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We propose a new neural network architecture that explicitly separates linear and nonlinear 
contributions to the biological activity. To facilitate the use of neural networks as a regular tool 
we demonstrate that (1) a perceptron with linear output units is equivalent to multiple linear 
regression and (2) one hidden unit at a time can be added to the network so that QSAR data can 
be modeled by everything from the simplest linear hypersurfaces to complicated ones. The 
significant improvements accrued by the use of weight decay are demonstrated. We conclude that 
models built without attempting weight decay may not be reliable either for interpretation or 
extrapolation. Finally we compare models generated by neural networks, rank regression, and 
standard regression on non-normally distributed data and conclude that neural networks like rank 
regression bring out many facets of the data that are inaccessible to multiple linear regression. All 
the experiments were done on either triazine inhibition of pure DHFR from L1210 leukemia cells 
and on the inhibition of intact L1210 leukemia cells sensitive and resistant to methotrexate or on 
steroid binding to progesterone. 

Introduction 
Quantitative structure-activity relationships (QSARs) 

have mostly been studied using multiple linear regression. 
A log(/S10T + 1) term parameterizing a roughly parabolic 
dependence on x is also often invoked. Recently neural 
networks have successfully been used in building QSARs.1-2 

The main reason for this is that QSAR surfaces often have 
many kinks and wrinkles that cannot be modeled by linear 
hypersurfaces. However, most applications of neural 
networks to QSAR have neglected certain key issues like 
appropriate network architecture, learning algorithm and 
its convergence, data distribution, and the necessity of 
adding a regularization (weight decay) term to the error 
function. In this paper we demonstrate how attention to 
these factors leads to simpler and statistically sound 
models. 

QSAR work using neural networks has primarily used 
nonlinear functions (units) to represent the input-output 
mapping. Using only nonlinear units makes interpreta­
tions of the model hard. It is possible to construct neural 
networks that intelligently mix linear and nonlinear units 
so that we can model everything from linear hypersurfaces 
to surfaces with many undulations in a straightforward 
way. We propose such a network so that linear and 
nonlinear contributions to the biological activity are easily 
separated. It also helps in providing a unified framework 
for using neural networks to build QSARs. This is possible 
because we can start with a linear model (perceptron with 
linear output units), and if that is not appropriate we can 
add nonlinearities to the model—one hidden unit at a 
time. This introduces neural networks as a tunably 
nonlinear method to perform regressions. 

Neural network models are nonparametric. Hence it is 
easy to build nonrobust models. Robust models exhibit 
good generalization and lower sensitivity to noise. We 
demonstrate that incorporating a regularization term, 
"weight decay", is crucial to building robust models. In 
addition it leads to faster and better convergence. 

A third point that is addressed is the influence of non-
normally distributed data on neural network models. 
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Pleiss4 worked on such data and used rank regression (a 
nonparametric regression technique). This resulted in a 
much better model compared to the one obtained from 
multiple linear regression. We compare rank regression 
to neural network regression in the last part of this paper. 

Before neural networks can be used as a regular tool, 
attention must be paid to other questions such as the 
influence of many outliers in the data and the relevance 
of preclustering the data. These issues are explored 
elsewhere.3 

Data Sets 

As it is our intention to study methodological problems 
for building neural network regressors, we concentrate on 
two well-studied data sets. The first is triazine inhibition 
of pure DHFR (dihydrofolate reductase) from L1210 
leukemia cells as well as the inhibition of intact L1210 
cells, both sensitive and resistant to methotrexate (MTX).6 

The second example is from an older work of steroid 
binding to progesterone receptors.6 

Triazine. In what follows, we state the salient features 
of the work by Selassie et al. 

3-X-triazine Inhibition of Purified DHFR from 
L1210 Leukemia Cells Resistant to Methotrexate. The 
QSAR developed for this set of compounds uses {x/, log-
(/SlO'' + 1), a] as independent variables, x7 indicates that 
for substituents of type -CH2ZC6H4Y and -ZCH2C6H4Y 
(Z = O, S, Se), xy=0. Also, for all alkoxy groups (methoxy 
to tetradecyloxy), x7 = 0. a is the Hammet constant. They 
used 58 out of the 61 (the other three were dropped from 
the regression because they do not fit well) compounds, 
and the model yielded a correlation coefficient p = 0.9, 
and a standard deviation s = 0.26. 

3-X-triazine Inhibition of Cultured L1210 Leuke­
mia Cells Sensitive to Methotrexate. The QSAR 
developed for this set of compounds (including 61 of the 
64 componds) involved {x log(/310T +1), a, JR, /OR} yielding 
a p of 0.89 and an s of 0.24. JR is the indicator variable 
that takes on a value of one for alkyl groups, and /OR is 
one for alkoxy groups. Note that x and not x7 gives better 
results. 

© 1993 American Chemical Society 
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Figure 1. Structure of the triazines used in this work. 

Figure 2. The parent ring system for the steroid data. 

3-X-triazine Inhibit ion of Cultured L1210 Leuke­
mia Cells Res is tant to Methotrexate . The QSAR 
developed for this set of compounds (including 62 of the 
64 compounds) used {x, MR}, yielding a p of 0.94 and an 
s of 0.22. MR represents molar refractivity. This is a 
very different QSAR compared to the previous ones as it 
is linear in all the physicochemical parameters. Selassie 
et al., for reasons tha t are not clear, guessed tha t the 
optimum value of TV was about 6. The optimum it for the 
previous cases, however (this can be derived mathemat­
ically from the roughly parabolic dependence), is about 
1.8. They conclude tha t the 4.2 log units difference implies 
tha t more lipophilic drugs are needed for methotrexate-
resistant tumors. 

The structure of the triazines used in this s tudy is 
illustrated in Figure 1. For a list of the compounds used 
and their physicochemical parameters, please refer either 
to the original work or to the supplementary material. 

Steroid. Pleiss4 reinvestigated the QSAR using rank 
regression on data originally studied by Lee et al.,6 who 
had used linear regression. The QSAR was built for 55 
androst-4-en-3-one derivatives. Pleiss reexamined the 
data because on extrapolation to a test set of 10 new 
compounds, Lee et al. obtained errors, [Yobs ~ Vcail/Yobs, 
ranging from 5% to 141 %. The original equation of Lee 
et al. (eq 11 in ref 6) uses {wa, *bt SAI, SAO, MK, CC}. Here 
•Kb is the TT values of all polar groups in the 17a, 20a, and 
20/3 substituents, and 7ra is the ir value of all polar groups 
in other positions. SAI is the surface area in hydrophobic 
pockets; SAO is the surface area out of hydrophobic 
pockets. SAI gives the net change in surface area in 
positions 6a, 11/3, 16a, 17a, and 17/3 for progesterone 
derivatives, position 16 for androstance derivatives, and 
position 21 in data obtained from rabbits. SAO gives the 
net change in surface area in all the other positions. M K 
is an indicator variable indicating the presence or absence 
of ketones. CC is also an "indicator variable".10 It is the 
sum of the number of carbon atoms with changes in 
hybridization from a 4-androsten-3-one parent molecule. 
For details on why these physicochemical parameters were 
chosen, the reader is referred to Lee et al.6 They used 55 
compounds and obtained p = 0.88 and s = 0.54. 

The parent molecule is shown in Figure 2. The 
compounds forming the data set and the physicochemical 
parameters can be obtained either from the original 
reference or through the supplementary material. 

Methods 

Most published QSAR studies fall into two distinct but related 
categories. Some, like Selassie etal., are interested in determining 
the physicochemical parameters that affect biological activity. 
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Figure 3. The distribution of iz and a as histograms. Note that 
T is roughly normal whereas a is not. A similar conclusion can 
be drawn from a comparison of the boxplot, density plot and 
qqplot (not shown). 

Linear Unit Sigmoidal Unit 

Hidden Unit 

Input Units 

Figure 4. The architecture of a perceptron (left) and the standard 
neural network architecture (right) used in all the applications 
of neural networks to QSAR so far. "7T is the threshold unit. 

They concentrate on biological and chemical questions, ignoring 
to a certain extent statistical soundness. There is some justi­
fication for this because of small size of the data sets. Others, 
like Pleiss, would like to extract as much information as possible 
from the data set so that generalization ability is enhanced. In 
this paper we would like to demonstrate the versatility and utility 
of our techniques to workers in both camps. Therefore, we re­
examine the data sets, closely following the goals of Selassie et 
al.5 and Pleiss.4 Our primary interest is in bringing out salient 
features of neural network modeling. 

We began the study by exploring the distribution of the data 
using standard graphical techniques. The S-PLUS package was 
used for this purpose. We analyzed the histogram, boxplot, 
density plot, and normal qqplot of -K, a, and other variables to 
check for normality. 

Neural Network. In this section a brief description of neural 
networks is provided. For a detailed discussion see, for example, 
Hertz et al? 

Figure 4 shows the connectivity pattern for a perceptron and 
the standard network used in previous studies of neural networks 
applied to QSAR. In the standard architecture all the inputs are 
connected to a layer of hidden units which in turn are connected 
to the output. The information is passed from the input units 
to the output unit using 

<V = /£>/<£ ^ ) ) (D 

where Of denotes the output of unit i for pattern n. Note that 
i represents the output unit, j the hidden units, and k the input 
units. Wij and Wjk are connections from the hidden to output, 
and input to hidden units, respectively, i-k" labels the feth input 
of pattern M, and the function /(•) is a squashing function 
characterizing the type of the unit used in the network. We use 
a sigmoid unit where/(Zi) = 1/[1 + exp(-/i)]. Since the range of 
the sigmoid function is between zero and one, both the input and 
the output have to be scaled. This is usually achieved by using 
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Figure 5. The architecture used in this work. The output units 
are linear, and there are direct connections from the input to the 
output. 

^scaled _ ', (2) 

where Xmin and X011 are the minimum and maximum values of 
variable x available in the data set. (It is not essential to scale 
the inputs or to use this particular one, but it usually works well.) 

In this paper, we concentrate on a different network archi­
tecture. This is shown in Figure 5. Here, the output is determined 
using the relation 

o,'= £*W+ £>/(£«>,•* &") (3) 

Since the output unit is linear the weights W;* account for the 
linear relationship between the input and the output. The second 
term in eq 3 accounts for the deviation from linearity. Such a 
separation is particularly useful because of the success of linear 
regression in QSAR. The best way to see the decrease in 
complexity of the model using the new architecture is to write 
out eq 3 and eq 1, substituting the sigmoidal functions for /(•)• 
Another advantage of linear outputs is that scaling of biological 
activity is no longer necessary. Therefore, only the inputs are 
scaled. 

Training and Weight Decay. The standard backpropagation 
algorithm used in training such feed-forward networks is a 
straightforward gradient descent procedure. Under certain 
circumstances a simple gradient descent is inefficient. One such 
situation is when the number of data points is small as is usually 
the case in QSAR work. We, therefore, use a quasi-Newton 
method to determine the weights that minimize the squared error 
between the predicted and observed biological activity. We use 
the BFGS algorithm.8 This procedure also avoids the problem 
of choosing the usual learning rate and momentum parameters 
used in the standard backpropagation training algorithm. We 
also calculate the Hessian of the error function to see if the 
procedure has converged to a local minimum or whether it is in 
some shallow basin. Training is continued until the error decrease 
after each pass through the data is small, and the Hessian suggests 
that we are in a local minimum. This enables us to detect and 
avoid spurious convergence. 

Weight decay is a simple technique that de-emphasizes large 
weights. It can be viewed as a method that builds in an apriori 
bias toward simple models. For large weight vectors the activation 
of its corresponding unit would be close to the extremes of the 
sigmoidal function. During training this may often turn out to 
be the "incorrect" extreme, and it takes a long time to change 
them to the opposite extreme. This saturation of the hidden 
units may also lead to the network getting stuck in flat regions 
without reaching a local minimum. "Weight decay", as the term 
implies, decreases the magnitude of all the weights in the network 
at each iteration. Therefore, networks trained with weight decay 
often achieve lower training error, need fewer training epochs, 
and yield better models for generalization by decreasing the 
magnitude of unimportant weights. Generalization is improved 
because it forces the network to discover regularities in the 
training set instead of simply using a look-up table. Another 
advantage is that it makes the parameters of the network (the 
weights) dependent on one another. In contrast to learning 
without weight decay, it helps us to consider regressors with a 
larger ratio of weights to data points without over-fitting. 

We therefore incorporate a weight decay term into the error 

dE dE , „ . , 
^ : = a ^ + 2(decay)^ 

(4) 

Each time the gradient is calculated, we add a penalty term to 
the error!? (see Hertz et al.1). The ":=" symbol assigns the right 
hand side to the left. Note that the change in weight is 
proportional to the negative of the gradient calculated in eq 4. 
Therefore, the decay term decreases the magnitude of the weights 
at each step. The decay parameter should not be large and must 
be optimized for a given problem. A constant weight decay 
parameter has been used throughout a training session. 

Rank Regression. Pleiss, examining the steroid data, pointed 
out, and we confirm, that Tb and SAO are not normally distributed. 
Therefore, he used rank regression. The parameter set he 
obtained that best described the data was JiJ(SAO)̂ R2-
(SM),fl(*„)-Je(SAO),jR(iri).fl(SAO),fl(MK).fl(CC)}. 

Here "R(name)" is the rank of the variable "name". This 
equation gives p = 0.91 and s = 7.27, resulting in a better model. 
It was used to predict the activities of the 10 compounds not 
included in its derivation and 4 compounds from the training 
set. Out of the 14 compounds 12 were predicted better by the 
rank regression method. The other two compounds yield very 
large residuals (unlike Lee et al.). Pleiss rationalized this by 
observing that these two compounds (62 and 65 in Table DC) 
have an 18-ethyl group which is not present in any other 
compound in the database on which the regression equation was 
developed. He therefore concluded that this moiety is not well 
parameterized. 

Results and Discussion 

Triazine. From the modeling standpoint we focus on 
two issues: (1) the new architecture that separates out the 
linear and nonlinear influences on biological activity and 
(2) on demonstrating the crucial importance of weight 
decay for better convergence. 

Graphical analysis shows that the distribution of a 
deviates significantly from normal. This is apparent from 
the histogram in Figure 3. For comparison, we have also 
shown the histogram of T which is roughly normal. 

Fitting Linear Hypersurfaces Using a Neural 
Network. The first step in building QSARs is to try a 
linear model. Using the standard architecture we are never 
sure whether the sigmoidal units are being used to fit 
straight lines or not. Using a perceptron with linear output 
units, on the other hand, makes the step of fitting straight 
lines clear and simple. If a perceptron is not able to model 
the data, we can add hidden (sigmoidal) units till we obtain 
a satisfactory model. To facilitate the use of neural 
networks as a standard QSAR modeling tool, we have to 
demonstrate the empirical equivalence of perceptrons with 
linear units to multiple linear regression.11 

The perceptron results are given in Table I (the top six 
rows). They indicate large errors, which is analogous to 
what Selassie et al. found. Next, following a common 
procedure in QSAR modeling, we introduce a nonlinearity 
in ir using logOSlO*' + 1) as an extra input. The results for 
this are also shown in Table I. As expected, our results 
are very similar to the ones obtained by Selassie et al. We 
use the value of /3 that was obtained in their work for the 
results shown in the table. Its value can also be determined 
by using, for example, an iterative approximation scheme. 
The three "outliers" found by Selassie et al. are the same 
compounds the perceptron deems as "outliers". The 
equation describing biological activity obtained using a 
perceptron is very similar to the one obtained by Selassie 
et al. This demonstrates the empirical equivalence we set 
out to show. 
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Table P Table IIP 

parameters regression 

Tr, MR 0.55 0.16 
ir', MR 0.48 0.50 
a, TT 0.55 0.16 
a, *' 0.49 0.49 
a, T, MR 0.55 0.19 
a, x', MR 0.48 0.51 
x', log(/310"" + 1) 0.33 0.80 
x', logOnO"" + 1), MR 0.31 0.83 
x', logdSlO'' + 1) a 0.30 0.84 

0.98 ± 0.79; 0.14 ± 5.16 
0.99 ± 0.22; 0.01 ± 1.47 
1.00 ± 0.78; -0.03 ± 5.14 
0.99 ± 0.23; 0.00 ± 1.49 
0.99 ± 0.65; 0.01 ± 4.25 
0.99 ± 0.22; 0.00 ± 1.45 
0.99 ± 0.09; 0.02 ± 0.63 
1.00 ± 0.08; -0.04 ± 0.57 
1.00 ± 0.09; 0.00 ± 0.54 

" The results of using a Perceptron on learning the mapping for 
3-X-triazine inhibition of purified DHFR from L1210 leukemia cells 
resistant to methotrexate are shown. The first column shows the 
parameters used in learning, d is the summed squared deviation and 
p the correlation coefficient between the observed and fitted biological 
activities. The last column shows the regression coefficients (slope 
and intercept, respectively) of plotting a line through the calculated 
and observed activities. All 61 points were used. As is obvious, 
including the log term improves the results drastically. Eliminating 
the points that were the hardest to fit (the same as the ones removed 
from the analysis by Selassie etal.; see text) and using x' and logOSlO1' 
+ 1), we get d = 0.87 and p = 0.29—results comparable to Selassie 
et al. Our best determination of /3 was 0.1, close to the number they 
obtain. Hence we note that the conclusions of multiple linear 
regression are reproduced. 

Table 11" 

parameters 

T, MR 
TT', MR 
ff, X 

a, x' 
a, it, MR 
a, x \ MR 

d 

0.38 
0.30 
0.37 
0.43 
0.37 
0.35 

P 

0.73 
0.84 
0.74 
0.63 
0.74 
0.78 

regression 

1.00 ± 0.19; 0.00 ± 0.76 
1.00 ± 0.06; -0.20 ± 0.40 
1.00 ± 0.18; 0.00 ± 0.75 
1.00 ± 0.16; 0.00 ± 1.04 
1.00 ± 0.18; 0.00 ± 0.77 
0.99 ± 0.10; 0.00 ± 0.69 

" The results of using 1 hidden unit to learn the mapping for 3-X-
triazine inhibition of purified DHFR from L1210 leukemia cells 
resistant to methotrexate are shown. The first column shows the 
parameters used in learning, d is the summed squared deviation and 
p the correlation coefficient between the observed and fitted biological 
activities. The last column shows the regression coefficients (slope 
and intercept, respectively) of plotting a line through the calculated 
and observed activities. All 61 points were used. Networks were 
constructed with no weight decay. Out of 30 different runs (using 
different seeds to initialize the networks), only a few gave good results 
(the actual number varied for the different parameters). Other runs 
got stuck in spurious minima. 

The best results are obtained by using x' rather than x. 
Furthermore, a and MR seem equally relevant. Weight 
decay was not useful for perceptron learning. 

Adding Nonlinear Hidden Units. One advantage of 
using neural networks is that nonlinear dependencies can 
be automatically incorporated. Therefore we now add 
sigmoidal hidden units, one at a time, to the perceptron 
instead of the log(/310T + 1) input. Thirty different 
networks, with and without weight decay for different 
combinations of input parameters, were studied at each 
stage (see Tables II and III for results). 

For the parameters in the first three rows (of Table III) 
the results do not change on introducing weight decay. 
Unlike the case with zero weight decay, however, all 30 
runs converge and none get stuck in spurious minima. For 
the parameters in the last four rows, on the other hand, 
we note a substantial improvement in both the correlation 
coefficient and standard deviation, but this time, less than 
5% of the runs get stuck in spurious minima. This 
demonstrates the utility of weight decay, though the 
benefits are different for different networks. From Table 
II (zero weight decay) it appears that {x', MR} yields the 
best model. On the other hand the results in Table III 
demonstrate that there are other parameter choices ({x, 

parameters 

x, MR 
x' 
x7, MR 
a, x 
a, Tt, MR 
a, Tt' 

a, Tt', MR 

d 

0.38 
0.33 
0.30 
0.37 
0.37 
0.29 
0.27 

P 

0.73 
0.81 
0.84 
0.74 
0.75 
0.85 
0.87 

regression 

0.99 ± 0.20; 0.00 ± 0.70 
1.00 ± 0.18; 0.10 ± 0.50 
1.01 ± 0.10; 0.20 ± 0.50 
0.99 ± 0.25; 0.00 ± 0.68 
1.00 ± 0.11;-0.05 ± 0.75 
1.03 ± 0.08; -0.21 ± 0.55 
1.01 ±0.07;-0.07 ±0.49 

decay 

0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 

0 The results of training a network to learn the mapping for 3-X-
triazine inhibition of purified DHFR from L1210 leukemia cells 
resistant to methotrexate under similar conditions as in Table II 
except for a nonzero weight decay are shown. A constant weight 
decay parameter is used from the start of learning and the optimum 
value is shown. 

Figure 6. The results for inhibition of purified DHFR from 
leukemia cells resistant to methotrexate. This compares the 
neural network model and the Selassie etal. model. The Selassie 
et al. model is roughly parabolic, and a comparison points out 
the flexibility of a neural network. 

MR}, {orf}, and {a, x', MR}) that yield equivalent results. 
This conclusion is reaffirmed by a visual inspection of the 
three models. Therefore, consideration of weight decay 
prevents us from drawing incorrect conclusions about the 
data set. 

Two of the better networks with weight decay are 

O = 4.08 + 1.54a + 10.12x' -
8.90 

l + exp[4.22-0.81a-6.30x /] 

and 

O = 4.94 + 7.99x' - 0.54MR • 
6.76 

1 + exp[4.60 - 6.78x' - 0.15MR] 

(5) 

(6) 

Figure 6 compares the fits obtained by Selassie et al. and 
a neural network with one hidden unit. This figure clearly 
shows why Selassie et al. had to drop three points while 
building their regression equation. 

Next, we build networks with two units in the hidden 
layer. Neither the statistical measures nor visual inspec­
tion of the surfaces shows any improvements. There are 
a few more kinks and wrinkles on the surface when two 
hidden units are used. This is an attempt by the network 
to adjust finely to the distribution of points. 

In effect, we have two basic conclusions from our 
networks. First, there is no reason to prefer {x/, MR} over 
{x^ <r}. Both give effectively the same cross-correlation 
coefficient and the sum of the squared difference between 
the calculated and observed activities. There are two 
important points with regard to using an equation involving 
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Table IV0 

parameters 

*-, MR 
J 
/ , M R 
(T, T 

a, a, MR 
a, •K' 

a, r1, MR 

d 

0.29 
0.43 
0.32 
0.31 
0.23 
0.32 
0.29 

P 
0.81 
0.48 
0.76 
0.78 
0.89 
0.77 
0.81 

decay 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

ft
. 

0.27 
0.36 
0.30 
0.31 
0.23 
0.32 
0.29 

P 
0.84 
0.69 
0.80 
0.78 
0.89 
0.77 
0.81 

decay 

0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 

" The results of using two hidden units on learning the mapping 
for 3-X-triazine inhibition of cultured L1210 leukemia cells sensitive 
to methotrexate are shown. Results obtained without and with weight 
decay are shown. The weight decay parameters shown have been 
optimized. 

Table V« 

parameters 

T , M R 
*> 
/ , M R 
CT, W 

a, T , M R 
a,*' 
(Ty1MR 

d 

0.25 
0.36 
0.27 
0.29 
0.19 
0.29 
0.25 

P 
0.87 
0.69 
0.83 
0.81 
0.92 
0.80 
0.86 

decay 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

d 

0.24 
0.36 
0.29 
0.29 
0.19 
0.29 
0.25 

P 
0.88 
0.68 
0.81 
0.81 
0.92 
0.80 
0.86 

decay 

i(H 
1(H 
1(H 
1(H 
1(H 
io-« 
1(H 

" T h e results of using three hidden units on learning the mapping 
for 3-X-triazine inhibition of cultured L1210 leukemia cells sensitive 
to methotrexate are shown. Results obtained without and with weight 
decay are shown. The weight decay parameters shown have been 
optimized. 

either MR or a. The correlation coefficient between T' 
and MR is small (p2 = 0.26) and so is the one between v' 
and a (p2 = 0.28). Therefore, as far as collinearity is 
concerned, both parameters are equivalent. We need to 
keep in mind that the F-test is not a valid reason to choose 
a over MR because, as noted, <r is not normally distributed. 
However we confirm the preference for -K1 over ir. 

3-X-Triazine Inhibition of Cultured L1210 Leuke­
mia Cells Sensitive to Methotrexate. Unlike Selassie 
et al., we do not use indicator variables for this data set. 
The perceptron results (not shown) follow along the same 
lines as before. Weight decay is again seen, from Tables 
IV and V, to be important for learning with lower error 
and higher correlation coefficient. A clear preference is 
seen for ir over x7 in all cases. 

The network using two hidden units and weight decay 
show that there is a preference for {ir, MR} over {x, a}. 
Again, a cannot be retained or rejected based on the 
F-statistic. The linear correlation between x and MR is 
rather high (p2 = 0.6) compared to that between ir and a 
(p2 = 0.2) and a and MR (p2 = 0.24). Therefore, care must 
be employed when using the (IT, MR} data for extrapo­
lations. 

The best equation obtained using two hidden units and 
weight decay is 

O = 0.77 - 0.74ir - 1.45MR + 
7J52 

1 + exp[3.36 - 6.09ir - 6.58MR] 

M* (7) 
1 + exp[-3.92 + 0.05x + 18.34MR] 

This can be simplified by dropping the 0.05x term. A 
visual examination of the different equations also shows 
that the {ir, a] network has more outliers than the {ir, MR} 
network. The large linear correlation coefficient between 
ir and MR is reflected in the "flatness* of the plot. Since 
the extent of the flat region is known, careful extrapolation 
on new data is feasible. 
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Table VP 

parameters d p 

T 0.29 0.89 
r, MR 0.24 0.93 
r1, MR 0.53 0.58 
(T1 ir 0.28 0.90 
a, v, MR 0.24 0.93 
a, J 0.58 0.44 
(T1 V, MR 0.53 0.58 

° The results of using a perceptron on learning the mapping for 
3-X-triazine inhibition of cultured L1210 leukemia cells resistant to 
methotrexate are shown. There are no benefits (or losses) when 
using weight decay with perceptrons. 

Table VII-

param set p (train) error (train) p (test) error (test) decay 

a 
a 
a 
a 
b 
b 

0.96 
0.96 
0.96 
0.96 
0.89 
0.89 

0.30 
0.32 
0.30 
0.29 
0.51 
0.51 

0.92 
0.94 
0.92 
0.91 
0.90 

-0.81 

1.61 
1.32 
1.61 
1.84 
1.42 
9.01 

0.0001 
0.001 
0.01 
0.0 
0.001 
0.0 

0 A sample of the results on the train and test sets for the steroid 
data is shown. Set a uses T„, *•&, SAI, SAO1 MK1 and CC as input 
parameters; and set b uses *&, SAO1 MK, and CC. Notice the 
significant change in performance on the test set while the perfor­
mance on the train set is about the same, when we include weight 
decay. In particular note the negative correlation coefficient in the 
last row for the test set performance using no weight decay. 

Note that the results from the two tables do not 
conclusively indicate the best model, for example, {<r, ir, 
MR} with two hidden units is equivalent to {ir, MR} with 
three hidden units. Using a large number of parameters 
improves the fit as before. The only way to decide on the 
best model is to examine the respective generalization 
abilities. We will come back to this point later in the 
paper when we consider building networks for the steroid 
data (see also the discussion in the first paragraph of 
Methods). 

3-X-triazine Inhibition of Cultured L1210 Leuke­
mia Cells Resistant to Methotrexate. A perceptron 
was again trained, with {ir, MR} yielding the best network. 
The results are given in Table VI. Attempts to build 
networks using hidden units did not yield improvements. 
This is a nice result because it demonstrates that the fit 
cannot always be improved by adding hidden units when 
a linear equation is the best possible model. Therefore, 
a linear relationship is the best one for leukemia cells 
resistant to methotrexate. As mentioned, ir and MR have 
a large linear correlation. Once again, we must be cautious 
with extrapolations. 

Steroid. The steroid data set is analyzed to compare 
multiple linear regression, rank regression, and neural 
network regression. Here we concentrate on building 
models that are good at generalization. 

We developed networks with many combinations of 
input parameters using the complete training set. A 
sample of the results is shown in Table VII. As the test 
set performances indicate, nonzero weight decay networks 
yield a better model (significantly increased correlation 
coefficient and decreased squared-error) predictions even 
when a sloppy training procedure that does not perform 
any cross-validation is adopted. 

Of course, building models that minimize the error in 
the training set is not the best method to adopt for robust 
modeling. Many parameters like the weight decay pa­
rameter, the number of hidden units, and inputs that define 
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Table VIII-

CVE 

0.98 
0.77 
0.47 
0.95 
0.65 
0.58 
0.61 

corr coeff 

0.53 
0.75 
0.91 
0.62 
0.81 
0.86 
0.83 

decay 

0.0001 
0.0001 
0.001 
0.0005 
0.0001 
0.0001 
0.01 

" This table shows the results of cross-validation runs for the steroid 
data set. We only show a sample of the different possibilities 
examined in this study (the better ones). The first column indicates 
the different input parameters used. Set a includes ir„, *b, SAI, and, 
SAO; b includes ir„, in,, SAI, SAO, and MK; c includes ira, itb, SAI, 
SAO, MK, and CC; d includes Tr0, SAI, MK, and CC; e includes *-{,, 
SAI, MK, and CC; f includes rb, SAI, SAO, MK, and CC; and set g 
includes irt, SAO, MK, and CC. CVE is the cross-validation error. 
"Corr coeff" is the correlation between the predicted and the observed 
biological activities for the validation set. Finally the last column 
shows the weight decay parameter required to obtain the best network 
in each case. All of these use two hidden units. Using either one or 
three hidden units (with and without weight decay) increases CVE. 

the network have to be optimized. One of the oldest 
methods in statistics that achieves good performance is 
cross-validation. Cross-validation is a useful technique 
because in practice it has often been found to correlate 
well with generalization error. The cross-validation error 
for network j is interpreted as an estimate of the 
generalization error of network j when trained on the 
complete data set. 

We adopt a J-fold cross-validation procedure with J = 
11. Here the test sets have 5 nonduplicated compounds 
out of a total of 55 in the complete data set. We train 
many networks with various combinations of input pa­
rameters, hidden units, and weight decay parameters. A 
sample of our results is shown in Table VIII. The cross-
validation error (CVE) is calculated for each network by 
using, CVE = Ii=iN Ei/IN, where £••,„ = NitV

mt - A°ut. 
NiiV

0Ut represents the output predicted by the ith network 
on the validation set compounds, and j40Ut is the observed 
output. The model (network with a particular set of 
weights and connectivity) that gives the smallest CVE is 
used for further predictions. 

The most interesting aspect of Table VIII is that the 
best results are obtained by networks that incorporate a 
weight decay term. This is true immaterial of the choice 
of input parameters or the number of hidden units used. 
A comparison of cross-validated error of the best network 
(set c {xa, iTb> SAI, SAO, MK, and CC} and two hidden 
units), and the maximum error on the test set shows that 
CVE yields a resaonable upper-bound estimate for the 
generalization error for this data set. (Of course, CVE is 
not an upper bound for any arbitrary generalization—only 
reasonable generalizations. It is also true that the par­
ticular value of J chosen for cross validation experiments 
is important. For example, there are data sets where a 
1-fold cross validation is inferior to other methods for cross 
validation.) Both the neural network model and rank 
transform regression result in a similar correlation coef­
ficient. 

It is instructive to compare networks with and without 
weight decay and with different hidden units. The results 
for sets c and g provide typical examples. The best network 
with no weight decay (two hidden units) yielded a CVE 
of 0.54 and 0.68 for sets c and g respectively. The 
corresponding network using the optimum weight decay 
yields an improvement of «=15%. For certain series like 

Ajay 

Table IX0 

no. obsd calcd % error calcd % error calcd % error 
1 

27 
32 
47 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

2.0 
2.41 
2.23 
2.62 
2.00 
1.30 
2.70 
2.30 
1.74 
1.54 
1.30 
1.30 
0.70 
2.48 

1.87 
2.18 
1.76 
1.99 
1.43 
0.68 
2.45 
1.70 
0.95 
1.20 
0.27 
0.50 

-0.29 
2.02 

5.0 
8.3 

22.0 
25.2 
27.0 
44.6 

8.5 
25.2 
55.2 
22.1 
80.8 
63.8 

141.4 
16.1 

1.99 
2.37 
1.76 
1.99 
1.83 
1.55 
2.62 
2.08 
1.87 
0.30 
1.24 
1.37 

-0.94 
2.30 

0.5 
1.7 

21.1 
24.0 

8.5 
-19.2 

3.0 
9.6 

-7.5 
80.5 
4.6 

-5.4 
234.3 

7.3 

2.13 
2.63 
2.27 
2.45 
1.41 
1.66 
2.42 
1.77 
2.07 
0.50 
1.19 
1.97 

-0.44 
1.68 

-6.5 
-9.0 
-1.8 

6.5 
29.5 

-27.7 
10.3 
23.0 

-18.9 
67.5 
8.5 

-51.5 
162.9 
32.2 

° The comparative results obtained by Lee et al., Pleiss, and in 
this work for the test set are shown (this explores generalization 
abilities). 

the steroid data and unlike the triazines, depending on 
the parameterization and noisiness of the data, different 
initial networks result in significantly different models. 
The CVEs of these models fluctuate by large amounts 
from the average (we designate the "network" that yields 
average CVE as a "typical network"). These fluctuations 
point to the existence of many local minima. The typical 
network show an improvement of=30 % when weight decay 
is used. Also the fluctuations among the models developed 
with weight decay are smaller than the ones found when 
no weight decay is used, implying that weight decay flattens 
some of the spurious local minima. 

Analogously, the CVE values for the best network with 
one hidden unit are 0.5 with an optimum decay of 0.01, 
and 0.64 with an optimum decay of 0.01 for sets c and g, 
respectively. These results imply that networks with two 
hidden units improve the CVE by «5-6%. 

We now have a trained network that yields the lowest 
CVEs which can be used as the model for the data. Our 
predictions using this model are shown in Table IX. It 
performs much better than multiple linear regression. (As 
in triazines, the perceptron is found to be equivalent to 
multiple linear regression.) We, like Pleiss, identify the 
18-ethyl moiety as the one that yields the largest errors. 
In addition, the 4,9,11-estratriene moiety results in in­
termediate errors. 

An important point must be mentioned about cross-
validation. One of the biggest problems with cross-
validation is that it never uses the entire training data. A 
method to tackle this and the associated multiple-minima 
problem that is often encountered with cross-validation, 
is addressed in a forthcoming paper.9 

Conclusion 

Compared to multiple linear regression, application of 
neural networks to function approximation is quite new. 
We have demonstrated that consideration of some crucial 
details that have so far been neglected enhances the 
applicability of neural networks to quantitative structure-
activity relationships. 

The equivalence of a perceptron to multiple linear 
regression, linear output units, direct input-output con­
nections, and the ability to add one hidden unit at a time 
to the perceptron, facilitates the use of neural networks 
as a common tool for building QSARs. The linear output 
units and direct input-output connections also help in 
the interpretation of the models as the resulting equations 
are simpler. 
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Weight decay is shown to be important both for learning 
and generalization. It helped us build a model for the 
triazine data which indicates that the [ir', a) network is as 
good as the {ir7, MR} network for the inhibition of purified 
DHFR. This conclusion is different from that obtained 
by Selassie et al.5 Weight decay is also important for the 
steroid data as it yields lower cross-validated errors. We 
find weight decay to be so important that it should always 
be considered. Without it, one can never be sure whether 
or not the network under consideration provides the best 
possible model for the data. Furthermore, interpretations 
and extrapolations cannot be made reliably. This is amply 
demonstrated both from the results in this work and our 
experience from other data sets. 

As the steroid results indicate, the non-normality of 
data is not a constraint for neural networks. Some of the 
essential characteristics of the steroid data are brought 
out by neural network modeling. We have also shown the 
usefulness of cross-validation for settling on the best 
possible network (i.e., inputs, hidden units, weight decay, 
and in principle, other parameters). 

The distribution of points in a data set that uses the 
original variables (as in neural networks) is very different 
from the same data set that uses ranks of the original 
variables (as in rank regression). Hence it is not appro­
priate to directly compare their usefulness to QSAR. 
Without further theoretical and empirical study, we cannot 
conclude that neural networks can be a replacement for 
other nonparametric regression techniques or vice versa. 
Additionally, rank regression itself could equally well have 
been carried out using a neural network just as for the real 
data, with less effort than Pleiss. 

Since linear models have worked well and neural 
networks are relatively computer intensive, there is a 
reluctance to its widespread use in the QSAR community.12 

The use of the standard architecture in Figure 4, and the 
slow standard backpropagation procedure reinforces these 
reasons, respectively. The architecture proposed in this 
work, on the other hand, uses perceptrons to fit linear 
models and adds nonlinearities only when needed, while 
maintaining the separation of linear and nonlinear con­
tributions. We also use the quasi-Newton method and 
weight decay to speed up convergence. The effort required 
to search through the weight decay parameter space is not 
large because only small values are useful and a grid search 
is sufficient. In fact, typical networks built using any small 
randomly chosen weight decay yields better models than 
networks with no weight decay for both the data sets. 
Though this may not be true for all data sets. It also 
improves convergence and results in faster training of 
networks. 

Coming to questions of computational effort we note 
the following. Perceptron training is as easy and quick as 
multiple linear regression.18 However, if a perceptron is 
not found to be appropriate, hidden units can profitably 
be used. This is because it is too time consuming to go 

through each possible nonlinearity. In our experience, 
the effort required to determine the weights of a single 
hidden unit network is comparable to that of calculating 
the value of /3 in the familiar logOSlO* + 1) nonlinearity. 
In terms of CPU cycles, for the largest network, training 
with weight decay took about 45 s, and without weight 
decay about 55 s on a DEC 5100 using an in-house program 
written in C. A typical one hidden unit network, on the 
other hand, takes about 20 s of CPU time. Only cross-
validation, required for statistical soundness and which is 
necessary for both neural networks and multiple linear 
regression, requires a large amount of effort. 
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