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The human immunodeficiency virus type-1 (HIV-1), the 
causative agent of AIDS (acquired immunodeficiency 
syndrome), encodes for a unique aspartyl protease.1 

Inactivation of this protease by site-directed mutagenesis 
of the catalytic aspartyl residues results in the production 
of noninfectious virions.2 As a result, this protease 
represents an attractive target for the development of a 
therapeutic agent for the treatment of AIDS. Numerous 
examples of potent inhibitors of this protease, involving 
the incorporation of a variety of isosteres at the cleavage 
site, have been reported and recently reviewed.3-7 We 
now wish to report our results on the development of a 
potent class of HIV-1 protease inhibitors which incorporate 
the (hydroxyethyl)urea isostere. To our knowledge no 
one has reported the utility of this isostere for inhibitors 
of the HIV-1 protease.8 The inhibitors reported herein 
show a strong preference for the (iJ)-hydroxyl isomer9-11 

and exhibit a unique mode of binding to the enzyme. 

The urea isostere can be envisioned as a modification 
of the hydroxyethylene isostere, wherein the Pi' chiral 
a-carbon center is replaced with a trigonal nitrogen (Figure 
1). The initial targets chosen to determine the utility of 
this isostere were those shown in Table I (entries 1-4). 
The strategy undertaken was to maintain the left side of 
the inhibitor constant, systematically vary the Ri and R2 
groups, and investigate the stereochemistry of the key 
hydroxyl group. The general synthetic route used is 
illustrated in Scheme I. The pure epoxides, la or lb, were 
treated with an excess of amine (R1NH2) in refluxing 
2-propanol to provide the crystalline amino alcohols 2. 
These were then reacted with the appropriate isocyanate 
(R2NCO) to complete the synthesis of the urea isostere. 
Removal of the protecting group of 3 and coupling of the 
free amine to iV-Cbz-L-asparagine provided the initial 
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Table I. HIV-1 Protease Inhibitors and Their IC50 Values 

0 

OH R, 

entry 

1 
2 
3 
4A 
4B 
5 
6 
7 
8A 
8B 
9A 
9B 

10A 
10B 
11A 
11B 
12 
13 
14A 
14B 

Ri 
CH3 
CH3 
C H2C H (CH3) 2 
CH2CH(CHs)2 
CH2CH(CHa)2 
CH2CH (Cll3)2 
Cri2CH(CH3)2 
CH2CH(CH3)2 
CH2CH(CH3)2 
C H2C H (CH3) 2 

R2 

CH3 
CH2CH2CH2CH3 
CH3 
CH2CH2CH2CH3 
CH2CH2CH2CH3 
CH2CH2CH3 
CH2CH3 
CH(CH3)2 

C(CH3)3 

C(CH3)3 
CH2CH2CH(CH3)2 C(CH3)3 
CH2CH2CH(CH3)2 C(CH3)3 
CH2C6H11 
CH2C6H11 
CH2Ph 
CH2Ph 
(tf)-CH(CH3)Ph 
(S)-CH(CH3)Ph 
CH2(4-pyridyl) 
CH2(4-pyridyl) 

C(CH3)3 

C(CH3)3 

C(CH3)3 

C(CH3)3 

C(CH3)3 

C(CH3)3 

C(CH3)3 

C(CH3)3 

R3 
Cbz* 
Cbz 
Cbz 
Cbz 
Qua* 
Cbz 
Cbz 
Cbz 
Cbz 
Qua 
Cbz 
Qua 
Cbz 
Qua 
Cbz 
Qua 
Cbz 
Cbz 
Cbz 
Qua 

ICM 

R 

(nM)° 

S 
alcohol alcohol 

c 
c 
1500 
940 
126 
518 
330 
260 
35 
6* 
13 
3 
29 
5 
19 
3 
6500 
5100 
105 
19 

c 
c 
c 
c 

54 000 
10 000 

0 The positive control was MVT-101" (IC50 = 1.9 ± 0.4 MM). »Cbz 
- carbobenzyloxy.c Less than 50% inhibition at 10 tiM. d Qua = 
quinolinyl-2-carboxamide.' IC50 = 6.3 ± 0.1 nM (n = 68). 

targets 4. Further elaboration of certain inhibitors in­
volved removal of the Cbz group and addition of the 
quinoline-2-carboxamide (Qua) functionality. 

In order to determine the stereochemical preference of 
the hydroxyl group, the diastereomeric epoxides la and 
lb were required. Their synthesis is shown in Scheme II. 
The syn isomer la (R alcohol precursor) was prepared by 
the reduction of JV-Cbz-L-phenylalanyl chloromethyl ke­
tone (6) with sodium borohydride to provide a 3:1 mixture 
of the isomeric chlorohydrins 7a and 7b, respectively. The 
desired isomer 7a was obtained in pure form in 43 % yield 
by trituration with hexane to remove 7b, followed by 
recrystallization. Treatment of 7a with potassium hy­
droxide in ethanol afforded crystalline la in 90% yield.12 

The anti epoxide lb (S alcohol precursor) was prepared 
by the stereoselective epoxidation of olefin 9 with m-
chloroperbenzoic acid (MCPBA) as previously described.13 

IC50 values for inhibition of recombinant HIV protease 
were determined using the spectrofluorometric assay 
developed by Toth and Marshall.14 The results obtained 
with the initial series of nine inhibitors are shown in Table 
I, entries 1-4. These results led to several conclusions. 
There is a marked preference for the R alcohol stereo-
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Scheme I* 
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0 Reaction conditions: (a) 20 equiv of R1NH2, IP A, reflux; (b) 
R2NCO, CH2CI2, RT; (c) 4 N HCl/dioxane; (d) H2, Pd(C), EtOH; (e) 
Cbz-L-Asn, EDC, HOBT, DMF; (f) quinoline-2-carboxylic acid 
hydroxysuccinimide ester, DMF. 

Scheme II* 
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" Reaction conditions: (a) NaBH4,CH3OH/THF (1:1); (b) separate; 
(c) KOH, EtOH; (d) S03-pyr; (e) CH3PPh3Br, KN[Si(CH3)3]2; (f) 
MCPBA; (g) chromatography. 

chemistry (entries 3 and 4A). An isobutyl group is 
preferred at the Ri position, whereas at the R2 position 
there is little difference between a methyl or an n-butyl 
group. Replacement of the Cbz by the Qua group (entry 
4B, IC50 = 126 nM) led to a 7-fold increase in potency, 
consistent with the report by the Roche group for their 
hydroxyethylamine inhibitors.9* This limited study dem­
onstrated that moderately potent inhibitors of the HIV-1 
protease incorporating the (hydroxyethyl)urea isostere 
could be identified. The optimization of this initial lead 
then proceeded rapidly. Systematic variations of Ri gave 
only minor potency changes, whereas variations of R2 
resulted in significant activity enhancements. As shown 
in Table I (entries 4-8), shortening of the n-butyl group 
of entry 4A led to a minor increase, with the ethyl group 
being most potent (entry 6). The introduction of branching 
by the addition of a single methyl (entry 7) did not effect 
potency, whereas the addition of a second methyl group 
(entry 8A) resulted in a substantial increase in activity 
and identified the tert-butyl group as optimal for this series 
of inhibitors. Addition of the Qua group (entry 8B) led 
to an increase in potency and provided a 6 nM enzyme 
inhibitor, designated SC-52151. In order to confirm that 
the stereochemical preference for the (fl)-hydroxyl had 
not been altered, the (S)-hydroxyl isomer of SC-52151 
was prepared and shown to inhibit the enzyme with an 
ICeo value of 10 000 nM. Thus for SC-52151, the R isomer 
is 1 700 times more potent than the S isomer. Moreover, 
SC-52151 is a selective inhibitor of the HIV protease, 
showing no significant inhibition against other aspartyl 
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Table II. Antiviral Activity of Selected HIV-1 Protease 
Inhibitors 

H 0 4 0 I 

i I 1 I I 
OH R, 

entry 

8B 
9B 

11B 
14B 

0 

Ri IC50 (nM) 

CH2CH(CH3)2 6 
CH2CH2CH(CH3)2 3 
CH2Ph 3 
CH2(4-pyridyl) 19 

ECso (nM)» 

21 ± XV 
10±4C 

21±4C 

30 ± l l c 

TD50 (nM)6 

50 000 
50 000 

700 000 
300000 

0 Effective concentration necessary to inhibit 50% HIV-induced 
cell death. b Toxic dose 50% in uninfected cells.c Average of two 
separate assays. 

proteases (human renin, porcine pepsin, and bovine 
cathepsin D) at a concentration of 10 /*M.15 

With the R2 position optimized as a tert-butyl group, 
we then investigated the Ri position. As seen in Table I 
this position readily accommodates a wide variety of 
substituents (entries 8-14), but prefers those without 
a-branching. For example, introduction of a benzyl group 
at this position led to a potent inhibitor (entry 11A, IC50 
= 19 nM), but addition of an a-methyl group, regardless 
of the stereochemistry, provided moderate inhibitors 
(entries 12 and 13), which were 340 and 270 times less 
active, respectively. In all the cases examined in Table I, 
substitution of the Qua for the Cbz group resulted in 
improved potency. 

Certain inhibitors were evaluated for their antiviral 
properties against the HTLVmB strain of HIV-1 in a CEM 
cell line.16 As shown in Table II, these compounds are 
very effective antiviral agents and show a good correlation 
between their IC50 and EC50 values, suggestive of effective 
cell penetration and stability to the assay conditions. SC-
52151 (entry 8B) has also been shown to be equally effective 
against fresh clinical isolates of HIV-1, including AZT-
resistant strains, in human peripheral blood mononuclear 
cells (PBMC).17 

The conformation of one of these inhibitors (entry 4B) 
bound to the active site of recombinant HIV-1 protease 
has been determined by X-ray diffraction at 2.3-A reso­
lution.18 As shown in Figure 2, the inhibitor binds in an 
extended conformation with the (fl)-hydroxyl group 
positioned symmetrically between the two catalytic as­
partates of the enzyme. Both the P2 asparagine carbonyl 
and the urea carbonyl hydrogen bond to the critical water 
molecule observed in all reported structures to date. The 
trisubstituted urea portion of these inhibitors provides a 
rigid framework from which the isobutyl and n-butyl 
groups project. Interestingly, the isobutyl group is not 
bound in the Si' subsite but instead resides in the S2' 
subsite. Similarly, the n-butyl group is not in the 82' 
subsite, but rather in the Si' subsite. This unprecendented 
juxtapositioning (Figure 3) of substituents is in contrast 
to a previously reported structure of a urea-containing 
renin inhibitor bound to the aspartyl protease endo-
thiapepsin.80 Additional structures of inhibitors related 
to entry 4B, but with the optimized tert-bwtyl group 
present, demonstrate that this unique binding mode is a 
general feature of these urea isosteres when bound to the 
HIV-1 protease.19-20 

In summary, a novel series of HIV-1 protease inhibitors 
has been developed which utilizes the (hydroxyethyl)urea 
isostere. The preferred stereochemistry for the key 
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Figure 2. Bound conformation of entry 4B. A stereoview approximately along the local diad axis of the protease dimer. Residues 
25-30 and 47-53 from each of the two subunits of the protein are shown, as well as the inhibitor and the key structural water molecule. 
As anticipated, the inhibitor molecule binds in an extended conformation, but the P2' n-butyl substituent of the urea moiety is in 
the SI ' binding pocket, trans to the PI benzyl substituent. 
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S1 
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S1 

Figure 3. Representation of entry 4B bound to HIV-1 protease, 
hydroxy group is R. This isostere can be readily synthe­
sized in four steps from commercially available materials. 
The inhibitors reported herein are potent and selective 
inhibitors of the HIV-1 protease and show excellent 
antiviral properties in tissue culture. As determined by 
X-ray diffraction studies, these inhibitors bind to the 
enzyme in a previously unreported manner. One of these 
inhibitors, SC-52151, is currently being developed for 
clinical trials as a therapeutic agent for the treatment of 
AIDS. 
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