32c, Table III to 16q, Table I). The optimal substituent on the exocyclic nitrogen was either n-propyl or n-butyl. Any substitution on the pyridine ring (Table IV) reduced the activity; the most detrimental being $6-\mathrm{MeO}$ or $6-\mathrm{OH}$; the least detrimental being $4-\mathrm{CH}_{3}$, 5 - or $6-\mathrm{F}$, and $5-\mathrm{Cl}$. The 5 -position could tolerate a degree of bulk, e.g. phenyl, but polar groups, e.g. AcNH or NH_{2} were not accommodated. Compound $32 f$ with a pA_{2} of 10.33 and 32c (A-81988) with a pA_{2} of 10.10 are among the best angiotensin II antagonists described to date (see Table VII). A-81988, 16 q , and 16 r showed competitive antagonism (slopes $=1.06-1.09$) whereas L158809 (3, slope $=$ 1.37), DUP-532 (2d, slope $=1.81$), EXP-3174 (2c, slope $=$

Table II. SAR of 2-Alkylpyrimidines-Noncarboxylic Acids

 15.			 67	$\begin{aligned} & \text { "N-Bu } \\ & \vdots-\mathrm{Bu} \\ & \mathrm{CH}_{2} \mathrm{BPT} \end{aligned}$	
no.	R	X	$\mathrm{p} \mathrm{A}_{2}{ }^{\text {a }}$	$\mathrm{mp}^{\text {b }}$ (${ }^{\circ} \mathrm{C}$)	formula ${ }^{\text {c }}$
15a	H	COOEt	6.24 (0.08) 2	a	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{2}$
15b	CH_{3}	COOEt	7.13 (0.07) 2	121-123	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2}$
15c	$\mathrm{C}_{2} \mathrm{H}_{5}$	COOEt	7.78 (0.05) 4	114-116	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{7} \mathrm{O}_{2}$
15d	$\mathrm{C}_{3} \mathrm{H}_{7}$	COOEt	7.91 (0.02) 2	132-133	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{2}$
15 e	$\mathrm{C}_{4} \mathrm{H}_{9}$	COOEt	7.37 (0.02) 2	145-146	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{2}$
$15 f$	$\mathrm{C}_{5} \mathrm{H}_{11}$	COOEt	6.37 (0.32) 2	131-133	$\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}_{2}$
15 g	$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}$	COOEt	7.10 (0.03) 2	122-124	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{3}^{d}$
17b	CH_{3}	$\mathrm{CH}_{2} \mathrm{OH}$	7.12 (0.06) 2	199-201	$\mathrm{C}_{20} \mathrm{H}_{192} \mathrm{~N}_{7} \mathrm{O}$
17 c	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CH}_{2} \mathrm{OH}$	7.96 (0.02) 2	217-219	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O} .$
17d	$\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{OH}$	7.60 (0.44) F	214-216	$\underset{\mathrm{HCl}_{22} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O} .}{ }$
17e	$\mathrm{C}_{4} \mathrm{H}_{8}$	$\mathrm{CH}_{2} \mathrm{OH}$	7.53 (0.21) F	152-159	$\underset{\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O} .}{ }$
17g	$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}$	$\mathrm{CH}_{2} \mathrm{OH}$	6.41 (0.11) 2	218-220	$\underset{\mathrm{HCl}}{\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2}}$
65			7.90 (0.06) 3	a	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{7}{ }^{+} .5 \mathrm{H}_{2} \mathrm{O}^{d} \end{aligned}$
$\begin{gathered} 67 \\ 69 \end{gathered}$			7.65 (0.10) F $8.08(0.02) 2$	148-150	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{7}$ $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{7}$
69			8.08 (0.02) 2	a	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{7}$

${ }^{a-d}$ See Table I.
Table III. 2-(Alkylamino)nicotinic Acids-SAR of the N Substituent

no.	R^{\prime}	$\mathrm{p} A_{2}{ }^{\text {a }}$	$m p^{b}\left({ }^{\circ} \mathrm{C}\right)$	formula ${ }^{\text {c }}$
32a	H	<6.0	a	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{\text {d }}$
32b	$\mathrm{C}_{2} \mathrm{H}_{5}$	8.77 (0.07) 2	188-191	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}$
32c	$\mathrm{C}_{3} \mathrm{H}_{7}$	10.10 (0.08) Ff	202-203	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2}$
32d	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	9.00 (0.07) 3	a	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2} \\ 0.33 \mathrm{H}_{2} \mathrm{O} \end{gathered}$
32e	$\mathrm{CH}_{2}-\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}$	8.48 (0.01) 2	a	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2}$
32 f	$\mathrm{C}_{4} \mathrm{H}_{9}$	10.33 (0.03) 2	203-205	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{2}$
32g	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHMe}_{2}$	8.96 (0.03) 2	212-213	$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{\text {e }}$
32h	$\mathrm{C}_{5} \mathrm{H}_{11}$	9.07 (0.06) 2	92-93	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{\text {e }}$

${ }^{a-d}$ See Table I. ${ }^{e}$ High-resolution MS within 0.004 of theory. f Combined calculation from 41 tissues.

1,39), and the ICI compound 7 (slope $=1.28$) are noncompetitive antagonists. ${ }^{35}$ The exocyclic alkylaminolinked heterocycles represented by A-81988, 16q, 20, 28b, and 24b represent a distinct class of angiotensin II antagonists.

Changing the $3-\mathrm{COOH}$ in A-81988, or its N -butyl analog 32f, to other functional groups significantly reduced potency (Table V). The methyl ester 32 z was less active by a factor of 1000 , and the alcohol 32bb by a factor of 400 . In the corresponding pyrimidines also containing an exocyclic n-propyl or n-butyl group, we also noted a similar loss in potency when the acid was converted to the ester and alcohol (data not shown). This contrasts with the results seen in the pyrimidine series containing a secondary exocyclic nitrogen (see Table II), where the esters 15c-d and alcohols 17 c -d were only 3 -fold weaker than the acids $16 \mathrm{c}-\mathrm{d}$. Similarly the alcohol DUP-753 (2b) is only 20fold weaker than the corresponding acid (EXP-3174, 2c) (Table VIII). Other acidic groups [$\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$, CONHSO ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{OPO}(\mathrm{OH})_{2}$, and $\mathrm{NHSO}_{2} \mathrm{CF}_{3}$, compounds 32gg, qq, nn, and $\mathbf{~ r r}$ of Table VI] imparted good activity, albeit not as potent as A-81988. Of the groups that are neutral at $\mathrm{pH}=7.4$, only the primary amide 32 g and the aldehyde 32ce had $\mathrm{p} A_{2}$ values greater than 8.0. Thus, a

Table IV. 2-(Alkylamino)nicotinic Acids-SAR of Substituents on the Pyridine Ring

no.	R	R^{\prime}	$\mathrm{p} \mathrm{A}_{2}{ }^{\text {a }}$	formula
32c	H	$\mathrm{C}_{3} \mathrm{H}_{7}$	10.10 (0.08) Ff	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{\text {d }}$
32j	$4-\mathrm{CH}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	9.64 (0.02) 2	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{\text {d }}$
32k	$5-\mathrm{CH}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.80 (0.09) 2	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{\text {d }}$
321	5-Cl	$\mathrm{C}_{3} \mathrm{H}_{7}$	9.07 (0.04) 2	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{6} \mathrm{O}_{2}$
32m	5-F	$\mathrm{C}_{3} \mathrm{H}_{7}$	9.04 (0.02) 2	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{FN}_{6} \mathrm{O}_{2} \\ 0.6 \mathrm{CF}_{3} \mathrm{COOH} \end{gathered}$
32 n	5-I	$\mathrm{C}_{4} \mathrm{H}_{9}$	8.38 (0.15) F	$\begin{gathered} \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{IN}_{6} \mathrm{O}_{2} \\ 0.6 \mathrm{CF}_{3} \mathrm{COOH} \end{gathered}$
32p	$5-\mathrm{C}_{8} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.91 (0.20) 2	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2}-1.5 \mathrm{H}_{2} \mathrm{O}^{e}$
32q	$5-\mathrm{NO}_{2}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.33 (0.03) 2	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$
32r	5-NH2	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.60 (0.03) 2	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2}{ }^{\text {d }}$
32s	$5-\mathrm{NHCOCH}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.90 (0.02) 2	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot 1.33 \mathrm{H}_{2} \mathrm{O}$
32t	$6-\mathrm{CH}_{3}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	8.15 (0.07) 2	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2}$
32u	6-F	$\mathrm{C}_{3} \mathrm{H}_{7}$	9.63 (0.30) 2	$\begin{aligned} & \mathrm{C}_{23} \mathrm{H}_{2} \mathrm{FN}_{6} \mathrm{O}_{2} \\ & 0.75 \mathrm{CF}_{3} \mathrm{COOOH} \end{aligned}$
32w	6-CH3O	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.78 (0.02) 3	$\begin{gathered} \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{3} \\ 0.9 \mathrm{CF}_{3} \mathrm{COOH} \end{gathered}$
32x	6-OH	$\mathrm{C}_{3} \mathrm{H}_{7}$	<6.0	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{3} . \\ 1.5 \mathrm{H}_{2} \mathrm{O} \end{gathered}$

a,c,d See Table I. ${ }^{e} \mathrm{H}$: calod, 5.65; found, 5.07. f See Table III.
second acidic group on the heterocycle is needed for high potency in our series, but one not required in compound 3, 6, and 7, (see Figure 1) all of which have similar potency to A-81988.

As observed with the pyrimidines, moving the ring nitrogen or the carboxylic acid relative to the exocyclic amine decreased in vitro potency (Table VI). Eliminating the ring nitrogen yielded the anthranilic acid 58 , which was a very weak A-II antagonist.
Replacing the tetrazole in A-81988 with a carboxylic acid yielded compound 71 with a $p A_{2}=7.49$. Since the tetrazole is more acidic than the carboxylic acid, the salicylic acid analog 76 was prepared on the basis of the fact that salicylic acid is 15 times more acidic than benzoic acid. ${ }^{32}$ However the salicylate 76 did not significantly improve the potency ($\mathrm{p} A_{2}=7.79$), suggesting that the increased potency of the tetrazole relative to the carboxylic acid was not due solely to its greater acidity. Our results differ from the DUP-753 series where the carboxylic acid is only 20 -fold less potent than the tetrazole, whereas in our compounds, the difference is a factor of 400 .

Radioligand Binding. Our best compounds, A-81988 (32c) and the pyrimidine analog 16 r , exhibited radioligand binding to angiotensin II (type I) receptors in rat liver in the nanomolar range, similar to that of the Merck compound, L-158809. A-81988 and three other compounds (16e, 16d, and 16k) were tested for binding to the angiotensin II (type 2) receptor in the bovine cerebellum and showed no binding at a $30 \mu \mathrm{M}$ concentration. In general the $\mathrm{p} A_{2}$ values correlate well with the binding data (see Table VIII).
In Vivo Antihypertensive Activity. Oral antihypertensive activity was assessed in various rat models (Table VIII). The pyrimidine ester $\mathbf{1 5 c}$ demonstrated oral activity at $10 \mathrm{mg} / \mathrm{kg}$ whereas the corresponding pyrimidine acid 16 c , while more potent in vitro, showed no activity in the renal artery ligated hypertensive rate (RALHR) model. Compound 32c (A-81988) demonstrated oral activity for up to 24 hr in the RALHR model at $0.03 \mathrm{mg} /$ $\mathbf{k g}$, in the furosemide treated spontaneously hypertensive rat (FTSHR) model at $0.1 \mathrm{mg} / \mathrm{kg}$, and in nontreated SHR

Table V. Pyridines-SAR of Substitution in the 3-Position

no.	X	R'	pA2 ${ }^{\text {a }}$	$\mathrm{mp}^{\text {b }}\left({ }^{\circ} \mathrm{C}\right)$	formula ${ }^{\text {c }}$
32c	COOH	$\mathrm{C}_{8} \mathrm{H}_{7}$	10.10 (0.08) F^{\prime}	202-203	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{2}$
329	COOH	$\mathrm{C}_{4} \mathrm{H}_{9}$	10.33 (0.03) 2	203-205	$\mathrm{C}_{2} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{2}$
32y	CONH_{2}	$\mathrm{C}_{4} \mathrm{H}_{9}$	8.58 (0.08) 2	194-197	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}^{\mathbf{d}}$
32z	COOCH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.08 (0.15) 2	138-193	$\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}$
32aa	CN	$\mathrm{C}_{4} \mathrm{H}_{9}$	7.68 (0.18) 2	173-174	$\mathrm{C}_{2} \mathrm{H}_{23} \mathrm{~N}_{7} 0.5 \mathrm{H}_{2} \mathrm{O}$
32bb	$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.48 (0.01) 2	188-189	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O} \cdot 0.66 \mathrm{H}_{2} \mathrm{O}^{d}$
32cc	CHO	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.56 (0.06) 2	a	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}^{\text {d }}$
32dd	$\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.26 (0.05) 2	83-85	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
320e	COCH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.00 (0.05) 2	a	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}^{\circ}$
32 ff	$\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOEt}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.88 (0.06) 2	a	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{3}{ }^{\text {d }}$
32 gg	$\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.84 (0.01) 2	a	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
32hh	$\mathrm{CONHSO}_{2} \mathrm{C}_{9} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.65 (0.02) 2	a	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}^{d}$
32jj	CH_{3}	$\mathrm{C}_{4} \mathrm{H}_{9}$	6.86 (0.02) 2	a	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{8}{ }^{\text {d }}$
32kk	OH	$\mathrm{C}_{4} \mathrm{H}_{9}$	7.53 (0.03) 2	a	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}^{\text {d }}$
32mm	$\mathrm{OCONHCH}_{3}$	$\mathrm{C}_{4} \mathrm{H}_{8}$	7.34 (0.01) 2	a	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.2 \mathrm{CHCl}_{3}{ }^{\text {d }}$
32nn	$\mathrm{OPO}(\mathrm{OH})_{2}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	8.44 (0.10) 2	a	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{P}^{e}$
32pp	OCOCH_{3}	$\mathrm{C}_{4} \mathrm{H}_{9}$	7.65 (0.12) 2	a	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{2}$
32qq	$\mathrm{CH}_{2} \mathrm{NHSO}_{2} \mathrm{CF}_{3}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	7.86 (0.07) 2	95-98	$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}^{\text {d }}$
32 rr	$\mathrm{NHSO}_{2} \mathrm{CFF}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	9.27 (0.21) 2	214-216	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}$
32 ss	$\mathrm{NHSO}_{2} \mathrm{CH}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.98 (0.04) 2	137-140	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}^{\text {d }}$
32tt	NHCOCH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	6.40 (0.06) 2	170-171	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}^{\text {d }}$
32uu	NHCOCF_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	6.89 (0.04) 2	79-80	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$
32vv	NHCOCOOEt	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.68 (0.11) 2	a	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{3}{ }^{e}$
320w	NHCOCOOH	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.65 (0.12) 2	a	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{3}{ }^{\text {e }}$
32xx	$\mathrm{NHCONHCH}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.76 (0.04) 2	194-195	$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
32yy	NHCSNH_{2}	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.34 (0.30) 2	a	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}^{\text {d }}$
32zz	NO_{2}	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.92 (0.06) 4	176-178	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2}$

${ }^{a-d}$ See Table I. ${ }^{\text {e }}$ High-resolution MS within 0.004 of theory. $/$ See Table III.

Table VI. Pyridine and Benzene Carboxylic Acids-SAR of Positional Isomers

				 42, 48, 58	
no.	A	B	\mathbf{R}^{\prime}	$\mathrm{p} A_{2}{ }^{\text {a }}$	formula ${ }^{\text {c }}$
45			$\mathrm{C}_{4} \mathrm{H}_{9}$	8.12 (0.06) 2	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{\text {d }}$
42	N	CH	$\mathrm{C}_{3} \mathrm{H}_{7}$	7.23 (0.01) 2	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$
48	CH	N	$\mathrm{C}_{3} \mathrm{H}_{7}$	8.45 (0.03) 2	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$
58	CH	CH	$\mathrm{C}_{4} \mathrm{H}_{8}$	6.91 (0.06) 2	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$

a,c,d See Table I
Table VII. Comparison of A-81988 to Literature Standards

compd	$\mathrm{pA}_{2}{ }^{\text {a }}$	slope ${ }^{\text {b }}$
A-818988 (32c)	10.10 (0.08) Fe	1.07 (0.03) ${ }^{\text {e }}$
DUP 753 (2b)	8.43 (0.20) F	1.01 (0.07)
L 158809 (3)	9.63 (0.07) F	1.37 (0.06)
	10.6	if slope is forced to unityc
DUP 532 (2d)	8.80 (0.14) F	1.81 (0.20)
EXP 3174 (2c)	9.71 (0.15) F	1.39 (0.19)
	11.0	if slope is forced to unity ${ }^{\text {c }}$
IC compd (7)	9.12 (0.27) F	1.28 (0.21)
	10.0	if slope is forced to unityc

${ }^{a}$ See Table I. ${ }^{b}$ Standard error in parnetheses. ${ }^{\text {c }}$ This is calculated the same way as an estimated pA2. See Experimental Section. ${ }^{\text {e See }}$ table III, footnote f.
at $3.0 \mathrm{mg} / \mathrm{kg}$. No reduction in blood pressure was observed in normotensive rats at $3 \mathrm{mg} / \mathrm{kg}$, po. The alcohol 32 bb , the aldehyde 32cc, and the ester 32z, possible prodrugs of A-81988, were much less active. The n-butyl analog (32f) was slightly less active, while the pyrimidine 16 r was 30 -fold less active than A-81988 when given orally. Substitution on the pyridine ring with $4-\mathrm{Me}, 5-\mathrm{F}$, or $6-\mathrm{F}$ yielded compounds that were significantly less potent in reducing blood pressure in FTSHR when administered orally. The trifluoromethane sulfonamide 32rr, whose in vitro potency approached that of A-81988, was inactive in
the RALHR at a 10 -fold greater dose than that required to observe significant effects with A-81988. Compared to literature compounds, A-81988 was much more potent in vivo than DUP-753 (2b), and somewhat more potent than L-158809 (3). Pyridazine 24a and pyrazines 28a and 28b, while potent in vitro, were significantly weaker than A-81988 when administered orally.

Pharmacokinetics. The exceptional oral antihypertensive activity of A-81988 (32c) as compared to the pyrimidine analog 16 r led us to initiate pharmacokinetic studies of the two compounds. A pharmokinetic profile of L-158809 (3) was also determined so a comparison to a literature compound could be made.

The pharmacokinetic parameters for the A-II antagonists in normal male Sprague-Dawley rats are provided in Table IX. The pyrimidine A-II antagonist 16 r was characterized by a low volume of distribution ($V_{1}=0.08$ $\mathrm{L} / \mathrm{kg}, \mathrm{V}_{\beta}=0.42 \mathrm{~L} / \mathrm{kg}$) and a low plasma clearance [CLp $=0.85 \pm 0.12 \mathrm{~mL} / \mathrm{min}($ mean \pm SEM $)]$ with a terminal elimination half-life of 1.5 h . Peak plasma concentrations ($C_{\text {max }}$) ranged from 0.51 to $1.5 \mathrm{mcg} / \mathrm{mL}$ following $3.87-$ $23.4 \mathrm{mg} / \mathrm{kg}$ single oral doses and calculated bioavailability values were $5-10 \%$. The pyridine analogue, $\mathrm{A}-81988$, provided a substantial improvement in the plasma elimination half-life (6-9 h following IV bolus administration) coupled with a $2-3$-fold decrease in the apparent volume of distribution ($V_{1}=0.04 \mathrm{~L} / \mathrm{kg}, V_{\beta}=0.12-0.17 \mathrm{~L} / \mathrm{kg}$). The plasma clearance values averaged $0.07 \pm 0.01 \mathrm{~mL} / \mathrm{min}$ over the iv dose range of $0.3-3 \mathrm{mg} / \mathrm{kg}$. A-81988 was rapidly absorbed after oral dosing with peak plasma concentrations recorded in the first 1-2 h. Plasma concentrations increased with increasing dose, although the increase was not proportional to the dose. Bioavailability values in

Table VIII. Radioligand Binding and in Vitro, and in Vivo Data for Selected Compounds

no.	R	R'	X	$\mathrm{pA}{ }_{2}{ }^{\text {a }}$	$K_{\mathrm{i}}(\mathrm{nM})^{\text {b }}$	RALHR ${ }^{\text {c }}$	FT SHR ${ }^{\text {d }}$
15c	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	COOEt	7.78	20.6 (5.54-77.0) 3	$\begin{aligned} & 30,32(\pm 5) \%, 2 \\ & 10,14(\pm 8) \%, 2 \end{aligned}$	
16 c	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	COOH	8.30	68.1 (31.9-145) 3	3 (iv) inact	
16 e	$\mathrm{C}_{4} \mathrm{H}_{9}$	H	COOH	7.91		3 (iv) inact	
16j	CH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	COOH	9.60	2.78 (1.66-4.64) 3	$\begin{aligned} & 30,18(\pm 9) \%, 2 \\ & 10,15(\pm 2) \%, 2 \end{aligned}$	
16k	CH_{3}	$\mathrm{C}_{4} \mathrm{H}_{8}$	COOH	8.81	15.3 (7.01-33.6) 3	$30,11(\pm 10) \%, 2$	
16r	H	$\mathrm{C}_{4} \mathrm{H}_{9}$	COOH	9.57	1.77 (0.59-5.36) 3	$10,41(\pm 6) \%, 6$ $3,18(\pm 8) \%, 4$ 1, $10(\pm 4) \%, 4$	
32c	H	$\mathrm{C}_{3} \mathrm{H}_{7}$	COOH	10.10	0.61 (0.49-0.84) 3	$\begin{aligned} & 1.0,40(\pm 4) \%, 4 \\ & 0.3,36(\pm 4) \%, 7 \\ & 0.01,22(\pm 6) \%, 6 \\ & 0.03,10(\pm 3) \%, 7 \end{aligned}$	$\begin{aligned} & 1.0,32(\pm 1) \%, 46(\pm 2) \%, 2 \\ & 0.1,23(\pm 4) \%, 36(\pm 5) \%, 6 \end{aligned}$
32 f	H	$\mathrm{C}_{4} \mathrm{H}_{9}$	COOH	10.33		$\begin{aligned} & 0.3,45(\pm 7) \%, 2 \\ & 0.1,16(\pm 12) \%, 2 \end{aligned}$	$\begin{aligned} & 0.3,14(\pm 3) \%, 40(\pm 4) \%, 4 \\ & 0.1,5(\pm 3) \%, 22(\pm 1) \%, 4 \end{aligned}$
32d	H	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	COOH	9.00			1.0, 13($\pm 3) \%, 31(\pm 6) \%, 4$
32j	$4 \mathrm{CH}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	COOH	9.64			$1.0,10(\pm 3) \%, 15(\pm 3) \%, 3$
32m	5 -F	$\mathrm{C}_{3} \mathrm{H}_{7}$	COOH	9.04			1.0, 6($\pm 4) \%, 22(\pm 4) \%, 2$
32u	6-F	$\mathrm{C}_{3} \mathrm{H}_{7}$	COOH	9.63			1.0, 15($\pm 1) \%, 36(\pm 7) \%, 2$
32z	H	$\mathrm{C}_{3} \mathrm{H}_{7}$	COOMe	7.08			1.0, inact
32bb	H	$\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{OH}$	7.48		0.3 , inact	
32cc	H	$\mathrm{C}_{3} \mathrm{H}_{7}$	CHO	8.56		0.3, 15($\pm 2) \%, 2$	
32 rr	H	$\mathrm{C}_{8} \mathrm{H}_{7}$	$\mathrm{NHSO}_{2} \mathrm{CF}_{3}$	9.27		0.3, 6($\pm 0) \%, 2$	
24 a		$\mathrm{C}_{3} \mathrm{H}_{7}$	COOH	9.69			$1.0,3(\pm 0) \%, 18(\pm 5) \%, 2$
28a	CH_{8}	$\mathrm{C}_{3} \mathrm{H}_{7}$	COOH	8.90			$1.0,2(\pm 3) \%, 18(\pm 6) \%, 2$
28b	H	$\mathrm{C}_{4} \mathrm{H}_{8}$	COOH	9.70			$1.0,7(\pm 1) \%, 21(\pm 6) \%, 2$
DU	53 (2)			8.43	14.6 (9.53-22.4) 8	$10,27(\pm 2) \%, 7$ 3 , inact	10,21($\pm 2) \%, 34(\pm 5) \%, 4$
L-1	09 (3)			$\begin{aligned} & 9.63 \\ & \text { nc } \end{aligned}$	0.45 (0.14-1.45) 3	$\begin{aligned} & 3.0,32(\pm 9) \%, 4 \\ & 0.3,25(\pm 3) \%, 4 \\ & 0.1,15(\pm 2) \%, 4 \\ & 0.03,8(\pm 1) \%, 4 \end{aligned}$	$1.0,32(\pm 5) \%, 30(\pm 8) \%, 2$
EXP	74 (2c)			$\begin{aligned} & 9.71 \\ & \text { nc } \end{aligned}$		10,40($\pm 8) \%, 2$	

${ }^{a}$ For standard errors and slope, see other tables. ${ }^{b} K_{i}$ (95% confidence limits), n. ${ }^{c}$ Renal artery hypertensive rat model (dose in mg/kg), $\%$ decrease in bp at 4 h , (\pm SEM), number of rats. ${ }^{d}$ Furosemide-treated spontaneous hypertensive rat model (dose in $\mathrm{mg} / \mathrm{kg}$), $\%$ decrease in bp at $4 \mathrm{~h},(\pm$ SEM $), \%$ decrease in bp at 24 hr , (土SEM), number of rats.

Table IX. Pharmacokinetic Evaluation of Selected Angiotensin II Antagonists in Male Sprague-Dawley-Derived Rat

compd	intravenous dose						oral dose					
	$\begin{gathered} \text { dose } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$t_{1 / 2} \beta^{a}$ (h)	$\begin{gathered} V_{1}^{b} \\ (\mathrm{~L} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} V_{\beta}^{c} \\ (\mathrm{~L} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathrm{CL}_{\mathrm{p}}^{d} \\ (\mathrm{~mL} / \mathrm{min}) \end{gathered}$	n	$t_{1 / 2} \beta^{a}$ (h)	$\begin{gathered} C_{\max }^{e} \\ (\mu \mathrm{~g} / \mathrm{mL}) \end{gathered}$	$T_{\text {max }}{ }^{\prime}$ (h)	$\begin{gathered} \mathrm{AUC}_{0 . \boldsymbol{m}^{\mathrm{g}}} \\ (\mu \mathrm{~g} / \mathrm{hr} / \mathrm{mL}) \end{gathered}$	$F^{\text {h }}$ (\%)	n
$\begin{gathered} 3 \\ 16 \mathrm{r} \end{gathered}$	3.87	4.5	0.41	1.78	1.47 (0.32)	4	3.9	1.59 (0.23)	2.0	11.14 (2.23)	66.7 (13.4)	4
	3.87	1.5	0.08	0.42	0.85 (0.12)	3		0.51 (0.12)	1.3	2.38 (0.61)	10.3 (2.6)	7
	10.0							0.84 (0.30)	0.9	2.83 (0.75)	4.8 (1.2) ${ }^{\text {i }}$	4
	23.4							1.47 (0.28)	1.1	6.65 (0.81)	4.8 (0.6) ${ }^{i}$	4
32c	0.1						≤ 12	0.49 (0.13)	1.3	8.21 (1.10)	97.9 (13.1) ${ }^{\text {i }}$	4
	0.3	9.5	0.04	0.17	0.07 (0.01)	3	>12	1.35 (0.10)	1.4	24.44 (2.62)	97.2 (10.4)	8
	1.0	7.1	0.04	0.13	0.07 (0.01)	6	6.9	2.77 (0.54)	0.9	28.87 (7.69)	34.9 (9.3)	6
	3.0	6.6	0.04	0.12	0.07 (0.01)	3	5.7	9.60 (0.98)	0.9	90.15 (32.25)	36.3 (13.0)	3

${ }^{a} t_{1 / 2} \beta$, terminal elimination half-life. ${ }^{b} V_{1}$, volume of distribution of the central compartment ($=$ dose \div the plasma concentration at time zero). ${ }^{c} V_{\beta}$, volume of distribution of the terminal phase ($=\mathrm{CL}_{\mathrm{p}}+$ plasma elimination rate constant). ${ }^{d} \mathrm{CL}_{\mathrm{p}}$, total plasma clearance ($=$ dose \div area under the curve, mean (SEM). ${ }^{e} C_{\text {max }}$, observed peak plasma concentration, mean (SEM). $f T_{\text {max, }}$ time of peak plasma concentration. * AUC, area under the curve, mean (SEM). ${ }^{h} \mathrm{~F}$, apparent bioavailability of the oral dose. ${ }^{i}$ Bioavailability calculated from the $3.87 \mathrm{mg} / \mathrm{kg}$ intravenous dose. ${ }^{j}$ Bioavailability calculated from the $0.3 \mathrm{mg} / \mathrm{kg}$ intravenous dose.
excess of 90% were observed in the 0.1 and $0.3 \mathrm{mg} / \mathrm{kg}$ dose groups, decreasing to $\sim 35 \%$ at doses $\geq 1 \mathrm{mg} / \mathrm{kg}$.

Compound 3 was characterized by a plasma elimination half-life (4.5 h) intermediate between compounds 16 r and 32c. The volume of distribution values for compound 3 were 5-10 times greater than for compounds $16 r$ and 32 c . Due in part to the higher volume of distribution and plasma clearance values, the peak plasma concentrations for compound 3 were more than 7 times lower than those recorded for a $3 \mathrm{mg} / \mathrm{kg}$ oral dose of A-81988 (32c) in rat. A-81988 has a greater than 20 -fold higher area under the curve than compound 3 after iv dosing in rat.

Conclusion

We have discovered a novel series of potent, orally acting angiotensin II antagonists with high bioavailability typified by A-81988 (32c). Its unique structural feature is the presence of an alkylamino group linking the heterocyclic ring to the biphenylyltetrazole moiety. Other six-membered ring heterocycles were also active if the ring nitrogen and the carboxylic acid are both situated ortho to the alkylamino group. All substitutions on the pyrimidine ring led to less active compounds. The carboxyl could be
replaced by other strongly acidic groups with slight loss in in vitro activity, but replacement by neutral groups led to a loss of activity.

Experimental Section

General. Flash chromatography was done using silicagel (230400 mesh) from E.M. Science. Proton NMR spectra were recorded on a General Electric QE300 instrument with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Structure determination by X-ray crystallography was done on a Rigaku ASC-5 instrument. Elemental analyses were performed at Abbott Laboratories. Melting points were measured on a Thomas Hoover apparatus and are uncorrected.
2-(Triphenylmethyl)-5-[(4'-(azidomethyl)biphenyl-2-yl)]-2H-tetrazole (11). 2-(Triphenylmethyl)-5-[(4'-(bromo-methyl)biphenyl-2-yl)]-2H-tetrazole (10$)^{12}(3.909 \mathrm{~g}, 7.02 \mathrm{mmol})$, was dissolved in 11 mL of DMF. Sodium azide $(1.16 \mathrm{~g}, 17.8$ mmol) was added and the mixture stirred 16 h at room temperature. Water was added to give a solid which was filtered, dissolved in chloroform, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated, and the residue was crystallized from ether and hexane to give 3.25 $\mathrm{g}\left(89 \%\right.$ yield) of the title compound, $\mathrm{mp} 142-145{ }^{\circ} \mathrm{C}$.

2-(Triphenylmethyl)-5-[(4'-(aminomethyl)biphenyl-2-yl)]$2 H$-tetrazole (13). Compound 11 ($1.0 \mathrm{~g}, 1.93 \mathrm{mmol}$) in 14 mL of THF at $0^{\circ} \mathrm{C}$ was treated with $\mathrm{LiAlH}_{4}(0.173 \mathrm{~g})$. After 30 min the reaction was worked up with 0.5 mL of water and 0.5 mL of $15 \% \mathrm{NaOH}$ in the usual manner to give the title compound which was used as is.

2-(Triphenylmethyl)-5-[(4'-[(butylamino)methyl]bi-phenyl-2-yl)]-2 H -tetrazole ($12, \mathbf{R}^{\prime}=\mathbf{C}_{4} \mathrm{H}_{9}$). To 2-(triphenyl-methyl)-5-[(4'-(bromomethyl) biphenyl-2-yl)]-2H-tetrazole (6.00 $\mathrm{g}, 10.7 \mathrm{mmol}$), dissolved in 55 mL of THF, was added 40 mL of butylamine. After 2 h at room temperature, the mixture was concentrated. The residue was dissolved in CHCl_{3}, washed with dilute KOH and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and the solvents were removed to give the title compound which was used without further purification.

Ethyl 2-Chloropyridine-3-carboxylate (29, $\mathbf{R}=\mathbf{H}, \mathbf{R}^{\prime \prime}=$ $\mathrm{C}_{2} \mathrm{H}_{5}$). 2-Chloropyridine-3-carboxylic acid (25 g) was refluxed 3 h in 200 mL of benzene and 150 mL of SOCl_{2}. The solution was concentrated and chased with toluene. The residue obtained was refluxed in 100 mL of ethanol for 20 min . The solvents were removed in vacuum to give the product which was used in the next step.

Ethyl 2-(Propylamino) pyridine-3-carboxylate (30, $\mathbf{R}=\mathbf{H}$, $\left.\mathbf{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{7}, \mathbf{R}^{\prime \prime}=\mathrm{C}_{2} \mathrm{H}_{5}\right)$. The above chloro ester (7.00 g) was heated in a bomb with 12 mL of propylamine and 32 mL of ethanol for 6 h at $100^{\circ} \mathrm{C}$. The solution was concentrated, and the residue was dissolved in toluene, washed with dilute NaOH , dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and chromatographed, ($8 \% \mathrm{EtOAc}$ in hexane) to give 5.07 g of product in 68% yield.
Ethyl 2-[\boldsymbol{N}-Propyl- \boldsymbol{N}-[[2'-[2-(triphenylmethyl)-2H-tetra-zol-5-yl]biphenyl-4-yl]methyl]amino]pyridine-3-carboxylate (31, $\mathbf{R}=\mathbf{H}, \mathbf{R}^{\prime}=\mathbf{C}_{3} \mathbf{H}_{7}, \mathbf{R}^{\prime \prime}=\mathbf{C}_{\mathbf{2}} \mathbf{H}_{5}$). Ethyl 2-(propylamino)-pyridine-3-carboxylate ($1.41 \mathrm{~g}, 6.78 \mathrm{mmol}$) in 3 mL of THF containing 2 mL of DMPU (1,3 -dimethyl-3,4,5,6-tetrahydro-2pyrimidinone) was treated at $0^{\circ} \mathrm{C}$ with 6.78 mL of 1 M LiN (TMS) ${ }_{2}$ in THF. After $10 \mathrm{~min}, 3.55 \mathrm{~g}(6.35 \mathrm{mmol})$ of bromomethyl compound 10 in 8 mL of THF was added dropwise. After 90 min at room temperature, toluene was added, along with 1 drop of concentrated HCl . The mixture was washed with water three times, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed, (2.5% ether in toluene) to give 2.55 g of product, $\mathrm{mp} 129-131^{\circ} \mathrm{C}$ (53% yield).

Method A. Removal of the Triphenylmethyl Group on the Tetrazole. Ethyl 2-[N-Propyl- N -[${ }^{\prime} \mathbf{2}^{\prime}$-(1H-tetrazol-5-yl)-biphenyl-4-yl]methyl]amino]pyridine-3-carboxylate (32, X $=\mathbf{C O O E t}, \mathbf{R}=\mathbf{H}, \mathbf{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). The above triphenylmethyl compound ($2.00 \mathrm{~g}, 2.92 \mathrm{mmol}$) was dissolved in 24 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 36 mL of $88 \% \mathrm{HCOOH}$ for 2 h at room temperature. The solvents were removed in vacuum, and the residue was stirred with $50 \% \mathrm{HCOOH}$. The resulting solid (triphenylmethanol) was filtered and washed with $50 \% \mathrm{HCOOH}$. The filtrate was concentrated and treated with water. This mixture was extracted with CHCl_{3}. The CHCl_{3} was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated,
and the residue was crystallized from ether to give $1.09 \mathrm{~g}(87 \%)$ of the desired compound, mp $143-144^{\circ} \mathrm{C}$.

Method B. Hydrolysis of Heterocyclic Esters. 2-[N-Propyl- N -[${ }^{\prime}$ '-(1 \boldsymbol{H}-tetrazol-5-yl) biphenyl-4-yl]methyl]ami-no]pyridine-3-carboxylic Acid (32c, $\mathbf{X}=\mathbf{C O O H}, \mathbf{R}=\mathrm{H}, \mathbf{R}^{\prime}$ $=\mathrm{C}_{3} \mathrm{H}_{7}$). The ethyl ester above ($0.400 \mathrm{~g}, 0.905 \mathrm{mmol}$) was refluxed 90 min in 10 mL of ethanol and 2 mL of water containing 0.286 g of NaOH . Acetic acid (0.7 mL) was added, and the solution was concentrated. Water containing 0.7 mL of HCOOH was added, and the mixture was dissolved in CHCl_{3}. This was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated, and the residue was crystallized from ether to give 0.278 g of product, $\mathrm{mp} 202-204^{\circ} \mathrm{C}$ in 75% yield. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{8}, 300 \mathrm{MHz}$): $0.73(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.50(\mathrm{~m}$, $2 \mathrm{H}), 3.22(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8,4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.70(\mathrm{~m}$, 4 H), 7.86 (dd, $J=4,2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.21 (dd, $J=4,2 \mathrm{~Hz}, 1 \mathrm{H}$). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Pyrimidines with NH side chains can be hydrolyzed using this method, at room temperature, in 1 h . The pyrimidines unsubstituted in the 2-position, but having an N -alkyl, gave an unidentified impurity when hydrolyzed in refluxing $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$, but this was largely eliminated by carrying out the hydrolysis in water at room temperature for 24 h .

Ethyl 2-n-Butyl-4-[N-[[2'-[2-(triphenylmethyl)-2H-tet-razol-5-yl]biphenyl-4-yl]methyl]amino]pyrimidine-5-carboxylate (14, $\mathbf{R}=\mathbf{C}_{4} \mathbf{H}_{9}, \mathbf{R}^{\prime}=\mathbf{H}$). Ethyl 2-butyl-4-chloropy-rimidine-5-carboxylate ${ }^{11}(0.40 \mathrm{~g}, 1.65 \mathrm{mmol})$ was added to 13 dissolved in 4 mL of THF containing 0.5 g of triethylamine. After $2 \mathrm{~h}, \mathrm{CHCl}_{3}$ was added, the solution washed with NaHCO_{3}, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated, and the residue chromatographed, eluting with 10% EtOAc in toluene to give 0.927 g of the title compound, crystallized from ether, mp $116-118^{\circ} \mathrm{C}$ (69% yield). All other analogs of 14 could be prepared by this method, including N-alkyl compounds.

2-Methoxypropionamidine Hydrochloride. Methyl 2-methoxypropionimidate hydrochloride ${ }^{16}(53 \mathrm{~g}, 0.345 \mathrm{~mol})$ in 400 mL of MeOH containing 70 mL of liquid NH_{3} was kept at $25^{\circ} \mathrm{C}$ for 16 h in an autoclave. The reaction mixture was concentrated, and the residue obtained was dissolved in 2 -propanol and filtered from a small amount of insoluble material. The filtrate was concentrated and the residue crystallized from ether to give 47 g of the title compound.

Ethyl 2-(2-Methoxyethyl)-4-hydroxypyrimidine-5-carboxylate. To the above amidine (0.345 mol) dissolved in 200 mL of EtOH and cooled in ice was added slowly 223 g of a 21% solution of NaOEt in EtOH, followed by slow addition of 74.6 g (0.345 mol) of diethyl ethoxymethylene malonate. The solution was refluxed 2 h and then concentrated. Water was added, and the solution was neutralized with HCl and extracted with CHCl_{3} four times. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was crystallized from ether to give 58.5 g of the title product, $\mathrm{mp} 115-118^{\circ} \mathrm{C}(75 \%$ yield).

Ethyl 2-(2-Methoxyethyl)-4-[N-[$\left[2^{\prime}\right.$-[2-(triphenylmethyl)$2 \boldsymbol{H}$-tetrazole-5-yl]biphenyl-4-yl]methyl]amino]pyrimidine-5-carboxylate (14, $\mathrm{R}=\mathrm{MeOCH}_{2} \mathrm{CH}_{2}, \mathrm{R}^{\prime}=\mathrm{H}$). To the above hydroxypyrimidine ($1.85 \mathrm{~g}, 8.14 \mathrm{mmol}$) in 13 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, containing 1.38 mL of $\mathrm{Et}_{3} \mathrm{~N}$, was added $1.025 \mathrm{~g}(8.96 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$ with ice cooling. After 5 min of stirring a solution of $4.00 \mathrm{~g}(8.11 \mathrm{mmol})$ of 13 and $1.38 \mathrm{~g}^{\circ} \mathrm{Et}_{3} \mathrm{~N}$ in 5 mL of CHCl_{3} were added. After 1.5 h of stirring at room temperature, 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the solution was washed with NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed (25% EtOAc in toluene) to give 4.615 g of the title compound, mp $128-130^{\circ} \mathrm{C}$ (80% yield).

Ethyl 3-Methyl-5-chloro-1,2,4-triazine-6-carboxylate. To 3-methyl-5-hydroxy-1,2,4-triazine-6-carboxylate ${ }^{13}$ ($1.50 \mathrm{~g}, 8.20$ $\mathrm{mmol})$, suspended in 12 mL of POCl_{3}, was added $0.827 \mathrm{~g}(8.20$ mmol) of $\mathrm{Et}_{3} \mathrm{~N}$. After 1 h of stirring at room temperature, the mixture was concentrated, toluene was added, and the mixture was concentrated again. More toluene was added, and the solution washed with dilute NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was dissolved in heptane, filtered from a small amount of insoluble material, and concentrated to give $1.30 \mathrm{~g}(6.47 \mathrm{mmol})$ of the title compound in 79% yield.

Ethyl 3-Methyl-5-[\boldsymbol{N}-propyl- N -[$\left[\mathbf{2}^{\prime}\right.$-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]-1,2,4-triazine-6-carboxylate (19). To a solution of compound 12 ($\mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$)
($3.14 \mathrm{~g}, 5.87 \mathrm{mmol}$) in 8.5 mL of THF, containing 3.1 mL of $\mathrm{Et}_{3} \mathrm{~N}$, was added 1.30 g (6.47 mmol) of ethyl 3-methyl-5-chloro-1,2,4-triazine-6-carboxylate, prepared above. After 2 h of stirring at room temperature, the mixture was concentrated. The residue was dissolved in toluene, washed with NaHCO_{3}, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. The residue was chromatographed (25% EtOAc in toluene) to give 3.91 g (95% yield) of the title compound, $\operatorname{mp} 178-179^{\circ} \mathrm{C}$.

2,6-Dichloropyridazine-4-carboxylic acid. 2,6-Dichloro4 -methylpyridazine ${ }^{17}$ ($10 \mathrm{~g}, 60 \mathrm{mmol}$) in 60 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was treated with powdered $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ($21.2 \mathrm{~g}, 72 \mathrm{mmol}$), keeping the temperature between $35-40^{\circ} \mathrm{C}$. After 2 h , the mixture was poured into ice and extracted with 1 L of ether. The extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated, and the residue was crystallized from boiling water to yield 8.1 g of the title compound.

Ethyl 2,6-Dichloropyridazine-4-carboxylate. 2,6-Dichlo-ropyridazine-4-carboxylic acid ($7.1 \mathrm{~g}, 37 \mathrm{mmol}$) in 40 mL of THF with 5 mL of EtOH was treated with 500 mg of (dimethylamino)pyridine and 7.8 g (40 mmol) of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride and stirred overnight at room temperature. The mixture was concentrated and partitioned between water and EtOAc. The organic phase was washed with water, NaHCO_{3}, and NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed ($3: 1$ hexane/EtOAc) to give 5.00 g (61% yield) of the title compound.

Ethyl 3-[N-Butyl- N-[[2'-[2-(triphenylmethyl)-2H-tetra-zol-5-yl]biphenyl-4-yl]methyl]amino]-6-chloropyridazine-4-carboxylate (22). The above ester ($520 \mathrm{mg}, 2.35 \mathrm{mmol}$), compound $12\left(\mathrm{R}^{\prime}=\mathrm{C}_{4} \mathrm{H}_{9}\right)(1.26 \mathrm{~g}, 2.30 \mathrm{mmol})$, and $0.42 \mathrm{~mL}(3.0$ mmol) of $\mathrm{Et}_{3} \mathrm{~N}$ were refluxed together overnight. The reaction mixture was worked up as described for compound 19 and chromatographed ($3: 1$ hexane/EtOAc) to give $1.35(78 \%$) of the title compound as an amorphous solid.

Ethyl 3-[N-Butyl- \boldsymbol{N}-[[2^{\prime}-[2-(triphenylmethyl)-2 \boldsymbol{H}-tetra-zol-5-yl]biphenyl-4-yl]methyl]amino]pyridazine-4-carboxylate (22, des chloro). Compound 22, above, ($610 \mathrm{mg}, 0.83 \mathrm{mmol}$) was dissolved in 4:1 EtOAc/EtOH containing 140 mg of 10% Pd / C and 0.175 mL of $E t_{3} \mathrm{~N}(1.26 \mathrm{mmol})$. It was hydrogenated at atmospheric pressure for 24 h . The product was chromatographed (EtOAc in hexane) to give 260 mg of the title compound.

Ethyl 2-Hydroxy-6-methylpyrazine-3-carbozylate (25). Hydrogen chloride gas was bubbled 15 min through a mixture of 2-hydroxy-6-methylpyrazine-3-carboxylic acid ${ }^{22}$ (32.5 g) suspended in 500 mL of EtOH and cooled in ice. This was stirred at room temperature overnight and then refluxed 2 h . The mixture was concentrated and the residue crystallized from ethanol in ether to give $21.48 \mathrm{~g}(58 \%)$ of $25, \mathrm{mp} 153^{\circ} \mathrm{C}$.

Ethyl 6-Methyl-2-[N-propyl- N-[[2^{\prime}-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyrazine-3carboxylate ($26, \mathbf{R}=\mathbf{C H}_{3}, \mathbf{R}^{\prime}=\mathbf{C}_{3} \mathbf{H}_{7}$). To ester 25 (1.43 g, 7.86 mmol) in 8 mL of DMF, containing 1.8 g of $\mathrm{Et}_{3} \mathrm{~N}$, was added 1.45 g (8.21 mmol) of benzenesulfonyl chloride. After 5 min at room temperature $3.89 \mathrm{~g}(7.17 \mathrm{mmol})$ of $12\left(\mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}\right)$ in 3 mL of toluene was added, and the mixture stirred for 18 h at $45^{\circ} \mathrm{C}$. Dilute KHCO_{3} was added, and the mixture was extracted with toluene. The product was purified by chromatography (16% EtOAc in toluene) to give $3.00 \mathrm{~g}(60 \%)$ of the title compound.

Methyl 3-[N-Butyl- N-[[2'-[2-(triphenylmethyl)-2H-tet-razol-5-yl]biphenyl-4-yl]methyl]amino]pyrazine-2-carboxylate (26, $\mathbf{R}=\mathbf{H}, \mathbf{R}^{\prime}=\mathbf{C}_{4} \mathbf{H}_{9}$). Compound 27^{23} ($320 \mathrm{mg}, 1.47$ mmol), compound $12\left(\mathrm{R}^{\prime}=\mathrm{C}_{4} \mathrm{H}_{9}\right)(825 \mathrm{mg}, 1.50 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}$ $(0.225 \mathrm{~g}, 2.22 \mathrm{mmol})$ in 1.5 mL of THF were refluxed together for 5 h . The usual workup and purification by chromatography ($3: 1$ hexane/EtOAc) gave $708 \mathrm{mg}(70 \%$) of the title compound.

Methyl 2-[\boldsymbol{N}-Propyl- \boldsymbol{N}-[[2'-[2-(triphenylmethyl)-2H-tet-razol-5-yl]biphenyl-4-yl]methyl]amino]-6-fluoropyridine-3-carboxylate (31, $\mathbf{R}=6-\mathrm{F}, \mathbf{R}^{\prime}=\mathbf{C}_{3} \mathbf{H}_{7}, \mathbf{R}^{\prime \prime}=\mathbf{C H}_{3}$). Methyl 2,6-difluoronicotinate ${ }^{14}$ ($86 \mathrm{mg}, 0.5 \mathrm{mmol}$), compound 12 ($\mathrm{R}^{\prime}=$ $\mathrm{C}_{3} \mathrm{H}_{7}$) (272 mg as the formate salt), and $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 1 \mathrm{mmol}$) were refluxed together overnight in 3 mL of THF. The residue, on workup, was chromatographed (20% EtOAc in hexane) giving 200 mg of product in 58% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: 0.76 (t, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.53 (dt, $J=7,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 6.24(\mathrm{dd}, J=9,5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.85-6.95 (m, 6H), 6.95-7.10 (m, 4H), 7.20-7.50 (m, 11H), 7.90 (dd, $J=2,7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.02 (dd, $J=9,9 \mathrm{~Hz}, 1 \mathrm{H}$).

2-[N-Propyl- N-[[2'-(1H-tetrazol-5-y])biphenyl-4-yl]meth-yl]amino]-6-fluoropyridine-3-carboxylic Acid (32u) and 2-[N-Propyl-N-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]-amino]-6-methoxypyridine-3-carboxylic Acid (32w). The trityl group was removed from 150 mg (0.218 mmol) of compound $31\left(\mathrm{R}=6-\mathrm{F}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}\right.$) using method A (above). The resulting product was refluxed for 2 h with 3 mL of 1:1 THF/ MeOH and 1 mL of 4 N NaOH . The mixture was worked up according to method B, and the products were separated by preparative HPLC using a C_{18} column, giving 17 mg of each compound.

Ethyl 2-Chloro-5-fluoro-6-(methylthio)pyridine-3-carboxylate (35). Ethyl 2,6-dichloro-5-fluoropyridine-3-carboxylate ${ }^{15}(34,1.00 \mathrm{~g}, 8.40 \mathrm{mmol})$ was stirred 3 h at room temperature with $589 \mathrm{mg}(8.40 \mathrm{mmol})$ of NaSCH_{3} in 4 mL of water and 4 mL of THF to give the title compound as a white solid. The structure was determined by X-ray crystallography.

Ethyl 2-Chloro-5-fluoropyridine-3-carboxylate (29, $\mathbf{R}=$ 5-F). Compound 35 ($960 \mathrm{mg}, 3.86 \mathrm{mmol}$) was refluxed 24 h with Raney nickel in EtOH. The product was chromatographed (5\% EtOAc in hexane) to give 233 mg (30%) of the desired compound.

Ethyl 5-Fluoro-2-[N-propyl- \boldsymbol{N}-[[2'-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine-3carboxylate ($31, \mathbf{R}=6-\mathrm{F}, \mathbf{R}^{\prime}=\mathbf{C}_{3} \mathbf{H}_{7}, \mathbf{R}^{\prime \prime}=\mathrm{C}_{2} \mathrm{H}_{6}$). Compound $29(R=5-F)(157 \mathrm{mg}, 0.775 \mathrm{mmol})$ and $415 \mathrm{mg}(0.775 \mathrm{mmol})$ amine $12\left(\mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}\right)$ were refluxed 18 h with 0.27 mL of $\mathrm{Et} \mathrm{t}_{3} \mathrm{~N}$, in 0.6 mL of THF, and worked up as before to give $59 \mathrm{mg}(11 \%)$ of the title compound.

Ethyl 2-Bromo-5-methylpyridine-3-carbozylate (29, $\mathbf{R}=$ $\mathbf{5 - C H}, \mathbf{R}^{\prime \prime}=\mathbf{C}_{2} \mathrm{H}_{5}, 2-\mathrm{Br}$ Analog). A modification of the procedure of Baldwin ${ }^{18}$ was used. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{C}(\mathrm{CN}) \mathrm{COOEt}(10.6$ $\mathrm{g}, 69 \mathrm{mmol}$) in 50 mL of EtOH was treated dropwise with 9 mL (69 mmol) of DMF dimethyl acetal, and refluxed 18 h . The solvent was evaporated, and the residue was dissolved in 50 mL of acetic acid. $\mathrm{HBr}(100 \mathrm{~mL}, 30 \%$ in acetic acid) was added dropwise at $40^{\circ} \mathrm{C}$, and the mixture was heated at $60^{\circ} \mathrm{C}$ for 5 h . The solvents were evaporated, the residue basified with NaHCO_{3} and extracted with EtOAc, and the product chromatographed ($25 \% \mathrm{EtOAc}$ in hexane) to give $2.50 \mathrm{~g}(15 \%)$ of title compound, This compound and the 4 -methyl analog were reacted with propylamine and with 10 by the same method as the $2-\mathrm{Cl}$ nicotinates.

2-Hydroxy-5-nitropyridine-3-carboxylic acid (37). Nitric acid (3 mL) was added dropwise to 7.0 g of 2-hydrozynicotinic acid in 50 mL of sulfuric acid at $0^{\circ} \mathrm{C}$. The solution was stirred at room temperature 16 h and at $50-70^{\circ} \mathrm{C} 1.5 \mathrm{~h}$. Pouring the mixture on to ice gave $7.3 \mathrm{~g}(87 \%)$ of 37 .

Ethyl 2-Chloro-5-nitropyridine-3-carboxylate (29, $\mathbf{R}=$ $5-\mathrm{NO}_{2}$). A 5.00 -g sample of the above hydroxy compound was refluxed 2 h with 32 mL of thionyl chloride containing 2 mL of DMF. The solution was concentrated, and the residue was treated with 20 mL of ethanol to give $5.04 \mathrm{~g}(81 \%)$ of the desired compound. This compound reacted with amine 12 at room temperature in 3 h .

Methyl 2-Hydroxy-5-iodopyridine-3-carboxylate (38). Methyl 2-hydroxynicotinate ($1.7 \mathrm{~g}, 11.1 \mathrm{mmol}$) and 3.25 g (14.4 mmol) N -iodosuccinimide were refluxed in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the dark for 48 h . The solution was washed with sodium thiosulfate twice, brine once, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ to give 2.79 g (90%) of 38.

Methyl 2-Chloro-5-iodopyridine-3-carboxylate (29, $\mathbf{R}=$ $5-\mathrm{I}, \mathbf{R}^{\prime \prime}=\mathrm{CH}_{8}$). Compound 38 (500 mg) was refluxed 7 h in 5 mL of POCl_{3}. Working up the reaction in the usual manner and purifying the product by chromatography (10% EtOAc in hexane) gave 368 mg (69%) of the title compound.

This compound reacts with 12 by refluxing in THF with $\mathrm{Et}_{3} \mathrm{~N}$ overnight to give 31 ($5-1$) in 40% yield.

Methyl 5-Phenyl-2-[\boldsymbol{N}-propyl- \boldsymbol{N}-[[2'-[2-(triphenylmeth-yl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine-3-carboxylate (31, $\mathbf{R}=5$ - $_{6} \mathbf{H}_{5}, \mathbf{R}^{\prime \prime}=\mathrm{CH}_{3}, \mathbf{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). To a solution of 5 mg of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}$ in 2 mL of toluene was added 48 $\mathrm{mg}(60 \mu \mathrm{~mol})$ of $31(\mathrm{R}=5-\mathrm{I})$. After 10 min of stirring, 2 mL of nitrogen-sparged $2 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was added, followed by $9 \mathrm{mg}(70 \mu \mathrm{~mol})$ of phenylboronic acid (all with careful exclusion of air). The mixture was refluxed 2 h , cooled, and partitioned between ether and water. The organic layer was washed with 1 $\mathrm{NH}_{3} \mathrm{PO}_{4}$ and then NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The
product was chromatographed (20% EtOAc in hexane) to give the title compound.
Methyl 2,5-Dichloropyridine-3-carboxylate (29, $\mathrm{R}=\mathbf{5 - C l}$, $\mathbf{R}^{\prime}=\mathbf{C H}_{3}$). 2-Hydroxynicotinic acid ($13.9 \mathrm{~g}, 0.10 \mathrm{~mol}$) was added to an ice-cooled solution of sodium hypochlorite ($170 \mathrm{~mL}, 0.12$ mol) and 32 g of $50 \% \mathrm{NaOH}$, and stirred overnight at room temperature. Sodium sulfite (1.4 g) in 5 mL of water was added, and the mixture was acidified with 50 mL of concentrated HCl . The resulting solid was filtered, washed with water and then acetone, and dried in vacuo at $65^{\circ} \mathrm{C}$ overnight to give 14.2 g of 5 -chloro-2-hydroxynicotinic acid. This acid ($5.00 \mathrm{~g}, 0.029 \mathrm{~mol}$) was refluxed 2 h with 32 mL of thionyl chloride and 2 mL of DMF. The mixture was concentrated and treated with 25 mL of MeOH . After workup the product was purified by chromatography (10% EtOAc in hexane) to get $4.15 \mathrm{~g}(70 \%)$ of the title compound.
This compound was reacted with propylamine and then with 10 by the same method that was used with ethyl 2-chloronicotinate.

Methyl (and Benzyl) 6-Benzyl-2-[N-propyl-N-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]aminolpyridine-3-carboxylate (32, $\mathrm{R}=6-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}-, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{X}=\mathrm{COOEt}$). Benzyl alcohol ($142 \mathrm{mg}, 1.31 \mathrm{mmol}$) was converted to its sodium salt by stirring with 56 mg of 60% dispersion of $\mathrm{NaH}(1.40 \mathrm{mmol})$ in 0.6 mL of DMF for 1 h at room temperature. A solution of the $6-\mathrm{F}$ compound (32 u , methyl ester, $146 \mathrm{mg}, 0.327 \mathrm{mmol}$) in 1.4 mL of DMF was added. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h and at $60^{\circ} \mathrm{C}$ for 6 h . The solvent was removed under high vacuum, and the residue was partitioned between 10 mL of $0.1 \mathrm{M} \mathrm{NaHSO}_{4}$ and 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was purified by chromatography (EtOAc/hexane 1:2) to give 113 mg of an equal mixture of methyl and benzyl esters.

6-Hydroxy-2-[N-propyl- N-[[2'-(1 \boldsymbol{H}-tetrazol-5-yl)biphenyl-4-yl]methyl]amino]pyridine-3-carboxylic Acid (32x). The above mixture of esters ($110 \mathrm{mg}, 0.188 \mathrm{mmol}$) was hydrolyzed with 0.75 mL of aqueous NaOH in 2 mL of methanol at $70^{\circ} \mathrm{C}$ for 18 h to give 75% of the 6-(benzoyloxy) carboxylic acid. This was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(35 \mathrm{mg})$ in 5 mL of EtOAc and 0.7 mL of $\mathrm{Et}_{3} \mathrm{~N}$ for 27 h at 1 atm H_{2}. The product was purified by preparative TLC $\left(5 \% \mathrm{MeOH}, 1 \% \mathrm{HOAc}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $20.3 \mathrm{mg}(41 \%)$ of 32 x .
Ethyl 5-Amino-2-[N-propyl- N-[[2'-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine-3carboxylate ($31, \mathrm{R}=5-\mathrm{NH}_{2}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{2} \mathrm{H}_{5}$). Compound $31\left(\mathrm{R}=5-\mathrm{NO}_{2}\right)(500 \mathrm{mg}, 0.69 \mathrm{mmol})$ in 5 mL of EtOAc was hydrogenated at 1 atm for 10 h over $75 \mathrm{mg} 10 \% \mathrm{Pd} / \mathrm{C}$ to give 395 mg (82%) of the title compound.
Ethyl 5-(Acetylamino)-2-[N-propyl- \boldsymbol{N}-[$\left[2^{\prime}\right.$-[2-(tripheny]-methyl)-2 H -tetrazol-5-yl]biphenyl-4-yl]methyl]amino]py-ridine-3-carboxylate ($31, R=5$-AcNH, $R^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{2} \mathrm{H}_{5}$). Compound $31\left(\mathrm{R}=5-\mathrm{NH}_{2}\right)(50 \mathrm{mg})$ was stirred overnight with 1 mL of $\mathrm{CHCl}_{3}, 0.1 \mathrm{~mL}$ of $\mathrm{Et}_{3} \mathrm{~N}$, and 0.2 mL of acetic anhydride. Workup and purification by chromatography (25% EtOAc in hexane) gave the title compound.
Methyl 4-[N-Propyl- \boldsymbol{N}-[[2'-[2-(triphenylmethyl)-2H-tet-razol-5-yl]biphenyl-4-yl]methyl]amino]pyridine-3-carboxylate (41). 4-Chloronicotinic acid ${ }^{19}$ was converted to the methyl ester (40) in 85% yield with diazomethane. This ester (700 mg , $4.08 \mathrm{mmol})$, amine $12\left(\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}\right)$, and $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~mL}, 7.89 \mathrm{mmol})$ in 10 mL of 2-propanol were heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 6 h . The product was worked up as described for the 2 -amino isomer to give 454 mg (25%) of 41.
Ethyl 2-[N-Butyl- \boldsymbol{N}-[[2'-[2-(triphenylmethyl)-2H-tetra-zol-5-yl]biphenyl-4-yl]methyl]amino]pyridine-5-carboxylate (44, $\mathbf{R}^{\prime}=\mathbf{C}_{4} \mathrm{H}_{9}$). 6-Chloronicotinic acid was esterified by the method used for 2,6-dichloropyridazine-4-carbozylate, described above. This chloro ester was reacted with butylamine by the method used for ethyl 2-chloronicotinate, and the resulting ethyl 6-(butylamino)nicotinate reacted with 10 in a similar manner to give the title compound in 67% yield.
Ethyl 3-(Propylamino)pyridine-4-carboxylate. 3-Ami-nopyridine-4-carboxylic acid ${ }^{20}(2.00 \mathrm{~g})$ was esterified by warming on a steambath with 4 g of ethanol and $4.0 \mathrm{~g}^{2}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$, for 4 h . To this ester ($750 \mathrm{mg}, 4.52 \mathrm{mmol}$), in 35 mL of THF containing 1.30 mL of DMPU at $0^{\circ} \mathrm{C}$, was added of 4.7 mL of 1 M lithium hexamethyl disilazide. After 30 min of stirring at $0^{\circ} \mathrm{C}, 0.80 \mathrm{~mL}$ (9.24 mmol) of allyl bromide was added. The mixture was stirred at room temperature overnight and worked up as usual. The
product was chromatographed ($1: 5 \mathrm{EtOAc} /$ hexane) to give 465 mg of the 3 -allylamino compound. This was hydrogenated in 25 mL of EtOAc over 55 mg of PtO_{2} to give 448 mg of the title compound.
Ethyl 3-[\boldsymbol{N}-propyl- \boldsymbol{N}-[${ }^{\prime}$ '[2-(triphenylmethyl)-2H-tetra-zol-5-yl]biphenyl-4-yl]methyl]amino]pyridine-4-carboxylate (47, $\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}$). The 3-propylamino compound described above ($405 \mathrm{mg}, 1.95 \mathrm{mmol}$) was alkylated with 10 using the method used to convert 30 to 31 . The product was purified by chromatography, giving $190 \mathrm{mg}(14 \%)$ of the title compound.

Ethyl 2-(Butylamino)pyrimidine-5-carboxylate (50). Ethyl 2-(ethylthio) pyrimidine-5-carboxylate ${ }^{21}$ ($974 \mathrm{mg}, 4.6 \mathrm{mmol}$) was heated in a sealed tube for 3 h with 2 mL of butylamine and 4 mL of EtOH. The solution was concentrated, and the residue was partitioned between NaHCO_{3} solution and EtOAc. The product was purified by chromatography (20% EtOAc in hexane) to give 850 mg of the desired product as a white solid.

Ethyl 2-[N-Butyl- \boldsymbol{N}-[[2'-[2-(triphenylmethyl)-2H-tetra-zol-5-yl]biphenyl-4-yl]methyl]amino]pyrimidine-5-carboxylate (51). Compound 50 ($573 \mathrm{mg}, 2.57 \mathrm{mmol}$) was reacted with 1.43 g (2.57 mmol) of 10 using the method used to convert 30 to 31. The yield was $1.20 \mathrm{~g}(67 \%)$.

Methyl2-Chloro-4-[N-butyl- \boldsymbol{N}-[$\left[2^{\prime}\right.$-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyrimidine-6-carboxylate. Methyl 2,4-dichloropyrimidine-6-carboxylate ${ }^{31}$ ($220 \mathrm{mg}, 1.06 \mathrm{mmol}$), 1 mL of $\mathrm{Et}_{3} \mathrm{~N}$, amine $12\left(\mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9}\right)(495$ $\mathrm{mg}, 0.90 \mathrm{mmol}$), and 2 mL of DMF were stirred at $25^{\circ} \mathrm{C}$ for 15 min. The mixture was dissolved in EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The product was purified by chromatography ($3 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 500 mg of the title compound.
4-[N -Butyl- N -[[2^{\prime}-[2-(triphenylmethyl)-2 \mathbf{H}-tetrazol-5-yl]-biphenyl-4-yl]methyl]amino]pyrimidine-6-carboxylic Acid ($55, \mathrm{R}^{\prime}=\mathrm{C}_{4} \mathrm{H}_{9}$). The 2 -chloropyrimidine synthesized above (880 $\mathrm{mg}, 1.2 \mathrm{mmol}$) in 8 mL of THF was hydrogenated over 1.30 g of $10 \% \mathrm{Pd} / \mathrm{C}$ at 1 atm for 24 h . The triphenylmethyl group was removed, and the ester was hydrolyzed as described by the general methods A and B to give $185 \mathrm{mg}(40 \%)$ of the title compound. NMR showed that the compound was a 4 -aminopyrimidine rather than a 2 -aminopyrimidine. NMR (DMSO- d_{8}): $0.90(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{bs}, 2 \mathrm{H}), 4.87(\mathrm{bs}, 2 \mathrm{H})$, $7.05(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.68(\mathrm{~m}, 4 \mathrm{H})$, $7.62(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H})$.

Ethyl 1-(Butylamino)benzene-2-carboxylate. Ethyl anthranilate ($4.96 \mathrm{~g}, 30 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(13.8 \mathrm{~g}, 100 \mathrm{mmol})$, and butyl iodide (25 mL) were stirred at room temperature 48 h and then refluxed 8 h . The mixture was diluted with EtOAc, filtered, and concentrated. The residue was chromatographed (EtOAc in hexane) to give $2.20 \mathrm{~g}(33 \%)$ of the desired product as a yellow liquid.

Ethyl 1-[N-Butyl- N-[[2'-[2-(triphenylmethyl)-2H-tetra-zol-5-yl]biphenyl-4-yl]methyl]amino]benzene-2-carboxylate (57). Ethyl 1-(butylamino) benzene-2-carboxylate (2.00 g , $9.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10 \mathrm{mmol})$, and $10(2.00 \mathrm{~g}, 3.0 \mathrm{mmol})$ were stirred in 3 mL of DMF at $55^{\circ} \mathrm{C}$ for 20 h . The product was chromatographed, (EtOAc in hexane) to get $800 \mathrm{mg}(46 \%$) of the title compound.

3-(Hydroxymethyl)-2-[N-propyl- \boldsymbol{N}-[$[2$ '-[2-(triphenyl-methyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine (59, $\mathbf{X}=\mathbf{C H}_{\mathbf{2}} \mathbf{O H}, \mathbf{R}^{\prime}=\mathbf{C}_{3} \mathrm{H}_{7}$). Ester $31\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\right.$ $\left.\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{2} \mathrm{H}_{5}\right)(2.574 \mathrm{~g}, 3.758 \mathrm{mmol})$ in 20 mL of THF at 0 ${ }^{\circ} \mathrm{C}$ was treated with $500 \mathrm{mg}(13.2 \mathrm{mmol})$ of LiAlH_{4}. After 2 h the reaction was subject to a basic workup. The product was chromatographed (22% EtOAc in hexane) to give $2.290 \mathrm{~g}(95 \%)$ of the title compound.

2-[N-Propyl- N-[${ }^{2}$-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine-3-carboxaldehyde (59, X = CHO, $\mathbf{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). Alcohol $59\left(\mathrm{X}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{\prime}\right.$ $\left.=\mathrm{C}_{3} \mathrm{H}_{7}\right)(1.0123 \mathrm{~g}, 1.575 \mathrm{mmol})$ and activated manganese dioxide $(3.00 \mathrm{~g}, 34.5 \mathrm{mmol})$ were stirred at room temperature 20 h . The solids were filtered and the solution concentrated. The residue was chromatographed (20% EtOAc in hexane) to give 0.946 g (96%) of the title compound.
3-(1-Hydroxyethyl)-2-[N-propyl- \boldsymbol{N}-[[2^{\prime}-[2-(triphenyl-methyl)-2 H -tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine [59, $\mathrm{X}=\mathbf{C H}(\mathbf{O H}) \mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$]. Aldehyde 59 ($\mathrm{X}=$ $\mathrm{CHO}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$) ($172.5 \mathrm{mg}, 0.269 \mathrm{mmol}$) in 3 mL of THF was
treated with 1.5 M methylmagnesium bromide in THF (0.27 mL , 0.41 mmol). After 15 min , the reaction was quenched with $\mathrm{NH}_{4}-$ Cl. Chromatography (25% EtOAc in hexane) gave 164.5 (93%) of the title compound.

3-Acetyl-2-[N-propyl- N -[${ }^{\prime}$ '-[2-(triphenylmethyl)-2H-tet-razol-5-yl]biphenyl-4-yl]methyl]amino]pyridine (59, $\mathbf{X}=$ $\mathrm{COCH}_{3}, \mathbf{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). Alcohol $59\left[\mathrm{X}=\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}\right.$) ($108.6 \mathrm{mg}, 0.163 \mathrm{mmol}$) in 7 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to $1,1,1-$ tris(acetoxy)-1,1-dihydro-1,2-benziodoxol-3(1H)-one ${ }^{24}$ (220 mg , 0.519 mmol). After 30 min of stirring at room temperature, the mixture was chromatographed (20% EtOAc in hexane) to get $65.7 \mathrm{mg}(62 \%)$ of the title compound.

3-[2-(Ethoxycarbonyl)-1-hydroxyethyl]-2-[N-propyl- N -[[2'-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine (59, $\mathbf{X}=\mathbf{C H}(\mathbf{O H}) \mathrm{CH}_{2} \mathrm{COOEt}, \mathbf{R}^{\prime}=$ $\mathrm{C}_{3} \mathrm{H}_{7}$). n-Butyllithium in hexane ($1.3 \mathrm{M}, 0.70 \mathrm{~mL}, 0.90 \mathrm{mmol}$) was added to diisopropylamine ($0.150 \mathrm{~mL}, 1.07 \mathrm{mmol}$) in 8 mL of THF at $0^{\circ} \mathrm{C}$. After 15 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and treated with ethyl acetate ($0.090 \mathrm{~mL}, 0.93 \mathrm{mmol}$). After 20 min, aldehyde 59 ($\mathrm{X}=\mathrm{CHO}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$) ($515 \mathrm{mg}, 0.804 \mathrm{mmol}$) was added and the reaction stirred at $-78^{\circ} \mathrm{C}$ for 45 min . The reaction was quenched with NaHCO_{3} solution. Chromatography (30% EtOAC in hexane) gave $556 \mathrm{mg}(97 \%)$ of the title compound.
\boldsymbol{N}-(Benzenesulfonyl)-2-[\boldsymbol{N}-propyl- \boldsymbol{N}-[[2'-[2-(triphenyl-methyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]py-ridine-3-carboxamide ($59, \mathrm{X}=\mathrm{CONHSO} \mathbf{2}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). Compound 31 ($\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{2} \mathrm{H}_{5}$) was hydrolyzed using method B , without using the HCOOH to give the tri-phenylmethyl-protected acid. This acid ($930 \mathrm{mg}, 1.42 \mathrm{mmol}$) was stirred 1 h at room temperature with $678 \mathrm{mg}(5.7 \mathrm{mmol})$ of thionyl chloride in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvents were evaporated and benzene sulfonamide ($1.3 \mathrm{~g}, 8.5 \mathrm{mmol}$) was added. The reaction was cooled to $-78^{\circ} \mathrm{C}$ and 2 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was added, and the mixture was stirred overnight at room temperature. The product was purified by chromatography ($1: 1$ EtOAc/hexane) to give 390 mg (35%) of the title compound.

2-(Butylamino)pyridine-3-carbonitrile. 2-Chloropyridine3 -carbonitrile ($1.30 \mathrm{~g}, 9.60 \mathrm{mmol}$) was refluxed overnight with 3 mL of n-butylamine in 10 mL of isopropyl alcohol. The product was purified by chromatography ($2: 1$ hexane/EtOAc) to give 1.6 g (95%) of the desired product.

2-[N-Butyl- N-[[2'-[2-(triphenylmethyl)-2H-tetrazol-5-yl]-biphenyl-4-yl]methyl]amino]pyridine-3-carbonitrile (59, X $=\mathbf{C N}, \mathbf{R}^{\prime}=\mathbf{C}_{4} \mathbf{H}_{9}$). 2-(Butylamino) pyridine-3-carbonitrile (1.60 $\mathrm{g}, 9.14 \mathrm{mmol}$) and $10(5.32 \mathrm{~g}, 9.55 \mathrm{mmol})$ were reacted by the method used to convert 30 to 31 . The product was chromatographed (25% ether in hexane) to give $3.60 \mathrm{~g}(60 \%)$ of the title compound.

2-[N-Butyl- N-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]meth-yl]amino]pyridine-3-carboxamide (32y). Compound 32aa (100 mg) was refluxed in 3 mL of EtOH and 3 mL of $10 \% \mathrm{KOH}$ in water, for 16 h . The solution was concentrated, water and HCOOH were added, and the resulting oil was chromatographed ($2.5 \% \mathrm{HCOOH}, 2.5 \%$ water in EtOAc) to give $55 \mathrm{mg}(54 \%)$ of the title compound, mp $194-197^{\circ} \mathrm{C}$.

3-(Aminomethyl)-2-[\boldsymbol{N}-butyl- \boldsymbol{N}-[$\left[2{ }^{\prime}\right.$-[2-(triphenylmethyl)2 H -tetrazol-5-yl]biphenyl-4-yl]methyl]aminolpyridine (59, $\left.\mathbf{X}=\mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{R}^{\prime}=\mathrm{C}_{4} \mathrm{H}_{9}\right)$. Nitrile $59(\mathrm{X}=\mathrm{CN})(1.52 \mathrm{~g}, 2.33$ mmol) in 50 mL of ether and 0.26 g of LiAlH_{4} were refluxed 1 h. Basic workup gave $1.20 \mathrm{~g}(79 \%)$ of the title compound which was used directly in the next step.

3-[(Trifluoromethanesulfonamido)methyl]-2-[N-butyl-\boldsymbol{N}-[[2'-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino] pyridine ($59, \mathrm{X}=\mathrm{CH}_{2} \mathrm{NHSO}_{2} \mathrm{CF}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{4} \mathrm{H}_{9}$). To the aminomethyl compound described above ($330 \mathrm{mg}, 0.504$ mmol), in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.13 g of 2,6 -di-tert-butyl-4-methylpyridine, cooled to $-20^{\circ} \mathrm{C}$, was added $0.11 \mathrm{~mL}(0.655$ mmol) of trifluoromethanesulfonic anhydride. After 2 h of stirring at $-20^{\circ} \mathrm{C}$, the mixture was washed with NaHCO_{3}, and the residue was chromatographed (30% EtOAcin hexane) to get $140 \mathrm{mg}(40 \%)$ of the title compound.

3-Nitro-2-[N-propyl- N -[[2^{\prime}-[2-(triphenylmethyl)-2 H -tet-razol-5-yl]biphenyl-4-yl]methyl]amino]pyridine (59, X = $\mathrm{NO}_{2}, \mathbf{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). 2-Chloro-3-nitropyridine ($1.29 \mathrm{~g}, 8.14 \mathrm{mmol}$) was refluxed 2.5 h with amine $12\left(\mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}\right)(4.03 \mathrm{~g}, 7.53 \mathrm{mmol})$ in 8 mL of THF containing 2.5 mL of $\mathrm{Et}_{3} \mathrm{~N}$. The solution was concentrated and the residue dissolved in toluene, washed with
NaHCO_{3}, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography ($25 \% \mathrm{EtOAc}$ in toluene) gave 4.35 g (88%) of the title compound, mp 104-106 ${ }^{\circ} \mathrm{C}$.

3-Amino-2-[N-propyl- N-[[2'-[2-(triphenylmethyl)- $2 H$-tet-razol-5-yl]biphenyl-4-yl]methyl]amino]pyridine (59, X = $\mathrm{NH}_{2}, \mathbf{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). Compound $59\left(\mathrm{X}=\mathrm{NO}_{2}\right)(2.00 \mathrm{~g})$ in 250 mL of EtOAc was hydrogenated over 200 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ at 4 atm for 2 h to give $1.2 \mathrm{~g}(60 \%)$ of the title compound, after chromatography (25% EtOAc in hexane).

3-[[(Methylamino)carbonyl]amino]-2-[N-propyl- N-[[2'-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyllamino]pyridine ($59, \mathrm{X}=\mathrm{NHCONHCH}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). Compound $59\left(\mathrm{X}=\mathrm{NH}_{2}\right)(630 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $65 \mathrm{mg}(1.14 \mathrm{mmol})$ of methyl isocyanate. After stirring overnight, the product was chromatographed (50% EtOAc in hexane) to give 390 mg (50%) of the title compound.

3-(Acetylamino)-2-[N-propyl- \boldsymbol{N}-[$\left[2^{\prime}\right.$-[2-(triphenylmethyl)2 H -tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine (59, $\left.\mathbf{X}=\mathrm{NHCOCH}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}\right)$. Compound $59\left(\mathrm{X}=\mathrm{NH}_{2}\right)(500 \mathrm{mg}$, 0.796 mmol) was stirred overnight with 0.30 mL of acetic anhydride in 10 mL of pyridine. The mixture was concentrated and the product chromatographed (20% EtOAc in hexane) to give $400 \mathrm{mg}(78 \%)$ of the title compound.

3-[(Trifluoroacetyl)amino]-2-[N-propyl- N-[[2'-[2-(tri-phenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]aminolpyridine (59, X = NHCOCF $\mathbf{N}_{3}, \mathbf{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). Compound 59 ($\mathbf{X}=\mathrm{NH}_{2}$) ($100 \mathrm{mg}, 0.16 \mathrm{mmol}$) was stirred for 1 h with $34 \mu \mathrm{~L}$ (0.24 mmol) of trifluoroacetic anhydride and $25.7 \mu \mathrm{~L}$ of pyridine in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was concentrated and chromatographed (17% EtOAc in hexane) to get $100 \mathrm{mg}(86 \%)$ of the title compound.

3-Methanesulfonamido-2-[N-propyl- \boldsymbol{N}-[$\left[2{ }^{\prime}\right.$-[2-(triphenyl-methyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]aminolpyridine (59, $\mathrm{X}=\mathrm{NHSO}_{2} \mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). Compound 59 ($\mathrm{X}=$ NH_{2}) ($500 \mathrm{mg}, 0.8 \mathrm{mmol}$) was stirred 18 h with 0.92 mL (1.04 mmol) of methanesulfonyl chloride and 0.11 mL of $\mathrm{Et}_{3} \mathrm{~N}$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Chromatography (25% EtOAc in hexane) gave 30% of the title compound.

3 -(Trifluoromethanesulfonamido)-2-[N-propyl- N-[[2'-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine (59, $\mathrm{X}=\mathrm{NHSO}_{2} \mathrm{CF}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). Compound $59\left(\mathrm{X}=\mathrm{NH}_{2}\right)(250 \mathrm{mg}, 0.40 \mathrm{mmol})$ was stirred for 1 h at $-20^{\circ} \mathrm{C}$ with $84 \mu \mathrm{~L}$ of trifluoromethanesulfonic anhydride and 110 mg of 2,6-di-tert-butyl-4-methylpyridine. The mixture was washed with NaHCO_{3}, dried, and concentrated to give the title compound in 70% yield.

3-Thioureido-2-[N-propyl- \boldsymbol{N}-[[2'-[2-(triphenylmethyl)2 H -tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine (59, $\left.\mathbf{X}=\mathrm{NHCSNH}_{2}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}\right)$. Compound $59\left(\mathrm{X}=\mathrm{NH}_{2}\right)(200 \mathrm{mg}$, 0.329 mmol) in 3.2 mL of THF at $-78^{\circ} \mathrm{C}$ was treated with 0.335 $\mathrm{mL}(0.335 \mathrm{mmol})$ of 1 M sodium hexamethyl disilazide in THF. After 30 min at $-78^{\circ} \mathrm{C}, 40 \mathrm{mg}(0.350 \mathrm{mmol})$ thiophosgene was added. The red solution was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then treated with aqueous ammonia. This mixture was stirred 30 min at room temperature. The solution was concentrated, and the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The product was purified by chromatography (40% EtOAc in hexane) to give 160 mg (73%) of the title compound.

3-[[(Ethoxycarbonyl)carbonyl]amino]-2-[\mathbf{N}-propyl- \boldsymbol{N} [2^{\prime}-[2-(triphenylmethyl-2 H -tetrazol-5-yl]biphenyl-4-yl]methyl]aminolpyridine ($59, \mathrm{X}=\mathrm{NHCOCOOEt}, \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$). Compound $59\left(\mathrm{X}=\mathrm{NH}_{2}\right)(150 \mathrm{mg}, 0.24 \mathrm{mmol})$, in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.1 mL of $\mathrm{Et}_{3} \mathrm{~N}$, at $0^{\circ} \mathrm{C}$, was treated with $54 \mathrm{mg}(0.48$ mmol) of ethyl oxalyl chloride and stirred 2 h . The mixture was concentrated, and the residue was chromatographed ($15 \% \mathrm{EtOAc}$ in hexane) to give $149 \mathrm{mg}(85 \%)$ of the title compound. In the preparation of the diacid 32 ww , the ester hydrolysis (method B) was carried out at room temperature for 18 h .

3-(Benzyloxy)-2-(butylamino)pyridine (64). To 2-amino-3-(benzyloxy)pyridine (63, Aldrich, $2.50 \mathrm{~g}, 12.5 \mathrm{mmol}$) in THF at $0^{\circ} \mathrm{C}$ was added 12.5 mL of 1 M lithium hexamethyl disilazide in THF. After 30 min at room temperature, $2.30 \mathrm{~g}(12.5 \mathrm{mmol})$ of n-butyl iodide was added and the mixture stirred overnight at room temperature. After workup, the product was purified by chromatography (10% EtOAc in hexane) and gave 2.75 g (86%) of the title compound.

3-(Benzyloxy)-2-[N-butyl- \boldsymbol{N}-[$\left[2^{\prime}\right.$-[2-(triphenylmethyl)-2H-tetrazol-5-yl]biphenyl-4-yl]methyl]amino]pyridine (59, $\left.\mathbf{X}=\mathbf{O C H}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathbf{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}\right)$. Compound $64(1.35 \mathrm{~g}, 5.3 \mathrm{mmol})$ was reacted with 10 ($3.54 \mathrm{~g}, 5.3 \mathrm{mmol}$) by the same method as 64 itself was prepared (above). The product was purified by chromatography (10% EtOAc in hexane) to give $2.40 \mathrm{~g}(62 \%)$ of the title compound.

3-Hydroxy-2-[N-butyl- N-[$\left[2^{\prime}\right.$-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]amino]pyridine (32kk). The compound above was detritylated by method A in 76% yield. This compound ($200 \mathrm{mg}, 0.41 \mathrm{mmol}$) was hydrogenated for 7 h at 1 atm at room temperature in 100 mL of EtOAc containing 3 mL of $\mathrm{Et}_{3} \mathrm{~N}$, using 100 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ as catalyst. The product was purified by chromatography ($5 \% \mathrm{MeOH}, 0.5 \% \mathrm{AcOH}$, in CHCl_{3}) to get 158 mg (96%) of 32 kk .

3-Acetoxy-2-[N-butyl- N-[[2'-(1H-tetrazol-5-yl]biphenyl-$4-\mathrm{yl}$]methyl]amino]pyridine (32 pp). Compound 32 kk (75 mg , 0.19 mmol) in 2 mL of DMF and 2 mL of pyridine was treated with 2 drops of acetic anhydride. After 1 h of stirring at room temperature, the solution was concentrated, dissolved in ether, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give 41 $\mathrm{mg}(53 \%)$ of 32 pp.

3-[[(Methylamino) carbonyl]oxy]-2-[N-butyl- \boldsymbol{N}-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]amino]pyridine (32mm). To compound 32 kk ($32 \mathrm{mg}, 0.08 \mathrm{mmol}$), in 1 mL of DMF and 0.2 mL of $\mathrm{Et}_{3} \mathrm{~N}$, were added two drops of methyl isocyanate. After 2 h , the solution was concentrated and the residue chromatographed ($5 \% \mathrm{MeOH}, 0.5 \% \mathrm{AcOH}$ in CHCl_{3}) to get 16 $\mathrm{mg}(49 \%)$ of 32 mm .
2-[\boldsymbol{N}-Butyl- \boldsymbol{N}-[$\mathbf{2}^{\prime}$-($1 \boldsymbol{H}$-tetrazol-5-yl)biphenyl-4-yl]meth-yl]amino]pyridine-3-yl Phosphate (32nn). Compound 32kk ($25 \mathrm{mg}, 0.06 \mathrm{mmol}$) was stirred 2.5 h with 0.5 mL of pyridine and 3 drops of POCl_{3}. After cooling to $0^{\circ} \mathrm{C}, 10$ drops of water and 3 drops of 1 N NaOH were added, and then the solution was stirred at room temperature for 1 h . The product was purified by reverse-phase HPLC, eluting with a gradient of 0 to 70% acetonitrile in 0.1% aqueous trifluoroacetic acid to afford 4 mg (15%) of 32 nn .

2-[\mathbf{N}-Butyl- \boldsymbol{N}-[[2'-[2-(triphenylmethyl)-2 \boldsymbol{H}^{\prime}-tetrazol-5-yl]-biphenyl-4-yl]methyl]amino]-4,6-dimethylpyrimidine (Trityl 67). 2-(Butylamino)-4,6-dimethylpyrimidine ${ }^{25}$ ($968 \mathrm{mg}, 5.41$ mmol) was reacted with $10(2.52 \mathrm{~g}, 4.52 \mathrm{mmol})$ using the method used to convert 30 to 31 . The product was purified by chromatography (2% ether in toluene), giving $1.65 \mathrm{~g}(55 \%)$ of the title compound, $\mathrm{mp} 131-133^{\circ} \mathrm{C}$.

4-[\boldsymbol{N}-Butyl- \boldsymbol{N}-[$\mathbf{2}^{\prime}$-[2-(triphenylmethyl)-2 \mathbf{H}-tetrazol-5-yl]-biphenyl-4-yl]methyl]amino]-2,6-dimethylpyrimidine (Trityl 65). 4-(Butylamino)-2,6-dimethylpyrimidine ${ }^{25}$ ($806 \mathrm{mg}, 4.50$ mmol) was reacted with 10 ($2.10 \mathrm{~g}, 3.76 \mathrm{mmol}$) using the method used to convert 30 to 31 . The product was purified by chromatography (40% EtOAc in toluene), giving $1.55 \mathrm{~g}(63 \%)$ of the title compound, $\mathrm{mp} 125-127^{\circ} \mathrm{C}$.
2-[N-Propyl- \boldsymbol{N}-[[2'-[2-(triphenylmethyl)-tetrazol-5-yl]bi-phenyl-4-yl]methyl]aminolpyrimidine (Trityl 69). 2-Bromopyrimidine ($1.00 \mathrm{~g}, 6.28 \mathrm{mmol}$), amine $12\left(\mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}\right)(2.00$ $\mathrm{g}, 3.74 \mathrm{mmol})$, and diisopropyl ethylamine ($1.00 \mathrm{~g}, 7.75 \mathrm{mmol}$) were refluxed 10 h in 3.5 mL of acetonitrile. Toluene was added and the mixture washed with NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Chromatography ($4 \% \mathrm{EtOH}$ in toluene) gave 1.64 $\mathrm{g}(71 \%)$ of the title compound, $\mathrm{mp} 133-134^{\circ} \mathrm{C}$.

Methyl 2-[N-Propyl- \boldsymbol{N}-[(2'-carbomethoxybiphenyl-4-yl)methyl]amino]pyridine-3-carboxylate ($71, \mathbf{R}=\mathbf{C H}_{3}$). Methyl (2-propylamino) nicotinate (30) ($194 \mathrm{mg}, 1.0 \mathrm{mmol}$) was reacted with bromide $70^{12}(381 \mathrm{mg}, 1.0 \mathrm{mmol})$; using the same method described above in which 30 was reacted with 10 to give 31. The product was purified by chromatography (30% EtOAc in hezane) to give $367 \mathrm{mg}(88 \%)$ of $71\left(\mathrm{R}=\mathrm{CH}_{3}\right)$.

Methyl 2-Hydroxy-6-(benzyloxy)benzoate. 2,6-Dihydroxybenzoic acid was esterified with diazomethane in 60% yield. This ester ($500 \mathrm{mg}, 2.97 \mathrm{mmol}$) in 5 mL of THF was added to a suspension of sodium hydride (120 mg of 60% dispersion washed with THF, 2.97 mmol) in 2 mL of THF. After 10 min benzyl bromide ($0.354 \mathrm{~mL}, 2.97 \mathrm{mmol}$) and 5 mg of tetrabutylammonium iodide were added. After 2 h of refluxing, the solution was added to NaHCO_{3} solution, and extracted with EtOAc. The product was purified by chromatography (10% ether in hexane) to yield $230 \mathrm{mg}(30 \%)$ of the title compound.

Methyl 2-Trifloxy-6-(benzyloxy)benzoate (73). To a stirred solution of the above phenol ($230 \mathrm{mg}, 0.89 \mathrm{mmol}$), in 1.2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.35 (4.45 mmol) pyridine, and cooled to $0^{\circ} \mathrm{C}$, was added $0.18 \mathrm{~mL}(1.02 \mathrm{mmol})$ of trifluoromethanesulfonic anhydride. After 30 min at $0^{\circ} \mathrm{C}$ and 2 h at room temperature, ether was added and the solution washed with NaHCO_{3}, water, 3 N HCl , and again water and dried $\left(\mathrm{MgSO}_{4}\right)$. After concentration, the residue was chromatographed (18% ether in hexane) to yield $177 \mathrm{mg}(51 \%)$ of 73.

Methyl 2-(Benzyloxy)-4'-methylbiphenyl-2-carboxylate (74). To a stirred solution of $73(498 \mathrm{mg}, 1.26 \mathrm{mmol})$ in 3 mL of toluene was added $64 \mathrm{mg}(0.06 \mathrm{mmol})$ of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}$. After 10 $\mathrm{min}, 3 \mathrm{~mL}$ of 2 M aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added followed by a solution of 4-methylphenylboronic acid ($256 \mathrm{mg}, 1.51 \mathrm{mmol}$) in 1.5 mL ethanol. The resulting mixture was stirred rapidly under reflux for 1 h . The mixture was cooled to room temperature and phases separated. After concentration, the residue was purified by chromatography (20% ether in hexane) to give $410 \mathrm{mg}(96 \%)$ of 74.

Methyl 2-[(tert-Butyldimethylsilyl)oxy]-4'-methylbi-phenyl-2-carboxylate. Compound 74 ($406 \mathrm{mg}, 1.22 \mathrm{mmol}$) was hydrogenated at 1 atm in 4 mL of methanol over 150 mg of 10% Pd / C to give 242 mg ($1.0 \mathrm{mmol}, 82 \%$) of the 2-hydroxy compound. This was dissolved in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and treated with 2,6lutidine ($174 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and tert-butyldimethylsilyl trifluoromethanesulfonate ($252 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$). The mixture was stirred 10 min , diluted with ether, washed with 1 M HCl , water, NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The product was chromatographed (5% ether in hexane) to give $315 \mathrm{mg}(88 \%$) of the title compound.
Methyl 2-[(tert-butyldimethylsilyl)oxy]-4'-(bromometh-yl)biphenyl-2-carboxylate. The 4'-methyl compound (above) ($312 \mathrm{mg}, 0.87 \mathrm{mmol}$), N-bromosuccinimide ($156 \mathrm{mg}, 0.87 \mathrm{mmol}$), and AIBN (2 mg) were refluxed 3 h in of CCl_{4}. The mixture was cooled to room temperature, filtered, and concentrated. The product was chromatographed (5% ether in hexane) to give 284 $\mathrm{mg}(75 \%)$) of the title compound. NMR analysis showed 3% CH_{3} and $10 \% \mathrm{CHBr}_{2}$ impurities.

Methyl 2-[N-Propyl- N-[$\left[2^{\prime}\right.$-carbomethoxy- $\mathbf{3}^{\prime}$-[(tert-bu-tyldimethylsilyl)oxy]biphenyl-4-yl]methyl]amino]pyridine-3-carboxylate (75). Compound $30\left(R=H, R^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}^{\prime \prime}=\right.$ CH_{3}) ($106 \mathrm{mg}, 0.55 \mathrm{mmol}$) was alkylated with the above described bromomethyl compound ($280 \mathrm{mg}, 0.55 \mathrm{mmol}$) using the same method used when alkylating with 10 . The product was purified by chromatography (30% EtOAc in hexane) to give $90 \mathrm{mg}(30 \%)$ of 75 .

2-[\boldsymbol{N}-Propyl-N-[(2'-carboxy-3'-hydroxybiphenyl-4-yl)-methyl]amino]pyridine-3-carboxylic Acid (76). Compound $75(40 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 0.5 mL of THF was treated with 0.2 mL (0.2 mmol) of a 1 M solution of tetrabutylammonium fluoride. The mixture was stirred 30 min , poured into brine, extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to get 31 mg of the diester of 76. This was refluxed overnight in 1 N NaOH in water, methanol, and THF. After cooling, the mixture was acidified to $\mathrm{pH}=2$ with 1 N HCl to give $25 \mathrm{mg}(86 \%)$ of 76 .

Radioligand Binding. The binding of [$\left.{ }^{1255} \mathrm{I}\right]$-Saralasin (NEN) to angiotensin II (type 1) receptors in rat liver was performed as described by S.J.Fluharty. ${ }^{26}$ Rat liver membranes were prepared as described by D. M. Nelville Jr. ${ }^{27}$ and assayed using $1 \mu \mathrm{M}$ angiotensin to define nonspecific binding. The binding of [$\left.{ }^{125} \mathrm{I}\right]-$ Tyr ${ }^{4}$ angiotensin II (NEN) to type 2 receptors in bovine cerebellum was performed using a kit (NED-001) obtained from New England Nuclear.

Compounds were tested at multiple concentrations as required and analyzed as previously described. ${ }^{28}$
$\mathbf{p} A_{2}$ Determination in the Rabbit Aorta. The method used was that of Chiu ${ }^{29}$ with the exception in that aortic rings were used instead of spiral strips. The $\mathrm{p} A_{2}$ calculation was done by the method of Schild. ${ }^{36}$ For a full $\mathrm{p} A_{2}$ determination, several doses of the drug was used and a Schild plot (log concentration of drug vs $\log \mathrm{EC}_{50}$ ratio-1) was made. The EC_{50} ratio equals the EC_{50} of angiotensin II with the drug, divided by the EC_{50} of angiotensin II alone. For competitive antagonists, the slope of this plot should be between 0.90 and 1.15. For an estimated pA_{2}, (sometimes known as $\mathrm{p} K_{\mathrm{b}}$) the drug was tested at a single concentration of 10^{-7} molar. Then, assuming the slope of the

Schild plot to be 1.00 , the estimated $p A_{2}=\log \left(E D_{60}\right.$ ratio-1 $) / 10^{-7}$ $=7+\log \left(\mathrm{EC}_{50}\right.$ ratio-1)

Oral Antihypertensive Activity in the Renal Artery Ligated Hypertensive Rat Model. The conscious renal hypertensive rat model was used to evaluate the compounds. Male Sprague-Dawley rats ($300-350$ g) were used, and the method reported by Cangiano et al. ${ }^{30}$ for renal artery ligation was employed to induce hypertension. Rats were used on the 6th or 7 th day after renal artery ligation. Arterial blood pressure was measured from the indwelling femoral artery catheter. Data of blood pressure and heart rate were determined on line using a Buxco Cardiovascular Analyzer (Buxco Electronics Inc, Sharon, CT).

Oral Antihypertensive Activity in the Furosemide Treated Spontaneously Hypertensive Rat. Male SHR, 20-24 weeks old, were pretreated with furosemide, $10 \mathrm{mg} / \mathrm{kg} \mathrm{sc}$, at 22 and 4 h prior to the experiment. Measurements of arterial blood pressure and heart rate were similar to those described for the experiment with the renal artery ligated hypertensive rat.

Pharmacokinetics. The pharmacokinetic behavior of selected A-II antagonists was evaluated in male Sprague-Dawleyderived rats. The A-II antagonists were prepared as solutions in normal saline at concentrations appropriate to provide a 1 $\mathrm{mL} / \mathrm{kg}$ volume for both intravenous and oral dosing. Each compound was administered as either a slow bolus intravenous dose in the jugular vein or as a oral dose (administered by gavage). Heparinized blood samples ($\sim 0.4 \mathrm{~mL}$) were obtained from a tail vein of each rat at 0.1 (iv only), $0.25,0.5,1,2,4,6,9,12,15$, and 24 h after dosing. The samples were analyzed by reverse-phase HPLC following liquid-liquid extraction from the plasma. Initial estimates of the pharmacokinetic parameters for NONLIN84 ${ }^{33}$ were obtained with the program CSTRIP. ${ }^{34}$ Area under the curve (AUC) values were calculated by the trapezoidal rule over the time course of the study. The terminal-phase rate constant (β) was used in the extrapolation of the AUC from 0 h to infinity (AUC $0-\infty$). The total plasma clearance (CL_{p}) was calculated by dividing the dose by the AUC. Assuming dose proportionality and correcting for the differences in dosing, a comparison of the AUC following oral dosing with that obtained following intravenous dosing provided an estimate of the bioavailability (F).

References

(1) For prehminary communication, see: De, B.; Winn, M.; Zydowsky, T. M.; Kerkman, D. J.; DeBernardis, J. F.; Lee, J.; Buckner, S.; Warner, R.; Brune, M.; Hancock, A.; Opgenorth, T.; Marsh, K. Discovery of a Novel Class of Orally Active Non-Peptide Angiotensin II Antagonists. J. Med. Chem. 1992, 35, 3714-3717.
(2) Furakawa, Y.; Kishimoto, S.; Nishikawa, K. U.S. Patents 4,340,598 and $4,355,040,1982$.
(3) Duncia, J. V.; Carini, D. J.; Chiu, A. T.; Johnson, A. L.; Price, W. A.; Wong, P. C.; Wexler, R. R.; Timmermans, P. B. M. W. M. The Discovery of DUP-753, a Potent, Orally Active Nonpeptide Angiotensin II Antagonist. Med. Res. Rev. 1992, 12, 149-191.
(4) Mantlo, N. B.; Chakravarty, P. K.; Ondeyka, D. L.; Siegl, P. K. S.; Chang, R. S.; Lotti, V. J.; Faust, K. A.; Chen, T. B.; Schorn, T. W.; Sweet, C. S.; Emmert, S. E.; Patchett, A. A.; Greenlee, W. J. Potent, Orally Active Imidazo[4,5-b]pyridine Based Angiotensin II Receptor Antagonists. J. Med. Chem. 1991, 34, 2919-2922.
(5) Allen, E. E.; Huang, S. X.; Chang, R. S. L.; Lotti, V. J.; Siegl, P. K. S.; Patchett, A. A.; Greenlee, W. J. Substituted Pyrazolo[1,5-a] pyrimidines as Potent Orally Active Angiotensin II Receptor Antagonists. Abstracts, Fourth Chemical Congress of North America, New York, NY, Aug 25-30, 1991; American Chemical Society: Washington, DC, 1991; Medicinal Chem. no. 104.
(6) Ashton, W. J.; Hutchins, S. M.; Greenlee, W. J.; Doss, G. A.; Chang, R. S. L.; Lotti, V. J.; Kivlighn, S. D.; Siegl, P. K. S. 1-Substituted-3-Alkyl-1H-Pyrazole-5-Carboxylic Acids as Potent Angiotensin II Antagonists Abstracts, American Chemical Society National Meeting, San Francisco, CA, April 5-10, 1992; American Chemical Society: Washington, DC, 1992; no. 168.
(7) Middlemiss, D.; Drew, M.; Ross, B.; Robertson, M.; Eldred, C.; Panchal, T.; Watson, S.; Hilditch,T.; C-Linked Pyrazoles as Potent Orally Active Antagonists of Angiotensin II. Abstracts American Chemical Society National Meeting, San Francisco CA, April 5-10, 1992; American Chemical Society: Washington, DC, 1992; no. 171.
(8) Oldham, A. A.; Allott, C. P.; Major, J. S.; Pearce, R. J.; Roberts, D. A.; Russell, S. T. ICI D8731 A Novel Potent Orally Effective Angiotensin II Antagonist. Brit. J. Pharmacol. 1992, Suppl. 83P.
(9) Bradbury, R. H.; Edwards, M. P.; Luke, R. W. A.; Major, J. S.; Oldham, A. A.; Pearce, R. J.; Roberts, D. A. Potent Orally Active 1,5-Naphthyridine Angiotensin II Receptor Antagonists. Abstracts, Fourth Chemical Congress of North America, New York, NY, Aug 25-30, 1991, American Chemical Society: Washington, DC, 1991; Medicinal Chem. no. 102.
(10) Olins, G.M.;Corpus, V.M.;McMahon, E. G.;Palomo, M. A.;Schuh, J. R.; Blehm, D. J.; Huang, H. C.; Reitz, D. B.; Manning, R. E.; Blaine, E. H. In-Vitro Pharmacology of a Non Peptidic Angiotensin II Receptor Antagonist, SC-51316. J. Pharmacol.Exp. Ther. 1992, 261, 1037-1043.
(11) Yamanaka, H.; Mizugaki, M.; Sagi, M.; Edo, K. Synthesis and Metabolism of 5-Alkyl pyrimidine-2-Carbozylic Acids. Heterocycles 1979, 12, 1323-1326.
(12) Carini, D. J.; Duncia, J. V.; Aldrich, P. E.; Chiu, A. T.; Johnson, A. L.;Pierce, M. E.; Price, W. A.; Santella, J.B.; Wells, G. J.; Wezler, R. R.; Wong, P. C.; Yoo, S-E.; Timmermans, P.B.M.W.M. Nonpeptide Angiotensin II Receptor Antagonists: The Discovery of a Series of N-(Biphenylmethyl) imidazoles as Potent, Orally Active Antihypertensives. J. Med. Chem. 1991, 34, 2525.
(13) Taylor, E. C.; Martin, S.F.Synthesis of Some 7-Aryl-6-Azapteridines from 1,2,4-Triazine Intermediates. J. Org. Chem. 1972, 37, 39583960.
(14) Liang, P. H. Herbicidal Pyridinesulfonylureas. U.S. Patent 4,808,721, Feb 28, 1989.
(15) Matsumato, H.; Miyamoto, T.; Egawa, H.; Tskasa, Y. Japanese Patent Application 82/72981, May 7, 1982.
(16) Panzer, H. P. Imidazolines and a Method for their Production. U.S. Patent 4,007,200, Feb 8, 1977.
(17) Kuraishi, T. 4,5-Substituted Pyridazines. III Oxidation and Solvolysis of 4-Methyl-3,6-dichloropyridavine. Chem.Pharm. Bull. 1957, 5, 587-589.
(18) Baldwin, J. J.; Raab, A. W.; Ponticello, G. S. Utilization of $\beta, \gamma-$ Unsaturated Aldehyde Equivalents in the Synthesis of Substituted 2-Halonicotinic Acid Derivatives. J. Org. Chem. 1978, 43, 25292535.
(19) Ross, W. C. J. The Preparation of Some 4-Substituted Nicotinic Acids and Nicotinamides. J. Chem. Soc. (C) 1966, 1816-1821.
(20) Crum, J. D.; Fuchsman, C. H. The Chemistry of Heterocycles IV. 2H-Pyrido[4,3-e]-1,3-oxazine-2,4 (3H)-dione. J. Heterocycl. Chem. 1966, 3, 252-256.
(21) Dyer, E.; Johnson, T. B. Researches on Pyrimidines CXL. Pyrimidines Derived from CarbethoxymalonicAldehyde. J. Am. Chem. Soc. 1934, 56, 222-225.
(22) Dick, G. P. G.; Wood, H. C. S. Pteridine Derivatives Part I A New Synthesis of 2-Amino-4-hydroxypteridines. J. Chem. Soc. 1955, 1375-1382.
(23) Sherlock, M. H. 1-Phenyl-1,8-naphthyrid-2(1H)-ones. U.S. Patent 4,492,702, Jan 8, 1985.
(24) Dess, D. B.; Martin, J. C. Readily Accessible 12-I-5 Oxidant for the Conversion of Primary and Secondary Alcohols to Aldehydes and Ketones. J. Org. Chem. 1983, 48, 4155-4156.
(25) Brown, D. J.; Lyall, J. M. Pyrimidine Reactions. Aust. J. Chem. 1964, 17, 794-802.
(26) Fluharty, S. J.; Reagan, L. P. Characterization of Binding Sets for the Angiotensin II Antagonist $\left.{ }^{125}\right]$-[Sar ${ }^{1}$, Ile $\left.{ }^{8}\right]$ Antiotensin II on Murine Neuroblastoma N1E-115 Cells. J. Neurochem. 1989, 52, 1393-1400.
(27) Neville, D. M., Jr. Isolation of an Organ Specific Protein Antigen from Cell-surface Membrane of Rat Liver. Biochimic. Biophysic. Acta 1968, 154, 540-552.
(28) (a) Hancock, A. A.; DeLean, A. L.; Lefkowitz, R. J. Quantitative Resolution of beta-Adrenergic Receptor Subtypes by Selective Ligand Binding: Application of a Computer Model-fitting Technique. Mol. Pharmacol. 1979, 16, 1-9. (b) De Lean, A. L.; Ong, H.; Gutowska, J.; Schiller, P. W.; McNicoll, N. Evidence of Agonistinduced Interaction of Angiotensin Receptor with a Guaninenucleotide Binding Protein in Bovine Adrenal Zona Glomerulosa. Mol. Pharmacol. 1984, 26, 498-508.
(29) Chiu, A. T.; Carini, D. J.; Johnson, A. L.; McCall, D. E.; Price, W. A.; Thoolen, M. J. M. C.; Wong, P. C.; Taber, R. I.; Timmermans, P.B.M.W.M. Non-peptide Angiotensin II Antagonists. Pharmacology of S-8308. Eur. J. Pharmacol. 1988, 157, 13-21.
(30) Cangiano, J. L.; Rodriguez-Sargent, C.; Martinez-Maldonado, M. Effects of Antihypertensive Treatment on Systolic Blood Pressure and Renin in Experimental Hypertension in Rats. J. Pharmacol. Exp. Ther. 1979, 208, 310-313.
(31) Daves, G. D.; Baiocchi, F.; Robins, R. K.; Cheng, C. C. Pyrimidines II. Orotic Acid Analogs. J. Org. Chem. 1961, 26, 2755-2763.
(32) Fieser, L. F.; Fieser, M. Advanced Organic Chemistry; Reinhold Publishing Co.: New York, 1961; p 792.
(33) Statistical Consultants, Inc. PCNONLIN and NONLIN84: Software for the Statistical Analysis of Nonlinear Models. Am. Stat. 1986, 40, 52.
(34) Sedman, A. J.; Wagner, J. G. CSTRIP-A FORTRAN Computer Program for Obtaining Initial Polyexponential Estimates. J. Pharm. Sci. 1976, 65, 1006-1010.
(35) Arunlakshana, O. and Schild, H. O. Some Quantitative Uses of Drug Antagonista. Br. J. Pharmacol. 1959, 14, 48-58.
(36) Schild, H. O. pA, A New Scale for the Measurement of Drug Antagonism. Br. J. Pharmacol. 1947, 2, 189-206.

[^0]: * Address correspondence to Abbott Laboratories, Dept 47V, AP-10, One Abbott Park Road, Abbott Park, Illinois 60064.

