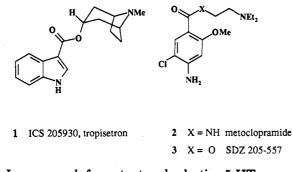
Communications to the Editor

(1-Butyl-4-piperidinyl)methyl 8-Amino-7chloro-1,4-benzodioxane-5-carboxylate Hydrochloride: A Highly Potent and Selective 5-HT₄ Receptor Antagonist Derived from Metoclopramide


Laramie M. Gaster,^{*,†} Andrew J. Jennings,[†] Graham F. Joiner,[†] Frank D. King,[†] Keith R. Mulholland,[†] Shirley K. Rahman,[†] Susannah Starr,[†] Paul A. Wyman,[†] Kay A. Wardle,[‡] Elizabeth S. Ellis,[‡] and Gareth J. Sanger[‡]

SmithKline Beecham Pharmaceuticals, Discovery Research, Coldharbour Road, Harlow, Essex, England, CM19 5AD

Received September 7, 1993

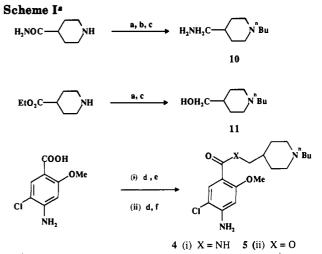
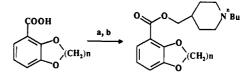

Functional serotonin 5-HT₄ receptors have been identified in the central nervous system (CNS) and periphery and in several animal species including human, pig, guinea pig, rat, mouse¹ and dog.²⁻⁴ The first antagonist reported to act at this receptor was the 5-HT₃ receptor antagonist ICS 205930 (tropisetron, 1),⁵ and this compound was subsequently used to characterize 5-HT₄ receptor-mediated pharmacological responses in several preparations. More recently, other indole-based 5-HT₄ receptor antagonists have been described.^{6,7} The gastric prokinetic activity of metoclopramide (2) has been attributed to its ability to activate 5-HT₄ receptors, but its corresponding ester, SDZ 205-557 (3), is a competitive 5-HT₄ receptor antagonist.⁸

Chart I


In our search for potent and selective 5-HT₄ receptor antagonists we used the guinea pig distal colon longitudinal muscle myenteric plexus preparation⁹ (LMMP) to identify the amide 4, originally derived from metoclopramide. Changing to an ester linkage to give 5 increased the antagonist potency. Compounds 6-8 were also targeted for synthesis in order to investigate the effect of incorporating the methoxy oxygen atom within a cyclic structure. Introduction of the 8-amino and 7-chloro substituents led to 9.

The methods of preparation of the benzamide 4 and benzoate 5 are shown in Scheme I. (1-Butyl-4-piperidinyl)methylamine (10) was prepared from 4-piperidinecarboxamide in 81% overall yield. Alkylation of 4-piperidinecarboxamide with 1-bromobutane was carried out in

^a Reagents: (a) ⁿBuBr, K_2CO_3 , EtOH, Δ ; (b) P_2O_5 , 180 °C; (c) LiAlH₄, Et₂O; (d) 1,1'-carbonyldiimidazole, MeCN, DMF; (e) 10, MeCN; (f) 11, ⁿBuLi, THF.

Scheme II^a

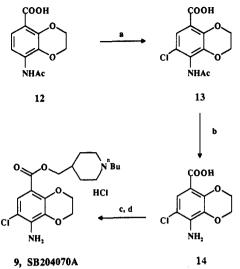
n = 1 6 n = 2 7 n = 3 8

 $^{\mathfrak{a}}$ Reagents: (a) 1,1'-carbonyldiimidazole, MeCN; (b) 11, MeLi, THF.

ethanol under reflux using potassium carbonate as base. Dehydration to the nitrile using phosphorus pentoxide followed by lithium aluminum hydride reduction gave the required amine 10. Coupling of 10 to 4-amino-5-chloro-2-methoxybenzoic acid was effected via the imidazolide in a mixture of acetonitrile and N,N-dimethylformamide to give 4.

The intermediate for the synthesis of the ester 5, (1butyl-4-piperidinyl)methanol (11), was prepared in 80%overall yield from ethyl 4-piperidinecarboxylate by Nalkylation with 1-bromobutane followed by lithium aluminum hydride reduction of the intermediate.

4-Amino-5-chloro-2-methoxybenzoic acid was activated as the imidazolide in acetonitrile and reacted *in situ* with the lithium alkoxide derived from 11 to give 5. Compounds 6-8 were prepared analogously from the corresponding carboxylic acids¹⁰⁻¹² (Scheme II). Compound 9 was prepared according to Scheme III. 8-Acetamido-1,4benzodioxane-5-carboxylic acid,¹² 12, was treated with chlorine in acetic acid to give 13. Base hydrolysis of this amide followed by coupling of the acid 14 via the imidazolide as for 5 gave the ester 9, which was isolated as the hydrochloride salt.


Compounds 4–9 were evaluated in the guinea pig distal colon LMMP for their ability to block the 5-HT-evoked, 5-HT₄ receptor-mediated contractions. Structure-activity relationships were determined using pIC_{50} values (the

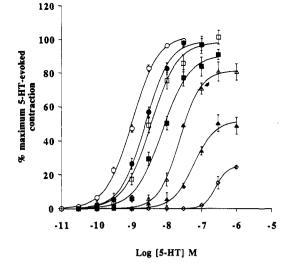
^{*} Author to whom correspondence should be addressed.

[†] Department of Medicinal Chemistry.

^t Department of Neurology.

Scheme III^a

^a Reagents: (a) Cl₂, AcOH; (b) NaOH, H₂O, Δ ; (c) 1,1'-carbonyldiimidazole, MeCN; (d) 11, MeLi, THF.


 Table I. Potency of Compounds 1 and 3-9 in the Guinea Pig

 Distal Colon LMMP

compd	pIC_{50} (mean ± sem) (n)	compd	pIC_{50} (mean ± sem) (n)
1	5.5 ± 0.04 (5)	6	7.2 ± 0.4 (3)
3 .	6.6 ± 0.06 (6)	7	8.2 ± 0.1 (3)
4	8.0 ± 0.1 (3)	8	7.3 ± 0.3 (3)
5	9.0 ± 0.3 (4)	9	$10.1 \pm 0.7 (5)$

negative logarithm of the concentration of test compound required to reduce the response evoked by the approximate EC_{50} concentration of 5-HT by 50%, Table I). Benzamide 4 was 500 and 50 times more potent than 1 or 3, respectively, and a further 10-fold increase in potency was observed with the corresponding ester 5. Results obtained with 6, 7, and 8 showed that incorporation of the oxygen atom within a six-membered ring was optimum for activity. Introduction of the chlorine and amino substituents gave the highly potent benzodioxan 9 which was 10-fold more potent than the corresponding o-methoxy compound, 5.

On the basis of these results. compound 9 was selected for further evaluation in the guinea pig distal colon LMMP. In the presence of methiothepin $(10^{-7} \text{ M}, \text{ to eliminate})$ 5-HT₁ and 5-HT₂ effects) and granisetron $(10^{-6} \text{ M}, \text{ to})$ eliminate 5-HT₃ effects), 5-HT (10-11-10-6 M) produced a monophasic, concentration-dependent contraction with a pEC₅₀ of 9.2 ± 0.08 (*n* = 38, Figure 1 control). At low concentrations $(10^{-11}, 3 \times 10^{-11}, \text{and } 10^{-10} \text{ M})$, 9 produced a concentration-dependent rightward shift of the 5-HT curve yielding an apparent pA_2 of 10.8 ± 0.1 . At higher concentrations (10^{-10} M and above), a reduction in the maximum was also observed. Because of this, the onset and recovery of the antagonist effects of 9 were investigated. Immediately after a control response to the approximate EC₅₀ concentration of 5-HT (generally 10⁻⁹ M, 30-s contact), 9 was added to the bathing solution and was left in contact with the tissues for 30 min, during which time 5-HT was added twice. The bathing solution was then replaced with compound-free Krebs solution and the tissue challenged with the same concentration of 5-HT every 15 min until responses returned to control levels. At all concentrations of 9 investigated (10⁻¹⁰, 3×10^{-10} , and 10⁻⁹ M) the responses to 5-HT recovered to control levels with $t_{1/2}(\text{off})$ values of 36 ± 5 , 46 ± 5 , and 70 ± 7 min,

Figure 1. Effects of 9 on 5-HT-evoked contractions in the guinea pig distal colon LMMP (n = 6): (O) control; (\oplus) 10^{-11} M; (\square) 3×10^{-11} M; (\blacksquare) 10^{-10} ; (\triangle) 3×10^{-10} M; (\triangle) 10^{-9} M; (\diamond) 3×10^{-9} M.

Table II. Receptor Binding Profile of 9^a

receptor	affinity (pK_i)	receptor	affinity (pK_i)
5-HT1A	<6	D ₂	<5
5-HT _{1D}	<5	\mathbf{D}_3	<6
5-HT _{1E}	<5	adrenergic α_1	<6
5-HT _{2A}	<6	adrenergic α_2	<6
5-HT _{2C}	6.9, 7.1	adrenergic $\beta 1$	<6
5-HT3	6.6, 6.7	adrenergic $\beta 2$	<6
D1	<6	•	

^a Radioligand binding assays were performed as previously described^{14,15} with the following exceptions: [³H]-5-HT was used to radiolabel the cloned human 5-HT_{1E} receptor. Dopamine D_2 and D_3 receptor affinities were determined using cloned human receptors expressed in CHO cells, radiolabeled with [125I]iodosulpride, and adrenergic α_1 cells were radiolabeled with [⁸H]-7-methoxyprazosin. respectively, indicative of reversible blockade. In addition, in this model 9 did not affect contractions evoked by the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP, $3 \times 10^{-6} - 3 \times 10^{-4}$ M) at concentrations up to and including 10^{-6} M and showed >5000-fold selectivity for the 5-HT₄ receptor when compared with affinities obtained at 5-HT_{1A}, 5-HT_{1D}, 5-HT_{1E}, 5-HT_{2A}, 5-HT_{2C} (formerly 5-HT_{1C}), 5-HT₃, D₁, D₂, D₃ dopamine receptors and $\alpha 1$, $\alpha 2$, $\beta 1$, and $\beta 2$ adrenoceptors (Table II). Thus the nonsurmountable antagonism observed was not due to either irreversibility or lack of selectivity but may be a consequence of the high lipophilicity of 9 (log p = 4.86, based on pK_a 10.4). This issue is the subject of a pending publication.13

The in vivo activity of SB 204070A will be reported elsewhere.

In conclusion 9, SB 204070A is a highly potent and selective 5- HT_4 receptor antagonist in the guinea pig distal colon and as such is a useful tool for further characterizing this receptor.

Supplementary Material Available: Experimental procedures, including analytical and spectral data, for the preparation of 4-9 (7 pages). Ordering information is given on any current masthead page.

References

- Bockaert, J.; Fozard, J. R.; Dumuis, A.; Clarke, D. E. The 5-HT₄ Receptor: A Place in the Sun. Trends Pharmacol. Sci. 1992, 13, 141-145.
- (2) Bermudez, J.; Dunbar, A.; Sanger, G. J.; Turner, D. H. Stimulation of canine gastric motility by BRL 24924, a new gastric prokinetic agent. J. Gastrointestinal Motility 1990, 2, 281-286.

- Gullikson, G. W.; Virina, M. A.; Loeffler, R. F.; Yang, D. C.; Goldstein, B.; Wang, S. X.; Moummi, C.; Flynn, D. L.; Zabrowski, D. L. J. Pharmacol. Exp. Ther. 1993, 264, 240-248.
 Bingham, S.; King, B. F.; Rushant, B.; Smith, M. I.; Sanger, G. J. Br. J. Pharmacol. 1993, 110, 16P.
- (5) Dumuis, A.; Bouhelal, R.; Sebben, M.; Cory, R.; Bockaert, J. A Non-Classical 5-Hydroxytryptamine Receptor Positively Coupled with Adenyiate Cyclase in the Central Nervous System. Mol. Pharmacol. 1988, 34, 880-887.
- (6) Kaumann, A. J.; Medhurst, A.; Boyland, P.; Vimal, M.; Young, R. C. SB 203186, A Potent, Selective 5-HT₄ Receptor Antagonist. Prelim. Communication 2nd International Symposium on Serotonin, Houston, 1992.
- Grossman, C. J.; Gale, J. D.; Bunce, K. T.; Kilpatrick, G. J.; Whitehead, J. F.; Oxford, A. W.; Humphrey, P. P. A. Development of a Radioligand Binding Assay for the 5-HT4 Receptor: Use of a Novel Antagonist. Br J. Pharmacol. 1993, 108, 106P.
 Buchheit, K. H.; Gamse, R.; Pfannkuche, H. J. SDZ 205-557, A Solution Surgement and the Automatic for SUID Receptor: the
- Selective, Surmountable Antagonist for 5-HT4 Receptors in the Isolated Guinea-pig Ileum. Naunyn-Schmiedeberg's Arch. Pharmacol. 1**992**, 345, 387–393.
- Wardle, K. A.; Sanger, G. J. The Guinea-pig Distal Colon: A (9) Sensitive Preparation for the Investigation of 5-HT, Receptor Mediated contractions. Br. J. Pharmacol. In press.

- (10) Clarke, J. H.; Holland, H. L.; Miller, J. M. Hydrogen Bonding in Organic Synthesis. IV. A Simple High Yield Method for the Methylenation of Catechols. Tetrahedron Lett. 1976, 38, 3361-3364.
- (11) Watts, E. A. Azabicycloalkylbenzamides and pharmaceutical compositions containing them. Eur. Pat. 82-303057, June 1982; Chem. Abstr. 1982, 99 (3), 22742q.
- (12) Thominet, M.; Bulteau, G.; Acher, J.; Collignon, C. Pharmaceutical substituted 2,3-(alkylenedioxy) benzamides. U.K. Pat. 1 571 278, July 1980; Chem. Abstr. 1980, 89 (1), 6329y
- (13) Baxter, G. S.; Sanger, G. J.; Gaster, L. M.; Wardle, K. A. Tissue and Agonist Dependent Non-surmountable Antagonism by the Selective 5-HT4 Receptor Antagonist SB 204070. Br. J. Pharmacol. In Press.
- (14) Blackburn, T. P.; Barker, G. J.; Kennelt, G. A.; King, F. D.; Piper, D. C.; Sanger, G. J.; Thomas, D. R.; Upton, N.; Wood, M. D. BRL 46470A, A Highly Potent, Selective and Long Acting 5-HT₃ Receptor Antagonist with Anxiolytic-like Properties. Psychopharmacology 1993, 110, 257-264.
- (15) Sanger, G. J.; Nelson, D. R. Selective and Functional 5-Hydroxytryptamine-3 Receptor Antagonism by BRL 43694 (Granisetron). Eur. J. Pharmacol. 1989, 159, 113-124.