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The Voronoi approach has been used to obtain a three-dimensional model for the binding of the 
cocaine analogues at the cocaine receptor site. The method has been used to determine the geometric 
details and the physicochemical properties of the binding regions in the receptor site. With only 
eight compounds in the training set, the Voronoi site model, consisting of four regions, not only 
fully explains the binding affinity of the input compounds but is also successful in correctly predicting 
another eight compounds of the test set. The phenyl substituent at the 3-position of the tropane 
ring of cocaine was found to be the most significant functionality relevant for activity, while 
moderate contribution results from the hydrophobic interactions of the tropane ring with the 
binding regions. Some of the problems associated with the approach are discussed, and we report 
a new procedure for evaluating the validity of the model obtained from our approach. 

Introduction 

Natural (-)-cocaine has been known to possess several 
physiological properties. It is a local anesthetic and good 
vasoconstrictant and affects the sympathetic nervous 
system which leads to increased heart rate and blood 
pressure in some instances. Investigations1"3 have shown 
that cocaine has many sites of action in the central nervous 
system. But these sites of action have not been well 
characterized. The most commonly believed site is the 
so-called dopamine transport inhibition where the result­
ing buildup of dopamine leads to the reinforcing effects 
of cocaine.4 Even the dopamine transporter has been 
shown to possess two binding sites for (-)-cocaine, although 
only one of them has a very high affinity for (-)-cocaine.5 

In order to understand the binding of cocaine at its 
receptor site and to design compounds subsequently which 
can alleviate this effect, a number of cocaine analogues 
have been synthesized and tested for their inhibitory 
potencies at these receptor sites.6-9 It has been shown by 
Carroll et al.6 that the cocaine binding is very stereospecific 
and the seven other stereoisomers of cocaine are less potent 
than the original isomer. But they synthesized several 
other analogues by modifying the structural features of 
the substituents at the 2- and 3-positions as well as the N 
atom in the tropane ring of cocaine.5 Their findings showed 
that the modifications of the methyl group of the 2-car-
bomethoxy functionality exhibited only small changes in 
the potency. The replacement of the benzoyl functionality 
at the 3-position of (-)-cocaine by substituted phenyl 
groups led to marked enhancement in the activity over 
that of the natural isomer. Changes in the potency were 
again very marginal when the substituents at the N-po-
sition were varied. But a nitrogen group with a basic 
character was found to be essential for the activity. 

A number of studies have correlated the inhibition of 
cocaine to the selectivity of transporters in the CNS system 
like the dopamine, norepinephrine, and serotonin trans­
porters.10,11 But not much insight has been provided into 
the structural features of ligands relevant for the inhibition 
of these systems. Carroll et al.7 have recently performed 
both a Hansen type QSAR analysis as well as CoMFA 
evaluation with some of the cocaine analogues mentioned 
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above. The classical QSAR failed to yield any meaningful 
results, but the CoMFA study with 12 compounds indi­
cated high electrostatic and steric correlation. They were 
able to identify small regions around the substituents at 
the 2- and 3-positions of the tropane ring of (fl)-cocaine 
as favorable and unfavorable regions for potency. This 
lends further support to the stereospecific nature of the 
receptor site. 

We have been developing a novel approach called the 
Voronoi site modeling, for generating a 3-dimensional site 
model of a receptor enzyme, given the chemical structures 
and the binding energies of several ligands.12'13 This 
approach deduces the geometry and the energetics of the 
site model. The method partitions space into distinct 
Voronoi regions which are convex in shape. The sizes, 
shapes, and positions of these regions are determined by 
the coordinates of a single generating point contained in 
each region.12 The ligand molecules are then allowed to 
partition themselves in these regions such that there is an 
absolute fit between the calculated binding energy 
(AGm>caic) for molecule m, and experimental binding energy, 
which is represented as the upper (AGm+) and lower (AGnJ) 
bounds of the observed binding energy. The two bounds 
are introduced to take into account the experimental error 
involved in the measurement of these activity values. Thus, 

AGm_ < AGm>calc < AGm+Vm (1) 

The method does not use the bias that all the active 
compounds could be aligned in such a way that there is 
a necessary overlap of the common atoms/groups at the 
active site, an assumption implicit in most QSAR/modeling 
approaches including the CoMFA methodology. There 
are no outliers, and the model can be used to predict the 
preferred binding mode and the binding affinity of any 
compound not necessarily related to the training com­
pounds. The term binding mode, in our discussion, refers 
to the assignment of each ligand atom to lie somewhere 
in a stated region. The description of the Voronoi method 
along with its improvements over our similar and older 
3-dimensional distance geometry QSAR approach can be 
found in refs 12 and 14. 

In this paper, we have addressed two problems which 
we faced with Voronoi modeling in the past. Firstly, the 
task of choosing the correct number of regions for a Voronoi 
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binding site model and guessing the coordinates of the 
corresponding generating points is rather difficult, so we 
introduce an automatic procedure for achieving this. 
Secondly, our method is capable of giving more than one 
solution for the site model, which is certainly appropriate, 
but one must have some criteria for choosing one over the 
others. However, due to the absolute fitting of the 
experimental data, we cannot use the standard tests of 
statistical significance, which are based on goodness of fit. 
Consequently, we report here a protocol which we have 
devised for examining the predictive power of the model 
itself for its validation. 

The Voronoi approach has been used here to study and 
understand the binding characteristics of cocaine and its 
analogues at the cocaine receptor site on the dopamine 
transport system. For our work, we have made a key 
assumption that all the cocaine analogues bind to the same 
receptor site. 

Method 
The Voronoi site modeling employs the following steps: (1) 

Generate the 3-dimensional structure of the given ligands using 
some molecular modeling package. (2) Assign the physicochem-
ical properties of the atoms in the molecules.16 (3) Represent 
each molecule in linearized form16,17 and generate all the 
conformers for the molecules by a systematic search in torsion 
angles. (4) Simplify subsequent calculations by reducing groups 
of atoms together into pseudoatoms. For example, a methyl group 
could be simply squashed into a single "point" which is assigned 
the mean coordinates of its constituent atoms' positions. The 
physicochemical parameters of such a pseudoatom are just a 
sum of its constituent atomic parameters. The implicit assump­
tion is that we are not interested in the internal structure of the 
group, but rather how it is going to position itself in the site and 
what is its total contribution to the binding energy as a result of 
its interaction with some region in the site. (5) Propose a Voronoi 
site model to represent the actual receptor site which binds to 
the ligands. This involves making a correct guess for the number 
of binding regions in the site and choosing appropriate generating 
points for each region, such that certain desired atoms of the 
ligand fall into desired regions. This criterion of placing ligand 
atoms into certain regions is determined by the investigator's 
knowledge. (6) Determine all the geometrically allowed binding 
modes of all the molecules. (7) Calculate the interaction energy 
parameters for the regions of the proposed site, such that the 
calculated binding energy lies within the observed binding energy 
range (see eq 1). For the present work we have considered only 
two physicochemical energy parameters: the hydrophobicity and 
the molar refractivity. 

The binding modes generated in step 6 are explored until for 
some set of binding modes not only is eq 1 satisfied but also 
AGm|Mic is the maximum over all the geometrically allowed modes 
for the molecule m. If one fails in this step, then steps 5-7 are 
repeated, which means a different site geometry is proposed and 
the rest of the process is carried out again. 

Our experience has shown that guessing a correct site geometry 
for which the above mentioned criteria are satisfied is extremely 
difficult. A possible alternative to this problem is to relax the 
full geometric reality of Vorom at least temporarily in order to 
deal with the combinatorics of finding the site geometry 
automatically. This is achieved by a program named Egsets 
(energetically and geometrically valid sets of solutions). This 
method is briefly described below (see ref 18 for a more detailed 
explanation). 

Given a molecule having n„ atoms that binds in nt, Voronoi 
binding regions, and these are necessarily convex regions, then 
a binding mode amounts to partitioning a molecule into m 
mutually exclusive and exhaustive convex sets of atoms, where 
the convexity of a set of atoms is currently assessed for one fixed 
conformation of the molecule. As long as raj, is small, the number 
of partitions is not all that great, many fewer than nf'. Assigning 
regions in various permutations to the sets amounts to generating 
possible binding modes. Then each mode implies restrictions on 
the geometry of the binding site, so the choice of optimal modes 

for all the molecules in the training set must make a consistent 
set of demands on the site geometry. If a set of proposed optimal 
binding modes is consistent with some site geometry, then the 
program attempts to find interaction energy parameters for each 
region such that eq 1 is satisfied and also so that all alternative 
modes have a worse binding energy. Without going into a lot of 
detail, the output is generally many sets of site geometry and 
interaction energy parameters, each of which is a solution to the 
relaxed-geometry problem described. 

The geometry of a Voronoi site model, consisting of binding 
and nonbinding regions, is fully specified by the coordinates of 
the generating points. Egsets speeds up its search by instead 
describing the complex of Voronoi polyhedra only by the upper 
and lower bounds on distances within and between binding 
regions. Nonbinding regions are not used at all in order to keep 
the problem simple. However, nonbinding regions represent 
sterically disallowed regions and are generally required around 
the binding regions so as to give proper shape to the latter. But 
it is not always possible to find coordinates for generating points 
of binding and some extra nonbinding regions such that these 
bounds are satisfied, and such that the purportedly optimal 
binding modes are indeed optimal. For now, we produce 
3-dimensional site models by a process resembling ensemble 
distance geometry, but more rigorous treatment is being sought. 

Results and Discussion 
The data for the QSAR Voronoi site study was taken 

from the work by Carroll et al. We selected all the 8 
stereoisomers of cocaine6 along with 12 other analogues 
which differed in the structural features at the 2-, 3-, and 
N-substituents of the tropane ring of cocaine.7-9 The IC50S 
of all these 20 compounds had been measured against the 
competitive binding of [3H]WIN-35,428 to rat striatal 
membranes. In all that follows we assume these IC50S are 
indeed due to the relative binding affinities of these 
compounds at the same site on the same receptor protein. 
Most of the other compounds which were reported had 
been evaluated for inhibition of different radioligand 
binding at the dopamine transporter. On the assumption 
that different parts of a ligand make approximately 
additive contributions to the free energy of binding, we 
converted the experimental IC50 values to a logarithmic 
scale, 

AGobB = -1Og(IC50) (2) 

realizing that our AG0bs is only approximately proportional 
to the true Gibbs' free energy of binding. 

Since our approach does not simply seek a least-squares 
fit to the AGobe values, but rather an absolute fit to a given 
range of binding for each compound, we needed some way 
to estimate the accuracy of the binding assay results. While 
it is true that a particular worker in a given laboratory 
may achieve a high degree of reproducibility following a 
particular experimental protocol, we note some consid­
erable variation between research groups attempting to 
carry out the same experiment. For example, (R)-
allopseudococaine had activity reported as 28.5 and 5.0 
JJM,6,19 while (S)-cocaine was reported as 15.8 and 30.0 
MM.6-20 These yield deviations of 82% and 90%, respec­
tively, on the measured IC50 scale. Although these values 
had been obtained by different groups, their analysis was 
carried out against the binding of the same [3H]WIN-
35,428. Therefore, we assumed an 85% error bar, even 
though we used data coming only from one laboratory. 
Thus, 

AG+ = -log10(1.85 X IC50) 

AG_ = -log10(0.15 X IC50) (3) 
The crystal structure of (-)-cocaine was used for (R)-

cocaine, while all the remaining compounds were modeled 
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Table I. Potencies of Cocaine Analogues for Inhibition of the Binding of [3H]WIN-35,428 at the Dopamine Transporter 

8 
1 -. 

«3 

compd 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

config 

R 
S 
R 
S 
R 
S 
R 
S 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

common name 

cocaine (C) 
cocaine 
pseudo-C 
pseudo-C 
allo-C 
allo-C 
allopseudo-C 
allopseudo-C 

tropa-C 
benzoylecgonine 

Ri 

Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
CH2Ph 
H 
Me 
Me 
Me 
Me 

R2 

0-CO2Me 
0-CO2Me 
a-C02Me 
a-C02Me 
/3-CO2Me 
0-CO2Me 
a-C02Me 
a-C02Me 
0-CO2Ph 
0-CO2CH2CH2Ph 
H 
0-CO2H 
0-CO2(Me)2-(P-NH2Ph) 
0-CH2OH 
0-CO2Me 
0-CO2Me 
0-CO2Me 
0-CO2Me 
0-CO2Me 
0-CO2Me 

R3 

0-0(CO)Ph 
0-0(CO)Ph 
0-0(CO)Ph 
0-0(CO)Ph 
a-0(C0)Ph 
a-0(C0)Ph 
a-0(C0)Ph 
a-0(C0)Ph 
0-0(CO)Ph 
0-0(CO)Ph 
0-0(CO)Ph 
0-0(CO)Ph 
0-0(CO)Ph 
0-0(CO)Ph 
0-0(CO)Ph 
0-0(CO)Ph 
0-Ph 
0-Ph-p-F 
0-Ph-p-NH2 
0-Ph-p-OMe 

IC60" (J1M) 

0.102 
15.8 
15.8 
22.5 
6.16 
9.82 

28.5 
67.7 
0.112 
0.248 
5.18 

195.0 
0.072 
0.561 
0.668 
0.303 
0.023 
0.016 
0.025 
0.008 

" Data from refs 6-9. 
through the Quanta program by appropriate modifications 
of the (TJ)-cocaine structure. It was first necessary to 
determine the conformation of the tropane ring. A search 
of the Cambridge Structural Database was conducted in 
which a total of 79 structures were found having a tropane 
ring. Of these, 73 were found to exist in the chair 
conformation. The six remaining structures had either a 
planar or a boat conformation of the tropane ring, but 
only one out of six structures was found to resemble the 
cocaine structure. The bulky substituent in this compound 
was probably responsible for forcing this nonchair con­
formation. Moreover, semiempirical and molecular dy­
namics studies by other workers have also shown evidence 
for the predominance of the chair form of the tropane ring 
for cocaine and its diastereomers.21 The same calculations 
also established the equatorial position of the methyl group 
on the nitrogen atom. Hence, we decided to consider only 
the chair form and equatorial methyl for our studies. 
Otherwise, the molecules were permitted free rotation of 
their substituents in a systematic search over all substit­
uent single bonds. The results of this search for each 
molecule were summarized in terms of the greatest and 
least observed value for every interatomic distance, taken 
over all sterically allowed conformations. 

The next step involved the simplification of the data 
set. We squashed each molecule into five pseudoatoms, 
combining atoms and substituents at positions 1 and 7; 4, 
5, and 6; 2; 3; and 8 (see Figure 1). In doing so, we 
maintained the stereochemistry of the tropane ring with 
respect to the bridge and assigned individual atom identity 
to the three main functional groups in the molecule (Ri, 
R2, and R3 in Figure 1). The rest of the tropane ring was 
broken up into two fragments. Because the coordinates 
of a united atom are simply the centroid of the constituent 
atoms, a substitution is still distinguishable from /3, and 
so on. The squashing procedure18 furthermore preserves 
the conformational flexibility of the molecules by setting 
the lower and upper distance bounds between two 

t
R i . 

AN 

Y - - - - - no 
3 J 

(a) Structure of Cocaine analogue 

P, 

(b) Squashed structure of Cocaine 

Figure 1. General structure and squashed structure of the 
cocaine analogues. The atom positions marked by a common 
symbol in a have been squashed together into a common 
pseudoatom in b. The coordinates of the pseudoatom are the 
mean of the coordinates of its constituent atoms. 

pseudoatoms as the least lower bound and greatest upper 
bound between an atom in one pseudoatom and an atom 
in the other pseudoatom, respectively. Even with 5 
pseudoatoms per molecule, it was not possible to use all 
20 molecules in the training set, as the estimated CPU 
time was several weeks to search through all the possible 
combinations of binding modes. Instead, we began with 
a very small training set of four compounds and sought 
solutions, i.e. site geometry and interaction energy pa­
rameters, having high predictive power. Egsets can 
generate numerous solutions from a very small number of 
input molecules, but while each one certainly satisfies the 
training set compounds, most of the resulting site models 
are not able to predict the binding of test compounds. 
Thus, it is clear that the solution which yields the maximum 
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prediction would most likely be the closest to the real 
model of the receptor site. The following heuristic 
approach was adopted for locating significantly predictive 
solutions. 

Heuristic Validation Procedure 

A model is expected to perform at least somewhat better 
with an input of additional information. Therefore, we 
made the requirement that the predictive power of the 
model should either increase or remain unchanged with 
addition of extra molecules to the training set. In 
particular, this should hold when the worst predicted 
molecule from the test set is added to the training set. For 
each training set several solutions were obtained for which 
the predictive power was tested using the remaining test 
molecules. The solutions from different training sets could 
be arranged in what we call a solution tree. Each level of 
this tree corresponds to a particular training set, and all 
the nodes on that level are its solutions. The branches or 
children underneath each node correspond to solutions of 
training sets consisting of an additional molecule. These 
children have the same optimal binding mode as their 
parent node for all the molecules common to them. 

It was clear that not all the solutions would converge to 
a good model. The success of any single solution in 
exhibiting a good prediction could easily be attributed to 
the usual chance correlation, so common in any QSAR 
study. Thus, the only way to have confidence in a 
particular solution, or more specifically in a set of proposed 
optimal binding modes, is to trace its predictive power as 
more molecules are added to refine the model. The model 
could be considered sound only if the predictive power 
never drastically drops. Naturally, the site geometry will 
alter as well as the interaction energy parameters, but 
then again, we do expect them to be refined as we add 
molecules to our training set. Eventually, after we have 
considered enough diverse molecules in the training set, 
we should end up with a final site geometry and energy 
values which should not change significantly with addition 
of extra molecules. Thus our protocol was to begin with 
a small training set and find a large number of solutions 
distinguished by which binding mode was the optimal for 
each molecule. For each of those solutions, we add the 
worst predicted compound to the training set and find 
once again many solutions. One of these new solutions is 
deleted if the predictive power has been consistently 
decreasing with increasing training set size, or if its 
predictive power is markedly worse than the alternative 
solutions at that stage. More specifically, we used the 
following two empirical rules, applied independently of 
each other: 

I. Test the condition: (IZn)E1V1Px1 - P 0 ^ S, where P0 

and P1, refer to the predictions of any particular parent 
node and its ith child x„ respectively, in the solution tree 
(thus, node a contains n branches here). S is the error 
allowed in the computation (in our case it is 0.1). If the 
above condition is satisfied, then those solutions of the 
second training set (consisting of x;'s) are retained for which 
the predictive power (Px,) is either better or at least the 
same as that of its parent solution (P0). 

II. Test the condition: Px, -Pa<8, and collect all the 
Xi that meet this criterion for each parent node a. Retain 
only that half of these solutions which have now higher 
predictive power than the median of the set. 

The predictive power (P) for a particular solution (a or 
Xi) is calculated by the following relations: 

p _ lAGm,ob9 ~ AQm,calcl 

Xm = \ 0.2En, + 1 for 5 < Em < 20 
{5Em iorEm>20 (5) 

N 1/2 

P - lOOl I (6) 
V 52iV / 

Here Em is defined as the relative error in prediction 
between the observed binding energy (AG0b«) and the 
calculated binding energy (AGcaic) of a test molecule m. 
Xm is the scaled prediction error of the mth test molecule 
contained in a test set which has a total of N molecules. 
The exact choice of definition of %m is somewhat arbitrary, 
but the intent is to be sensitive to small relative errors, not 
overly penalize moderate errors, but finally emphasize large 
ones. P is the prediction power for a particular solution. 
Note that a lower value of P denotes a better prediction 
because this number represents the fraction of incorrect 
predictions in the test set. 

Further, if a sufficiently large number of training sets 
can be created, then rule I is tested among three generations 
simultaneously. In such a case the solutions are discarded 
only if the condition in rule I is not met in two successive 
generation comparisons. This ensures that a solution may 
not be thrown away just because it fares a little worse in 
any one particular level. 

It was important that we test the usefulness of this 
procedure by doing a full search of all the possible binding 
modes that a set of molecules could achieve. This was not 
possible with the cocaine dataset due to problems described 
above. Consequently, we decided to construct an artificial 
dataset with substituted ethanes and ethylenes. We 
considered a total of eight compounds: unsubstituted 
ethylene, monochloro- and cis- and irans-l,2-dichloroet-
hylenes, ethanol, ethylamine, 2-aminoethanol, and chlo-
roethane. These compounds were assigned the physico-
chemical values as usual. They were then squashed into 
four atoms each, with the two central carbons along with 
all but one hydrogen being labeled as two pseudoatoms 
and the substituents on the carbons (either a hydrogen or 
a heavy atom) being the other two pseudoatoms. A model 
having two regions was constructed by the Vorom pro­
gram14 using a training set of only two molecules, which 
were assigned some arbitrary activity values. This model 
was then used to calculate the binding energy of the 
remaining compounds. The purpose behind this was to 
determine some activity values for this artificial test which 
were related to some arbitrary receptor site. It does not 
matter whether such a site really exists or not. Egsets was 
used to generate solutions for training sets containing one 
to four molecules. These solutions were compared and 
evaluated in the manner described above. The test set 
used for determining the predictive power of each of these 
solutions consisted of the remaining molecules not used 
in any of the training sets. Table II lists a brief summary 
of the results obtained from this exercise. A total of 7,54, 
155, and 28 solutions were obtained for the four training 
sets, respectively, for a complete search of all the possible 
binding modes which are not only geometrically feasible 
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Table II. Number of Solutions Generated or Left for Each 
Training Set of Substituted Ethanes, under Different 
Validation Rules" 

total solutions 
solutions left after: 

rule I 
rule II 

number of molecules in the training set 

1 2 

7 54 

42(77%) 
19(35%) 

3 

155 

84(54%) 
19(12%) 

4 

28 

7(25%) 
1(4%) 

0 See text for explanation of rules. 

but also yield binding energies which are in agreement 
with the assigned values for the molecules. In the four 
molecule training set case, only one solution was found to 
be valid under rule II and seven solutions under rule I, 
which also included the surviving solution under the former 
rule. A close inspection of the predictability of all the 28 
solutions showed that there is only one other nonsurviving 
solution which is slightly better than the solution left under 
the rule II. This shows that our procedure for determining 
the best solution can be successful. Both the rules should 
be tried depending on the dataset being considered. Rule 
II performs a more drastic reduction on the total solutions 
and hence could be used if there are only a few molecules 
available. But if several training sets can be created of 
different sizes, then rule I would do a better and more 
thorough job of locating solutions with high and persisting 
increase in prediction power because it is more conservative 
in discarding solutions. For example, this rule retained 
seven solutions while rule II ended up with a solitary 
solution. 

Finally, our procedure is certainly not very rigid in that 
it attempts to locate only near-optimal solutions and not 
the optimal solution itself. As long as the near-optimal 
solutions are not very different from the optimal solution 
(which was found to be true in the datasets we have 
examined) and the investigator is satisfied with an answer 
close enough to the optimal solution, our exercise has 
justification. Thus, we are quite aware that we might lose 
the optimal solution hidden somewhere while pruning the 
solution tree by our method, but we reach our objective 
when we obtain some other solutions which are close 
enough to this optimal solution. This was certainly found 
to be true in the ethane dataset that we investigated here. 
The single solution surviving under rule II had a predictive 
power of 52.5% while the maximum prediction (best 
solution) from the exhaustive search was around 50%. 
The number representing the predictive power stands for 
the proportion of molecules incorrectly predicted. Thus, 
a predictive value x % means that our of 100 test molecules 
about x were incorrectly predicted by the model. 

Analysis of Cocaine Analogues 

We started with four of the stereoisomers of cocaine (1, 
2, 4, and 17) in the training set. While the choice is 
somewhat arbitrary, and not claimed to be optimal, a good 
policy is to choose molecules where small changes in 
chemical structure correspond to large changes in activity. 
Because the binding of 2 and 4 are much worse than that 
of 1, due to changes in stereochemistry, the practically 
inactive 2 and 4 tell us a great deal about the geometry 
of the site. There must be specific features preventing 
them from binding as well as 1 does. On the other hand, 
deleting the carboxyl in 1 to produce the more active 17 
tells us something important about the energetic prefer­
ences of regions involved in binding R3. 

Table III. Validation Results of the Solutions Obtained from 
Egsets Program for Training Sets of Cocaine Analogues, under 
Different Validation Rules0 

(1, 

total solutions 
solutions left after 

rule I 
rule II 

training set (compounds) 

A B 
4, 17, 2) (A + 3) 

120 154 

82(53%) 
49(32%) 

C 
(B+ 7) 

108 

71 (65%) 
10(9%) 

D 
(C + 12,15) 

214 

36(17%) 
1(0.5%) 

0 Training set consists of compounds 1, 4, 17, 2; 3, 7, 12 and 15. 
Test set consists of 5, 6, 8, 9, 10, 11, 13, 14, 16, 18, 19, 20. 

Solutions were generated with the Egsets program. 
Then we proceeded to add the worst predicted molecule 
to the training set, as explained above. This was continued 
until we ended up with eight molecules in our training set. 
Because the four added compounds (3, 7, 12, and 15) all 
have low observed potency, we conclude that the most 
important refinement of successive site models was always 
some way to prevent relatively inactive compounds from 
binding too well. This set ran for several weeks on a Silicon 
Graphics Indigo workstation but could produce only four 
solutions while searching through less than 25% of the 
whole tree. When tested against our validation procedure, 
only one of these four solutions could survive. But this 
solution was found to correctly predict only 6 of the 12 
compounds in the test set. The other six had rather high 
errors. Realizing that this could at best be described a 
modest prediction, we decided to shuffle the order of our 
compounds in the training set in order to explore different 
parts of the tree by starting at a new point. Most of such 
trials resulted in either no solution or in very few solutions. 
It should be noted that we are not attempting to explore 
the entire tree now. One such trial (starting point), 
however, yielded 214 solutions. We now compared all the 
solutions generated from the training sets of four to eight 
molecules. The results are summarized in Table III. 

Both the rules effect major reduction in the solutions 
of the final training set (D). Interestingly enough, the 
single solution left after rule II for training set D was not 
present in the list of those which survived rule I for the 
same set D. We still decided to choose one of the solutions 
under rule I because some of the solutions were fairly high 
in predictive power compared to the single solution in 
rule II. 

Additional support for our overall method, in the form 
of validation, could be obtained if it can be shown that the 
average predictive power of the model increases with more 
input. In other words, if we have several solutions for 
each training set, then the question to be asked is: Do the 
models for each training set predict correctly a higher 
number of test molecules as we increase the number of 
input molecules? Table IV gives a listing of the predictive 
power of the solutions from training sets consisting of four, 
five, six, and eight molecules (labeled as sets A, B, C, and 
D, respectively). The entries in the table show the fraction 
of the solutions found for a given training set that correctly 
predict the given test compound. We observe that there 
is a general increase in the predictability of each test 
compound when we move from A to D training sets. The 
last row of the table represents the fraction of correct 
predictions averaged over all test molecules. The higher 
this number the greater is the predictive strength of our 
method. In fact, the average predictions do increase 
gradually from 24% (four molecules) to 34% (eight 
molecules). Moreover, all the molecules are predicted at 
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Table IV. Fraction (%) of the Solutions Found for a Given 
Training Set of Cocaine Analogues that Correctly Predict the 
Given Test Compounds 

percent of solutions correctly 
predicting test compound 

ompound 

5 
6 
8 
9 

10 
11 
13 
14 
16 
18 
19 
20 

average 

A 

33 
21 
4 
7 
3 

14 
11 
17 
24 
86 
27 
43 
24 

B 

40 
23 
10 
23 
8 

31 
13 
5 

32 
82 
10 
33 

26 

C 

55 
28 
22 
27 
12 
36 
12 
8 

28 
88 
0 

38 
30 

D 

73 
33 
38 
31 
24 
44 
9 
2 

33 
84 
0 

35 
34 

Table V. Interaction Energy Parameters of the Proposed 
Four-Region Voronoi Site for the Binding of the Cocaine 
Analogues 

regions hyd 

1 
2 
3 
4 

Table VI. 

rophobicity 

0.131 
1.591 
1.528 
0.763 

refractivity 

0.081 
-0.025 
0.081 
0.011 

Interregion Distance Bounds (A) for the Four 
Regions of the Optimal Solution of Training Set D, Obtained 
from the Egsets Program" 

regions 

n 
n 
ra 
n 

n 

1.35 
3.82 
0.00 
4.57 

r% 

7.47 
1.35 
2.91 
2.91 

^3 

6.19 
8.50 
2.91 
2.91 

n 
10.00 
8.50 
6.75 
2.75 

0 Upper triangle and diagonal are upper bounds; lower triangle 
lists lower bounds. 

least once by every training set, except for molecule 19 in 
sets C and D. This is probably due to insufficient searching 
of all the possible binding modes in the solution tree, 
especially since sets A and B do predict this compound. 
On analyzing the solution tree we found that the program 
had not reached that part of the tree for set D which was 
successful in predicting this molecule. 

One of the solutions of set D, left surviving under 
validation rule I (see Table III) was chosen as our best 
solution. This solution could correctly predict eight out 
of the 12 test molecules (see Table VIII). Of the remaining, 
one was within 4% error, two were totally incorrectly 
predicted, while one could not fitted into the model. The 
last mentioned molecule (13) has a rather big Ri func­
tionality, which probably explains why it could not find 
any optimal binding mode for the geometry obtained from 
rather simpler molecules in our training sets. The solution 
consists of four regions, the interaction parameters for 
which are listed in Table V while the interregion geometric 
details can be found in Table VI. From Table V we can 
see that the region r% and r% are the most hydrophobic and 
region r\ is the least hydrophobic. Region ri seems to 
disallow sterically bulky groups while regions r\ and r$ 
seem to partially accommodate bulky ligand groups due 
to their slightly higher molar refractivity parameter values. 
In Table VI the diagonal elements represent the diameter 
of the region in the corresponding row and column, while 
the entries below and above the diagonal are the minimum 
and the maximum distances, respectively, for the regions 
represented by the corresponding rows and columns. A 

Figure 2. Schematic representation of the four-region Voronoi 
binding site, with (fl)-pseudococaine. Regions are represented 
by dotted spheres. The positions of the pseudoatoms are marked 
by an asterisk (*) (refer to text for details). The 2-carboxymethyl 
substituent (R2) lies in region T\. 

Figure 3. Schematic representation of the four-region Voronoi 
binding site, with (S)-pseudococaine. Regions are represented 
by dotted spheres. The positions of the pseudoatoms are marked 
by an asterisk (*) (refer to text for details). The 2-carboxymethyl 
substituent (R2) lies in region r\. 

Table VII. Optimal Binding Modes of the Eight Molecules 
(Training Set) Used in Generating the Picture of the Voronoi 
Site" 

binding mode 
compd 

1 
2 
3 
4 
7 

12 
15 
17 

AGob.6 

6.99 
4.80 
4.80 
4.65 
4.54 
3.71 
6.17 
7.64 

AGcdc* 
7.44 
5.47 
5.62 
5.47 
4.78 
3.98 
6.13 
7.37 

Pi 
2 
2 
4 
2 
1 
3 
1 
2 

P2 

1 
1 
1 
1 
4 
2 
2 
1 

P3 

3 
4 
2 
4 
2 
4 
4 
3 

P* 
4 
3 
3 
3 
3 
1 
3 
4 

P6 

4 
3 
3 
3 
3 
3 
3 
4 

0 For the identity of the pseudoatoms (P1) refer to Figure 1. The 
numbers 1,..., 4 under the columns headed Pi Pe indicate which 
of the four regions the corresponding pseudoatom lies in when the 
molecule binds in its optimal mode. * AG is expressed as -1Og(ICw). 

schematic illustration of the four binding regions of the 
proposed Voronoi site can be seen in Figures 2 and 3, which 
show the binding of (fl)-pseudococaine and (S)-pseudo-
cocaine, respectively. The regions are (clockwise from the 
top) ri, ri, and n, respectively, while the one in the center 
is f3. The isolated starred coordinates represent the 
location of the pseudoatoms falling in the corresponding 
regions. In fact, these regions have been constructed using 
the pseudoatom representation, by first superimposing 
the squashed ligand molecules such that there is common 
overlapping of those pseudoatoms which occupy same 
regions, and maintaining the distance constraints shown 
in Table VI. Therefore, it is not surprising that parts of 
the actual ligand molecule does not fit entirely into the 
respective regions that they are meant to occupy. 

Table VII shows the calculated binding energies and 
the optimal binding modes of the molecules in the training 
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Table VIII . Optimal Binding Modes of the 12 Molecules in the 
Test Set0 

binding mode 

compd AGOb8
6 AGcaic6 Pi P2 Pa P4 Ps error ' (%) 

5 
6 
8 
9 

10 
11 

13^ 
14 
16 
18 
19 
20 

5.21 
5.01 
4.17 
6.95 
6.60 
5.28 
7.14 
6.25 
6.52 
7.79 
7.60 
8.10 

5.47 
5.63 
3.91 
7.44 
6.40 
5.11 

3.86 
7.16 
7.60 
6.55 
7.51 

2 
2 
1 
4 
3 
4 

3 
4 
2 
2 
2 

1 
4 
2 
1 
2 
3 

2 
1 
1 
1 
1 

4 
1 
4 
2 
4 
1 

4 
3 
3 
3 
3 

3 
3 
3 
3 
1 
2 

1 
4 
4 
4 
4 

3 
3 
3 
3 
3 
3 

3 
4 
4 
4 
4 

0 
0 
0 
0 
0 
0 
-

36 
0 
0 

10 
4 

" For the identity of the pseudoatoms (P;) refer to Figure 1. The 
entries in the table correspond to the four regions of the si te.6 AG 
is expressed as -log(ICso). c Relative error (Em) for the compound, 
from eq 4. d No binding modes could be found for compound 13. 

set D, determined from the "best" solution described above. 
The following interesting observations could be made 
about their hypothesized binding at the cocaine receptor 
site. Compounds 1 and 17 possess the maximum observed 
activity and they both seem to bind in the same fashion 
at the site. Their pseudoatoms P4 and Ps, which is most 
of the tropane ring, occupy the same region r4. The 
interaction energy parameters for that region suggests that 
there is moderate contribution toward the binding affinity 
due to the hydrophobic interactions with the tropane ring. 
In fact, in all the molecules the tropane ring (P4 and P5) 
seem to always occupy the same region r$, except for 12. 
Since region r% is more hydrophobic than region r4, we 
infer that the less active molecules actually bind in a way 
that allows more hydrophobic interaction for the tropane 
ring. But the chief contribution to the activity comes from 
the interaction of the 3-benzoyl and 3-phenyl (P3) groups 
in region r% for molecules 1 and 17, respectively. Table V 
shows that this region is very hydrophobic and has a 
moderately large molar refractivity. The other main 
functional group, 2-carbomethoxy, occupies region r\, 
which has the least hydrophobicity and moderate refrac­
tivity. This suggests that even the contribution due to 
the carbomethoxy group is very marginal, and most of the 
binding affinity is due to the interaction of the substituent 
at the 3-position in both these highly active molecules. 
Among the two substituents for these two molecules at 
the 3-position, phenyl offers more favorable interaction 
because it is more hydrophobic. The importance of each 
part of these compounds could be summarized as follows. 

Effect of Stereochemistry. Stereochemistry plays an 
important role in modulating the binding of the cocaine 
analogues as evidenced by the results of the Voronoi model. 
The binding mode for every pair of enantiomers was found 
to be different. And that difference always seems to involve 
only two groups in the ligand which switch the regions 
they were occupying for the corresponding enantiomer. 
For example, the pseudoatoms P3 and Pi of (fl)-pseudo-
cocaine occupied regions r2 and r4, whereas in (S)-
pseudococaine the same atoms were found to occupy 
regions r4 and r%, respectively. This can be seen from 
Figures 2 and 3. AU the other atoms in these two 
enantiomers had the same region occupancy. The notable 
observation was that one of the two atoms involved in 
such a switch (for all such pair of enantiomers) was always 
P3. This further highlights the importance of the func­
tionality at the 3-position. 

Srivastava and Crippen 

Effect of 3-Substituents. As stated above, the func­
tionality at the 3-position seems to be the most important 
for the ligand binding. For those cases where the only 
structural difference lay in the substitution at the 3-po­
sition with respect to (i?)-cocaine, the binding mode 
remained the same as that for (fl)-cocaine. The difference 
in the activity between these compounds then is a result 
of the difference in the physicochemical properties of the 
substituents. The substituted phenyl seems to be more 
favorable than the benzoyl group. For most compounds, 
the pseudoatom containing this functionality (P3) seems 
to fall into either region r$ or r4. Both these regions have 
high hydrophobicity interactions. Thus, the phenyl group 
contributes to the activity mostly through the hydrophobic 
interactions. However, the role of electron-donating para 
substituents is not very clear. 

Effect of 2-Substituents. In most active compounds 
the 2-substituent does not impart significant activity. Since 
this is a hydrophilic group in most cases, it makes a 
compound less active whenever the final geometry forces 
it to occupy the hydrophobic region n as in 12. Otherwise 
we observe this to lie mostly in the relatively less 
hydrophobic regions n and r4. 

Effect of N-Substituents. The only compound in our 
training set which has a different substituent at the N 
atom is compound 15. The bulky substituent in this 
compound cannot fit into the smallest region Ti, as in (R)-
cocaine. Hence it goes into n and forces P2 into region r<i. 
The net result is that the tropane ring and benzoyl group 
are also forced into different regions. Thus, a bulky 
substituent at the N atom results in a totally different 
binding mode of the ligand. 

Conclusion 

We have used the Voronoi approach to obtain a 
3-dimensional binding site model for a single cocaine 
receptor site. Our results show the importance of the 
substituent at the 3-position of the tropane ring, in 
agreement with results of other workers. Two of the four 
regions which are very hydrophobic seem to accommodate 
this functionality. The model also establishes the im­
portance of the tropane ring which presumably acts as an 
anchor to the binding of the molecule by engaging in 
favorable hydrophobic interactions. However, these re­
sults were obtained by making the assumption that the 
binding of all the cocaine analogues occur at a single site 
on the dopamine transport system. Hence they should be 
viewed with caution until the assumption is verified by 
other experiments. 
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