Synthesis and Antiviral Activity of 2^{\prime}-Substituted 9-[2-(Phosphonomethoxy)ethyl]guanine Analogues

Kuo-Long Yu," Joanne J. Bronson, ${ }^{*}$ Hyekyung Yang, Amy Patick, Masud Alam, Vera Brankovan, Roelf Datema, ${ }^{\dagger}$ Michael J. M. Hitchcock, ${ }^{\ddagger}$ and John C. Martin ${ }^{\ddagger}$
Bristol-Myers Squibb Company, Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, Connecticut 06492-7660
Received April 20, 1993 ${ }^{\circ}$

Abstract

A series of 2^{\prime}-substituted derivatives of 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG, 1) have been synthesized and evaluated in vitro for anti-human immunodeficiency virus (HIV) activity in the XTT assay and for anti-herpes activity in the plaque reduction assay. It has been observed that the anti-HIV activity of these derivatives depends on the size and the nature of the substituent as well as the chirality at the 2 'position of PMEG. In addition, these compounds generally demonstrated greater activity against HIV than herpes viruses. The most interesting analogues which emerged from these studies are (R)-2'-(azidomethyl)-PMEG [(R)-5] and (R)-2'-vinyl-PMEG [(R)-11]. The former showed anti-HIV activity with an IC_{50} of $5 \mu \mathrm{M}$ and a cytotoxicity $\left(\mathrm{CC}_{50}\right)$ greater than 1.4 mM in CEM cells. The latter has an IC_{50} of $13 \mu \mathrm{M}$ for anti-HIV activity and a CC_{50} of greater than 1.6 mM . Furthermore, we have demonstrated that replacement of the guanine base of these 2 'substituted PMEG analogues with cytosine drastically reduces anti-HIV and anti-herpes activity.

Introduction

The initial report of the antiviral activity of (phosphonomethoxy)alkyl nucleotide analogues ${ }^{1}$ has prompted several investigations exploring the structure-activity relationships for this exciting class of antiviral agents. As is the case for the well-studied nucleoside analogue family of antiviral agents, these nucleotide analogues most likely exert their antiviral effect following sequential activation to the corresponding triphosphate analogues. ${ }^{2}$ However, as mimics of nucleoside monophosphates, these derivatives bypass the first and often rate-limiting step in the activation process, and therefore have the potential for greater potency and a broader spectrum of activity. The most potent member of this class reported to date is $9-[2-$ (phosphonomethoxy)ethyllguanine (PMEG, 1). ${ }^{3}$ This acyclic guanine derivative shows in vitro activity against both herpes viruses and retroviruses such as human immunodeficiency virus (HIV). In vivo, PMEG is significantly more potent than acyclovir against herpes simplex virus (HSV) types 1 and 2, showing activity at doses as low as $0.1 \mathrm{mg} / \mathrm{kg} /$ day. However, PMEG also shows substantial toxicity at doses higher than $5 \mathrm{mg} / \mathrm{kg} /$ day and as a result has a narrower margin of safety than acyclovir.

A number of studies have appeared on efforts aimed at modifying the PMEG skeleton to provide new antiviral agents with improved selectivity. ${ }^{4}$ One of the most promising derivatives to be identified from our studies is $(R)-2$-methyl-PMEG [(R)-2]. While this compound was somewhat less potent against HIV and HSV 2 than PMEG in vitro, it showed significantly reduced cytotoxicity, thus demonstrating that antiviral activity and cellular toxicity could be varied independently. The corresponding (S)isomer of 2 '-methyl-PMEG was less potent and less selective as an anti-HIV agent. In the present report, we describe work focusing on additional modifications at the 2 '-position of PMEG (Chart I). One derivative of this

[^0]
Chart I

type, 9 -[3-hydroxy-2-(phosphonomethoxy)propyl]guanine (HPMPG, 3), has already been described. ${ }^{4,5}$ We were interested in evaluation of a series of guanine derivatives bearing other heteroatom substituents ${ }^{6}$ attached by methylene and ethylene linkers at the 2 '-position, and have also examined the effect of increasing the size of a hydrophobic substituent at the 2^{\prime}-position. In most of the cases, both enantiomers of these PMEG analogues were synthesized in order to evaluate the effects of orientation of the substituent on biological activity. Based on the promising activity of (S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine [(S)-HPMPC, (S)-4], ${ }^{5 \mathrm{a}, 7}$ we also prepared several cytosine derivatives bearing a variety of substituents at the 2^{\prime}-position. This report describes the synthesis and in vitro antiviral activity of these novel 2^{\prime}-substituted (phosphonomethoxy)ethyl derivatives.

Chemistry

All of the analogues described in this report were prepared from the enantiomerically pure starting mate-

Scheme Ia

Scheme IIa

${ }^{a}$ (a) 2,4-Dimethyl-3-pentanone, TsOH ; (b) $\mathrm{BnBr}, \mathrm{NaOH} ; 1.5 \mathrm{M}$ $\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{MMt}^{2} \mathrm{Cl}, \mathrm{Et} \mathrm{E}_{3}$; (c) $\mathrm{NaH}, \mathrm{TsOCH} 2 \mathrm{PO}(\mathrm{O}-i-\mathrm{Pr})_{2}, \mathrm{H}^{+}$; (d) MsCl^{2}, $\mathrm{Et}_{3} \mathrm{~N}$.
rials, and no racemization was found in the preparation of these chiral analogues. ${ }^{8}$ The general strategy employed for the synthesis of 2 'substituted PME analogues listed in Chart I involves coupling of the corresponding mesylates of the phosphonate side chains with a purine or pyrimidine base. An exception was 2 '(chloromethyl)-PMEG (7), which was prepared by functionalization of an intact guanine derivative bearing a free hydroxy group. The syntheses of the required mesylate side chains are depicted in Schemes I-III. For the 2^{\prime}-azidomethyl analogue, nucleophilic substitution of mesylate 23^{4} with NaN_{3} in DMF ${ }^{9}$ at $105^{\circ} \mathrm{C}$ afforded 24 in 78% yield (Scheme I). Initial attempts to prepare fluoromethyl intermediate 25 by treating 22^{4} with diethylamidosulfur trifluoride (DAST) ${ }^{10}$ in methylene chloride resulted in significant elimination and many side products. On the other hand, mesylate 23 reacted smoothly with anhydrous tetrabutylammonium fluoride ${ }^{11}$ in THF at room temperature to provide 25 in 77% yield. The trace of the elimination product which formed was easily separated by acidic hydrolysis of the product mixture followed by silica gel chromatography. Removal of the benzyl protecting group of 24 and 25 with $\mathrm{BCl}_{3}{ }^{12}$ gave 26 and 27 , respectively. Conversion to mesylates 28 a and 28 b proceeded in excellent yields upon treatment with mesyl chloride followed by addition of $\mathrm{Et}_{3} \mathrm{~N}$. It is worth noting that the addition sequence of reagents is critical to obtain high yields and purity of the product in the mesylation reactions.

Scheme III ${ }^{\text {a }}$

(a)

(b)

(c)

${ }^{a}$ (a) MOM-Cl, diisopropylethylamine; cyclohexene, $\mathrm{Pd}(\mathrm{OH})_{2}$; (b) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$; (c) NaN_{3}; (d) TBAF; (e) $\mathrm{CSA}-\mathrm{MeOH}$; (f) 2-nitrophenyl selenocyanate, $\mathrm{P}(\mathrm{n}-\mathrm{Bu})_{3} ; \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH} ;(\mathrm{g}) \mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Pd}(\mathrm{OAc})_{2}$; (h) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$, imidazole; (i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$.

For the preparation of side chains of the 2^{\prime}-ethyl substituted PME derivatives, alcohol 32 served as a common intermediate. Initial attempts to selectively protect the 1-hydroxy group of (S)-1,2,4-butanetriol using dibutyltin oxide ${ }^{13}$ and benzyl bromide produced a $2: 1$ mixture of 1 - and 4-O-benzyl 1,2,4-butanetriol. However, separation of these two regioisomers proved very tedious. Alternatively, a modified procedure of Clive ${ }^{14}$ using 2,4-dimethyl-3-pentanone and TsOH in refluxing benzene resulted in selective protection of the 1,2-diol of (S)-1,2,4butanetriol as a ketal to give 29 in 84% yield. Purification by flash chromatography afforded the desired product, free of the isomeric six-membered ketal. Interestingly, when the same reaction was carried out in refluxing toluene instead of benzene, the hemiketal which resulted from reaction of 4 -hydroxy moiety of 29 with 2,4 -dimethyl-3pentanone was the only product. Phase-transfer alkylation of 29 with benzyl bromide followed by acidic hydrolysis of the resulting ketal provided diol $\mathbf{3 0}$ in 92% yield. The primary hydroxyl group of 30 was selectively protected with monomethoxyltrityl chloride ($\mathbf{M M t - C l}$) to give 31. O-Alkylation of 31 with NaH and diisopropyl tosylmethanephosphonate ${ }^{7}$ followed by removal of the MMt-pro-

Scheme IV ${ }^{\text {a }}$

(a)

28 a $\begin{array}{ll}\mathrm{R}=\mathrm{CH}_{2} \mathrm{~N}_{3} \\ b & R=\mathrm{CH}_{2} \mathrm{~F}\end{array}$
c $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OBn}$
d $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$
- $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
I $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
g $R=-$
h $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}$
41 a $\mathrm{R}=\mathrm{CH}_{2} \mathrm{~N}_{3}$
b $R=\mathrm{CH}_{2} \mathrm{~F}^{2}$
c $R=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OBn}$
d $R=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$
R $=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
$i \mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2}$
i $\mathrm{R}=\mathrm{CH}^{-}=\mathrm{CH}_{2}$
g $\mathrm{R}=-$
$\begin{array}{ll}g \\ h & R=-\mathrm{CH}_{2} \mathrm{CH}_{3}\end{array}$

$5 \quad \mathrm{R}=\mathrm{CH}_{2} \mathrm{~N}_{3}$
$\begin{array}{ll}6 & \mathrm{R}=\mathrm{CH}_{2} \mathrm{~F} \\ 8 & \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OBn}\end{array}$
$\begin{array}{ll}8 & R=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OB} \\ 9 & R=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\end{array}$
$9 \quad \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$
$10 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
$11 \mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
$12 \quad R=$
(b)

a (a) 2-Amino-6-chloropurine, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$; (b) TMSBr; $\mathrm{H}_{2} \mathrm{O}$; (c) aqueous HCl ; (d) cytosine, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$; (e) BCl_{3}.
tecting group furnished intermediate 32 in modest yield. Treatment of 32 with mesyl chloride afforded 28 c in 98% yield.

Elaboration of intermediate 32 to other substituted side chains is described in Scheme III. Protection of the hydroxyl group of 32 as a methoxymethyl (MOM) ether ${ }^{15}$ (33), followed by catalytic transfer hydrogenation using cyclohexene and Pearlman's catalyst, ${ }^{16}$ provided 34 (96% yield for two steps) (Scheme IIIa). Alcohol 34 was converted to mesylate 35 by treatment with mesyl chloride and triethylamine. Nucleophilic displacement of the mesylate group with azide or fluoride gave 36 and 37 ,
respectively. The MOM group was removed upon hydrolysis with camphorsulfonic acid in MeOH , and the resulting alcohols were converted into the corresponding mesylates 28d and 28e in excellent yields. Dehydration of 34 was achieved in two steps by reaction with 2 -nitrophenyl selenocyanate ${ }^{17}$ and tributylphosphine followed by oxidative elimination with $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{NaOH}$ to afford 38 in 77% yield (Scheme IIIb). Deprotection of the MOM ether and conversion of the resulting alcohol to a mesylate gave 28f. Cyclopropanation of $\mathbf{2 8 f}$ was effected by treatment with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{18}$ to provide $\mathbf{2 8 g}$ in quantitative yield. Ethyl derivative 28 h was prepared from alcohol 34 (Scheme IIIc) by reaction with CBr_{4} and triphenylphosphine ${ }^{19}$ followed by reduction of the resulting bromide 39 to provide 40. Attempted use of an iodide intermediate was unsuccessful: formation of a complex product mixture resulted upon reaction of mesylate 35 with NaI in refluxing acetone or when 34 was treated with iodine-triphenylphosphine and imidazole in the presence or absence of $\mathrm{Et}_{3} \mathrm{~N}$. Compound 40 was smoothly transformed into mesylate 28 h using the method described above.
The mesylate side chains shown in Schemes I-III were coupled to 2 -amino-6-chloropurine or cytosine in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}{ }^{4}$ togive the corresponding phosphonate nucleotides as depicted in Scheme IV. For the guanine derivatives $41 \mathrm{a}, \mathrm{b}, \mathrm{d}-\mathrm{h}$, cleavage of the phosphonate esters was effected by treatment with trimethylsilyl bromide $(\mathrm{TMSBr})^{20}$ in acetonitrile. The resulting 2 -amino-6chloropurine phosphonic acids were heated at reflux in aqueous HCl to provide target compounds 5, 6, and 9-13 (Scheme IVa). For preparation of the 2^{\prime}-hydroxyethyl derivative 8 , the above sequence was preceded by treatment with BCl_{3} to remove the benzyl group. Cytosine derivatives 14, 15, and 17-21 were obtained in good yields following TMSBr treatment of intermediates 42a,b,d-h (Scheme IVb). In the case of intermediate 42c, the benzyl group was removed first by treatment of BCl_{3}. Reaction with TMSBr then afforded cytosine derivative 16.
2^{\prime}-(Chloromethyl)-PMEG (7) was prepared from intermediate 43^{4} (Scheme V). Treatment with $\mathrm{MMt-Cl}$ afforded fully protected derivative 44. Heating of 44 at reflux in a mixture of cyclohexene-ethanol in the presence of Pearlman's catalyst resulted in selective removal the O-benzyl groups to provide 45 in 51% yield. Reaction of alcohol 45 with CCl_{4} and PPh_{3}-imidazole ${ }^{21}$ followed by treatment with aqueous acetic acid gave 46 in modest yields. One of the major side products formed in the chlorination reaction was the 6 -imidazole purine derivative. Sequential removal of the amino and the phosphonate protecting groups furnished (S)-7 in 81% yield.

Results and Discussion

The analogues prepared were evaluated for anti-HIV activity using the XTT assay in CEM cells. ${ }^{22}$ Results are shown in Table I. In previous work, we demonstrated that $(R)-2$-methyl-PMEG $[(R)-2]$ is more potent and less toxic than the corresponding (S)-isomer in the XTT assay. ${ }^{4}$ Our objective in this SAR study was to investigate the effects of substitution at the 2^{\prime}-position of PMEG and to see whether enantiomers of these new compounds exerted different biological effects. From Table I it can be seen that substitution on the methyl group of 2^{\prime}-methyl PMEG with an azide or a halogen substituent (5-7) provided derivatives with retained anti-HIV activity (entries 6-11).

Scheme Va

a (a) MMt-Cl, $\mathrm{Et}_{3} \mathrm{~N}$; (b) cyclohexene, $\mathrm{Pd}(\mathrm{OH})_{2}$; (c) $\mathrm{CCl}_{4}, \mathrm{PPh}_{3}$, imidazole; $80 \% \mathrm{AcOH}$; (d) $\mathrm{TMSBr} ; \mathrm{H}_{2} \mathrm{O}$.

Table I. In Vitro Anti-HIV Activity of 2^{\prime}-Substituted PMEG Derivatives

entry	2'-substituent	compd no	$\mathrm{IC}_{50}(\mu \mathrm{M})^{a}$	$\begin{gathered} \mathrm{TC}_{50} \\ (\mu \mathrm{M})^{b} \end{gathered}$	S1 ${ }^{\text {c }}$	$\underset{(\mu \mathrm{M})^{d}}{\mathrm{CC}_{50}}$
1	H	1	0.2	15	75	0.2
2	CH_{3}	(R)-2	1	>500	>500	180
3	CH_{3}	(S)-2	12	300	25	12
4	$\mathrm{CH}_{2} \mathrm{OH}$	(R)-3	500	>500	>1	
5	$\mathrm{CH}_{2} \mathrm{OH}$	(S)-3	>500	350	<1	
6	$\mathrm{CH}_{2} \mathrm{~N}_{3}$	(R)-5	5	>1000	>200	>1400
7	$\mathrm{CH}_{2} \mathrm{~N}_{3}$	(S)-5	51	>1000	>20	134
8	$\mathrm{CH}_{2} \mathrm{~F}$	(R)-6	8	>500	>63	427
9	$\mathrm{CH}_{2} \mathrm{~F}$	(S)-6	7	>500	>71	93
10	$\mathrm{CH}_{2} \mathrm{Cl}$	(R)-7	45	>500	>11	870
11	$\mathrm{CH}_{2} \mathrm{Cl}$	(S)-7	50	>500	>10	>1500
12	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	(R)-8	NA	>450		
13	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	(S)-8	NA	>500		
14	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$	(S)-9	NA	>500		
15	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$	(S)-10	NA	>500		
16	$\mathrm{CH}=\mathrm{CH}_{2}$	(R)-11	13	>1000	>77	>1586
17	$\mathrm{CH}=\mathrm{CH}_{2}$	(S)-11	49	>1000	>20	>1586
18	c-propyl	(R)-12	NA	>1000		
19	c-propyl	(S)-12	NA	91		
20	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	(R)-13	54	1000	19	
21	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	(S)-13	252	>500	>2	

${ }^{a}$ The 50% inhibitory concentration, determined by the XTT assay using CEM cells infected with HIV (entries 1-5, 8-15, LAV-BRU strain; entries 6, 7, 16-21, HIV-HRF strain). NA: not active at 100 μ M. ${ }^{\circ}$ The 50% toxic concentration, determined by the XTT assay in CEM cells. ${ }^{c}$ Selectivity index, the ratio of the TC_{50} to $\mathrm{IC}_{50}{ }^{\text {. }{ }^{d} \text { The }}$ 50% cell growth toxicity concentration, determined by measuring the number of cells after treatment with drug for 72 h .

Although these modifications resulted in a $5-50$-fold loss in potency, the cytotoxicity of these compounds also decreased. For example, (R)-2'-(azidomethyl)-PMEG $[(R)-5]$ is 5 times less potent than $(R)-2$; however, the cytotoxicity (CC_{50}) of (R)-5 was lowered by a factor of 8 . It is interesting to note that the enantiomers of 2^{\prime} -(fluoromethyl)-PMEG (6) and 2^{2}-(chloromethyl)-PMEG (7) showed very little difference in their anti-HIV activity. However, for 2^{\prime}-(azidomethyl)-PMEG enantiomers (5), the

Table II. In Vitro Anti-Herpes Virus Activity of 2^{\prime}-Substituted PMEG Derivatives

entry	2'-substituent	compd no.	$\mathrm{IC}_{50}(\mu \mathrm{M})^{\text {a }}$		$\mathrm{TC}_{50}(\mu \mathrm{M})^{\text {a }}$
			HCMV $^{\text {b }}$	HSV ${ }^{\text {c }}$	
1	H	1	0.09	1.1	30, ${ }^{\text {b }} 17^{\text {c }}$
2	CH_{3}	(R)-2	16	82	$>330,{ }^{\text {b }}>330^{\text {c }}$
3	CH_{3}	(S)-2	16	43	$>3300^{,}>330^{\text {c }}$
4	$\mathrm{CH}_{2} \mathrm{OH}$	(R)-3	1.6	99	$>310,{ }^{\text {b }}>310^{c}$
5	$\mathrm{CH}_{2} \mathrm{OH}$	(S)-3	0.8	97	$>310,{ }^{\text {b }}>310^{\text {c }}$
6	$\mathrm{CH}_{2} \mathrm{~N}_{3}$	(R)-5	33	NA	$>300,{ }^{\text {b }}>300^{c}$
7	$\mathrm{CH}_{2} \mathrm{~N}_{3}$	(S)-5	15	NA	$300,{ }^{\text {b }}>300{ }^{\text {c }}$
8	$\mathrm{CH}_{2} \mathrm{~F}$	(R)-6	136	NA	$>310,{ }^{\text {b }}>310^{c}$
9	$\mathrm{CH}_{2} \mathrm{~F}$	(S)-6	150	256	$>310,{ }^{\text {b }}>310^{c}$
10	$\mathrm{CH}_{2} \mathrm{Cl}$	(R)-7	51	NA	$>300,{ }^{\text {b }}>300{ }^{\text {c }}$
11	$\mathrm{CH}_{2} \mathrm{Cl}$	(S)-7	112	NA	$300,{ }^{\text {b }} 300{ }^{\text {c }}$
12	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	(R)-8		NA	$300{ }^{\circ}$
13	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	(S)-8	162	NA	$>300,{ }^{\text {b }} 300{ }^{\text {c }}$
14	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$	(S)-9	NA	NA	$300,{ }^{\text {b }} 300{ }^{\text {c }}$
15	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$	(S)-10	NA	NA	$300,{ }^{\text {b }} 300{ }^{\text {c }}$
16	$\mathrm{CH}=\mathrm{CH}_{2}$	(R)-11	NA ${ }^{\text {d }}$		$>300^{\text {d }}$
17	$\mathrm{CH}=\mathrm{CH}_{2}$	(S)-11	NA	NA	$>300,{ }^{\text {b }} 300^{\circ}$
18	c-propyl	(R)-12	$N A^{d}$	NA ${ }^{\text {d }}$	$>300{ }^{\text {d }}>3300^{d}$
19	c-propyl	(S)-12		NA	$300{ }^{\text {c }}$
20	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	(R)-13	NAd	NAd	$>300{ }^{\text {d }}>3300^{d}$
21	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	(S)-13	NA ${ }^{\text {b }}$	NA ${ }^{\text {c }}$	$300,{ }^{\text {b }} 300{ }^{\text {c }}$

${ }^{a}{ }^{\text {IC }} \mathrm{C}_{50}, 50 \%$ inhibitory concentration; $\mathrm{TC}_{56}, 50 \%$ cellular toxicity concentration; NA, not active at $100{ }_{\mu} \mathrm{M}^{6}{ }^{6}$ As determined in MRC-5 cells (HCMV, AD-169 strain). ${ }^{c}$ As determined in vero cells (HSV 2, G strain). ${ }^{d}$ As determined in WI-38 cells (HCMV, HSV 2).
(R)-isomer is more potent and less toxic than the corresponding (S)-isomer. Note that the 2^{\prime}-substituent in (R)-5 is in the opposite orientation to the methyl group in $(R)-2$, indicating that the mode of binding to the target enzyme may be different, or that the two compounds may be acting by different mechanisms. In the 2^{\prime}-ethyl-substituted series of PMEG derivatives, introduction of a heteroatom (entries 12-15) or cyclopropyl group (entries 18 and 19) resulted in complete loss of anti-HIV activity. However, 2^{\prime}-vinylPMEG (11) and 2 'ethyl-PMEG (13) exhibited good activity against HIV, although both compounds are less potent and less cytotoxic than 2^{\prime}-methyl-PMEG (2). The results from these homologues suggest that there is a limited steric tolerance at the binding sites for the 2^{\prime} substituted PMEG derivatives. Furthermore, in case of analogues 11 and 13 , the (R)-isomers are more potent than the corresponding (S)-isomers, indicating that these compounds may have the same type of action as 2 in the biological system. When the guanine base of these analogues was replaced with cytosine, the anti-HIV activity of the resulting PME derivatives was completely eradicated (data not shown).
The 2 'substituted PME analogues were also evaluated in the plaque reduction assay for anti-herpes activity. ${ }^{23}$ The anti-HCMV (AD-169 strain) and anti-HSV 2 (G strain) assays of 2^{\prime}-substituted PMEG analogues were conducted in MRC-5 and vero cells, respectively. The results are shown in Table II. In general, the 2 'methylsubstituted PMEG analogues 5-7 were less potent than (R) -2 '-methyl-PMEG $[(R)-2]$ against both HSV and HCMV. The homologue of HPMPG, 2^{\prime}-(hydroxyethyl)PMEG (8), was less potent than HPMPG (3) against HSV 2 and HCMV. All other substituted ethyl derivatives were inactive. These results show that there is a limited size allowable at the 2^{\prime}-position of PMEG in terms of antiherpes activity as well as for the anti-HIV activity previously discussed. The corresponding analogues bearing cytosine generally were weak anti-herpes agents or were inactive (data not shown).

In conclusion, our studies have shown that the therapeutic index of PMEG can be improved by adding a substituent such as azidomethyl or halomethyl at the 2^{\prime} position of PMEG. Large substituents, however, substantially decrease anti-HIV activity, indicating that there is limited steric tolerance at this position of the PMEG side chain. In addition, we have observed that the antiHIV activity varies depending on the nature and chirality of the substituent at this position of PMEG derivatives. The most interesting analogues to emerge from these studies are (R)- 2^{\prime}-(azidomethyl)-PMEG $[(R)-5]$ and 2^{\prime} -vinyl-PMEG $[(R)-11]$. The former showed potent antiHIV activity with an IC_{50} of $5 \mu \mathrm{M}$ and a cytotoxicity CC_{50} of greater than 1.4 mM . The latter has an IC_{50} of $13 \mu \mathrm{M}$ for anti-HIV activity and a CC_{50} of greater than 1.6 mM . The decreased cytotoxicity of guanine analogues is reflected in an improved in vitro therapeutic index relative to PMEG. However, further studies are needed to determine whether this translates into improved safety in in vivo models as well. Furthermore, we have demonstrated that replacement of the guanine base of these 2^{\prime} substituted PME analogues with cytosine drastically reduces anti-HIV and anti-herpes activity. The result is somewhat surprising in view of the potent activity of (S) HPMPC $[(S)-4]^{55,7}$ against HSV and CMV, and stands in marked contrast to the activity seen for the wide variety of guanine derivatives.

Experimental Section

Melting points were determined on an electrothermal apparatus and are not corrected. Proton and carbon-13 nuclear magnetic resonance (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Bruker AM-300 or a Varian Gemini 300 spectrometer. All spectra were determined in CDCl_{3}, DMSO- d_{6}, or $\mathrm{D}_{2} \mathrm{O}$ and chemical shifts are reported in δ units relative to tetramethylsilane (TMS) for CDCl_{3} and DMSO- d_{6} and relative to sodium 3-(trimethylsilyl)tetradeuteriopropionate for $\mathrm{D}_{2} \mathrm{O}$. Splitting patterns are designated as follows: s, singlet; d, doublet; t , triplet; q , quartet; m , multiplet; br, broad peak; dd, doublet of doublets, and dt, doublet of triplets. Optical rotations, $[\alpha]^{20}$ D, were determined on a Perkin-Elmer 41 polarimeter. Mass spectra were recorded on a Kratos MS-50 or a Finnegan 4500 instrument utilizing direct chemical ionization (DCI, isobutene) or fast atom bombardment (FAB). Preparative chromatography was performed with flash chromatography on silica gel from Universal Scientific or octadecyl (C18) from J. T. Baker Inc.
(\boldsymbol{R})-3-Azido-1-O-benzyl-2-O-[(dilsopropylphosphono)-methyl]-1,2-propanediol (24). A suspension of mesylate 23^{4} ($9.00 \mathrm{~g}, 20.5 \mathrm{mmol}$) and sodium azide ($4.00 \mathrm{~g}, 61.6 \mathrm{mmol}$) in 40 mL of anhydrous N^{\prime}, N^{\prime}-dimethylformamide was stirred at 105 ${ }^{\circ} \mathrm{C}$ for 5 h and then allowed to cool to room temperature. After the solvent was removed under reduced pressure, the residue was diluted with 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. The filtrate was evaporated, and the residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $=10: 1$ to 3:1) to give $6.15 \mathrm{~g}(78 \%$ yield) of the product as an oil: $\left[\alpha{ }^{20} \mathrm{D} 7.7^{\circ}\left(c 0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.77-4.62(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{POCH}), 3.89$ (dd, $J=8.7,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.83 (dd, $J=8.7$, $13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.76-3.69$ (m, $1 \mathrm{H}, \mathrm{H}-2$), 3.57 (dd, $J=5.1$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.50(\mathrm{dd}, J=5.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.50$ (dd, $J=4.2,13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.43 (dd, $J=6.1,13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.31-1.25 (m, $\left.12 \mathrm{H}, 4 \times \mathrm{POCHCH} \mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 137.9$, $128.6,127.9,127.8,79.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10 \mathrm{~Hz}, \mathrm{C}-2\right), 73.4\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $71.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCH}\right), 69.3(\mathrm{C}-1), 65.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=168 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 51.8(\mathrm{C}-3), 23.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH} \mathrm{H}_{3}\right), 23.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}\right.$ $=4 \mathrm{~Hz}, \mathrm{POCHCH} 3$). Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-1-O-Benzyl-2-O-[(diisopropylphosphono)methyl]-3-fluoro-1,2-propanediol (25). Tributylammonium fluoride trihydrate ($43.0 \mathrm{~g}, 165 \mathrm{mmol}$) was dried at $50^{\circ} \mathrm{C}$ under vacuum for 2 days. To the residue was added mesylate 23 ($9.88 \mathrm{~g}, 22.5 \mathrm{mmol}$) in 10 mL of anhydrous tetrahydrofuran under a nitrogen
atmosphere. The resulting thick mixture was stirred at room temperature for 6 h . The solvent was evaporated, and methanol (100 mL) and p-toluenesulfonic acid hydrate (1 g) were added to the residue. The mixture was stirred at room temperature overnight. The solvent was evaporated, and the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (150 mL) and saturated sodium bicarbonate solution (100 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were dried over magnesium sulfate and filtered. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether $=1: 3$ to $1: 0$) to give $6.20 \mathrm{~g}\left(77 \%\right.$ yield) of 27 as a thick oil: $[\alpha]^{20} 8.2^{\circ}\left(c 1.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.78-4.65(\mathrm{~m}, 2 \mathrm{H}$, $2 \times \mathrm{POCH}), 4.55\left(\mathrm{ddd}, J_{\mathrm{H}, \mathrm{H}}=3.7,10.0 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{F}}=47.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{~F}$), $4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.49$ (ddd, $J_{\mathrm{H}, \mathrm{H}}=5.5,10.0 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{F}}$ $=47.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~F}$), 3.90 and $3.95-3.78$ (d over $\mathrm{m}, J=8.7 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2$), $3.63-3.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 1.31-1.27$ (m, 12 $\left.\mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.9,128.7,127.9,127.8$ (Ar), $83.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=172 \mathrm{~Hz}, \mathrm{C}-3\right), 79.3\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=19 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}, \mathrm{P}}\right.$ $=11 \mathrm{~Hz}, \mathrm{C}-2), 73.5\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 71.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCH}\right), 71.0$ (d, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCH}$), 65.2 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=168 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $23.8(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH} 3\right), 23.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH} \mathrm{H}_{3}\right)$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{FO}_{6} \mathrm{P}\right.$) C, H .
(\boldsymbol{R})-3-Azido-2-O-[(diisopropylphosphono)methyl]-1,2-propanediol (26). To a solution of $24(6.15 \mathrm{~g}, 16.0 \mathrm{mmol})$ in 35 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, boron trichloride (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 48.0 \mathrm{~mL}$, 48.0 mmol) was slowly added at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h , and then a saturated solution of sodium bicarbonate (100 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (150 mL) were added. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 75 \mathrm{~mL})$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were dried over magnesium sulfate. Filtration and concentration under reduced pressure gave a residue which was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone $=5: 1$ to 1:1) to provide 4.39 g (93% yield) of 26 as an oil: $[\alpha]^{20} \mathrm{D}$ -21.8° (c $8.53, \mathrm{MeOH}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{8}\right) \delta 4.82-4.65(\mathrm{~m}, 2 \mathrm{H}$, POCH), 4.05 (dd, $J=6.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.77 (dd, $J=8.9$, $14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.72 (dd, $J=2.1,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $3.64-$ 3.57 and 3.56 (m over dd, $J=5.4,11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2$), 3.41 (dd, $J=7.3,12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.23 (dd, $J=3.9,12.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-3), 1.34-1.28\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}\right)$ $\delta 82.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=9 \mathrm{~Hz}, \mathrm{C}-2\right), 71.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 71.2$ (d, ${ }^{2} J_{\mathrm{CP}}=7 \mathrm{~Hz}, \mathrm{POCH}$), $64.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, ~}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), 61.4 $(\mathrm{C}-1), 51.5(\mathrm{C}-3), 23.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} 3\right.$), $23.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}\right.$ $=5 \mathrm{~Hz}, \mathrm{POCHCH}_{3}$).
(\boldsymbol{R})-3-Azido-2-O-[(diisopropylphosphono)methyl]-1-O-(methylsulfonyl)-1,2-propanediol (28a). To a solution of alcohol 26 ($6.40 \mathrm{~g}, 21.7 \mathrm{mmol}$) and methanesulfonyl chloride (2.98 $\mathrm{g}, 26.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added slowly triethylamine ($4.39 \mathrm{~g}, 43.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then slowly warmed to room temperature over 1 h . Water (100 mL) was added to the solution and the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{~mL})$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were dried over magnesium sulfate and filtered. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $=10: 1$ to $\left.3: 1\right)$ to provide 7.21 g (87% yield) of the title compound as an oil: $[\alpha]^{20} \mathrm{D}$ $2.30^{\circ}\left(c 16.76, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.78-4.63(\mathrm{~m}, 2 \mathrm{H}$, POCH), 4.32 (dd, $J=4.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.26 (dd, $J=5.1$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.86 and $3.87-3.81$ (d over $\mathrm{m}, J=8.6 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2$), 3.50 (dd, $J=4.7,13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.42 (dd, $J=5.7,13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 1.30(\mathrm{~d}, J=6.2$, $\left.\mathrm{Hz}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 78.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $10 \mathrm{~Hz}, \mathrm{C}-2$), 71.3 (apparent $\mathrm{t},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}$), 65.2 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}$ $=169 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $50.5(\mathrm{C}-3), 37.2\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 23.6$ (apparent t , ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} 3$); MS (DCI) $m / e 374\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{PS}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-2-O-[(Dilsopropylphosphono)methyl]-3-fluoro-1-O-(methylsulfonyl)-1,2-propanediol (28b). Mesylate 28b was prepared in 83% yield for two steps from 25 by the same procedures used for the preparation of 28a. The product was isolated as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.80-4.66(\mathrm{~m}, 2 \mathrm{H}, 2 \times$ POCH), 4.56 (ddd, $J_{\mathrm{H}, \mathrm{H}}=4.5,10.3 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{F}}=47.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~F}\right), 4.51$ (ddd, $J_{\mathrm{H}, \mathrm{H}}=4.9,10.3 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{F}}=47.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~F}$), 4.39 (ddd, $J_{\mathrm{H}, \mathrm{H}}=4.4,11.3 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{F}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.30 (ddd,
$\left.J_{\mathrm{H}, \mathrm{H}}=5.5,11.3 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{F}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 3.88$ and $4.04-3.82$ (d over $m, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2$), 3.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}$), $1.31\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 81.1 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}=173 \mathrm{~Hz}, \mathrm{C}-3$), 77.5 (dd, ${ }^{2} J_{\mathrm{C}, \mathrm{F}}=20 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=10$ $\mathrm{Hz}, \mathrm{C}-2$), 71.2 (apparent $\left.\mathrm{t},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}\right), 65.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.169 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 37.3\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 23.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH}_{3}\right)$, 23.6 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} 3$). Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{FO}_{7} \mathrm{PS}\right) \mathrm{C}, \mathrm{H}$, N .
(S)-2,2-Diisopropyl-4-(2-hydroxyethyl)dioxolane (29). In a 1 -liter, three-neck flask equipped with a mechanical stirrer, Dean-Stark trap, and condenser were combined (S)-1,2,4butanetriol ($48 \mathrm{~g}, 0.45 \mathrm{~mol}$), 2,4-dimethyl-3-pentanone (145 g , 1.27 mol) and p-toluenesulfonic acid (0.35 g) in 300 mL of benzene. After the mixture was heated gently at reflux for 20 h , the mixture was allowed to cool to room temperature and 10 mL of triethylamine was added. The solvent was evaporated and the residue was purified by flash chromatography on silica gel (acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 10$ to $1: 2$) to give 77.2 g (84% yield) of the product as an oil: $[\alpha]{ }^{20} \mathrm{D} 1.55^{\circ}$ ($c 15.6 \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 4.33-4.23$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 4.14 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $3.85-3.72$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.49 ($\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $2.10-1.97$ (m, 2 H , CHCH_{3}), $1.90-1.65$ (m, $2 \mathrm{H}, \mathrm{H}-1^{\prime}$), $0.90-0.86\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 116.7$ (O-C-O), 77.2 (C-4), 72.2 (C-5), 60.9 ($\mathrm{C}-2^{\prime}$), $35.0\left(\mathrm{C}-1^{\prime}\right), 34.3,33.5\left(\mathrm{CHCH}_{3}\right), 14.3,17.2,17.0\left(\mathrm{CHCH}_{3}\right)$; MS (DCI) m/e $203\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3}$) C, H .
(S)-4-O-Benzyl-1,2,4-butanetriol (30). Alcohol 29 (76.2 g , 0.38 mol), benzylbromide ($129 \mathrm{~g}, 0.75 \mathrm{~mol}$), and tetrabutylammonium iodide ($7.00 \mathrm{~g}, 19.0 \mathrm{mmol}$) were added to a concentrated sodium hydroxide solution (40.0 g in 90 mL of water, 2.26 mol) in a three-neck flask equipped with a mechanical stirrer and a condenser. After stirring at $110^{\circ} \mathrm{C}$ for 18 h , the mixture was allowed to cool to room temperature, and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 100 mL). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were dried over magnesium sulfate and filtered. The solvent was evaporated, and the residue was treated with 300 mL of 1.5 M sulfuric acid. After stirring at $100^{\circ} \mathrm{C}$ for 8 h , the mixture was allowed to cool to room temperature, and 300 mL of hexane was added. The aqueous layer was washed with hexane $(2 \times 200 \mathrm{~mL})$ and then adjusted to $\mathrm{pH} 8-9$ with concentrated sodium sodium hydroxide. The solution was extracted with ethyl acetate ($3 \times 200 \mathrm{~mL}$), and the combined ethyl acetate extracts were dried over magnesium sulfate and filtered. The solvent was evaporated, and the residue was purified by fractional distillation in vacuo ($0.1 \mathrm{~mm} \mathrm{Hg}, \mathrm{bp}$ $150-170^{\circ} \mathrm{C}$) to give $68.3 \mathrm{~g}\left(92 \%\right.$ yield) of 30 as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.48-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.96-$ $3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.74-3.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-4), 2.24$ (br s, $1 \mathrm{H}, \mathrm{OH}$) , 3.08 (br s, $1 \mathrm{H}, \mathrm{OH}$), $1.88-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3\right.$); ${ }^{28} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.9,128.6,128.0,127.9(\mathrm{Ar}), 73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.2(\mathrm{C}-$ 2), 68.1 (C-4), 66.5 (C-1), 32.6 (C-3).
(S)-4-O-Benzyl-1-O-[\boldsymbol{p}-methoxyphenyl)diphenylmethyl]-1,2,4-butanetriol (31). Alcohol 30 ($68.3 \mathrm{~g}, 348 \mathrm{mmol}$) was mixed with triethylamine ($70.4 \mathrm{~g}, 696 \mathrm{mmol}$) and 4 -(dimethylamino)pyridine ($3.42 \mathrm{~g}, 28.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ under a nitrogen atmosphere. The solution was cooled to $0^{\circ} \mathrm{C}$ and p-anisylchlorodiphenylmethane ($129 \mathrm{~g}, 418 \mathrm{mmol}$) was added. After the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then at room temperature for $5 \mathrm{~h}, 300 \mathrm{~mL}$ of saturated sodium bicarbonate solution was added and the resulting mixture was stirred at room temperature for 1 h . The aqueous layer was extracted with $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(2 \times 150 \mathrm{~mL})$, and the combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were dried over magnesium sulfate and filtered. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (ethyl acetate/hexane $=1: 5$ to $1: 1$) to give $155.5 \mathrm{~g}(95 \%$ yield) of the title compounds as a thick oil: $[\alpha]{ }^{20} \mathrm{D}-3.0^{\circ}(c 3.29, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.43-7.40,7.32-7.15,6.82-6.79(\mathrm{~m} ; 4 \mathrm{H}, 8 \mathrm{H}$, and 2 H , respectively; ArH), 4.44 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.03-3.93 (m, $1 \mathrm{H}, \mathrm{H}-2), 3.76$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.64-3.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 3.12-3.05$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1$), $2.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3$); ${ }^{1{ }^{1} \mathrm{C}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 158.7,144.6,138.2,135.7,130.5,128.5$, 127.9, 127.7, 127.0, 113.1, 88.2, $73.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.9$ and $67.2(\mathrm{C}-4$ and C-1), $65.0\left(\mathrm{OCH}_{3}\right)$, $33.2(\mathrm{C}-3)$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
(\boldsymbol{S})-4-O-Benzyl-2-O-[(diisopropylphosphono)methyl]-1,2,4butanetriol (32). To a solution of $31(154 \mathrm{~g}, 328 \mathrm{mmol})$ in 700 mL of anhydrous tetrahydrofuran, sodium hydride (80% in mineral oil, $11.8 \mathrm{~g}, 393 \mathrm{mmol}$) was added portionwise under
nitrogen atmosphere. After heating at reflux for 5 h , the mixture was cooled in an ice bath and a solution of diisopropyl (tosylozy)methyl phosphonate ($138 \mathrm{~g}, 393 \mathrm{mmol}$) in 300 mL of anhydrous tetrahydrofuran was slowly added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for 14 h . The resulting slurry was filtered through a pad of Celite. The filtrate was evaporated, and 400 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 200 mL of water were added to the residue. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 200 \mathrm{~mL})$, and the combined organic extracts were dried over magnesium sulfate and filtered. The solvent was evaporated, and to the residue were added methanol (400 mL) and toluenesulfonic acid (10 g). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 8 h . The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (ethyl acetate/hexane $=1: 3$ to $1: 0$ and then ethyl acetate/ethanol $=10: 1)$ to provide 44.1 g (37% yield) of the title compound as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ 87.38-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.80-4.63$ (m, $2 \mathrm{H}, \mathrm{POCH}$), $4.49\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.87 (dd, $J=7.2,14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.72 and $3.80-3.60$ (dd over m, $J=9.0,14.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2$), 3.60-3.47 (m, $4 \mathrm{H}, \mathrm{H}-1$ and H-4), $1.82-1.70$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$), 1.36$1.25\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.8,129.0$, 128.3 (Ar), 82.1 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=8.7 \mathrm{~Hz}, \mathrm{C}-2$), $73.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.0$ (d, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 71.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 66.7(\mathrm{C}-4)$, $65.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 64.9$ (C-1), 31.8 (C-3), 24.2 (m, POCHCH 3).
(S)-4-O-Benzyl-2-O-[(diisopropylphosphono)methyl]-1-O-(methylsulfonyl)-1,2,4-butanetriol (28c). Mesylate 28c was prepared as an oil from 32 in 98% yield utilizing the same procedure used for the preparation of 28a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.37-7.20 (m, 5 H, ArH), 4.78-4.63 (m, $2 \mathrm{H}, \mathrm{POCH}$), 4.47 (8, 2 H , $\mathrm{CH}_{2} \mathrm{Ph}$), 4.36 (dd, $J=3.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.18 (dd, $J=6.0$, $11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.83 and $3.80-3.87$ (dd over $\mathrm{m}, J=9.0,13.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CHP}$ and $\mathrm{H}-2$), 3.74 (dd, $J=9.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.60-3.50 (m, $2 \mathrm{H}, \mathrm{H}-4$), 3.02 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}$), 1.88-1.78 (m, 2 $\mathrm{H}, \mathrm{H}-3$), 1.29-1.27 (apparent t, $12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{8}\right) \delta 137.9,128.3,127.5$ (Ar), $77.04\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12.6 \mathrm{~Hz}, \mathrm{C}-2\right.$), $72.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 65.3(\mathrm{C}-4), 64.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), 36.9 $\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 30.5(\mathrm{C}-3), 23.5$ (apparent t, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH}{ }_{3}$).
(\mathbf{S})-4-O-Benzyl-2-O-[(diisopropylphosphono)methyl)]-1-O-(methoxymethyl)-1,2,4-butanetriol (33). To a solution of $32(20.0 \mathrm{~g}, 53.4 \mathrm{mmol})$ and diisopropylethylamine ($13.8 \mathrm{~g}, 107$ mmol) in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added chloromethyl methyl ether ($6.45 \mathrm{~g}, 80.1 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After the solution was stirred at room temperature for $14 \mathrm{~h}, \mathrm{CH}_{2}$ $\mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ were added. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 75 \mathrm{~mL})$, and the combined extracts were washed with saturated NaHCO_{3} solution (100 mL) and brine (100 mL), dried over magnesium sulfate, and filtered. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (ethyl acetate/ petroleum ether $=1: 1$ to $1: 0$) to give 21.9 (98% yield) of the product as an oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.33-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}$), 4.76-4.62 (m, $2 \mathrm{H}, 2 \times \mathrm{POCH}$), 4.58 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), 4.47 (s, 2 $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.94 (dd, $J=8.7,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.74 and 3.76-3.68 (dd over m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2$), $3.65-3.50(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}-1$ and $\mathrm{H}-4), 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.80(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3)$, 1.32-1.26 (m, $\left.12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{8}\right) \delta 138.4$, 128.3, 127.6, $96.4\left(\mathrm{OCH}_{2} \mathrm{O}\right), 77.9$ (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2\right), 72.7$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}\right), 69.6(\mathrm{C}-1), 66.2(\mathrm{C}-4)$, $64.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 54.9\left(\mathrm{O}^{C} \mathrm{H}_{3}\right), 31.5(\mathrm{C}-3), 23.6$ (apparent t, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCHCH} 3$); MS (DCI) $m / e 419\left(\mathrm{MH}^{+}\right.$).
(S)-2-O-[(Diisopropylphosphono) methyl]-1-O-(meth-oxymethyl)-1,2,4-butanetriol (34). Palladium hydroxide on carbon $(20 \%, 10.0 \mathrm{~g})$ was added to a solution of $33(21.9 \mathrm{~g}, 52.3$ mmol) in ethanol and cyclohexene (200 mL of each). The resulting mixture was heated at reflux for 6 h , allowed to cool to room temperature, and filtered. The filtrate was evaporated, and the residue was purified by flash chromatography on silica gel ($\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2} /$ methanol $=20: 1$ to $10: 1$) to give 16.8 g (98% yield) of 34 as an oil: $[\alpha]^{20} \mathrm{D} 3.43^{\circ}(c 2.33, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 4.80-4.60$ ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{POCH}$), $4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.03-3.80$ and $3.67-$ 3.48 (m, $7 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-4$, and $\mathrm{CH}_{2} \mathrm{P}$), $1.80-1.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$), $1.34-1.29\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 96.5$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 77.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=14 \mathrm{~Hz}, \mathrm{C}-2\right), 71.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}\right.$, POCH), $70.2(\mathrm{C}-1), 64.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=167 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 57.9(\mathrm{C}-4)$,
$55.0\left(\mathrm{OCH}_{3}\right), 34.3\left(\mathrm{C}-3\right.$), 23.6 (apparent t, ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH}_{3}$); MS (DCI) m/e $329\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{P}\right) \mathrm{C}, \mathrm{H}$.
(S)-2-O-[(Diisopropylphosphono)methyl]-1-O-(meth-oxymethyl)-4-O-(methylsulfonyl)-1,2,4-butanetriol (35). Compound 35 was prepared as an oil in 99% yield from 34 utilizing the same procedure used to prepared 28a: $[\alpha]^{20}{ }_{D}-17.9^{\circ}$ (c 0.67 , MeOH); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.88-4.62(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{POCH}), 4.58$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), 4.42-4.28 (m, $2 \mathrm{H}, \mathrm{H}-4$), 3.95 (dd, $J=8.8,13.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.73 and $3.74-3.67$ (dd over $\mathrm{m}, J=9.3,13.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\left.\mathrm{H}-2\right), 3.61-3.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.00 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{SO}_{2}$), $2.30-1.83$ (m, $2 \mathrm{H}, \mathrm{H}-3$), 1.31-1.27 (m, 12 $\left.\mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 96.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 76.6(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2\right), 70.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 70.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}\right.$ $=7 \mathrm{~Hz}, \mathrm{POCH}), 68.7(\mathrm{C}-4), 66.4(\mathrm{C}-1), 64.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 54.9\left(\mathrm{OCH}_{3}\right), 36.7\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 31.2(\mathrm{C}-3), 23.5$ (apparent $\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{p}}=4 \mathrm{~Hz}, \mathrm{POCHCH} 33$). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{O}_{9} \mathrm{PS}\right) \mathrm{C}, \mathrm{H}$.
(S)-4-Azido-2-O-[(diisopropylphosphono)methyl]-1-O-(methoxymethyl)-1,2-butanediol (36). Compound 36 was prepared as an oil from $35(5.00 \mathrm{~g}, 12.3 \mathrm{mmol})$ utilizing the same procedure used to prepare 24: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.79-4.60$ (m, $2 \mathrm{H}, \mathrm{POCH}$), 4.59 (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), 3.96 (dd, $J=8.7,13.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.74 (dd, $J=9.5,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.69-3.61$ (m, $1 \mathrm{H}, \mathrm{H}-2), 3.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 3.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{H}-4), 3.33$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $1.80-1.73$ (m, $2 \mathrm{H}, \mathrm{H}-3$), 1.30 (d, J $\left.=6.2 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{POCHCH}_{3}\right), 1.29(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{POCHCH}_{3}\right) ;{ }^{18} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 96.5\left(\mathrm{OCH}_{2} \mathrm{O}\right), 77.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{p}}=\right.$ $12 \mathrm{~Hz}, \mathrm{C}-2$), 70.8 (apparent t, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}\right), 69.1(\mathrm{C}-1)$, $64.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 55.1\left(\mathrm{OCH}_{3}\right), 47.4(\mathrm{C}-4), 30.8$ (C-3), 23.6 (apparent $\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH} 3$). Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-4-Azido-2-O-[(diisopropylphosphono)methyl]-1-O-(methylsulfonyl)-1,2-butanediol (28d). Compound 36 was heated with 0.5 g of camphorsulfonic acid in 50 mL of methanol at reflux for 16 h . The solvent was evaporated, and the residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $=5: 1$ to $2: 1$) to provide $2.53 \mathrm{~g}(67 \%$ yield for two steps) of (S)-4-azido-2-O-[(diisopropylphosphono)methyl]-1,2-butanediol as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.81-4.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{POCH}), 3.91$ (dd, $J=7.2,14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.73 and $3.76-3.68$ (dd over $\mathrm{m}, J=9.1,14.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\left.\mathrm{H}-1\right), 3.58-3.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and H-2), 3.40 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.37(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1$ H, H-4), $1.88-1.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.31$ (d, $J=4.8 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times$ POCHCH_{3}), $1.29(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{POCHCH})_{3}$) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 80.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=9 \mathrm{~Hz}, \mathrm{C}-2\right), 71.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right)$, 71.1 (d, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 64.7$ (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 63.6 (C-1), 47.6 (C-4), 30.4 (C-3), 23.6 (m, POCHCH ${ }_{3}$); IR (film): 3388 (OH), $2098\left(\mathrm{~N}_{3}\right), 1240(\mathrm{P}=0), 1106(\mathrm{C}-0), 994(\mathrm{P}-\mathrm{O}-\mathrm{C}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$: C, 42.71; H, 7.82; N, 13.58 . Found: C, 42.74; H, 7.87; N, 13.32.

Mesylate 28d was prepared as an oil in 97% yield from (S)-4-azido-2-[(diisopropylphonphono)methyl]-1,2-butanediol (2.50 $\mathrm{g}, 8.08 \mathrm{mmol}$) using the same procedure used for the preparation of 28a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.80-4.64(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{POCH}), 4.34$ (dd, $J=3.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.26 (dd, $J=5.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1$), 3.87 (dd, $J=8.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.75 and $3.83-3.74$ (dd and $\mathrm{m}, J=9.7,13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2$), $3.48(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 3.06$ (s, $3 \mathrm{H}, \mathrm{SCH} \mathrm{H}_{3}$, $1.90-1.68$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$), $1.32\left(\mathrm{~d}, J=6.2, \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{POCHCH}_{3}\right), 1.31(\mathrm{~d}, J=6.2, \mathrm{~Hz}$, $6 \mathrm{H}, 2 \times \mathrm{POCHCH}_{3}$); ${ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}\right)} \delta 76.7$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}$, $\mathrm{C}-2), 71.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}\right), 71.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}\right)$, 69.9 (C-1), 65.1 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 47.0 (C-4), 37.3 $\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 30.2(\mathrm{C}-3), 23.7$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} 3$); $\mathrm{MS}(\mathrm{DCI})$ $m / e 374$ (MH^{+}).
(S)-2-O-[(Dlisopropylphosphono)methyl]-4-fluoro-1-O-(methoxymethyl)-1,2-butanediol (37). To anhydrous tetrabutylammonium fluoride (prepared by heating tetrabutylammonium fluoride trihydrate at about $50^{\circ} \mathrm{C}$ under vacuum for 24 $\mathrm{h} ; 9.60 \mathrm{~g}, 36.7 \mathrm{mmol}$) in a 100 mL flask was added a solution of $35(5.00 \mathrm{~g}, 12.3 \mathrm{mmol})$ in 5 mL of anhydrous tetrahydrofuran under nitrogen. The resulting mixture was stirred at room temperature for 16 h and at $50^{\circ} \mathrm{C}$ for 5 h . The solvent was evaporated, and the residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $=1: 0$ to 5:1) to give $3.70 \mathrm{~g}(87 \%)$ of 40 as an oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 4.60$ and 4.41-4.80 (s over m, $6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}, 2 \times \mathrm{POCH}$ and $\mathrm{CH}_{2} \mathrm{~F}$), 3.98 (dd, $J=8.6,13.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.77 and $3.80-3.70$ (dd over $\mathrm{m}, J=9.5,13.7 \mathrm{~Hz}, 2$
$\mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2$), $3.63-3.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 2.03-1.69 (m, 2 H, H-3), 1.36-1.29 (m, $12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 96.4\left(\mathrm{OCH}_{2} \mathrm{O}\right), 80.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=164 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~F}\right)$, 76.8 (dd, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=4 \mathrm{~Hz}, \mathrm{C}-2$), 70.6 (apparent t, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}$ $=5 \mathrm{~Hz}, \mathrm{POCH}), 69.3(\mathrm{C}-1), 64.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=169 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 54.8$ $\left(\mathrm{OCH}_{3}\right), 32.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=20 \mathrm{~Hz}, \mathrm{C}-3\right), 23.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}\right.$, POCHCH_{3}), $23.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} 3\right.$).
(S)-2-O-[(Dilsopropylphosphono)methyl]-4-fluoro-1-O-(methylsulfonyl)-1,2-butanediol (28e). A mixture of fluoride 37 ($3.60 \mathrm{~g}, 10.4 \mathrm{mmol}$) and camphorsulfonic acid ($0.10 \mathrm{~g}, 0.43$ mmol) in 20 mL of methanol was stirred at $55^{\circ} \mathrm{C}$ for 20 h . The solvent was evaporated, and the residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone $=5: 1$ to $\left.3: 1\right)$ to give 2.96 g of (S)-2-O-(diisopropylphosphono)methyl]-4-fluoro1,2 -butanediol. The alcohol was converted to the corresponding mesylate utilizing the same procedure used for preparation of 28a to give 3.36 g of $28 \mathrm{e}\left(89 \%\right.$ yield) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 4.75-4.40\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{POCH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{~F}\right), 4.32(\mathrm{dd}, J=3.4,11.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.15$ (dd, $J=5.6,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.85 and 3.86-3.76 (dd over m, $J=9.5,13.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2$), 3.72 (dd, $J=9.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right.$), $2.01-1.75$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$), $1.30-1.20\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 79.7\left({ }^{1} J_{\mathrm{C}, \mathrm{F}}=165 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~F}\right), 76.2\left(\mathrm{dd},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}-2\right), 70.6\left(\mathrm{br} \mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCH}\right), 70.4(\mathrm{C}-1)$, $65.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 37.3\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 31.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=\right.$ $20 \mathrm{~Hz}, \mathrm{C}-3$), 23.7 (apparent t, ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} 3$); MS (DCI) $m / e 365\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{FO} \mathrm{O}_{7} \mathrm{PS}$) C, H .
(S)-2-O-[(Dilisopropylphosphono)methyl]-1-O-(meth-oxymethyl)-3-butene-1,2-diol (38). To a solution of 34 (9.00 $\mathrm{g}, 27.4 \mathrm{mmol}$) and 2-nitrophenyl selenocyanate ($9.33 \mathrm{~g}, 41.1 \mathrm{mmol}$) in anhydrous tetrahydrofuran (100 mL), tributylphosphine (10.3 $\mathrm{g}, 41.1 \mathrm{mmol}$) was slowly added at $0^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for 24 h . Water (100 mL) was added and the aqueous layer was separated and extracted with ethyl acetate $(2 \times 150 \mathrm{~mL})$. The combined organic extracts were dried over magnesium sulfate and filtered. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (ethyl acetate/ hexane $=1: 1$ to $1: 0$ and then ethyl acetate/acetone $10: 1$) to give (S)-2-O-[(diisopropylphosphono)methyl]-1-O-(methoxymethyl)-4-O-[(2-nitrophenyl)selenyl]-1,2,4-butanetriol as a thick yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.27$ (dd, $J=1.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), 7.60-7.49, 7.32-7.26, (m, $3 \mathrm{H}, \mathrm{Ar} H$), 4.80-4.67 (m, $2 \mathrm{H}, \mathrm{POCH}$), 4.59 (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), 3.99 (dd, $J=8.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.79 (dd, $J=9.3,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.76-3.68$ (m, $1 \mathrm{H}, \mathrm{H}-2$), 3.60 (dd, $1 \mathrm{H}, J=5.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.56 (dd, $J=4.8,10.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.90-3.01$ and $3.17-3.06(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-4), 2.06-1.98$ (m, 2H, H-3), 1.26-1.34 (m, $12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}$).
The selenium derivative obtained was dissolved in tetrahydrofuran (15 mL) and treated with hydrogen peroxide $(29 \%, 20$ mL) at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at room temperature for 16 h . Water (40 mL) and ethyl acetate (100 mL) were added. The aqueous layer was separated and extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$) and the combined extracts were washed with saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, dried over magnesium sulfate, and filtered. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (ethyl acetate/hexane =1:1 to $1: 0$) to give $6.59 \mathrm{~g}(77 \%$ yield) of 41 as an oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.75-5.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 5.38-5.28 (m, $2 \mathrm{H}, \mathrm{H}-2$), 4.78-4.62 (m, $2 \mathrm{H}, 2 \times \mathrm{POCH}$), 4.61 (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), $4.05-3.96$ (m, $1 \mathrm{H}, \mathrm{H}-2$), 3.79 (dd, $J=9.5,13.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.63 (dd, $J=8.4,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.62-3.50$ (m, $2 \mathrm{H}, \mathrm{H}-1), 3.57$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $1.35-1.28$ (m, $12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 134.5(\mathrm{C}-3), 119.8(\mathrm{C}-4), 96.5\left(\mathrm{OCH}_{2} \mathrm{O}\right), 82.0$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2$), 70.8 (apparent t, $J=5 \mathrm{~Hz}, \mathrm{POCH}$), 69.7 (C-1), $63.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=169 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 55.0\left(\mathrm{OCH}_{3}\right), 23.7(\mathrm{t}, J=$ $5 \mathrm{~Hz}, \mathrm{POCHCH} 3$). Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{P}\right) \mathrm{C}, \mathrm{H}$.
(S)-2-O-[(Dilsopropylphosphono)methyl]-1-O-(methyl-sulfonyl)-3-butene (28f). (S)-2-0-[(Diisopropylphosphono)-methyl]-3-butene-1,2-diol and 28 f were obtained from 38 utilizing the same procedure used for preparation of 28 d . (S)-2-O-[(Diisopropylphosphono)methyl]-3-butene-1,2-diol was isolated as an oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 5.69-5.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 5.32-5.23$ (m, 2 H, H-4), 4.78-4.62 (m, $2 \mathrm{H}, \mathrm{POCH}$), 3.82 (dd, $J=8.8,13.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$) 3.56 (dd, $J=8.3,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.92-3.83$ (m, $1 \mathrm{H}, \mathrm{H}-2$), 3.54 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$), 3.13 (b s, $1 \mathrm{H}, \mathrm{OH}$),
1.34-1.26 (m, $\left.12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 134.1$ (C-3), $119.0(\mathrm{C}-4), 84.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2\right), 70.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6\right.$ $\mathrm{Hz}, \mathrm{POCH}), 70.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}\right), 64.3(\mathrm{C}-1), 62.8(\mathrm{~d}$, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 23.3 (apparent t, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH} 3$). Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}$.

Mesylate 28f was isolated as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.69-$ 5.58 (m, $1 \mathrm{H}, \mathrm{H}-3$), $5.45-5.39$ (m, $2 \mathrm{H}, \mathrm{H}-4$), 4.77-4.62 (m, 2 H , POCH $), 4.20(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.17-4.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, 3.77 (dd, $J=9.7,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.57 (dd, $J=8.8,13.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 1.34-1.23(\mathrm{~m}, 12 \mathrm{H}, 4 \times$ POCHCH_{3}); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 131.8(\mathrm{C}-3), 121.7(\mathrm{C}-4), 80.3(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2\right), 70.8$ and 70.7 (t over s, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}$ and C-1), $62.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=171 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 37.33\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right) 23.5(\mathrm{~d}$, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} 3$). Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{PS}\right) \mathrm{C}, \mathrm{H}$.
(S)-2-Cyclopropyl-2-O-[(diisopropylphosphono)methyl]-1-O-(methylsulfonyl)-1,2-ethanediol (28g). Mesylate 28 f (1.10 $\mathrm{g}, 3.19 \mathrm{mmol}$) was dissolved in 50 mL of diazomethane in diethyl ether (containing 0.53 g of diazomethane). To the solution was added palladium acetate (10 mg) at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ until nitrogen stopped evolving from the reaction mixture (approximate 15 min), and then the solvent was evaporated. The same procedure was repeated twice. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone $\left.=3: 1\right)$ to give 1.10 g (96% yield) of 28 f as an oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.78-4.63$ (m, $2 \mathrm{H}, \mathrm{POCH}$), 4.32 (dd, $J=3.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.23 (dd, $J=6.7,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.99 (dd, $J=9.3,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.72 (dd, $J=9.7,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.04 and $3.10-2.95$ (s over $\mathrm{m}, 4 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}$ and $\mathrm{H}-2$), $1.29(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 12 \mathrm{H}, 4 \times$ POCHCH_{3}), 0.85-0.62, 0.56-0.42, $0.20-0.10(\mathrm{~m} ; 1 \mathrm{H}, 2 \mathrm{H}$, and 2 H, respectively; H-cyclopropyl); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 82.8$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}$ $=13 \mathrm{~Hz}, \mathrm{C}-2), 71.5\left(\mathrm{CH}_{2} \mathrm{OMs}\right), 70.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCH}\right), 63.3$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}\right), 37.2\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 23.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}\right.$, POCHCH3), 10.0, 4.1, -0.3 (C-cyclopropyl).
(S)-4-Bromo-2-O-[(dilsopropylphosphono)methyl]-1-O-(methoxymethyl)-1,2-butanediol (39). To a mixture of alcohol $35(5.00 \mathrm{~g}, 15.2 \mathrm{mmol})$ were added triethylamine ($4.65 \mathrm{~g}, 45.7$ mmol) and triphenylphosphine ($4.39 \mathrm{~g}, 16.8 \mathrm{mmol}$) in anhydrous tetrahydrofuran (40 mL), carbon tetrabromide ($10.1 \mathrm{~g}, 30.5 \mathrm{mmol}$) and imidazole $(0.10 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 10 min , the cooling bath was removed. The solution was stirred at room temperature for 6 h . The resulting brown solution was evaporated and the residue was treated with ethyl ether (75 mL) and filtered. The filtrate was evaporated to give a dark brown material which was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone $=5: 1$ to $3: 1)$ to provide 5.20 g (87% yield) of the product as an oil: $[\alpha]^{20} \mathrm{D}$ -41.0° (c 0.62, MeOH); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.78-4.62(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{POCH}), 4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.98(\mathrm{dd}, J=8.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 3.80-3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right.$ and $\left.\mathrm{H}-2\right), 3.60-3.43(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1$ and H-4), $3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.15-1.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.31-1.28$ $\left(\mathrm{m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 96.5\left(\mathrm{OCH}_{2} \mathrm{O}\right)$, $78.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2\right), 70.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3 \mathrm{~Hz}, \mathrm{POCH}\right), 70.7$ (d, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3 \mathrm{~Hz}, \mathrm{POCH}\right), 68.9(\mathrm{C}-1), 65.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=169 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 55.1\left(\mathrm{OCH}_{3}\right), 34.8(\mathrm{C}-4), 29.4(\mathrm{C}-3), 23.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}\right.$, POCHCH_{3}), $23.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3 \mathrm{~Hz}, \mathrm{POCHCH}_{3}\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{28}\right.$ $\left.\mathrm{BrO}_{6} \mathrm{P}\right) \mathrm{C}, \mathrm{H}$.
(S)-2-O-[(Dilsopropylphosphono)methyl]-1,2-butanediol (40). Bromide 39 ($5.10 \mathrm{~g}, 13.0 \mathrm{mmol}$), triethylamine (1.59 $\mathrm{g}, 15.7 \mathrm{mmol})$, and palladium on carbon $(10 \%, 0.50 \mathrm{~g})$ were mixed in 10 mL of methanol. The reduction was carried out in a Parr apparatus for 16 h . The catalyst was removed by filtration and the filtrate was evaporated. The residue was partitioned in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $10 \% \mathrm{HCl}$ solution (50 mL). The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50$ $\mathrm{mL})$. The combined extracts were dried over magnesium sulfate, filtered, and evaporated. The residue was used in the next reaction without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.78$ 4.63 (m, $2 \mathrm{H}, \mathrm{POCH}), 4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.90(\mathrm{dd}, J=8.6$, $13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.77 (dd, $J=9.2,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.58-3.42 (m, $3 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.58-1.48$ (m, $2 \mathrm{H}, \mathrm{H}-3$), 1.29 (q, $J=1.6,6.3 \mathrm{~Hz}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}$), 0.91 $\left.(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-4) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{8}\right) \delta 96.5\left(\mathrm{OCH}_{2} \mathrm{O}\right), 81.9$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2$), 70.6 (d, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}$), 69.1 (C-1), $64.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=169 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 54.9\left(\mathrm{OCH}_{3}\right), 23.8(\mathrm{C}-3), 23.6$ (apparent t, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCHCH} 3$), $9.2(\mathrm{C}-4)$.
(S)-2-O-[(Diisopropylphosphono)methyl]-1-O-(methyl-sulfonyl)-1,2-butanediol (28h). (S)-2-O-[(Diisopropylphospho-
no)methyl]-1,2-butanediol and mesylate 28 h were obtained from 40 utilizing the procedure used for preparation of 28 d . $2-0$ -[(Diisopropylphosphono)methyl]-1,2-butanediol was isolated as a colorless oil: $[\alpha]^{20} \mathrm{D}-7.15^{\circ}$ ($c 1.34, \mathrm{MeOH}$); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 4.78-4.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{POCH}), 3.88$ (dd, $J=7.6,14.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{P}$), 3.69 (dd, $J=8.9,14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.65-3.44 (m, 2 H, H-1), 3.37-3.29 (m, 1 H, H-2), 1.55-1.30 (m, 2 H, H-3), 1.27 (dd, $J=4.1,6.2 \mathrm{~Hz}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}$), $0.86(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-4) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 85.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=9 \mathrm{~Hz}, \mathrm{C}-2\right), 71.4$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}\right), 71.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 64.7(\mathrm{~d}$, $\left.\left.{ }^{1} J_{C, P}=169 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 64.1(\mathrm{C}-1), 23.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCHCH}\right)_{3}\right)$, $23.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH} \mathrm{H}_{3}\right), 23.6(\mathrm{C}-3), 9.5(\mathrm{C}-4) ; \mathrm{MS}(\mathrm{DCI})$ $m / e 269\left(\mathrm{MH}^{+}\right)$.

Mesylate 28 h was isolated as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{8}\right) \delta 4.80-$ 4.65 (m, $2 \mathrm{H}, \mathrm{POCH}$), 4.28 (dd, $J=3.3,11.1 \mathrm{~Hz}, \mathrm{H}-1$), 4.17 (dd, $J=6.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.81$ (dd, $J=9.2,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2 \mathrm{P}$), 3.76 (dd, $J=9.4,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.62-3.52$ (m, $1 \mathrm{H}, \mathrm{H}-2$), 3.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SCH}_{3}$), 1.68-1.50 (m, $2 \mathrm{H}, \mathrm{H}-3$), $1.30(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $\left.12 \mathrm{~Hz}, \mathrm{POCHCH})_{3}\right), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 80.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=11 \mathrm{~Hz}, \mathrm{C}-2\right), 70.9$ (apparent t, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=$ $7 \mathrm{~Hz}, \mathrm{POCH}), 70.3(\mathrm{C}-1), 64.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}\right), 37.3$ $\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 23.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH} 3\right), 23.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4\right.$ $\mathrm{Hz}, \mathrm{POCHCH} 3$), 23.1 (C-3), 8.9 (C-4). Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{PS}\right) \mathrm{C}, \mathrm{H}$.

General Procedure for the Coupling Reactions of Mesylates with 2-Amino-6-chloropurine: (S)-2-Amino-9-[3-azido-2-[(diisopropylphosphono)methoxy]propyl]-6-chloropurine (41a). Mesylate 28a ($2.00 \mathrm{~g}, 5.22 \mathrm{mmol}$) was mixed with 2 -amino-6-chloropurine ($3.40 \mathrm{~g}, 10.4 \mathrm{mmol}$) and cesium carbonate ($3.92 \mathrm{~g}, 12.0 \mathrm{mmol}$) in 15 mL of anhydrous N^{\prime}, N^{\prime} dimethylformamide. The mixture was stirred at $90^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 3 h , allowed to cool to room temperature, and filtered. The filtrate was evaporated under reduced pressure, and the residue was purified by flash chromatography on silica gel twice (first time, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone $=3: 1$ to $0: 1$; second time, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $=15: 1$ to $10: 1$) to give a thick oil which crystallized from ethyl acetate and diethyl ether to give 1.34 g (58% yield) of the title compound: $\operatorname{mp} 126-128^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-9.9^{\circ}$ (c $0.89, \mathrm{MeOH}$); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$) $\delta 7.87$ (s, $1 \mathrm{H}, \mathrm{H}-8$), 5.45 (br $\mathrm{s}, 2 \mathrm{H}, \mathrm{N} H_{2}$), 4.72-4.56 (m, $2 \mathrm{H}, 2 \times \mathrm{POCH}$), 4.26 (dd, $J=4.3$, $14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.18 (dd, $J=5.6,14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.913.82 (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.71 (dd, $J=8.9,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.79 (dd, $J=8.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.43 (dd, $J=5.1,13.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}-3^{\prime}$), 3.25 (dd, $J=4.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), $1.27-1.19$ (m, 12 $\left.\mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 159.4,154.3,151.4,143.6$, 124.8, $77.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right.$), 71.2 (apparent t, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}$, $\mathrm{POCH}), 65.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 47.1$ and $45.4\left(\mathrm{C}-1^{\prime}\right.$ and $\left.\left.\mathrm{C}-4^{\prime}\right), 30.7\left(\mathrm{C}-3^{\prime}\right), 23.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH}\right)_{3}\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{24}{ }^{-}\right.$ $\mathrm{ClN}_{8} \mathrm{O}_{4} \mathrm{PS}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-2-Amino-6-chloro-9-[2-[(diisopropylphosphono)-methoxy]-3-fluoropropyl]purine (41b). The title compound was prepared from 28b in 73% yield as a thick oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 5.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}$), 4.75-4.60 (m, $3 \mathrm{H}, \mathrm{H}-4$ and $2 \times \mathrm{POCH}$), 4.52-4.46 (m, $1 \mathrm{H}, \mathrm{H}-4$), 4.35 (dd, J $=3.8,14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.20 (dd, $J=3.8,14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.11-3.98 (m, $1 \mathrm{H}, \mathrm{H}-2^{2}$), 3.84 (dd, $J=8.9,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.75 (dd, $J=8.9,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $1.31-1.22$ (m, $12 \mathrm{H}, 4 \times$ POCHCH ${ }_{3}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.5,153.9,151.0,143.3,124.4$, $81.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=174 \mathrm{~Hz}, \mathrm{C}-4^{\prime}\right), 77.8\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}, F}=20 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=10\right.$ $\left.\mathrm{Hz}, \mathrm{C}-2^{\prime}\right), 71.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 64.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=169 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{P}$), $43.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}, \mathrm{C}-1^{\prime}\right), 23.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}\right.$, $\left.\mathrm{POCHCH}_{3}\right), 23.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} 3\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{24}\right.$ $\left.\mathrm{ClFN}_{5} \mathrm{O}_{4} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$: calcd, 16.52; found, 16.06.
(S)-1-Amino-9-[4-(benzyloxy)-2-[(diisopropylphosphono)-methoxy]butyl]-6-chloropurine (41c). The title compound was prepared from 28c in 66% yield as thick oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.30-7.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.44\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 4.72-4.55 (m, $2 \mathrm{H}, \mathrm{POCH}$), 4.44 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.27 (dd, $J=$ $3.2,14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.07 (dd, $J=6.2,14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.89-3.80$ (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.70 (dd, $J=9.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.61 (dd, $J=9.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.57-3.50$ (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime}$), $1.80-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 1.28-1.14\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 159.4,154.2,151.0,143.7$ (purine), 138.0, 127.7, $128.4(\mathrm{Ph}), 124.6$ (purine), $77.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 72.9\left(\mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{Ph}), 70.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 70.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right)$, $65.5\left(\mathrm{C}-4^{\prime}\right), 64.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 45.8^{\left(\mathrm{C}-1^{\prime}\right), 31.3\left(\mathrm{C}-3^{\prime}\right),}$ $23.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCHCH}_{3}\right)$.
(S)-2-Amino-9-[4-azido-2-[(diisopropylphosphono)methoxy]butyl]-6-chloropurine (41d). The title compound was prepared from 28d in 57% yield as a thick oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 5.14\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.78-4.63(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{POCH}$), 4.30 (dd, $J=3.5,14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.15 (dd, $\left.J=5.2,14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.89-3.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.76$ (dd, $J=9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.72 (dd, $J=9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{P}$), 3.47 ($\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}$), $1.78-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right)$, $1.32-1.25\left(\mathrm{~m}, 12 \mathrm{~Hz}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.4$, $154.3,151.4,143.6,124.8,77.6$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 71.2 (apparent t, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCH}$), $65.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), 47.1 and 45.4 (C-1' and $\mathrm{C}-4^{\prime}$), 30.7 ($\mathrm{C}-3^{\prime}$), 23.7 (d, ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}$, $\mathrm{POCHCH} 3) ; \mathrm{MS}(\mathrm{DCI}) m / e 461\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{ClN}_{8} \mathrm{O}_{4} \mathrm{P}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-2-Amino-6-chloro-9-[2-[(diisopropylphosphono)-methoxy]-4-fluorobutyl]purine (41e). The title compound was prepared from $28 e$ in 69% yield as a solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.93$ (s, $1 \mathrm{H}, \mathrm{H}-8$), 5.32 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 4.75-4.59 (m, $3 \mathrm{H}, \mathrm{H}-4$ and $2 \times \mathrm{POCH}$), $4.50-4.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.30$ (dd, $J=3.5,14.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.14 (dd, $J=5.7,14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.94-3.86$ (m, 1 H, H-2'), 3.74 (dd, $J=9.5,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.69 (dd, $J=9.5,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $1.98-1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 1.29-1.22$ $\left.(\mathrm{m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH})_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 159.4,154.0,150.8$, $143.4,124.1,79.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=165 \mathrm{~Hz}, \mathrm{C}-4^{\prime}\right), 76.6$ (br d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=9$ $\left.\mathrm{Hz}, \mathrm{C}-2^{\prime}\right), 70.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 64.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 45.4\left(\mathrm{C}-1^{\prime}\right), 31.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=20 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right), 23.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=\right.$ $4 \mathrm{~Hz}, \mathrm{POCHCH} 3$).
(S)-2-Amino-6-chloro-9-[2-[(dilsopropylphosphono)-methoxy]-3-butenyl]purine (41f). The title compound was prepared from 28 f in 56% yield and crystallized from ethyl acetate/ethyl ether: mp $106-108^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.90$ (s, $1 \mathrm{H}, \mathrm{H}-8), 5.70-5.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.41-5.36$ (m, $\left.2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.71$ $4.55(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{POCH}), 4.27-4.05\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}-1^{\prime}\right.$ and $\mathrm{H}-2^{\prime}$), 3.75 (dd, $J=9.4,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.49 (dd, $J=8.5,13.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 1.29-1.19\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 159.3,154.1,151.3,143.8$ (G), 133.2 (C-3'), 124.9 (G), 121.9 (C4^{\prime}), 80.7 (d, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 71.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C} P}=7 \mathrm{~Hz}, \mathrm{POCH}\right)$, $62.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 46.9\left(\mathrm{C}-1^{\prime}\right), 23.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}\right.$, POCHCH_{3}).
(S)-2-Amino-6-chloro-9-[2-cyclopropyl-2-[(diisopropylphosphono)methoxy]ethyl]purine (41g). The title compound was prepared from 28 g in 63% yield and crystallized from ethyl ether: mp $108-110^{\circ} \mathrm{C}$; $[\alpha]^{20 \mathrm{D}} 42.4^{\circ}\left(c 0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 5.16(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH})_{2}, 4.73-4.56$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{POCH}$), 4.32 (dd, $J=3.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.15 (dd, $\left.J=7.5,14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.01\left(\mathrm{dd}, J=9.1,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right.$), 3.63 (dd, $J=9.5,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.09-2.98$ (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), $1.30-1.18\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right), 0.76-0.62,0.58-0.40,0.22-$ 0.12 (m; $1 \mathrm{H}, 2 \mathrm{H}$, and 2 H , respectively; H -cyclopropyl); ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$) $\delta 159.8,154.7,151.6,144.4,126.4,83.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.12 \mathrm{~Hz}, \mathrm{C}-2^{2}\right), 71.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}\right), 63.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), $47.6\left(\mathrm{C}-1^{\prime}\right), 24.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH}{ }_{3}\right), 24.1$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} 3$), 23.9, 11.7, 5.2 (C-cyclopropyl); MS (DCI) $m / e 432\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{ClN}_{5} \mathrm{O}_{4} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-2-Amino-6-chloro-9-[2-[(diisopropylphosphono)methoxy]butyl]purine (41h). The title compound was prepared from 28 h in 60% yield as a thick oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.93$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 5.15 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 4.75-4.61 (m, $2 \mathrm{H}, 2$ $\times \mathrm{POCH}), 4.22\left(\mathrm{dd}, J=3.3,14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.07(\mathrm{dd}, J=$ $6.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.76 (dd, $J=9.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.61 and $3.66-3.59$ (dd over m, $J=9.6,13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2^{\prime}$), $1.60-1.42$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}$), $1.31-1.22$ ($\mathrm{m}, 12 \mathrm{~Hz}, 4 \times$ POCHCH_{3}), 0.97 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-4^{2}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 159.4,154.1,150.9,143.6,124.5,81.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right)$, $70.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3 \mathrm{~Hz}, \mathrm{POCH}\right), 70.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3 \mathrm{~Hz}, \mathrm{POCH}\right), 63.9$ (d, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 45.2\left(\mathrm{C}-1^{\prime}\right), 23.5\left(\mathrm{~m}, \mathrm{POCHCH}_{3}\right.$ and C-3), 8.6 (C-4'); MS (DCI) $m / e 420\left(\mathrm{MH}^{+}\right)$.

General Procedure for Converting Protected 6-Chloropurine Phosphonates to Guanine Phosphonates: (S)-9-[3-Azido-2-(phosphonomethoxy)propyl]guanine [(S)-5]. Bromotrimethylsilane ($3.43 \mathrm{~g}, 22.4 \mathrm{mmol}$) was slowly added to phosphonate 41a ($1.00 \mathrm{~g}, 2.24 \mathrm{mmol}$) in 10 mL of anhydrous acetonitrile under nitrogen atmosphere. The reaction mixture was allowed to stir at room temperature for 14 h , and the solvent was removed under reduced pressure. The residue was dried in vacuo and then treated with acetone (8 mL) and water (2 mL).

The resulting mixture was stirred at room temperature for 6 h . The solid was collected by filtration, washed with acetone and water, and then heated gently at reflux in 10 mL of 2 N HCl for 5 h . The solution was evaporated under reduced pressure, and the residue was recrystallized from water to give 533 mg of the title compound as pale yellow crystals. The mother liquor was concentrated to provide an additional 72 mg of the product (total 79% yield): $\mathrm{mp} 263{ }^{\circ} \mathrm{C}$ dec; $[\alpha]^{20}{ }_{\mathrm{D}}-18.4^{\circ}(\mathrm{c} 0.38,1 \mathrm{~N} \mathrm{HCl}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 7.69$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 4.13 (dd, $J=5.3,14.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1^{\prime}$), 4.06 (dd, $J=5.3,14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.79-3.74(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-2^{\prime}$), 3.46-3.40 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-3^{\prime}$), 3.34 (dd, $J=9.4,12$ 2. $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.18 (dd, $J=4.7,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{NaOD}$) $\delta 171.7,164.6,155.1,142.7,120.5,80.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.11 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 71.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=151 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 53.7\left(\mathrm{C}-3^{\prime}\right), 46.5$ (C-1'); MS (FAB) m/e $345\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{H}_{8} \mathrm{O}_{5} \mathrm{P} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(R)-9-[3-Azido-2-(phosphonomethoxy)propyl]guanine [($\boldsymbol{R})-6]:[\alpha]^{20} \mathrm{D} 16.7^{\circ}(c 0.63,1 \mathrm{NHCl}) ; \mathrm{MS}(\mathrm{FAB}) m / e 345\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{P} \cdot 0.66 \mathrm{H}_{2} \mathrm{O}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-9-[3-Fluoro-2-(phosphonomethoxy)propyl]guanine [(S)-6]. The title compound was prepared from 41b in 53% yield, and purified by reverse-phase chromatography ($\mathrm{C} 18, \mathrm{H}_{2} \mathrm{O}$ / methanol) and recrystallization ($\mathrm{H}_{2} \mathrm{O} /$ methanol): mp 255-257 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-51.8^{\circ}(c 0.35,1 \mathrm{~N} \mathrm{HCl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{8}) $\delta 10.59$ (b s, $1 \mathrm{H}, \mathrm{NH}$), 7.74 (br s, $1 \mathrm{H}, \mathrm{H}-8$), 6.47 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.65-$ 4.60, 4.49-4.42, 4.31-4.26 (m, $2 \mathrm{H}, \mathrm{H}-3^{\prime}$), 4.24-3.90 (m, $3 \mathrm{H}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-1^{\prime}$), 3.69-3.55 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }^{2}$) δ $157.1,154.0,151.7,138.4,116.2,82.2$ (${ }^{1},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=171 \mathrm{~Hz}, \mathrm{C}-3^{\prime}$), 77.9 (dd, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=19 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=11 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 65.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=163 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{P}$), 42.4 (d, ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=7 \mathrm{~Hz}, \mathrm{C}-1^{\prime}$). Anal. ($\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{FN}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$) C, H, N.
(\boldsymbol{R})-9-[3-Fluoro-2-(phosphonomethoxy) propyl]guanine [$(\boldsymbol{R})-6]:[\alpha]^{20}{ }^{\mathrm{D}} 45.6^{\circ}(c 0.15,1 \mathrm{~N} \mathrm{HCl}), \mathrm{MS}(\mathrm{FAB}) m / e 322\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{FN}_{5} \mathrm{O}_{5} \mathrm{P} \cdot \mathrm{H}_{2} \mathrm{O}$) C, H, N.
(S)-9-[4-Hydroxy-2-(phosphonomethoxy)butyl]guanine [(S)-8]. Boron trichloride (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.2 \mathrm{~mL}, 13.2 \mathrm{mmol}$) was slowly added to the solution of $41 \mathrm{c}(1.31 \mathrm{~g}, 2.49 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h and at $-40^{\circ} \mathrm{C}$ for 2 h and then recooled to $-78^{\circ} \mathrm{C}$. Anhydrous methanol (20 mL) was added and the mixture was allowed to slowly warm to room temperature and the solvent was evaporated. The residue was evaporated from methanol ($3 \times 20 \mathrm{~mL}$) and dried in vacuo. Bromotrimethylsilane ($7.53 \mathrm{~g}, 49.8 \mathrm{mmol}$) was slowly added to the residue in 15 mL of anhydrous acetonitrile under nitrogen atmosphere. The solution was stirred at room temperature for 16 h . The solvent was evaporated, and the residue was dried in vacuo. To the residue, water (5 mL) and acetone (25 mL) were added, and the mixture was stirred at room temperature for 14 h. The solvent was evaporated, and the residue was partitioned between water (100 mL) and ethyl ether (30 mL). The aqueous layer was evaporated, and the residue was gently heated at reflux in 20 mL of 10% hydrochloric acid for 6 h . The solvent was evaporated, and the residue was purified by reverse-phase flash chromatography (C18, water/methanol $=1: 0$ to $10: 1$). The solid collected was recrystallized from water to provide 380 mg (46% yield) of the product: $\mathrm{mp} 254^{\circ} \mathrm{C}$ dec; $[\alpha]^{20} \mathrm{D} 14.5^{\circ}$ (c $0.40,1 \mathrm{~N}$ HCl); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 10.54$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.70(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8$), 6.41 (br s, $2 \mathrm{H}, \mathrm{NH})_{2}$, 4.12 (dd, $J=3.8,14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.96 (dd, $J=5.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)^{\prime}$, $3.81-3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, 3.58 (dd, $J=9.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.53-3.37$ (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-4^{\prime}$), $1.54-1.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 1.40-1.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}) $157.2,153.9 .151 .8,138.6,116.1,76.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}\right.$ $\left.=11 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 65.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=162 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 56.7\left(\mathrm{C}-4^{\prime}\right), 34.8$ (C-3'), 45.0 (C-1'). Anal. ($\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{P} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$) C, H, N.
(\boldsymbol{R})-9-[4-Hydroxy-2-(phosphonomethoxy)butyl]guanine [($\boldsymbol{R})-8]:[\alpha]^{20} \mathrm{D}-11.9^{\circ}$ (c $\left.0.68,1 \mathrm{~N} \mathrm{HCl}\right)$; MS (FAB, negative ion) $m / e 332(\mathrm{M}-\mathrm{H})$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{P} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}\right)$ C, H, N.
(S)-9-[4-[Azldo-2-(phosphonomethoxy)butyl]guanine [(S)9]. The title compound was prepared from 41 d in 62% yield and crystallized from water: mp $245^{\circ} \mathrm{C} \mathrm{dec} ;[\alpha]^{20} \mathrm{D}-0.45^{\circ}$ (c $0.44,1$ $\mathrm{N} \mathrm{HCl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 10.6$ (br s, $1 \mathrm{H}, \mathrm{N} H$), 7.71 (s, 1 $\mathrm{H}, \mathrm{H}-8), 6.44\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.17$ (dd, $J=3.9,14.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-1'), 4.02 (dd, $J=4.7,14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.80-3.71(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-2^{\prime}$), 3.66 (dd, $J=9.3,13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.51 (dd, $J=9.8$,
$13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.46 ($\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}$), $1.65-1.50$ (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$), $1.50-1.38$ (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 157.1,154.0,151.8,138.6,116.1,77.0$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 65.4 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=162 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 47.0 and 44.4 ($\mathrm{C}-1^{\prime}$ and $\mathrm{C}-4^{\prime}$), 30.8 (C-3'); MS (FAB) m/e $359\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{P} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$) C, H, N.
(S)-9-[4-Fluoro-2-(phosphonomethoxy)butyl]guanine [(S)10]. The title compound was prepared from 41e in 69% yield and purified by reverse-phase chromatography ($\mathrm{C} 18, \mathrm{H}_{2} \mathrm{O}$) and recrystallization from $\mathrm{H}_{2} \mathrm{O}: \mathrm{mp} 269^{\circ} \mathrm{C}$ dec; $\left[\alpha{ }^{20} \mathrm{D} 23.4^{\circ}\right.$ (c 0.40 , $1 \mathrm{~N} \mathrm{HCl}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 7.70$ (s, $1 \mathrm{H}, \mathrm{H}-8$), 4.69-4.53 (m, 1 H, H-4'), 4.53-4.39 (m, 1 H, H-4'), 4.11 (dd, $J=4.3,14.9 \mathrm{~Hz}, 1$ H, H-1'), 3.99 (dd, $J=5.7,14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.67-3.79 (m, 1 $\mathrm{H}, \mathrm{H}-2^{\prime}$), 3.29 (d, $J=9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 1.89-1.45 (m, $2 \mathrm{H}, \mathrm{H}-3^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 157.2,154.0,151.2,138.6,116.1,82.2$ (d, ${ }^{1} J_{C, F}=161 \mathrm{~Hz}, \mathrm{C}-4^{\prime}$), 76.1 (dd, ${ }^{3} J_{\mathrm{C}, \mathrm{F}}=4 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 65.5 (d, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{P}}=162 \mathrm{~Hz}, C \mathrm{CH}_{2} \mathrm{P}\right), 44.7\left(\mathrm{C}-1^{\prime}\right), 32.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=20 \mathrm{~Hz}\right.$, $\mathrm{C}-3^{\prime}$). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{FO}_{5} \mathrm{~N}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-9-[2-(Phosphonomethoxy)-3-butenyl]guanine [(S)11]. The title compound was prepared from 41 f in 66% yield, and purified by reverse-phase chromatography ($\mathrm{C} 18, \mathrm{H}_{2} \mathrm{O}$ / methanol) and recrystallization ($\mathrm{H}_{2} \mathrm{O}$): mp $275^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 8.82$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 5.79-5.68 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 5.44-5.37 (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime}$), $4.45-4.36$ and $4.30-4.22$ (m, $3 \mathrm{H}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-1^{\prime}$), 3.69 (dd, $J=9.3,13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.38 (dd, $J=9.3,13.0 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 161.8,157.5,155.0,144.0,136.9(\mathrm{C}-$ 3^{\prime}), $124.2\left(\mathrm{C}-4^{\prime}\right), 117.5,83.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 67.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}\right.$ $\left.=158 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 50.0\left(\mathrm{C}-1^{\prime}\right)$; MS (FAB) $m / e 316\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(R)-9-[2-(Phosphonomethoxy)-3-butenyl]guanine [$(\boldsymbol{R})-11]: \operatorname{mp~} 278^{\circ} \mathrm{C}$ dec; $[\alpha]^{20 \mathrm{D}}-27.2^{\circ}$ (c 0.41, $\mathrm{H}_{2} \mathrm{O}$). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-9-[2-Cyclopropyl-2-(phosphonomethoxy)]ethyl]guanine [(S)-12]. Bromotrimethylsilane ($3.48 \mathrm{~g}, 22.7 \mathrm{mmol}$) was slowly added to the solution of $41 \mathrm{~g}(0.98 \mathrm{~g}, 2.27 \mathrm{mmol})$ in 5 mL of anhydrous acetonitrile under a nitrogen atmosphere. The solution was stirred at room temperature for 16 h . The solvent was evaporated, and the residue was dried in vacuo. To the residue were added water (1 mL) and acetone (20 mL). The mixture was stirred at room temperature for 16 h . The mixture was filtered, and the collected solid was stirred in 2 N NaOH solution (4.85 mL) at $120^{\circ} \mathrm{C}$ for 2 h . The solution was acidified with 1 N HCl solution to pH 1 . The solvent was evaporated under reduced pressure and the residue was purified by reversephase chromatography (C18, water/methanol $=1: 0$ to $10: 1$ to provide 0.304 g (48% yield) of the product as a solid: $\mathrm{mp} 239-$ $241^{\circ} \mathrm{C} ;[\alpha]{ }^{20{ }_{\mathrm{D}}} 18.9^{\circ}\left(c 0.38, \mathrm{H}_{2} \mathrm{O}\right)$; $[\alpha]^{20}{ }_{\mathrm{D}} 25.8^{\circ}(c 0.38,1 \mathrm{~N} \mathrm{HCl})$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 10.56$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.75 (s, $1 \mathrm{H}, \mathrm{H}-8$), 6.44 (br s, $2 \mathrm{H}, \mathrm{NH} \mathrm{H}_{2}$), 4.14 (dd, $J=5.1,16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{I}^{\prime}$), 4.07 (dd, $J=6.6,16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$) , 3.75 (dd, $J=9.6,12.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{P}$), 3.52 (dd, $J=11.1,12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.10-3.02$ (m, 1 $\mathrm{H}, \mathrm{H}-2^{\prime}$), $0.75-0.60,0.60-0.28,-0.12-0$ (m; $1 \mathrm{H}, 3 \mathrm{H}$ and 1 H , respectively; H-cyclopropyl); ${ }^{13}$ C NMR (DMSO- d_{8}) $\delta 157.2,153.9$, $151.8,138.6,116.1,82.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 64.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=\right.$ $163 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 46.0 ((-1^{\prime}), 11.8, 3.5, 0.4 (C-cyclopropyl); MS (FAB) $m / e 330\left(\mathrm{MH}^{+}\right)$. Anal. ($\left.\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(R)-9-[2-Cyclopropyl-2-(phosphonomethoxy)ethyl]guanine [(R)-12]: $\mathrm{mp} 282^{\circ} \mathrm{C}$ dec; $[\alpha]^{20}{ }_{\mathrm{D}}-22.4^{\circ}$ (c $\left.0.33,1 \mathrm{~N} \mathrm{HCl}\right)$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-9-[2-(Phosphonomethoxy)butyl]guanine [(S)-13]. The title compound was prepared from 41 h in 66% yield and purified by recrystallization from $\mathrm{H}_{2} \mathrm{O}$ /methanol: mp $239-241{ }^{\circ} \mathrm{C}$; $[\alpha]^{20_{\mathrm{D}}}$ 22.2° (c 0.22, $\mathrm{H}_{2} \mathrm{O}$); $[\alpha]^{20 \mathrm{D}} 34.2^{\circ}$ ($c 0.30,1 \mathrm{~N} \mathrm{HCl}$); ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 10.57$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.74 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 6.43 (br s, $2 \mathrm{H}, \mathrm{NH})_{2}$, 4.10 (dd, $J=4.0,14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.98 (dd, $J=$ $5.3,14.2 \mathrm{~Hz}, \mathrm{I}$ H, $\mathrm{H}-\mathrm{I}^{\prime}$), $3.62-3.45$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2^{\prime}$), $1.40-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 0.97\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 157.2,153.9,151.8,133.6,116.1,80.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=12\right.$ $\left.\mathrm{Hz}, \mathrm{C}-2^{\prime}\right), 65.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=163 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 44.3\left(\mathrm{C}-1^{\prime}\right), 23.9\left(\mathrm{C}-3^{\prime}\right)$, 9.1 (C-4); MS (FAB) m/e 318 (MH^{+}). Anal. ($\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P} \cdot 0.75-$ $\mathrm{H}_{2} \mathrm{O}$) C, H, N.
(R)-9-[2-(Phosphonomethoxy)butyl]guanine [(R)-13]: mp $281-293{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-35.4^{\circ}$ (c $0.30,1 \mathrm{~N} \mathrm{HCl}$). Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{3}-\right.$ $\left.\mathrm{O}_{5} \mathrm{P} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for the Coupling Reactions of Mesylates with Cytosine. (S)-1-[3-Azido-2-[(disopropylphosphono)methoxy]propyl]cytosine (42a). Mesylate28a was mixed with cytosine ($0.70 \mathrm{~g}, 6.26 \mathrm{mmol}$) and cesium carbonate ($3.40 \mathrm{~g}, 10.4 \mathrm{mmol}$) in 15 mL of anhydrous N^{\prime}, N^{\prime}-dimethylformamide. The mixture was stirred at $90^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 3 h , allowed to cool to room temperature, and filtered. The solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel ($\mathrm{CH}_{2}{ }^{-}$ $\mathrm{Cl}_{2} /$ methanol $=15: 1$ to $5: 1$) to give 1.00 g (49% yield) of 45 a as a thick oil: $[\alpha]^{20} \mathrm{D}-37.6^{\circ}$ (c 2.41, MeOH); $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}\right) \delta 7.43$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.69 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $4.75-4.61$ (m, $2 \mathrm{H}, 2 \times \mathrm{POCH}$), 4.03 (dd, $J=3.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.86 and $3.87-3.82$ (dd over $\mathrm{m}, ~ J=8.7,13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-2^{\prime}$), 3.74 (dd, $J=6.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.69 (dd, $J=9.4,13.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.62 (dd, $J=3.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 3.26 (dd, $J=$ $\left.5.2,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 1.30\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \times \mathrm{POCHCH}_{3}\right), 1.28$ (d, $J=6.1 \mathrm{~Hz}, 2 \times \mathrm{POCHCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 166.7(\mathrm{C}-2)$, 157.1 (C-4), 146.7 (C-6), 94.8 (C-5), $79.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=11 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right)$, $71.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}\right), 71.3$ (d, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}\right), 65.2$ (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=169 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 51.4 and 50.6 ($\mathrm{C}-1^{\prime}$ and $\mathrm{C}-2^{\prime}$), 23.7 (apparent t, $\left.\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH}\right)_{3}\right) ; \mathrm{MS}(\mathrm{DCI}) m / e 389\left(\mathrm{MH}^{+}\right)$.
(S)-1-[2-[(Diisopropylphosphono)methoxy]-3-fluoropropyl]cytosine (42b). The title compound was prepared from 28b in 61% yield and crystallized from ethyl acetate/ether: mp $165-168{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-75.1^{\circ}(c 1.37, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.34 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.74 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $4.75-4.53\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{POCH}\right.$ and $\left.\mathrm{H}-3^{\prime}\right), 4.40$ (ddd, $J_{\mathrm{H}, \mathrm{F}}=47 \mathrm{~Hz}$, $\left.J_{\mathrm{H}, \mathrm{H}}=4.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.09$ (dd, $J=3.8,13.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 4.06-3.91 (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.87 (dd, $J=8.9,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.72 (dd, $J=9.3,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.70 (dd, $J=7.0,13.3 \mathrm{~Hz}$, H-1'), 1.28 (apparent t, $J=5.4 \mathrm{~Hz}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 166.8$ (C-2), 156.9 (C-4), 146.2 (C-6), 94.8 (C-5), 82.3 (d, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{F}}=174 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right), 78.4\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=18 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12\right.$ $\mathrm{Hz}, \mathrm{C}-2^{\prime}$), 71.0 (apparent t, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}$), 64.9 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}$ $=169 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $49.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right), 23.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4\right.$ $\left.\mathrm{Hz}, \mathrm{POCHCH})_{3}\right), 23.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH}_{3}\right)$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{25^{-}}\right.$ $\mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{P}$) C, H, N.
(S)-1-[4-(Benzyloxy)-2-[(diisopropylphosphono)methoxy]butyl]cytosine [($\boldsymbol{S})$-42c]. The title compound was prepared from 28 c in 42% yield and isolated as a thick oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.40-7.20(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}$ and $\mathrm{H}-6), 5.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $\mathrm{H}-5$), 4.70-4.57 (m, $2 \mathrm{H}, \mathrm{POCH}$), 4.45 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.10-4.02 (m, 1 H, H-1'), $3.85-3.75$ (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.73 (dd, $J=9.8,13.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.66-3.52$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-\mathrm{l}^{\prime}$), $1.90-$ 1.66 (m, $2 \mathrm{H}, \mathrm{H}-3^{\prime}$), $1.30-1.19\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$) $\delta 166.5$ (C-2), 156.9 (C-4), 146.7 (C-6), 138.3, 128.4, 127.7, 127.6 (Ph), 94.3 (C-5), 78.1 (d, ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 72.8 ($\mathrm{CH}_{2} \mathrm{Ph}$), 70.8 (apparent t, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}$), $65.7\left(\mathrm{C}-4^{\prime}\right), 64.7$ (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $52.4\left(\mathrm{C}-1^{\prime}\right), 31.5\left(\mathrm{C}-3^{\prime}\right), 23.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}\right.$ $\left.=5 \mathrm{~Hz}, \mathrm{POCHCH}_{3}\right)$.
(S)-1-[4-Azido-2-[(dilsopropylphosphono)methoxy]butyl]cytosine (42d). The title compound was prepared from 28d in 42% yield and isolated as a thick oil: ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$) $\delta 7.43$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.70 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $4.75-4.60(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{POCH}), 4.00$ (dd, $J=2.1,12.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1^{\prime}$), 3.82-3.69 (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}, \mathrm{H}-1^{\prime}$ and $\mathrm{H}-2^{\prime}$), 3.63 (dd, $J=9.5$, $13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.52-3.38$ (m, 2 H, H-4'), $1.90-1.63$ (m, 2 H , $\mathrm{H}-3^{\prime}$), 1.31-1.27 (m, $\left.12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 167.2 (C-2), 157.5 (C-4), 146.9 (C-6), 95.3 (C-5), 78.5 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=$ $5 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 71.6 (apparent $\mathrm{t},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, 2 \times \mathrm{POCH}$), 65.5 (d, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{P}}=171 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 52.5\left(\mathrm{C}-1^{\prime}\right), 47.6\left(\mathrm{C}-4^{\prime}\right), 31.3\left(\mathrm{C}-3^{\prime}\right), 24.2$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH} 3$); MS (DCI) $m / e 403\left(\mathrm{MH}^{+}\right)$.
(S)-1-[2-[(Diisopropylphosphono)methoxy]-4-fluorobutyl]cytosine (42e). The title compound was prepared from $28 e$ in 60% yield and isolated as a thick oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.40$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.71 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 4.75-4.60 and 4.55-4.42 (m, $4 \mathrm{H}, 2 \times \mathrm{POCH}$ and $\mathrm{H}-4^{\prime}$), 4.02 (dd, $J=3.1,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.90-3.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.77-3.69$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{H}-1^{\prime}$), 3.63 (dd, $J=9.4,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 2.10-1.70 (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime}$), 1.28 (apparent t, $J=6.3 \mathrm{~Hz}, 12 \mathrm{H}, 4$ $\times \mathrm{POCHCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7(\mathrm{C}-2), 157.0$ (C-4), 146.5 (C-6), 94.5 (C-5), 79.9 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}=165 \mathrm{~Hz}, \mathrm{C}-4^{\prime}$), 77.3 $\left(\mathrm{dd},{ }^{3} J_{\mathrm{C}, F}=2 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}, P}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 71.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}\right.$, $\mathrm{POCH}), 70.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCH}\right), 65.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{P}$), $52.2\left(\mathrm{C}-1^{\prime}\right), 32.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=20 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right.$), 23.6 (apparent
$\left.\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCHCH}\right)_{3}$; MS (DCI) m/e $380\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-1-[2-[(Dilisopropylphosphono)methoxy]-3-butenyl]cytosine (42f). The title compound was prepared from $28 f$ in 60% yield and crystallized from ethyl acetate/ether: mp 137$138^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D} 84.0^{\circ}\left(c 0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.72-5.78$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 5.46-5.32 (m, $\left.2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.74-5.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{POCH})$, 4.22-4.10 (m, $2 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.74 (dd, $J=9.5,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.45 and $3.54-3.41$ (dd, over $\mathrm{m}, J=9.5,13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$ and $\left.\mathrm{H}-2^{\prime}\right), 1.36-1.22\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 166.6 (C-2), 156.9 (C-4), 146.8 (C-6), 133.8 (C-3'), 128.8 (C-4'), 94.2 (C-5), 80.9 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=13.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), $63.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{P}$), 70.9 (apparent t, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCH}$), $53.1\left(\mathrm{C}-1^{\prime}\right), 23.7$ (apparent t, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz}, \mathrm{POCHCH} \mathrm{H}_{3}\right)$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}\right.$) C, H, N.
(S)-1-[2-Cyclopropyl-2-[(diisopropylphosphono)methoxy]ethyl]cytosine (42g). The title compound was prepared from 28 g in 60% yield and isolated as a thick oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}-5), 4.71-4.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{POCH}), 4.21(\mathrm{dd}, J=2.7,13.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$) , 3.81 (dd, $J=6.3,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.58-3.40 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.03-2.94 (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 1.25 (apparent t, $J=6.4$ $\left.\mathrm{Hz}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH} \mathrm{H}_{3}\right), 0.86-0.59,0.58-0.35,0.30-0.19$ (m; 2 $\mathrm{H}, 2 \mathrm{H}$ and 1 H , respectively; H -cyclopropyl); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$) $\delta 166.4$ (C-2), 156.7 (C-4), 146.3 (C-6), 94.1 (C-5), 83.1 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=$ $14 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 70.6 (d, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCH}$), 62.9 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=170$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), $53.2\left(\mathrm{C}^{\prime} 1^{\prime}\right), 23.3$ (apparentt, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=6 \mathrm{~Hz}, \mathrm{POCHCH} 3$), 11.1, 4.1, -0.6 (C-cyclopropyl).
(S)-1-[2-[(Diisopropylphosphono)methoxy]butyl]cytosine (42 h). The product was prepared from $\mathbf{2 8 h}$ in 58% yield and isolated as a thick oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.47$ (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.62 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $4.75-4.60$ (m, $2 \mathrm{H}, 2 \times \mathrm{POCH}$) 4.20 (dd, $J=2.3,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.74 (dd, $J=9.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.65-3.55 (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.52 (dd, $J=9.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.43 (dd, $J=8.3,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $1.65-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 1.31-1.25$ (m, $12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}$), $0.96\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 166.6(\mathrm{C}-2)$, 157.0 (C-4), 148.9 (C-6), 94.1 (C-5), 81.6 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 70.9 (apparent t, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=8 \mathrm{~Hz}, 2 \times \mathrm{POCH}$), $64.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=171\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 52.4\left(\mathrm{C}-1^{\prime}\right), 24.0\left(\mathrm{C}-3^{\prime}\right), 23.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}\right.$, POCHCH_{3}), 8.7 (C-4'); MS (DCI) m/e 362 (MH+).

General Procedure for the Hydrolysis of the Protected Cytosine Phosphonates. (S)-1-[3-Azido-2-(phosphonomethoxy) propyl]cytosine [(S)-14]. Phosphonate 42a (0.85 g , 2.20 mmol) was dissolved in 9 mL of anhydrous acetonitrile and treated slowly with bromotrimethylsilane ($4.06 \mathrm{~g}, 37.7 \mathrm{mmol}$) under nitrogen atmosphere. The reaction mixture was allowed to stir at room temperature for 12 h , and the solvent was removed under reduced pressure. The residue was dried in vacuo and then treated with acetone (10 mL) and water (2 mL). The resulting mixture was stirred at room temperature for 6 h and filtered. The solids collected were recrystallized from water/ methanol to give 370 mg (55% yield) of the title compound as white crystals: $\operatorname{mp} 210^{\circ} \mathrm{C}$ dec; $[\alpha]^{20} \mathrm{D}-75.0^{\circ}$ (c $0.32,1 \mathrm{~N} \mathrm{HCl}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.73$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.00 (d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.00$ (dd, $J=6.6,17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.81-3.72$ (m, $2 \mathrm{H}, \mathrm{H}-1^{\prime}$ and $\mathrm{H}-2^{\prime}$), 3.66 (dd, $J=9.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.57 (dd, $J=3.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 3.42 (dd, $J=9.5,13.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.28 (dd, $J=3.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 170.0$ (C-2), 151.7 (C-4), 150.7 (C-6), $95.2(\mathrm{C}-5), 78.6$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=$ $\left.12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 66.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=158 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 51.2,51.0\left(\mathrm{C}-1^{\prime}\right.$ and C-2'); MS (FAB) m/e $305\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(R)-1-[3-Azido-2-(phosphonomethoxy)propyl]cytosine [($\boldsymbol{R})-14]:[\alpha]^{20} \mathrm{D} 60.6^{\circ}$ (c $0.46,1 \mathrm{~N} \mathrm{HCl}$); MS (FAB) m/e 305 (MH^{+}). Anal. ($\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{P} \cdot 0.33 \mathrm{H}_{2} \mathrm{O}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-1-[3-Fluoro-2-(phosphonomethoxy)propyl]cytosine [($(\$)-15]$. The title compound was prepared from $42 b$ in 81% yield, purified by reverse-phase flash chromatography (C18, water), and recrystallized from water/methanol: mp $268^{\circ} \mathrm{C}$ dec; $[\alpha]{ }^{20} \mathrm{D}-87.4^{\circ}\left(c 0.46, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 6.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.65-4.60$ and 4.47 (m and dd, $\left.J=3.1,10.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.24-4.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, 4.03-3.89 (m, $2 \mathrm{H}, \mathrm{H}-1^{\prime}$) , 3.80 (dd, $J=9.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.58 (dd, $J=9.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 166.7$ (C-2), 157.0 (C-4), 146.5 (C-6), 94.5 (C-5), $79.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=165 \mathrm{~Hz}\right.$,
$\left.\mathrm{C}-4^{\prime}\right), 77.3$ (dd, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{F}}=2 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 70.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}\right.$ $=5 \mathrm{~Hz}, \mathrm{POCH}), 65.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=170 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}\right), 52.2\left(\mathrm{C}-1^{\prime}\right), 32.2$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=20 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right) ; \mathrm{MS}(\mathrm{FAB}) m / e 282\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{13^{-}}\right.$ $\mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{P}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(R)-1-[3-Fluoro-2-(phosphonomethoxy)propyl]cytosine [(R)-15]: $[\alpha]^{20}{ }_{\mathrm{D}} 115.5^{\circ}\left(c 0.15, \mathrm{H}_{2} \mathrm{O}\right)$; MS (FAB) m/e $282\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{P} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-1-[4-Hydroxy-2-(phosphonomethoxy)butyl]cytosine [($\boldsymbol{S})$-16]. Boron trichloride (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.94 \mathrm{~mL}$, 4.94 mmol) was slowly added to $42 \mathrm{c}(0.77 \mathrm{~g}, 1.65 \mathrm{mmol})$ in 10 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under reduced pressure and the residue was evaporated from methanol ($3 \times 20 \mathrm{~mL}$) and dried in vacuo. Anhydrous acetonitrile (8 mL) and bromotrimethylsilane (2.50 $\mathrm{g}, 16.5 \mathrm{mmol}$) were added to the residue under nitrogen and the reaction mixture was stirred at room temperature for 16 h . The solvent was removed under reduced pressure, and the residue was dried in vacuo. To the residue were added water (4 mL) and acetone (16 mL). After stirring at room temperature for 24 h , the mixture was concentrated. The residue was dissolved in 50 mL of water and the resulting solution was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 15 \mathrm{~mL}$). The aqueous layer was evaporated, and the residue was purified by reverse-phase flash chromatography (C_{18}; water/ methanol =1:0 to 10:1). The product collected was recrystallized from methanol and water to give $0.26 \mathrm{~g}(53 \%)$ of a white solid: $\left.\operatorname{mp} 155-160^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}} 43.7^{\circ}(c) 1.38, \mathrm{H}_{2} \mathrm{O}\right)$; $[\alpha]^{20} \mathrm{D} 64.0^{\circ}$ (c 0.63, $1 \mathrm{~N} \mathrm{HCl}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.18$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.21-4.13, 3.92-3.83, 3.80-3.69 (m; 1 $\mathrm{H}, 2 \mathrm{H}$ and 2 H , respectively; $\mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-4^{\prime}$), 3.72 (dd, J $=9.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.59 (dd, $J=9.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $1.81\left(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 165.8(\mathrm{C}-2), 156.3$ (C-4), 153.1 (C-6), $94.0(\mathrm{C}-5), 80.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=11 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 69.3$ (d, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{P}}=158 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 60.8,58.0\left(\mathrm{C}-1^{\prime}\right.$ and $\left.\mathrm{C}-4^{\prime}\right), 36.7\left(\mathrm{C}-3^{\prime}\right)$; MS (FAB) m/e $294\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.
(R)-1-[4-Hydroxy-2-(phosphonomethoxy)butyl]cytosine [($\boldsymbol{R})-16]$. The product was isolated as a monoammonium salt: $[\alpha]^{20}{ }_{\mathrm{D}}-24^{\circ}\left(c 0.98, \mathrm{H}_{2} \mathrm{O}\right)$; high-resolution MS calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$ 294.0855, found 294.0852 .
(5)-1-[4-A zido-2-(phosphonomethoxy)butyl]cytosine [(\$)17]. The title compound was prepared from 42d in 63% yield and purified by reverse-phase column chromatography (C_{18}, water/methanol $=10: 1$ to $5: 1$) and recrystallized from methanol/water: mp $247{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}} 32.6^{\circ}\left(c 0.32, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6), 4.12\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.88-3.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right.$ and $\mathrm{H}-2^{\prime}$), 3.68 (dd, $J=9.7,13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.54 (dd, $J=9.7$, $13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.49 ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}$), 1.81 (q, J $\left.=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 164.2(\mathrm{C}-2), 154.3$ (C-4), 153.7 (C-6), 97.7 (C-5), 80.6 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 69.4 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}$ $=158 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 54.9 and 50.3 (C-1' and $\mathrm{C}-4^{\prime}$), 33.2 (C-3'); MS (FAB) m/e $319\left(\mathrm{MH}^{+}\right)$; IR (KBr) $3500-2500(\mathrm{OH}, \mathrm{NH}), 2100$ $\left(\mathrm{N}_{3}\right), 1720(\mathrm{C}=\mathrm{O}), 1114(\mathrm{O}-\mathrm{C}), 1072,930(\mathrm{P}-\mathrm{O}), 770(\mathrm{P}-\mathrm{C}) \mathrm{cm}^{-1}$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-1-[4-Fluoro-2-(phosphonomethozy)butyl]cytosine [(S)18]. The title compound was prepared from 42 e in 88% yield, purified by reverse-phase column chromatography (C18, water/ methanol $=10: 1$ to $5: 1$), and recrystallized from methanol/ water: $\operatorname{mp} 257-259^{\circ} \mathrm{C}$ dec; $[\alpha]^{20} \mathrm{D} 74.4^{\circ}\left(c 0.49, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6), 4.68\left(\mathrm{dt}, J_{\mathrm{H}, \mathrm{H}}=5.7 \mathrm{~Hz}, J_{\mathrm{F}, \mathrm{H}}=52.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.15(\mathrm{~d}$, $\left.J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.95-3.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-1^{\prime}\right), 3.69$ (dd, $J=9.7,13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.54 (dd, $J=9.7,13.0 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.12-1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 165.7(\mathrm{C}-2)$, 156.3 (C-4), 153.2 (C-6), 97.9 (C-5), 84.5 (d, $\left.{ }^{1} J_{\mathrm{C}, F}=160 \mathrm{~Hz}, \mathrm{C}-4^{\prime}\right)$, 80.1 (t, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}={ }^{3} J_{\mathrm{C}, \mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 69.4$ (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=158 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}$), $55.5\left(\mathrm{C}-1^{\prime}\right), 34.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=20 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right) ; \mathrm{MS}(\mathrm{FAB}) m / e 295\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{P} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-1-[2-(Phosphonomethoxy)-3-butenyl]cytosine [(S)19]. The title compound was prepared from 42 f in 67% yield, purified by reverse-phase column chromatography (C18, water/ methanol $=10: 1$ to $5: 1$), and recrystallized from methanol/ water: $\operatorname{mp} 294^{\circ} \mathrm{C}$ dec; $[\alpha]^{20} \mathrm{D} 84.0^{\circ}\left(c 1.13, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 5.78-5.66 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 5.44-5.37 (m, $2 \mathrm{H}, \mathrm{H}-4$), 4.08 and 4.17-
4.05 (dd over m, $J=3.5,14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}$ and $\mathrm{H}-2^{\prime}$), 3.82 (dd, $J=7.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.67 (dd, $J=9.3,13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.38 (dd, $J=9.3,13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 167.7$ (C-2), 159.0 (C-4), 152.4 (C-6), 137.0 (C-3'), 123.7 (C-4'), 98.1 (C-5), 83.8 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), $67.9\left(\mathrm{~d}, J=158 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), 55.6 (C-1'). Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-1-[2-Cyclopropyl-2-(phosphonomethoxy)]ethyl]cytosine [(S)-20]. The title compound was prepared from 42g in 58% yield, purified by reverse-phase column chromatography (C18, water/methanol $=10: 1$ to 5:1), and recrystallized from methanol/water: $\mathrm{mp} 281{ }^{\circ} \mathrm{C} \mathrm{dec}$; $[\alpha]^{20}{ }_{\mathrm{D}} 70.0^{\circ}\left(c \mathrm{c} 1.18, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$), 4.19 (dd, $J=3.4,14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.95 (dd, $J=$ $9.9,13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 3.90 (dd, $J=8.1,14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.50 (dd, $J=9.9,13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $3.04-2.97$ (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), $0.83-0.67,0.57-0.50,0.22-0.15(\mathrm{~m} ; 2 \mathrm{H}, 2 \mathrm{H}$ and 1 H , respectively; H-cyclopropyl); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 165.2$ (C-2), 156.6 (C-4), 149.2 (C-6), 95.2 (C-5), 83.8 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 65.3 (d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=159$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), 52.8 (C-1'), 11.4, 3.4, -3.2 (C-cyclopropyl). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{H}, \mathrm{N}$; C: calcd, 41.53 ; found, 40.96.
(S)-1-[2-(Phosphonomethoxy)butyl]cytosine [(S)-21]. The title compound was prepared from 42 h in 80% yield, purified by reverse-phase column chromatography (C 18 , water/methanol $=$ 10:1 to $5: 1$), and recrystallized from methanol/water to provide the product: mp $282{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}} 100.6^{\circ}\left(c 0.36, \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 88.11 (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.02 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.68 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.74 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.88 (brd, $\left.J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.66-3.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right.$ and $\mathrm{H}-2^{\prime}$), $1.48-1.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 0.96\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ (DMSO-d ${ }_{6}$) $\delta 164.2$ (C-2), 153.7 (C-4), 148.6 (C-6), 93.2 (C-5), 80.4 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=11 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), $65.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=161 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}\right), 50.6\left(\mathrm{C}-1^{\prime}\right)$, 23.9 (C-3'), 9.2 (C-4'), MS (FAB) m/e $277\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S) -6-O-Benzyl-9-[3-(benzyloxy)-2-[(diisopropylphospho-no)methoxy]propyl]- N^{2}-[p-methoxyphenyl)diphenylmethyljguanine (44). A solution of $43^{4}(9.20 \mathrm{~g}, 15.8 \mathrm{mmol})$, monomethoxytrityl chloride ($7.30 \mathrm{~g}, 23.6 \mathrm{mmol}$), and 4 -(dimethylamino) pyridine (1 g) under argon in anhydrous DMF (100 mL) was treated dropwise over 5 min with triethylamine (4.79 $\mathrm{g}, 47.3 \mathrm{mmol}$). The reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 20 h and then concentrated in vacuo. The residue was diluted with ethyl acetate $(250 \mathrm{~mL})$ and washed with water $(100 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate (150 mL), and the combined organic layers were washed with saturated NaCl solution (150 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated to give 15 g of a viscous oil. The residue was purified by column chromatography on silica gel (1% to 2% to $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide $10.9 \mathrm{~g}(81 \%)$ of the product: $[\alpha]^{20} \mathrm{D},-29.1^{\circ}(c 0.67, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 7.57$ ($(\mathrm{s}, 1$ $\mathrm{H}, \mathrm{H}-8), 7.32-7.15(\mathrm{~m}, 22 \mathrm{H}, \mathrm{ArH}), 6.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.22 (s, $1 \mathrm{H}, \mathrm{NH}$), 4.99 (br s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}$), $4.71-4.58$ ($\mathrm{m}, 2 \mathrm{H}$, $2 \times \mathrm{POCH}), 4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.09-3.85\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\prime}\right)$, 3.73 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.77-3.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{P}, \mathrm{H}-2^{\prime}\right.$, and $2 \times$ H-3'), $1.29-1.19\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right.$) ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{8}) $\delta 158.1,15.7 .7,154.0,145.9,140.4,138.1,137.7,136.6,130.2,129.0$, $128.4,128.2,128.1,127.8,127.8,127.6,126.5,114.8$ (C-5), 112.9, 78.8 ($\mathrm{d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), $73.5\left(3^{\prime}-\mathrm{OCH}_{2} \mathrm{Ph}\right), 71.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $7 \mathrm{~Hz}, \mathrm{POCH}), 70.5\left(\mathrm{CAr}_{3}\right), 69.1$ and 67.8 ($\mathrm{C}-3^{\prime}$ and $6-\mathrm{O}-\mathrm{CH}_{2} \mathrm{Ph}$), $65.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=169 \mathrm{~Hz}, 0 \mathrm{OCH}_{2} \mathrm{P}\right), 55.2\left(\mathrm{OCH}_{3}\right), 44.2\left(\mathrm{C}-1^{\prime}\right), 24.0$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{OCHCH}_{3}$), $23.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, 0 \mathrm{OHCH}_{3}\right) ; \mathrm{MS}$ (FAB) $m / e 856\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-9-[3-Hydroxy-2-[(diisopropylphosphono)methoxy]-propyl]- \boldsymbol{N}^{2}-[(\boldsymbol{p}-methoxyphenyl)diphenylmethyl]guanine (45). Phosphonate $44(10.1 \mathrm{~g}, 11.8 \mathrm{mmol}$) was dissolved in 1:1 cyclohexane/ethanol (200 mL) and treated in one portion with $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on carbon $(10 \mathrm{~g})$. The mixture was heated at reflux for 14 h and then filtered while hot through a 1 -inch pad of Celite. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (4% to 6% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $4.04 \mathrm{~g}(51 \%)$ of the desired product: $[\alpha]^{20}{ }^{\mathrm{D}}-43.9^{\circ}$ (c 0.95, MeOH); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 10.51$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.60 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.45 (s, $1 \mathrm{H}, \mathrm{H}-8$), 7.31-7.15 (m, $12 \mathrm{H}, \mathrm{Ar} H$), $6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.65(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.52-4.39(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{POCH}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.64-3.46\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\prime}\right), 3.32-3.21\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{OCH}_{2} \mathrm{P}\right.$ and $\mathrm{H}-3^{\prime}$), $3.15-3.07$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), $3.03-2.96$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), $1.20-$
$1.10\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 157.8$, 156.6, 150.7, 149.7, 145.1, 145.0, 138.4, 136.9, 130.0, 128.6, 127.7, 126.6, 116.9 (C-5), 113.0, 79.5 (d, ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 70.3 (d, ${ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}$ $=7 \mathrm{~Hz}, \mathrm{POCH}), 69.8\left(\mathrm{CAr}_{3}\right), 63.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=165 \mathrm{~Hz}, 0 \mathrm{OH}_{2} \mathrm{P}\right)$, $60.0\left(\mathrm{C}-3^{\prime}\right), 55.0\left(\mathrm{OCH}_{3}\right), 43.7\left(\mathrm{C}-1^{\prime}\right), 23.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}\right.$, $\left.\mathrm{OCHCH}_{3}\right), 23.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{OCHCH}_{3}\right) ; \mathrm{MS}(\mathrm{FAB}) m / e 676$ $\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{P}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-9-[3-Chloro-2-[(diisopropylphosphono)methoxy]propyl]guanine (46). A solution of $45(1.35 \mathrm{~g}, 2.00 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) was treated with $\mathrm{CCl}_{4}(3.07 \mathrm{~g}$, $20.0 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(1.05 \mathrm{~g}, 4.00 \mathrm{mmol})$, and imidazole ($0.54 \mathrm{~g}, 8.0$ mmol). The reaction mixture was stirred at room temperature for 2 h , treated with anhydrous pyridine (10 mL), and then heated at $80^{\circ} \mathrm{C}$ for 15 h . Additional $\mathrm{CCL}_{4}(1.50 \mathrm{~g}, 9.8 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(0.52$ $\mathrm{g}, 2.0 \mathrm{mmol})$, and imidazole ($0.27 \mathrm{~g}, 4.0 \mathrm{mmol}$) were added, and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h further. The resulting brown mixture was allowed to cool to room temperature, treated with ethanol (10 mL), and concentrated in vacuo. The residue (4.5 g) was purified by column chromatography on silica $\mathrm{gel}\left(1 \%\right.$ to 3% to $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 0.68 g of $(\mathrm{S})-9-$ [3-chloro-2-[(diisopropylphosphono)methoxy]propyl]- N^{2}-[(p-methoxyphenyl)-diphenylmethyllguanine contaminated with some imidazole and triphenyl phosphine.

A portion of the partially-purified material (0.50 g) was dissolved in 80% aqueous acetic acid (25 mL) and the solution was heated on a steam bath for 1 h . The mixture was concentrated in vacuo and the residue was purified by column chromatography on silica gel (5% to $7.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide 0.22 g of the product (36% overall yield from 45): ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{8}) $\delta 7.60$ (s, $1 \mathrm{H}, \mathrm{H}-8$), 6.38 (brs, $2 \mathrm{H}, \mathrm{NH}$) , 4.56-4.33(m, $2 \mathrm{H}, 2 \times \mathrm{POCH}$), $4.20-4.01$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}$ and $2 \times \mathrm{H}-1^{\prime}$), $3.92-3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{P}\right.$), $3.73-3.65\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-3^{\prime}\right), 1.05-1.19\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{POCHCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 157.4,154.0,151.9,138.3,116.6$ (C-5), 78.3 (d, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=13 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 70.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=4 \mathrm{~Hz}, \mathrm{POCH}\right), 63.5$ (d, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{P}}=165 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{P}\right), 44.0$ and $43.5\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-1^{\prime}\right), 23.8$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCHCH} 3$), $23.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=7 \mathrm{~Hz}, \mathrm{POCHCH} \mathrm{H}_{3}\right.$); MS (FAB) m/e $422\left(\mathrm{MH}^{+}\right)$.
(S)-9-[3-Chloro-2-(phosphonomethoxy)propyl]guanine [(S)-7]. Bromotrimethylsilane ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}$) was added dropwise to a solution of 46 ($0.135 \mathrm{~g}, 0.320 \mathrm{mmol}$) in anhydrous acetonitrile (2 mL). The mixture was stirred at room temperature for 14 h and then concentrated in vacuo. The residue was coevaporated from acetonitrile (25 mL) and then treated with water $(0.5 \mathrm{~mL})$. Upon addition of acetone $(25 \mathrm{~mL})$, the product precipitated from solution. Filtration of the slurry gave 0.088 g (81%) of the product as a pale orange solid: $[\alpha]^{20} \mathrm{D}-40.0^{\circ}$ (c 0.07 , $\mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 8.92$ (s, $1 \mathrm{H}, \mathrm{H}-8$), 4.55 (dd, $J=3.5,14.6$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1^{\prime}$), 4.39 (dd, $J=8.1,14.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1^{\prime}$), 4.19-4.10 (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.89-3.70 (m, $3 \mathrm{H}, 1 \times \mathrm{H}-3^{\prime}$ and $\mathrm{OCH}_{2} \mathrm{P}$), 3.55 (dd, $\left.J=9.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 157.4$, $157.2,152.1,140.4$ (C-8), 109.5 (C-5), 79.7 (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), $67.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=160 \mathrm{~Hz}, 0 \mathrm{OH}_{2} \mathrm{P}\right), 48.2\left(\mathrm{C}-3^{\prime}\right), 44.1\left(\mathrm{C}-1^{\prime}\right) ; \mathrm{MS}$ (FAB) $m / e 338\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{PCl} \cdot 0.66 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N .
(R)-9-[3-Chloro-2-(phosphonomethoxy)propyl]guanine [($\boldsymbol{R})$-7]. MS (FAB) $m / e 338\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5}-$ $\left.\mathrm{PCl} \cdot 0.125 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{H}, \mathrm{N} ; \mathrm{C}$: calcd, 32.27; found, 31.80 .

References

(1) De Clercq, E.; Holy, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P. C. A NovelSelective Broad-Spectrum Anti-DNA Virus Agent. Nature 1986, 323, 464-467.
(2) Balzarini, J.; Hao, Z.; Herdewijn, P.; Johns, D. G.; De Clercq, E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonoylmethozyethyl)adenine, a potent anti-human immunodeflclency virus compounds. Proc. Natl. Acad. Sci.U.S.A. 1991, 88, 1499-1503, and references cited therein.
(3) Bronson, J. J.; Kim, C. U.; Ghazzouli, I.; Hitchcock, M. J. M.; Kern, E. R.; Martin, J. C. Synthesis and Antiviral Activity of Phosphonylmethoxyethyl Derivatives of Purine and Pyrimidine Bases. In Nucleotide Analogues as Antiviral Agents; Martin, J. C., Ed.; American Chemical Society: Washington, DC, 1989; pp 72-87.
(4) Yu, K.L.;Bronson, J. J.; Yang, H.; Patick, A.; Alam, M.; Brankovan, V.; Datema, R.; Hitchcock, M. J. M.; Martin, J. C. Synthesis and Antiviral Activity of Methyl Derivatives of 9-[2-(phosphonomethoxy)ethyl]guanine. J.Med.Chem. 1992,35, 2958-2969, and references cited therein.
(5) (a) De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.; Holy, A. Antiviral activity of phosphonylmethoxyalkyl derivatives of purines and pyrimidines. Antiviral Res. 1987, 8, 261-272; (b) Terry, B. J.; Mazina, K. E.; Tuomari, A. V.; Haffey, M. L.; Hagen, M.; Feldman, A.; Slusarchyk, W. A.; Young, M. G.; Zahler, R.; Field, A. K. Broad-Spectrum Antiviral Activity of the Acyclic Guanine Phosphonate (R, S)-HPMPG. Antiviral Res. 1988, 10, 235-252.
(6) Racemic 2-fluoromethyl phosphonomethoxyalkyl derivatives have been reported in Balzarini, J.; Holy, A.; Jindrich, J.; Dvorakova, H.; Hao, Z.; Snoeck, R.; Herdewijn, P.; Johns, D. G.; De Clercq, E. 9-[(2R,S)-3-Fluoro-2-phosphonylmethoxypropyl] derivatives of purines: A class of highly selective antiretroviral agents in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 4961-4965.
(7) Bronson, J. J.; Ghazzouli, I.; Hitchcock, M. J. M.; Webb II, R. R.; Martin, J. C. Synthesis and Antiviral Activity of the Nucleotide Analogue (S)-1-[3-Hydroxy-2-(phosphonylmethoxy)propyl]cytosine. J. Med. Chem. 1989, 32, 1457-1463.
(8) (a) For example, (R)- and (S)-2'-hydroxyethyl PMEG contained only 0.4 and 1.2% of the other enantiomer, respectively, as determined by HPLC using Phenomenex IB-SIL, C18 column, and aqueous L-phenylalanine as eluent. (b) Although preparation of one enantiomer is depicted in the synthetic schemes, the opposite enantiomer was prepared under the identical conditions.
(9) Schultz, A. G.; Dittami, J. P.; Myong, S. O.; Sha, C.-K. A New 2-Azatricyclo [4.4.0.0 2,,] decenoneSynthesis and Ketene Formation by Retro-Diels-Alder Reaction. J.Am.Chem. Soc. 1983, 105, 32733279.
(10) Middleton, W. New Fluorinating Reagents. Dialkylaminosulfur Fluorides. J. Org. Chem. 1975, 40, 574-579.
(11) Cox, D. P.; Terpinski, J.; Lawrynowicz, W. "Anhydrous" Tetrabutylammonium Fluoride: A Mild but Highly Efficient Source of Nucleophilic Fluoride Ion. J. Org. Chem. 1984, 49, 3216-3219.
(12) Kutney, J. P.; Abdurahman, N.; Le Quesne, P.; Piers, E.; Vlattas, I. A New Total Synthesis of $d l$-Quebrachamine and $d l$-Aspidospermidine. A General Entry Into the Aspidosperma Alkaloids. J. Am. Chem. Soc. 1966, 88, 3656-3657.
(13) (a) Ohno, M.; Nagashima, N. An Efficient O-Monoalkylation of Dimethyl L-Tartrate Via O-Stannylene Acetal with Alkylhalide in the Presence of Cesium Fluoride. Chem. Lett. 1987, 141-144. (b)

Hanessian, S.; David, S. Regioselective Manipulation of Hydrozyl Groups Via Organotin Derivatives. Tetrahedron 1985, 41, 643663.
(14) Clive, D. L. J.; Murthy, K. S. K.; Wee, A. G. H.; Prasad, J. S.; da Silva, G. V.J.; Majewski, M.; Anderson, P. C.; Evans, C. F.; Haugen, R. D.; Heerze, L. D.; Barrie, J. R. Total Synthesis of Both (+)Compactin and (+)-Mevinolin. A General Strategy Based on the Use of a Special Titanium Reagent for Dicarbonyl Coupling. J. Am. Chem. Soc. 1990, 112, 3018-3028.
(15) Hanessian, S.; Delorme, D.; Dufresne, Y. Mild Cleavage of Methoxymethyl (MOM) Ethers with Trimethylsilyl Bromide. Tetrahedron Lett. 1984, 2515-2518.
(16) Hanessian, S.; Liak, T. J.; Vanasse, B. Facile Cleavage of Benzyl Ether by Catalytic Transfer Hydrogenation. Synthesis 1981, 396397.
(17) Kim, D.; Li, Y.; Horenstein, B. A.; Nakanishi, K. Synthesis of Tunichromes Mm-1 and Mm-2, Blood Pigments of the IronAssimilating Tunicate, Molgula Manhattensis. Tetrahedron Lett. 1990, 31, 7119-7112.
(18) Suda, M. Cyclopropanation of Terminal Olefins Using Diazomethane/Palladium (II) Acetate. Synthesis 1981, 714.
(19) Hooz, J.; Gilani, S. S. H. A Rapid, Mild Procedure for the Preparation of Alkyl Chlorides and Bromides. Can.J.Chem.1968, 46, 86-87.
(20) McKenna, C. E.; Schmidhauser, J. Functional Selectivity in Phosphate Ester Dealkylation with Bromotrimethylsilane. J. Chem. Soc. Chem. Commun. 1979, 739.
(21) Garegg, P. J.; Johansson, R.; Samuelsson, B. Two Reagent System for Converting Hydroxy Compounds into Chlorides Using the Triphenylphosphine/ImidazoleSystem. Synthesis 1984, 168-170.
(22) Weislow, O. S.; Kiser, R.; Fine, D. L.; Bader, J.; Shoemaker, R. H.; Boyd, M. R. New Soluble-Formazan Assay for HIV-1 Cytopathic Effects: Application to High-Flux Screening of Synthetic and Natural Products for AIDS-Antiviral Activity. J. Natl. Cancer Inst. 1989, 81, 577-586.
(23) Kim, C. U.;Luh, B. Y.;Bronson, J. J.; Hitchcock, M. J. M.; Ghazzouli, I.; Martin, J. C. Acyclic Purine Phosphonate Analogues as Antiviral Agents. Synthesis and Structure-Activity Relationships. J. Med. Chem. 1990, 33, 1207-1213.

[^0]: ${ }^{\dagger}$ Current address: Sandoz Forchungs Institute, Austria.
 ₹ Current address: Gilead Sciences, Foster City, CA.

 - Abstract published in Advance ACS Abstracts, September 1, 1993.

