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Phospholipases A2 (PL A2's) are a class of enzymes which 
catalyze the hydrolysis of membrane phospholipids at the 
sn-2 position to release fatty acids and lysophospholipids. 
When the fatty acid is arachidonic acid, further metabolism 
leads to proinflammatory mediators such as prostaglan­
dins, leukotrienes and platelet activating factor (PAF). 
The low molecular weight (14 kDa), Ca2+-dependent, 
extracellular PLA2'8 found in mammalian pancreas, several 
snake venoms, human platelets, human placenta, and 
rheumatoid synovial fluid have been widely investigated.1 

Although the pancreatic enzymes are involved in hydrolysis 
of dietary phospholipids, the PLA2's secreted by other 
mammalian tissues may be involved in various inflam­
matory conditions.2 The human nonpancreatic secretory 
PLA2's (hnps-PLA2) found in platelets, synovial fluid, and 
placenta have been shown to be identical.3-6 Structures 
determined by X-ray crystallography of hnps-PLA2,6 

porcine pancreatic PLA2 (PP-PLA2),7 and bovine pancre­
atic PLA2

8 show that the structural features of the active 
site are similar. The catalytic mechanism is most likely 
identical for these enzymes. Much less studied is a high 
molecular weight (85 kDa) cytosolic PLA2 (CPLA2), such 
as that isolated from the human monocytic cell line U937,9 

which differs from the secretory PLA2's by its preference 
for 2-arachidonyl phospholipids and by activation in 
response to the low Ca2+ levels found in stimulated cells. 
There is evidence to support the contention that both the 
secretory and the cytosolic Pi le ' s are involved in various 
inflammatory conditions10,11 and therefore inhibitors of 
either of these enzymes might become useful therapeutics. 
Despite considerable effort to evaluate inhibitors of 
secretory PLA2's in recent years, no inhibitor with clinical 
potential has emerged.12 

Earlier workers in this field have described the use of 
X-ray structural data and molecular modeling to design 
PLA2 inhibitors.13-15 We began our PLA2 inhibitor pro­
gram by docking a representative phospholipid substrate 
into the active site of bovine pancreatic PLA2 based on 
the published mechanism and crystallographic structure 
of the uncomplexed enzyme.8 The Roche Interactive 
Molecular Graphics program16 was used for visual docking 
and subsequent optimization based on target atoms, 
intermolecular steric interactions, and intramolecular 
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strain energy. The docked substrate had the carbonyl 
oxygen of the 2-acyl chain and a phosphate oxygen as 
ligands of the essential Ca2+ ion (displacing two water 
molecules in the crystallographic structure), and had the 
two fatty acyl chains coiled into the large hydrophobic 
cavity of the active site. One of our strategies for inhibitor 
design was to replace the glycerol backbone of the substrate 
with an aromatic ring which had substituents to mimic 
the three substrate chains. Docking optimizations with 
a variety of benzene derivatives indicated that the 1,3,5-
substitution pattern best fit the active site. One such 
compound, 3,5-bis(decyloxy)benzoic acid (3), prepared 
early in our program, was found to inhibit human synovial 
fluid PLA2 (HSF-PLA2) with an IC60 of 3 ̂ M. To increase 
potency, we performed further docking optimizations with 
putative inhibitors which had superior Ca2+-binding 
ligands replacing the carboxylate group of 3. Selection of 
the potentially tridentate Ca2+-binding ligand, the imi­
nodiacetic acid group, led to N-(carboxymethyl)-JV-[3,5-
bis(decyloxy)phenyl]glycine (1, Ro 23-9358), which is 
among the most potent inhibitors of secretory PLA2's 
reported to date. Figure 1 shows 1 modeled into the active 
site of bovine PLA2.

8 Each carboxylate of the inhibitor 
has one oxygen atom as a calcium ligand. The benzene 
ring and the alkyl chains occupy the large hydrophobic 
substrate binding cavity. The chain on the lower left is 
coiled in the cavity, while the upper chain occupies a narrow 
crevice and then projects out from the enzyme. 

1 was synthesized as shown in Scheme I. Alkylation of 
methyl 3,5-dihydroxybenzoate with 1-bromodecane fol­
lowed by basic hydroylsis provided 3. The benzoic acid 
3 was smoothly converted via the acid azide and the benzyl 
carbamate to the corresponding aniline 4 in 77% overall 
yield. Alkylation of 4 with excess benzyl bromoacetate in 
the presence of l,8-bis(dimethylamino)naphthalene (Pro­
ton Sponge) in refluxing acetonitrile gave the benzyl ester 
precursor of 1 in 45% yield. Finally, catalytic hydro-
genolysis readily furnished 1 in 75% yield as a colorless 
solid, mp 110-114 0C. 

Compound 1 was found to be a potent inhibitor of crude 
HSF-PLA2 exhibiting an IC50 of 0.23 jiM.171 also inhibited 
purified recombinant human placental PLA2 (r-hpPLA2) 
with an IC60 of 0.087 JtM.18 Both assays utilized [14C]oleate-
labeled Escherichia coli as the substrate in the presence 
of 2 mM Ca2+. 

In contrast, 1 either stimulated or weakly inhibited the 
cPLA2 from the human monocytic tumor cell line U937, 
depending on the concentration of free Ca2+ in the assay.19 

At high Ca2+ (2 mM), 1 (50 juM) caused a 52 % stimulation 
of cPLA2 activity, while at low free Ca2+ (0.8 11M) 1 gave 
a weak inhibition (IC50 = 48 nM) of this activity. This 
suggests that, at low Ca2+, 1 may inhibit cPLA2 by acting 
as a chelator to deprive the enzyme of the Ca2+ required 
to maintain activity. In the absence of inhibitor, cPLA2 
activity was stimulated by 0.1-1 jiM Ca2+ and further 
stimulated by 1-20 mM Ca2+. 

Many of the previously reported inhibitors of secretory 
PLA2's do not bind to the enzyme active site but act by 
disrupting the membrane interface. Analysis of PLA2 
inhibitors in the "scooting mode" avoids apparent inhi-
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Figure 1. Stereoview of 1 modeled into the active site of bovine PLA2.
8 Protein residues within 5 A of the inhibitor are shown. The 

inhibitor is shown with filled bonds, the protein with open bonds, and calcium ligands with dashed bonds. The calcium ion and selected 
protein residues are labeled. 

Scheme I* 

f 
OC1 0H1 , 

C10H11O. C,0H„O. 

0 Reagents: (a) CioH2iBr, K2CO3; (b) NaOH, CH3OH; (c) DPPA; 
(d) BnOH, heat; (e) H2, Pd; (f) BrCH2COOBn, Proton Sponge; (g) 
H2, Pd. 

bition by these nonspecific effects at the interface.20 The 
scooting assay monitors the kinetics of interfacial hydrol­
ysis of phospholipids by 8-PLA2 under conditions where 
the enzyme does not leave the strongly anionic phospho­
lipid vesicle interface. Inhibition of ppPLA.2 and r-hpPLA2 
by 1 in vesicles of l,2-dimyristoyl-sn-glycero-3-phospho-
methanol (DMPM) in the scooting assay21 gave Xi(50) 
(mole fraction of 1 in the vesicle which gives 50% 
inhibition) values of 0.00033 and 0.003 mole fraction, 
respectively.22 One of the most potent competitive in­
hibitors of which we are aware, l-octyl-2-(heptylphos-
phonyDphosphatidylethanolamine (MG14)23 has been 
reported to exhibit Xi(50) values of 0.0034 mole fraction 
against ppPLA224 and 0.052 mole fraction against recom­
binant hnps-PLA2.25 Our data on 1 in the scooting assay 
suggests that it acts as a competitive inhibitor of these 
two 14 kDa PLA2's. 

The rat established adjuvant arthritis model,26 devel­
oped to detect nonsteroidal antiinflammatory drugs which 
inhibit cyclooxygenase, is thought to involve activation of 
a PLA2 and subsequent eicosanoid production. When rats 
with adjuvant-induced arthritis were treated once daily 
for 7 days with a 30 mg/kg intraperitoneal dose of 1, paw 
swelling decreased relative to control animals.27 The paw 
volume of vehicle-treated animals increased by 0.96 ± 0.14 
mL while the paw volume of animals treated with 1 
decreased by 1.00 ± 0.24 mL during the treatment period. 
The effect of 1 in this model is probably due to PLA2 
inhibition since it did not inhibit 5-lipoxygenase from 
RBL-I cells or ram seminal vesicle cyclooxygenase when 
tested in vitro at 50 fiM. 

Paw edema models which use PLA2 to initiate an 
inflammatory response have been reported using mice28 

and rats.29 Compound 1 when tested intraperitoneally at 
30 mg/kg inhibited the paw swelling in rats induced by 
Naja naja venom PLA2 by 41 % .30 

In conclusion, we have reported a potent, structurally 
novel, selective inhibitor of secretory PLA2^ which also 
exhibits inhibitory activity in two animal models of 
inflammation. Forthcoming publications will describe this 
new series in greater detail. 
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