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Vorom is a computer-aided method of drug design which can model a biological receptor given 
only binding data of known ligands. Using the binding energies of known competitive, reversible 
ligands of a biological macromolecule, vorom can make predictions about the binding energies and 
conformations of other small molecules binding to that receptor as well as provide information 
about the geometry and physicochemical characteristics of the binding site. One such model of 
L. casei dihydrofolate reductase was made. The model was able to predict the binding energies 
of 31 pyrimidine and triazine inhibitors out of a total set of 47, using only eight of the molecules 
(four pyrimidines and four triazines) as input. The binding energy of methotrexate, which is 
neither a pyrimidine nor a triazine, was correctly predicted. The binding mode of methotrexate 
predicted by vorom is entirely consistent with known X-ray data. The predicted binding modes 
of the pyrimidine inhibitors and the geometry of the site model are also consistent with published 
NMR and crystallographic data. 

We have devised a method to objectively model the 
binding of small molecules to a biological receptor with 
reasonable predictive power and meaningful geometry 
given the experimentally determined binding energies for 
a set of small inhibitor molecules. The main features of 
this method, based on Voronoi binding sites, have already 
been described.1-4 We chose to study two types of well-
known inhibitors of L. casei dihydrofolate reductase 
(DHFR), 4,6-diamino-l,2-dihydro-2,2-dimethyl-l-(substi-
tuted phenyl)-s-triazine and 2,4-diamino-5-(substituted 
phenyl)pyrimidine (Figures 1 and 2), because of the 
availability of binding, NMR, and X-ray data required for 
validating the model. 

As currently implemented, the method is very flexible 
in the level of detail of the structure of inhibitor molecules, 
the required accuracy of the fit to the experimentally 
determined binding constants, and the detail of the 
structure of the resulting binding site model. As the 
molecular structures are simplified, and as the fitting 
accuracy is decreased, the site model becomes simpler in 
geometry, and the required computer time decreases by 
orders of magnitude. In this work we show that even when 
the inhibitors are represented by greatly simplified 
structures, we can obtain a fit to the observed binding 
within 15%, resulting in a site model that is simple but 
nontrivial, has strong predictive power, and agrees quan­
titatively in geometry and qualitatively in energetics with 
the crystal structure. 

Methods 
Molecular Simulations' Quanta was used to generate a 

3-D representation of the molecules and to obtain coor­
dinates. The molecules were converted to linearized form6 

to facilitate future calculations. Each atom is then assigned 
hydrophobicity and molar refractivity parameters as 
described in6,7, such that the sum of each physicochemical 
parameter over all atoms in a molecule approximates the 
molecular value. A summary of the global range of 
conformations available (excluding those conformations 
prohibited by van der Waals interactions) to the flexible 
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molecules is obtained by allowing rotation about single 
bonds and noting the range of interatomic distances over 
all allowed conformations. 

In order to minimize the CPU requirements of the 
Vorom modeling process, which increases exponentially 
with the number of atoms and unit vectors in the molecule, 
specified atom groups are condensed into a single pseudo-
atom which retains the composite properties of the 
component atoms. The new pseudoatoms are subse­
quently treated as actual atoms for the rest of the modeling 
sequence. The atomic coordinates of the composite atoms 
in each pseudoatom are averaged so that the new atom 
lies at the unweighted center of mass of the old atoms. 
Since the assigned physicochemical parameters of hydro­
phobicity and molar refractivity are additive over each 
atom, these are summed for each atom in the new 
composite. The upper/lower bound on the distance 
between two pseudoatoms is taken to be the greatest/ 
least upper/lower bound between one atom in the first 
pseudoatom and another atom in the second. Since the 
conformation space of the molecule remains the same for 
the condensed molecule, we have the effect of a molecular 
skeleton (the squashed molecule) with the interatomic 
distances defining the space-filling features of the molecule. 
Reduction of the number of parameters in this manner is. 
necessary for keeping the combinatorial search for optimal 
binding modes to a reasonable length. 

Although the atoms which comprise the pseudoatom 
groups must be chosen by the investigator, this is no more 
random or unreasonable than choosing atoms of a phar­
macophore within a set of molecules. The selection of 
which atoms should be condensed is subjective, but the 
choice need not be totally arbitrary, as the atom groups 
chosen must be convex. In a rigid molecule, a convex set 
of atoms is any subset such that their convex hull contains 
only that subset. For a conformationally flexible molecule, 
different convex sets may be possible, depending on the 
conformation. In large molecules, the total number of 
subsets of atoms is much greater than the number of convex 
sets of atoms. Often a rigid group of atoms in a molecule, 
such as a methyl group or aromatic ring, is convex and 
may be selected for redefinition. Generally, groups which 
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Figure 1. 4,6-Diamino-l,2-dihydro-2,2-dimethyl-l-(substituted 
phenyl)-S-triazine. 

Figure 2. 2,4-Diamino-5-(substituted phenyl)pyrimidine. 
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Figure 3. Illustrative flow diagram showing the treatment of 
one molecule: squashing, determining the convex sets (all listed), 
determining the partitions (only three examples listed), and 
finding binding modes with respect to two regions, r\ and r2 (only 
one mode shown for each of two of the listed partitions). 

are common to many of the molecules in the dataset, such 
as the pyrimidine or triazine groups in our case, are good 
candidates for this process. Figure 3 shows the redefinition 
of a large molecule 1. Note that the condensed form of 
the molecule (2) still retains its chirality, and it has a 
distinct tetrahedral geometry which depends on the 
number of atoms, size, and geometry of the atom group 
being condensed. This helps to retain the unique shape 
of the molecules, even though they may be in a very 
simplified form. Furthermore, since the systematic search 
over all allowed conformations of 1 resulted in a large 
range of distances between the two benzene rings, the 

MtthQthotrtMH 

NH 
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Pyridine glutamate 

Figure 4. Composite pseudoatoms of methotrexate. 

condensed form, 2, has a correspondingly large distance 
range between pseudoatoms Pi and P2. Figure 4 illustrates 
the molecular redefinition of the methotrexate molecule 
into three composite pseudoatoms: pteridine, p-ami-
nobenzoyl, and glutamate. 

Each molecule in the training set is broken down into 
convex sets of atoms. (These convex sets should not be 
confused with the molecular redefinition described above. 
In all that follows, we deal with the molecule in its 
abbreviated form. The term "atom" will be used to refer 
to any atom or pseudoatom component of the molecule.) 
There are 2" - 1 possible nonempty subsets of atoms (or 
pseudoatoms) for each molecule having n atoms; but not 
all of these are necessarily convex. Continuing along Figure 
3, all the convex sets are listed for our condensed molecule, 
2. Note that the maximum number of convex sets of atoms 
for a molecule containing 5 atoms is 26 - 1 = 31, but our 
molecule has only 30 convex sets. The set of four atoms 
{Pi, P2, P3, H} is not convex because the carbon lies inside 
the convex hull formed by the other atoms. 

The convex sets are then grouped into partitions. We 
define a partition of a molecule to be a set of mutually 
exclusive and exhaustive convex sets. That is, each atom 
belongs to one and only one of the convex sets in the 
partition. For example, in 2, the convex set {C, Pi,P2} 
with three atoms may be combined with the {P3, HJ subset 
to form a partition. Molecule 2 with 30 convex sets has 
40 such possible partitions, of which only three are shown 
in the figure. The number of partitions in the molecule 
is generally found to be on the order of the number of 
convex sets. 

The number of regions in the site is an unknown 
parameter, and it is necessary to make an initial empirical 
estimation. Keeping in mind our goal of determining the 
simplest geometry site model, we begin with simple site 
geometries (small number of regions). Because we are 
using simplified representations of the molecules, we 
expect our model to be a low resolution representation of 
the actual binding site. If all of the molecules in the 
training set are not fit in the first trial, the complexity of 
the site model is increased by adding more binding regions. 
The CPU required increases exponentially with the 
number of binding regions, so it makes sense to begin with 
as few regions as possible. Since a single region model will 
give little insight into the geometry of the site, we chose 
a two-region site model to begin. There was no solution 
in two regions, so another binding region was added. 
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The list of partitions will be used to determine the 
binding mode of the molecule in the binding site model. 
The use of partitions instead of individual atoms for 
binding mode determination dramatically reduces the 
number of combinatorial options available, since there 
are fewer partitions than the total number of atom subsets. 
The placement of the partitions among the binding regions 
is defined as the binding mode of the molecule. Each 
partition may have more than one binding mode. For 
example in Figure 3 if there are two regions, then the second 
listed partition has two possible binding modes: the one 
illustrated and the same with the two regions interchanged. 
The third listed partition also has two modes, one of which 
is shown. Note that a mode assigns zero or one of the 
subsets of a partition to each region. 

The binding energy for any particular binding mode of 
molecule m is calculated by eq 1, in the same manner as 
described in ref 3 

AĜ Od6 = E E L 7 ^ 1 P (1) 

r air p 

where r is the region in the site, a is the atom assigned to 
one region by the mode, and p is the physicochemical 
property, either molar refractivity or hydrophobicity in 
this study. In order to satisfy molecule m, the calculated 
binding energy for the mode having the highest (best) 
binding must fall within the predetermined range of 
acceptable binding energies: 

AGm>min<AGmibe8t<AGm>max (3) 

A new computer program, egsets, has been devised to solve 
for a site geometry and physicochemical parameters which 
satisfy the experimental binding energy ranges of all the 
molecules in the training set. See the next section for 
details of the algorithm and its treatment of a simple 
artificial example dataset. 

In order to create a binding site with maximum 
predictive potential, keeping in mind that we also want 
to minimize the CPU time required, we have endeavored 
to use the smallest training set possible. The following 
systematic scheme for selecting molecules for the training 
set has been devised: 

1. The number of atoms in each molecule was decreased 
to the smallest number possible which still retain some of 
the geometric characteristics of the original molecule (angle 
between functional groups, distance between groups, etc.). 
This decreases the number of combinatorial options and 
allows the computations to be completed within a rea­
sonable time frame. 

2. The original binding data8'9 is in terms of the binding 
constant, K. Since our AGs need not be exactly Gibbs' 
free energies, but only some similar scale, we used AG0bsd 
= -logiff. Then we took AGmin = 0.9AGObsd and AGmax = 
1.1 AGobsd. which was always an expansion of the estimated 
error bars in references 8 and 9. This expansion of the 
error bars has the overall effect of simplifying the geometry 
of the site model but should still give a model with good 
predictive ability. 

3. A molecule which is very large (in size) and has been 
assigned large hydrophobicity parameters and very low 
binding energy has been added to the training set for all 
of the trials. This ensures that an infinitely large and 
hydrophobic molecule (e.g., graphite) does not bind with 

infinitely large binding energy, and it allows for molecules 
of larger dimensions than those in the training set to fit 
into the site model; presumably this will provide the site 
model with a region which represents the infinite sur­
rounding solvent. 

4. Find the AGm>best for all of the molecules in the data 
set in a single, infinite region over a large range of values 
for the two interaction energy parameters ii# and «I,MR 
where H indicates the hydrophobicity and MR the molar 
refractivity parameter of the molecule which is located 
entirely in a single region. The difference in the calculated 
energies of each pair of molecules, i and;', is then integrated 
as in eq 4. 

/ L i t e e (AG'.best " AG;,be»t)2 ^ ! ^ ! , M R (V* * j) (4) 

This gives a value which represents the energetic similarity 
of each pair of molecules in the dataset. A value of 0.0 
corresponds to two molecules whose calculated energies 
are identical over a large range of interaction parameters. 

5. The two molecules which have the greatest calculated 
energy difference from step 4 were used as the initial 
training set. These molecules are the most energetically 
different, and ideally both should be required for modeling. 

6. Run egsets on the training set, in the simplest 
acceptable site geometry (i.e., fewest number of regions). 
If a solution is not obtained, it may be necessary to increase 
the complexity of the site geometry by increasing the 
number of regions or to expand the error bars on the 
experimental binding energies to allow for a simpler site 
geometry. 

7. Attempt to predict the binding energies of the 
remaining molecules in the dataset with the solution 
obtained from egsets in step 6. If the AGbest for all of the 
molecules in the test set are correct (within assigned error 
bars, eq 3) stop; otherwise continue. 

8. Use the calculated relative error (eq 5) to assess the 
quality of the solution and add the one molecule with the 
worst relative calculated error to the training set. 

9. Repeat steps 6-8 until all of the molecules in the test 
set are predicted. For a given solution applied to test 
molecule i, the calculated relative error, 5;, is 

«; = (AGi>b«t" AG,-min)/(AGiimai - AGi>min) (5) 

and the mean relative error is 

«,• = ] £ > (6) 
where N is the number of unique solutions used. 

Egsets determines a complete list of all of the possible 
solutions which fit the given data. For some data sets, the 
total number of solutions determined by egsets can be 
quite large (>2000) but not all of the solutions are unique. 
Many contain the identical interaction energy parameters 
and interatomic distance bounds but have the regions 
renumbered. These solutions are identical, and only one 
is counted. Other solutions may have identical energy 
parameters or geometries. These are also considered 
duplicate solutions, and only the first occurrence is 
considered as unique. The unique solutions are evaluated 
for predictive power (total number of dataset molecules 
whose binding energies are correctly predicted, and error 
of the molecules which are not predicted), and the one(s) 
with the greatest number of compounds predicted are 
evaluated further for geometric feasibility. In the DHFR 
case, geometric feasibility was determined by the model's 
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ability to correctly predict the binding energy of meth­
otrexate. Only those solutions which meet all of the above 
criteria are kept. 

Egsets Algorithm 
1. Assume rigid molecules. For each molecule note the 

following. 
2. Find all convex sets of atoms. 
3. Group convex sets into all possible partitions. 
4. For every convex subset pair s, and Sj, intersubset 

distance bounds are 

utj = max dia^aj) 

ajesj 

and 

ltJ = min (Ua1Pj) 

UJtSj 

where d(aitaj) is the distance between atom o, and a,. 
5. For every ordered quartet of convex sets occurring 

in a partition, note its chirality, which is defined as the 
chirality of the four centers of mass, Si, S2, h, C4. 

X([1.2A4])-ctet(M'?ft 

Record %s only if ^ 0. 
6. For all u, and U over all molecules, order them on the 

real line and find the set of midpoints between clusters of 
values, plus a grand lower and upper bound. These are 
the critical distances that need to be used in constructing 
significantly different site parameters. 

7. For number of regions = 1,2 given upper bound, 
find solutions. 

8. Consider the tree of possible choices of optimal 
binding modes, where the nth layer of nodes are the choices 
for the nth molecule. Carry out a depth-first search of the 
tree, checking each node that a solution can be found. If 
there is a solution, try the children of the node; otherwise 
backtrack up the tree one layer. 

9. Given choices for the optimal partitions of the first 
n molecules and the mode for each partition. 

10. Choose the tightest geometry site that permits the 
proposed optimal modes. Site geometry is described only 
in terms of upper, u'y, and lower, i'y, bounds on distances 
between regions i and ;'. Also keep a list of some chiral 
relations among quartets of regions. Then put convex set 
Si in region i' and set s, in region j ' only if ranges [lijMiji 
and [l'ij,u'ij] overlap. Also if chirality x(sh,Si,Sj,Sk) > 0 and 
these go in regions h',i'j',k', respectively, then we must 
have x(h',i'J',k') > 0 also. Tightest geometry is least u's 
and greatest Ts and correct xs such that all of the chosen 
optimal modes are geometrically allowed. 

11. Then for each molecule m under consideration, m 
= (1,..., n), and each nonoptimal but geometrically allowed 
mode, note inequality AGm,aUowed < AGm,optimai in addition 
to AGm n̂in < AGm>0ptimai < AGm,max. Solve all these linear 
inequalities. If there is a solution, record it. 

12. Go to the next tree node in 8. 

Egsets Example 
As an artificial illustration of how egsets works, suppose 

that carbon monoxide binds to some receptor site with 
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AG0(J8 = 100 ±0.1 kcal/mol and carbon dioxide binds to 
it with AG0IM = 10 ± 0.1 kcal/mol. Let the unique atom 
labels of the oxygens of CO2 be 02 and 03. Imagine there 
are two "physicochemical parameters* such that any C 
atom has Vc,i = 1 and Vc,2 = 0, whereas any O atom has 
the reverse: Vo,i = 0 and Vo,2 = 1. For simplicity of 
notation, denote the corresponding first adjustable pa­
rameter of region r by «r>c and the second by «r,o. Then 
referring to the outline of steps above, egsets carries out 
the following calculations. 

(Step 2) CO has three convex sets, (Cj, {O}, and {C,0}, 
while CO2 has six: {C}, {02}, {03}, {C, 02}, {C, 03}, and {C, 
02, 03}. Note that {02, 03} is not a convex set for CO2 

because it is a linear molecule with C in the middle. (Step 
3) The partitions of CO are {{C}, {0}} and {{C, 0}}; for CO2 

they are {{C}, {02}, {03}}, {{C, 02}, {03}}, {{C, 03}, {02}}, and 
{{C, 02,03}}. (Step 4) If the C-O bond length is 1.3 A, the 
distance between subsets {02} and {C, 03} lies in the range 
1.3-2.6 A, because the closest pair of atoms between the 
two subsets is 02 and C, and the most distant pair is 02 
and 03. For conformationally flexible molecules, one 
would use the pairs with the closest lower bound and most 
distant upper bound. By the same reasoning, {C, 03} has 
a diameter of 1.3 A. (Step 5) These linear molecules have 
no chirality to worry about. (Step 6) The critical distances 
are "small" = 0.6,1.8, and "large" = 3.2 A because every 
intersubset distance falls between these values. In this 
example, the distances will not turn out to be important. 

(Step 7) Try for a solution having only one region. This 
implies only those partitions consisting of one subset are 
applicable. Trivially CO has only the binding mode where 
{C, 0} is in region n , and CO2 has only one binding mode, 
putting {C, 02, 03} into n . According to eq 1, ri has 
adjustable parameters «i,c and 61,0, corresponding to its 
interaction with C and O atoms, respectively. We must 
solve 

99.9 < e i c + «10 < 100.1 for CO 

9.9 < e1>c + 2(10 < 10.1 for CO2 

but these inequalities are inconsistent. 
(Step 8) We must try for a two-region model. Both 

partitions of CO and the one- and two-subset partitions 
of CO2 can be used. For a one-subset partition, there are 
two modes, depending on whether the subset is put into 
r\ or r2, and for a two-subset partition there are also two 
modes, depending on whether the first subset is put into 
ri and the second into r2 or vice versa. There are now four 
es to be determined. 

(Step 9) Try making optimal the CO mode where {C} 
goes into n and {0} goes into r2. (Step 10) The tightest 
compatible geometry is that the distance between the 
regions is 1.3 A, and the diameter of each is "small". (Step 
11) Energetically this choice of optimal binding mode 
implies that 99.9 < «i,c + «2,0 ^ 100.0 in order to satisfy 
the observed binding, «1,0 + e2,c ^ «i,c + «2,0 to make the 
opposite mode of the same partition suboptimal, and <i,c 
+ ei,o ^ «i,c + «2,0 and «2,c + «2,o ^ «i,c + «2,0 to make the 
two modes of the {{C},{0}} partition suboptimal. At this 
point, the last two inequalities are not required because 
putting all of CO into either one of the regions is precluded 
by their small diameter. The rest of the inequalities can 
be solved, so we proceed to the next molecule. 

(Step 9) Try making optimal the CO2 mode where {03} 
goes into n and {C, 02} goes into r2. (Step 10) Clearly the 
diameter of r2 must be expanded to greater than 1.3 A, but 
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Figure 5. All egsets solutions to the artificial example of CO 
and CO2 binding data. The optimal binding modes are shown 
in each solution for both molecules in boxes sized to represent 
approximately the diameters and separations of the two regions. 

this simultaneously permits CO to put both atoms into r2. 
(Step 11) Combine the three relevant energy inequalities 
for CO with the two arising in this situation for CO2 and 
solve. There is a solution, namely €1,0 = e2,c = 50, «2,0 -
-90, and ej,c = 1. It is easy to verify that the designated 
optimal modes of the two molecules have calculated 
binding energies in agreement with the observed values, 
and all other modes are either excluded on geometric 
grounds or have no better binding energies. 

(Step 12) Since there are no more molecules, we have 
reached a solution, and one can go back and try other 
choices of optimal modes for the two molecules. In all, 
there are seven distinct solutions, shown in Figure 5. These 
differ in geometric terms by exploiting differences in 
distances between atoms in the two molecules. Due to 
the symmetry of CO2, some of the solutions can be realized 
in two ways by exchanging 02 and 03. 

Results 

A solution with three binding regions was obtained for 
the binding of 47 pyrimidines and triazines to L. casei 
DHFR. The model required only eight molecules (four 
pyrimidines and four triazines) to correctly predict the 
binding energies of the remaining 23/39 molecules in the 
test set (see Tables I and II). The binding energies of the 
training set molecules were correct, as required by the 
modeling method. The adjusted average relative error, 
calculated from eq 11 for the molecules whose binding 
energy was not correctly predicted, was 0.83 

_ wi^ifa^o \ 
(11) 

where h is the number of nonpredicted molecules and only 
the errors of nonpredicted molecules are included. 

In general, the relative calculated error among the 
nonpredicted molecules decreased as the number of 
molecules in the training set increased. This is a positive 
sign, since if all of the molecules were included in the 
training set, the error would be zero by design. The 
addition of the "infinitely" large hydrophobic molecule 
also increased the predictive power of the model. 

Table I. 

R" 

Calculated Binding of Triazine Inhibitors 

AGnB-- AGmin* AGcJc' 

predicted binding mode0-'' 

region region region 
1 2 3 

H 
3-1 
3-OBzCl2 
4-OMe 
3-SO2NH2 
3-COCH3 
3-OH 
3-CF3 
3-F 
3-CN 
3-CH3 
3-Et 
3-OMe 
3-OEt 
3-OPr 
3-OHx 
3-OBz 
3-CH2OPh 
4-OH 
4-NH2 
4-1 
3-CH3 
4-F 

4.23-5.17 
4.66-5.70 
5.01-6.13 
3.69-4.51 
2.64-3.22 
3.82-4.68 
3.465-4.274 
4.29-5.25 
4.39-5.37 
4.78-5.84 
4.46-5.46 
4.68-5.49 
4.07-4.97 
4.67-5.71 
5.02-6.14 
5.12-6.26 
5.11-6.25 
5.91-7.23 
4.42-5.40 
3.55-4.33 
3.99-4.87 
3.75-4.59 
4.18-5.12 

4.23 
5.47 
6.07 
4.51 
4.79 
4.68* 
4.65 
4.41* 
4.30 
4.72 
4.76* 
4.55 
4.51* 
4.90* 
4.79 
5.42* 
5.27* 
5.27 
4.65* 
5.53 
4.60* 
4.41* 
4.24* 

T 
R 
R 
T 
T 
T 
T 
T 
R 
T 
R 
T 
T 
T 
T 
R 
T 
T 
T 
T 
T 
T 
R 

Ar 
Ar 
Ar, T 
Ar1R 
Ar, R 
Ar, R 

Ar1R 
Ar 

Ar 
Ar1R 
Ar1R 
Ar 
Ar1R 
T 
Ar1R 
Ar1R 

Ar1R 
Ar1R 
Ar 

Ar 

T 
Ar 
T 

R 

Ar 

Ar 
Ar 

0 Training set molecules in bold.b -log(K) ±10%, ref 9.c Cal­
culated by egsets, * indicates correct prediction. d See Table IV for 
description of regions. 

Table II. Calculated Binding of Pyrmidine Inhibitors 

R" 
H 
3-OBu 
4-1 
3,4,5-(OMe)5 

3-F 
3-CH2OH 
4-NH2 
3,5-(CH2OH)2 
4-F 
3,4-(OH)2 
3-OH 
4-CH3 
3-CH2OBu 
3-CH3 
4-OMe 
4-OBu 
4-NHCOCH3 
3-OMe 
3-OBz 
3-CF3 
3-CF3l4-OMe 
3,4-(OMe)2 
3,5-(OMe)2 
3,5-(OH)2 

AGnux-AGmin1' 

4.68-5.72 
5.52-6.74 
6.00-7.34 
6.19-7.57 

4.84-5.92 
5.10-6.24 
4.92-6.02 
5.16-6.30 
5.10-6.24 
5.26-6.42 
5.24-6.40 
5.25-6.41 
4.94-6.04 
5.20-6.36 
5.62-6.88 
5.73-7.00 
5.44-6.66 
5.34-6.52 
5.54-6.76 
5.54-6.78 
6.57-8.03 
6.22-7.61 
5.78-7.06 
3.04-3.72 

A G W 

5.72 
6.34 
6.00 
6.30 

5.64* 
6.00* 
5.86* 
6.28* 
5.64* 
5.72* 
5.72* 
4.33 
6.58 
5.88* 
4.43 
4.96 
4.81 
5.91* 
6.68 
5.88* 
6.07 
6.11 
6.11* 
5.72 

predicted binding mode0'1* 

region 
1 

Ar 
Ar 
Ar 
Ar 
Ar 
Ar 
Ar 
Ar 
Ar 
Ar 
Ar 
P 
Ar 
Ar 
P 
P 
P 
Ar 
Ar 
Ar 
Ar 
Ar 
Ar 
Ar 

region 
2 

R 
R 
xvl,fv2,rv3 

R 
R 
R 
R1.R2 
R 
R1.R2 
R 
Ar1R 
R 
R 
Ar1R 
R 
R 
R 
R 
R 
R1.R2 
R1.R2 
R1,R2 
R1.R2 

region 
3 

P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 

P 
P 

Ar 
Ar 
P 
P 
P 
P 
P 
P 
P 

"Training set molecules in bold face. h-\og(K) ±10%, ref 8. 
c Calculated by egsets, * indicates correct prediction. d See Table IV 
for description of regions. 

The model of the binding site from egsets superimposed 
on the L. casei DHFR crystal structure was created using 
the distance geometry program, DGEOM.10 The site point, 
cr, represents the center of the spherical binding region, 
r. The distance bounds from Table III were used as 
interatomic distance constraints between molecules when 
superimposing the optimal binding modes of the training 
set molecules onto the site points. The upper triangle of 
the matrix represents the maximum distance between two 
atoms which lie in different regions, and the lower triangle 
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Table III. Distance Bounds Matrix for Site Model from Egsetsa 

region 

1 
2 
3 

1 

1.7 
0.0 
4.3 

2 3 

7.0 
8.0 (5.2) 

4.1(3.8) 3.7(3.0-4.0) 
a Actual distances from Cheung et al.16 in parenth 

Table IV. Binding Site Characteristics of Model 

region hydrophobicity0 

1 
2 
3 

0.069 
-0.066 
-1.150 

binds MTX moiety 

iV-methyl-p-aminobenzoyl 
glutamate 
pteridine 

eses. 

binds 
pyrimidine 

moiety6 

benzene ring 
- X 
pyrimidine 

° From egsets solution. 6 In all correctly predicted molecules. 

f-

Figure 6. Site model of methotrexate bound to L. casei 
dihydrofolate reductase. 

f-

Figure 7. Site model of L. casei dihydrofolate reductase 
superimposed on binding site from crystal structure.11 

represents the minimum distance between two points in 
different regions. The maximum intraregion distances 
lie on the diagonal of the matrix, and the minimum 
intraregion distances are 0.0 for all regions. The upper 
bounds on the distances from the site points, cr, to the 
atoms in region r is set to one-half the maximum intraregion 
distance, since these are to be the center points of the 
regions. The interregion distance bounds between the 
site points is kept as per egsets during the DGEOM 
calculations. To evaluate how well the model approxi­
mates the actual site, the resulting site points from 
DGEOM were superimposed as a rigid body on the 

Table V. Binding Site of L. casei Dihydrofolate Reductase11 

region residues 

1 LEU19, LEU27, PHE30, SER48, PHE49, PRO50, LEU54 
2 LEU27, HIS28, PHE30, ARG31, LEU54, ARG57 
3 LEU4, TRP5, ALA6, LEU19, ASP26, LEU27, PHE30, 

ALA97, THR116.K HOH201, HIOH217, HOH253 

Bradley and Crippen 

structure of bound methotrexate from the crystal struc­
ture11 using Quanta Molecular Similarity. The site point 
representing the center of the pteridine binding region 
was placed close to the center of the pteridine ring, and 
so on. Since we know from egsets which region binds which 
MTX group, and the site points were treated as a rigid 
body, the overall result of this exercise is merely to translate 
and rotate the coordinates of the binding site region centers 
to the same coordinate frame as the crystal structure. 

The binding energy (-log(K,-) > 9.O)12 of methotrexate 
(MTX) was correctly predicted. The binding mode of 
MTX calculated by egsets (see Table IV) corresponds to 
the one shown in the crystal structure.11 Dihydrofolate 
was correctly predicted to bind 3 orders of magnitude worse 
than methotrexate, although in a different binding mode 
than is indicated by X-ray data.13 Since dihydrofolate 
binds its pteridine ring rotated 180° compared to MTX, 
and the pteridine ring has been compressed and cannot 
therefore reflect this rotation, we would expect the 
difference in the binding energies of the two compounds 
to be reflected by different binding modes. The prediction 
of the subtle difference in the binding modes of the two 
compounds may have been achieved by egsets if the 
pteridine rings had been left intact, or the number of 
binding regions increased. 

The site records from the DHFR crystal structure define 
four distinct binding regions. We combined two of these 
regions (iV-methyl and p-aminobenzoyl) to give a larger 
single region with more meaningful geometric and phys-
icochemical characteristics. Region 1 interacts with the 
iV-methyl and p-aminobenzoyl groups of the MTX, region 
2 interacts with the glutamate, and region 3 binds the 
pteridine. For purposes of prediction, MTX was squashed 
in the same manner as the other data set molecules into 
three pseudoatoms: pteridine, iV-methyl-p-aminobenzoyl, 
and glutamate groups. The predicted regional placement 
of these groups corresponds to the regional placement in 
the crystal structure, see Figure 6. In addition, all of the 
pyrimidine inhibitors whose binding energies were cor­
rectly predicted had the same binding mode: pyrimidine 
in region 3 (pteridine region), aromatic ring in region 1 
(paba region), and the aromatic constituent in region 2. 
This mode of binding is entirely consistent with the binding 
mode of trimethoprim, a pyrimidine inhibitor, to L. casei 
DHFR proposed by Cayley et al.14 and confirmed by 
Roberts.15 Comparison of the inter- and intraregion 
distances derived from egsets with those determined by 
NMR,16 listed in Table III, show that our model is 
geometrically compatible with the actual binding of 
pyrimidine inhibitors. See Figure 7. The majority of the 
triazines whose binding energies were correctly predicted 
tended to have optimal binding modes which placed the 
triazine group in the paba region and the aromatic ring in 
the glutamate region (Table I). None of the binding modes 
placed the aromatic ring in the paba region analogous to 
the pyrimidines or MTX. This inconsistency in the 

no. of hydrophilic calcd 
binds MTX moiety residues hydrophobicity" 

iV-methyl-p-aminobenzoyl 1 -1.03 
glutamate 3 -6.24 
pteridine 5 -9.35 

0 Hydrophobicity parameters calculated from7 using free amino acis and then summed over all residues in the region. 
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triazine binding may be due to the fact that the triazines 
tend to be better inhibitors of vertebrate DHFR, and we 
are using the data for inhibition of bacterial DHFR. 

Table V shows the relative hydrophobicities of the 
combined residues in the active site. The hydrophobicities 
were obtained using the same method as that used for 
calculating the physicochemical parameters of the ligands. 
Values for the uncharged free amino acids were used for 
calculating the hydrophobicity parameter of the regions. 
(While this hydrophobicity value does not reflect the actual 
hydrophobicity of the binding region, it gives a good 
indication of the trend of relative hydrophobicity of the 
side chains in the binding region, since the hydrophobic 
contribution of the backbone is the same for all the amino 
acids. This trend is also reflected in the number of 
hydrophilic residues versus calculated hydrophobicity.) 
The resulting values for each residue were then summed 
for all of the residues in each region. The hydrophobicities 
derived from the egsets solution are not identical, but note 
that the trend of the pteridine binding in the-most 
hydrophilic region, the iV"-methyl-p-aminobenzoyl group 
binding in the most hydrophobic region, and so on is 
reproduced by egsets. The differences in the calculated 
hydrophobicities of the regions may be due in part to the 
use of the free amino acids in the calculation. 

In order to assess the statistical validity of the model, 
the usual statistical methods employed in QSAR modeling, 
such as standard deviation, were not employed here, since 
our method is a global combinatorial search and not a 
statistical fitting method. To determine that our model 
was based on the experimental binding energies of the 
data set molecules, the binding energies were scrambled 
(reassigned among the training set molecules), and egsets 
was rerun on the training set with the incorrect energies. 
When the resulting model was used to predict the energies 
of the remaining molecules, only five were correctly 
predicted. It would be preferable to have had many more 
of these scrambling validations; however the length of time 
required for numerous egsets runs is prohibitory. We have 
employed the scrambled energy validation on other test 
sets with identical results. Along the same lines, we have 
found that even changing the ordinal arrangement of the 
binding energies can lead to a substantially different 
solution.17 

We have used experimental binding data to fit very 
simplified molecules to a model with three binding regions. 
This should not be viewed as an oversimplification of the 
problem but rather an avoidance of overmterpretation of 
the problem. If we had used the complete molecules (of 
approximately 35 atoms), we would not expect the 
experimental binding data to support a model with 35 
binding regions! A model which predicts all of the dataset 
molecules within the given error bars certainly seems 
attainable, but time constraints prohibited further ex­
ploration at this time, as there were indications that the 
complexity of the site geometry may have to be increased. 
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