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The de novo biosynthesis of purines, a central process 
to all life forms except protozoans, involves a diverse array 
of enzymatic transformations. Because of the essential 
role that the pathway plays in rapidly proliferating tissues, 
enzymes in this pathway have become important targets 
for new chemotherapeutic agents.1 Unique among the 
transformations in purine biosynthesis is a carbon-carbon 
bond forming reaction at C4 of 5-aminoimidazole ribo­
nucleotide (AIR, 1) to form 4-carboxy-5-aminoimidazole 
ribonucleotide (CAIR,2). Although this reaction can occur 
spontaneously, the AIR carboxylase from Escherichia coli 
serves to accelerate the conversion of 1 to 2 by a factor of 
106.2 Carboxylases commonly utilize cofactors or divalent 
metals to activate or stabilize reactive intermediates.3 AIR 
carboxylase has no known cofactor requirement, a fact 
that poses fundamental mechanistic questions.2,4 Fur­
thermore, additional catalytic functions are associated with 
AIR carboxylases depending upon the source of protein. 
For example, the avian protein is a Afunctional enzyme 
that also catalyzes the subsequent condensation of 2 with 
aspartic acid to give 4-(2V-succinocarboxamido)-5-ami-
noimidazole ribonucleotide (SAICAR). 6^ As part of our 
effort to identify the key catalytic features of AIR 
carboxylase, a synthetic analog has been prepared and 
used as a mechanistic probe. This report is the first 
example of a tight-binding AIR carboxylase inhibitor which 
has important implications for a catalytic mechanism.8 
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Previous mechanistic studies of AIR carboxylase have 
been partially limited by the instability of aminoimidazole 
ribonucleosides in aqueous solution. In fact, the natural 
substrate and product of this enzyme polymerize in vivo.9 

For this reason, our approach has focused on product 

Table I. Results of Kinetic Studies for the Inhibition of Avian 
AIR Carboxylase by 3 

Xi (nM) K1* (nM) It6(S"1) It5(S-*) 

Lineweaver-Burk 
•BtotaJVSl 
kobaVsI" 
kptcomplex)6 

1.3 
1.6 
1.4 
1.2 

0.34 
0.34 

8.8 X 10-3 

8.2 X 10-3 
2.8 X 10-2 
2.0 X 10"» 

0 Values derived from data where protein was added to initiate 
reactions in the presence of 2 and 3 under the conditions defined in 
the legend of Figure 1. Data were fitted to the integrated equation 
kp = v,t + (v0 - U1)(I - e-*')/k and the results were analyzed using 
the equations k« = kv»/v0 and lis/^s = K-JKi* - 1 according to the 
model.14 

Ki kt 

E +1 f± EI *± EI* 

b Reactions were initiated by the addition of enzyme-3 complex 
(Figure 2) to a final concentration of 1 nM. Values were derived by 
fitting to the integrated equation above and the results were analyzed 
using ke = W v 1 . 

analogs with predictable stability and inhibitory properties 
that could be enhanced by further synthetic elaboration. 
To this end, 5-amino-l-(5'-phospho-/8-D-ribofuranosyl)-
4-nitroimidazole (3) was selected as an initial target 
molecule because of its proposed isoelectronic and isosteric 
relationship with product 2.10 The nucleoside precursor 
to 3 was synthesized using a reported route.11 Direct 
phosphorylation of the nucleoside followed by ion-ex­
change chromatography provided 3 which was pure by 
HPLC analysis and proved stable under conditions 
relevant to this study. 
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In initial steady-state inhibition studies of the decar­
boxylation of 2 catalyzed by avian AIR carboxylase-
SAICAR synthetase,12 3 exhibited apparent competitive 
inhibition kinetics. However, the estimate of Ki = 1.3 nM 
in the presence of 0.5 nM enzyme suggested a tight binding 
phenomenon. A second estimate of inhibitor binding was 
determined by fitting steady-state velocity data as a 
function of total enzyme concentration to a general rate 
equation accounting for changes in free inhibitor con­
centrations, and this analysis gave a Ki = 1.6 nM.13 In 
order to characterize the enzyme-inhibitor binding equi­
librium, which was found to occur on the steady-state time 
scale, data from progress curves of the enzyme reaction in 
the presence of 3 were fitted to the integrated rate 
equation.14 Secondary plots of A0U versus inhibitor 
concentration indicated a hyperbolic relationship, con­
sistent with a binding model that describes an initial rapid 
equilibrium of enzyme-inhibitor followed by conversion 
to a second, tighter complex, as shown in Table I. 
Examples of the progress curves shown in Figure 1, display 
the increase and diminution of inhibition, both of which 
approach a similar steady-state velocity confirming the 
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Figure 1. Progress curves for the decarboxylation of 2. All assays 
were conducted at 30 0C, with 50 mM Tris-HCl, 0.5 mM EDTA, 
pH 8.0, in the presence of 200 ptA 2 and 0.5 nM protein. 
Conversion of 2 to 1 was observed as a decrease in absorbance 
at 260 nm. Curve A, preincubation of enzyme with 4 nM 3 at 
20 0C for 10 min before addition of 2; curve B, addition of enzyme 
mixture to an assay mixture containing 4 nM 3; curve C, addition 
of enzyme to a reaction in the absence of inhibitor. 

Volume (mL) 

Figure 2. Isolation of AIR carboxylase-3 complex by gel-filtration 
chromatography. Inhibitor 3 (10 nmol) and enzyme (10 nmol) 
were mixed in 1 mL of 50 mM Tris-HCl, 1 mM EDTA, pH 8.0, 
and incubated at 4 °C for 25 min. The sample was loaded onto 
a Sephadex G-25 column (1.3 cm X 2.7 cm) and eluted with the 
same buffer. Fractions (1 mL) were analyzed for protein19 and 
inhibitor concentration using absorbance at 366 nm (pH 1.0, e 
= 14,700). (O) Concentration of avian AIR carboxylase (MW 
47 245)6 after incubation with 3. (•) concentration of 3 with the 
identical incubation. Fraction 2 was used in the subsequent 
determination of kp in Table I. (•) Elution of 3 in the absence 
of enzyme. 

reversible binding of 3.15 An independent estimate of the 
kinetic constants for inhibition was determined using a 
1:1 enzyme-3 complex which was isolated at 4 0C by gel-
filtration chromatography (Figure 2). The stoichiometry 
of the complex was verified by the correlation of protein 
concentration with the unique absorbance at 366 nm due 
to 3. Progress curve data for the complex in the presence 
of 2 are consistent with values obtained using varied 
amounts of inhibitor, as indicated in Table I. 

The nature of the tight-binding complex between 3 and 
AIR carboxylase was determined by a combination of 
methods. Perturbations of the aromatic nucleus of 3 (Xmax 
366 nm) were investigated in the enzyme-3 complex by 
UV-vis spectrophotometry which indicated a+10-nm shift 
but no significant alteration of the extinction coefficient 
(Figure 3).11-16 Compound 3 released from the enzyme-3 
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Figure 3. UV-vis spectra of 3 in the presence and absence of 
avian AIR carboxylase: (A) Inhibitor 3 was added to a cuvette 
containing 1.53 MM AIR carboxylase referenced against an equal 
molar concentration of enzyme, until no change in absorbance 
at 366 nm was observed (final spectrum); (B) Inhibitor 3 in the 
absence of enzyme at the concentration of the final spectrum in 
A (1.47 MM). 

complex and separated from the protein by centrifugal 
ultrafiltration was shown to have the same HPLC retention 
time as an authentic sample. Also, the protein recovered 
from incubation with a 100-fold excess of 3, following 
extensive dialysis, was found to retain the same catalytic 
activity as a control sample that had not been incubated 
with 3. These data are consistent with no alterations of 
the inhibitor or protein as a result of the formation of the 
enzyme-3 complex. 

Enzyme substrate analogs that use an isosteric nitro 
substitution to mimic carboxylic acids have been described 
in a number of cases.10 Several of these are tight-binding 
inhibitors that undergo enzyme-mediated cleavage of a 
critical carbon-hydrogen bond to result in nitronate 
mimics of reactive intermediates on the normal catalytic 
pathway.17 In the case of 3, the K1 is 104 less than the Km 

for 2, indicating that the inhibitor is not a simple substrate 
analog. Preliminary modeling suggests that the overall 
size and shape of 3 and 2 are comparable. The noncovalent 
nature of the enzyme-3 complex and the slow, tight binding 
phenomenon suggest that 3 might be a mimic of a reactive 
intermediate or transition state.18 Comparison of UV data 
for 3 and 2 indicate a difference of 100 nm for the 
absorbance maxima, consistent with extended conjugation 
in 3, and as a consequence altered charge density at C-4. 
One plausible interpretation is that 3 is a mimic of a 
transition state related to a proton elimination from 
intermediate 4. The intermediate 4 is tetrahedral at C4, 
and would result from direct carboxylation. Current 
studies on the details of the interaction of 3 with AIR 
carboxylase are focused on the mechanistic relationship 
of this inhibition to catalysis, and should provide a basis 
for further rational inhibitor design. 
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