Cholecystokinin Dipeptoid Antagonists: Design, Synthesis, and Anxiolytic Profile of Some Novel CCK-A and CCK-B Selective and "Mixed" CCK-A/CCK-B Antagonists

P. R. Boden, M. Higginbottom, D. R. Hill, D. C. Horwell, J. Hughes, D. C. Rees, E. Roberts,* L. Singh, N. Suman-Chauhan, and G. N. Woodruff

Parke-Davis Neuroscience Research Centre, Addenbrookes Hospital Site, Hills Road, Cambridge CB2 2QB, U.K.
Received September 10, 1992
The design, synthesis, and structure-activity relationships (SAR) for the development of selective dipeptoid ligands for both of the cholecystokinin (CCK) receptor subtypes CCK-A and CCK-B are described. The SAR developed is used to design a ligand with equal nanomolar binding affinity for both the CCK-A and CCK-B receptors. Example compounds such as $\left[1 R-\left[1 \alpha\left[R^{*}\left(R^{*}\right)\right], 2 \beta\right]\right]-$ 4-[[2-[[3-(1H-indol-3-yl)-2-methyl-2-[[[(2-methylcyclohexyl)oxy]carbonyl]amino]-1-oxopropyl]-amino]-1-phenylethyl]amino]-4-oxo-butanoic acid (24c), (1R-trans)- N -[α-methyl- N -[[(2-meth-ylcyclohexyl)oxy]carbonyl]-D-tryptophyl]-L-3-(phenylmethyl)- β-alanine (28i), and N-[α-methyl-N-[(tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2-yloxy) carbonyl]-D-tryptophanyl]-L-3-(phenylmethyl)- β-alanine (30m) are CCK-B selective compounds having CCK-B binding affinities of $\mathrm{IC}_{50}=3.9,0.34$, and 0.15 nM with a CCK-A/CCK-B ratio of 464,53 , and 170 , respectively. Other compounds such as ($1 R$ -trans)- N-[α-methyl- N-[[(2-methylcyclohexyl)oxy]carbonyl]-L-tryptophyl]-D-3-(phenylmethyl)-β-alanine (281) and N-(α-methyl- N-[(tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2-ylozy)carbonyl]-L-tryptophyl]-D-3-(phenylmethyl)- β-alanine (30 p) are CCK-A-selective compounds having CCK-A binding affinities of $\mathrm{IC}_{50}=7.9$ and 2.82 nM with a CCK-A/CCK-B ratio of 0.007 and 0.01 , respectively. Further to these, ($1 S$-trans)- N-[α-methyl- N-[[(2-methylcyclohexyl)oxy]carbonyl]-D-tryptophyl]-L-3-(phenylmethyl) $-\beta$-alanine (28h) is a mixed CCK-A/CCK-B ligand with a CCK-A binding affinity of IC_{50} $=3.9 \mathrm{nM}$ and a CCK-B binding affinity of $\mathrm{IC}_{50}=4.2$, producing a CCK-A/CCK-B ratio of unity. The CCK-B selective compounds are shown to be antagonists in electrophysiological tests on the rat ventromedial nucleus of the hypothalamus with an equilibrium constant (K_{e}) value of 2.8 nM for 30 m and are also shown to be anxiolytic in the mouse light/dark box test with a minimum effective dose of $0.01 \mathrm{mg} / \mathrm{kg}$, sc, for 30 m . The CCK-A selective compounds are also shown to be competitive antagonists by the inhibition of CCK-8S-evoked amylase secretion from pancreatic acinar cells with a K_{e} value of 16 nM for 30 p . In electrophysiological tests on the rat dorsal raphe (an area rich in CCK-A receptors) 30p had a K_{e} value of 12.8 nM . The mixed CCK-A/CCK-B compound 28 h showed antagonistic properties in both CCK-A and CCK-B models; thus it inhibited CCK-8S-evoked amylase secretion from pancreatic acinar cells and is anxiolytic in the light/dark box paradigm. It may be concluded, therefore, that it is the CCK-B receptor and not the CCK-A receptor that is responsible for the anxiolytic properties of these compounds in these test models.

Introduction

We have previously described the rational and systematic design of novel "dipeptoids" that exhibit potent binding affinity and selectivity as central cholecystokinin (CCK-B) antagonists. These dipeptoids have also been shown to possess marked anxiolytic and antigastrin properties, (e.g. CI-988; 2: $\mathrm{R}=2$-Adoc). ${ }^{1-4}$ The design of

[^0]
these compounds was achieved by independently exploring the structure-activity relationships (SAR) of the N - and C-termini and combining the optimal groups. ${ }^{5,6}$ We now report the further development of the nature of $R(2)$, which was highly influential in determining CCK A and B receptor selectivities of these dipeptoid ligands.

Synthesis

All compounds and intermediates in Tables I-V were prepared according to Schemes I-VI.
Scheme I shows the synthesis of N-phenethyl- α-methyltryptophanamide and (α-methyltryptophanyl)-3-phenylalaninol derivatives 5-14. The two amines 3 and 4 were prepared according to the literature and were treated with the appropriate chloroformate ${ }^{1,5}$
The versatile intermediates $15 \mathrm{a}-\mathrm{f}$ were prepared according to the methods in Scheme II. α-Methyltryptophan methyl ester was treated with trans-[(2-methylcyclohexyl)oxy]carbonyl chloride to give the esters 17a-f. Lithium hydroxide saponification of the ester yielded the acids 15a-f. These acids were used to prepare compounds 16ac. Treatment of 15 b and 15 c with pentafluorophenol (PfP) and N, N^{\prime}-dicycloherylcarbodiimide (DCC) gave the active

Scheme I:

3

$5 R=2-A d a m a n t y l$
6 $R=1$-Adamanty
$10 \mathrm{R}=$ Cyclohexyl
$11 R=(+/-)$ trans-2-Chlorocyclohexyl (R- α-MeTrp)

4
$7 R=2$-Ademantyl
8 Ray 1-Adamantyl
9 R = 2-Chloro-1-adamantyl
12a $R=(+i-)$ trans-2-Chlorocyclohexyl
12b $R=(+)$ trant-2-Chlopocyclohexyl lamer I
12c $\mathbf{R}=(-)$ trane-2-Chlorocyclohexyl lsomer II
14s $R=(+/-)$ trans-2-Fluorocyclohexyl
14b $R=(+)$ trans-2-Fluorocyclohoxyl laomer I
14c $R=(-)$ trans-2-Fluorocyclohexyl leomer II
${ }^{a}$ (a) ROCOCl, $\mathrm{Et}_{3} \mathrm{~N}$, THF; (b) ROCOCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$.
Scheme II ${ }^{\text {- }}$

17

Δ -
RS RS R
$\begin{array}{lll}\text { RS } & \text { RS R } \\ S & S & R\end{array}$

- $R \quad R \quad R$

RS RS S

${ }^{a}$ (a) trans-[(2-Methylcyclohexyl)oxy]carbonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, THF; (b) LiOH, aqueous THF; (c) phenylalaninol, DCC, PFP, EtOAc.
ester, which reacted readily with phenylalaninol to give $16 \mathrm{a}-\mathrm{c}$. Compound 15 c under similar conditions reacted with (S)- α-(azidomethyl)-2-phenylethanamine to give the azide 18c (Scheme III). The azide was reduced to the corresponding amine with $10 \% \mathrm{Pd} / \mathrm{C}$ under a hydrogen
atmosphere and was treated without purification with succinic anhydride to give the succinamide 19c. This same amine was treated with methyl pentafluorophenyl fumarate to give the ester 20c, which was hydrolyzed with lithium hydroxide to the acid 21c. Compound 21b was similarly prepared from 15b. Compound 22c was prepared by reaction of the PfP ester of 15 c (DCC, PfP) with (R)N^{β} [(benzyloxy)carbonyl]- β-aminobenzeneethanamine (Scheme IV). Subsequent hydrogenation of 22 c with 10% Pd / C gave the amine 23c, which was reacted further with succinic anhydride, giving 24c. Similarly, 23c was treated with pentafluorophenyl 2-(trimethylsilyl)ethyl fumarate to give 25c and subsequent reaction with tetrabutylammonium fluoride in THF gave the required acid 26 c .

Scheme V shows how compounds 28 g - 1 can be prepared by reacting benzyl (R or S) $-\beta$-aminobenzenebutanoate with the active pentafluorophenyl ester of acids $15 a-f$, then hydrogenating the benzyl esters to the corresponding acids $\mathbf{2 8 g}-1$. Compounds $29 \mathrm{~m}-\mathrm{p}$ and 30 m -p were prepared according to Scheme VI. [(2-Adamantyloxy)carbonyl]-α-methyltryptophan (R or S isomer) was prepared according to the literature ${ }^{1}$ procedure and reacted via its pentafluorophenyl ester (PfP, DCC) with benzyl (R or $S)$ - β-aminobenzenebutanoate to give the benzyl esters $29 \mathrm{~m}-\mathrm{p}$. Subsequent hydrogenation using $10 \% \mathrm{Pd} / \mathrm{C}$ as catalyst gave the acids $\mathbf{3 0 m - p}$.

Results and Discussion

The SAR of the N-terminus reported earlier was described in terms of increasing the $C \log P$ and the steric requirements of the \mathbf{R} (2) group appended to the N -terminus, resulting in an increase in the CCK-B receptor binding affinity. ${ }^{5}$ Starting with the (cyclobutyloxy)carbonyl group, carbon units were added which increased both ring size and branching, until the tricyclic structure, (adamantanyloxy)carbonyl, was optimally obtained. It was shown, however, that the (2-adamantyloxy)carbonyl moiety on 5 and 7 was more potent in CCK-B binding ($\mathrm{IC}_{50}=48$ and 6.4 nM , respectively) than the (1adamantylozy) carbonyl derivatives 6 and $8\left(\mathrm{IC}_{50}=210\right.$ and 21.6 nM , respectively). ${ }^{5}$ This observation and molecular modeling of these and related compounds suggested that there was a conformational requirement at this part of the molecule for optimal binding. On the basis of this rationale, the [(2-chloro-1-adamantyl)oxy]carbonyl derivative 9 was prepared. Compound 9 showed increased CCK-B binding affinity ($\mathrm{IC}_{50}=8.8 \mathrm{nM}$) over the (1 adamantyloxy) carbonyl derivative $8\left(\mathrm{IC}_{50}=21.6 \mathrm{nM}\right)$ and was comparable with the (2-adamantyloxy)carbonyl derivative 7 ($\mathrm{IC}_{50}=6.4 \mathrm{nM}$). The corresponding trans-[(2chlorocyclohexyl)oxylcarbonyl analogue 11 showed substantially increased CCK-B binding affinity ($\mathrm{IC}_{50}=49$ nM) over the unsubstituted (cyclohexyloxy) carbonyl derivative $10\left(\mathrm{IC}_{50}=517 \mathrm{nM}\right)$. Another trans-[(2-chlorocyclohexyl) oxy] carbonyl derivative, $12 \mathrm{a}\left(\mathrm{IC}_{50}=15 \mathrm{nM}\right)$, was separated by chromatography into its two diastereoisomers, $12 \mathrm{~b}\left(\mathrm{IC}_{50}=140 \mathrm{nM}\right)$ and $12 \mathrm{c}\left(\mathrm{IC}_{50}=6.9 \mathrm{nM}\right)$, confirming a requirement for chiral recognition in this region of the dipeptoid molecules by the CCK-B receptor.

The electron-withdrawing effect of the chlorine group in these derivatives may stabilize the urethane linking group toward acidic hydrolysis. However, it was found that the chlorine atoms enhance the lability of the compound toward alkaline conditions, readily forming the

Scheme III ${ }^{*}$

${ }^{a}{ }^{a}$ (a) PFP, DCC, (S)- α-(azidomethyl)-2-phenylethanamine, EtOAc ; (b) $10 \% \mathrm{Pd} / \mathrm{C} / \mathrm{H}_{2}, 1 \% \mathrm{AcOH}$ in EtOH ; (c) succinic anhydride, EtOAc; (d) methyl pentafluorophenyl fumarate, EtOAc; (e) LiOH , aqueous THF.

Scheme IV*

${ }^{a}$ (a) PFP, DCC (R) N^{β}-[(benzyloxy)carbonyl]- β-amino-2-benzene ethanamine; (b) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}$; (c) succinic anhydride, EtOAc; (d) mono[2-(trimethylsilyl)ethyl] fumarate, DCC, PFP, EtOAc; (e) tetrabutylammonium fluoride, THF.
hydantoin 13 by intramolecular cyclization and liberating cycloherene oxide ${ }^{7}$ (eq 1).

13

In order to avoid this undesirable reaction, surrogates for the chlorine atom were investigated. The fluorinesubstituted analogue 14a was prepared to investigate whether the electronic properties of chlorine were necessary for binding affinity. The binding affinity of the fluorine analogue was similar ($\mathrm{IC}_{50}=36 \mathrm{nM}$) to that of 12a, and when the two diastereoisomers $14 b$ and $14 c$ were separated, one isomer was more potent than the other ($\mathrm{IC}_{50}=149 \mathrm{nM}$ for isomer I and 23 nM for isomer II). Their affinity was, however, less than that for 7. The

Scheme V ${ }^{\text {a }}$

		${ }^{\mathrm{b}} \mathrm{CR=H}_{\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}}^{27}$		
	-	-	-	-
a	RS	RS	R	-
b	S	S	R	-
c	R	R	R	-
d	RS	RS	S	-
-	5	S	S	-
t	R	R	S	-
g	RS	RS	R	5
h	S	S	R	s
1	R	R	R	S
I	RS	RS	S	R
k	S	S	S	R
1	R	R	S	R

${ }^{a}$ (a) PFP, DCC, benzyl β-aminobenzenebutanoate, EtOAc; (b) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, EtOH.

Scheme VIs

${ }^{b} \underset{R=}{R=\mathrm{CH}_{2} \mathrm{Ph} 29} \begin{aligned} & \mathrm{R}\end{aligned}$

	\bullet	\bullet
\mathbf{m}	R	\mathbf{S}
\mathbf{n}	R	R
0	\mathbf{S}	\mathbf{S}
P	\mathbf{S}	\mathbf{R}

${ }^{a}$ (a) PFP, DCC, benzyl β-aminobenzenebutanoate, EtOAc; (b) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}$.
spatial effect of the chlorine in 12a was mimicked by the corresponding trans-[(2-methylcyclohexyl)oxy]carbonyl derivative 16a [molecular refractivity (MR) of $\mathrm{Cl}=4.8$, $\mathrm{Me}=4.7)] .{ }^{10}$ The CCK-B binding affinity of $16 \mathrm{a}\left(\mathrm{IC}_{50}=\right.$ 16 nM) was greater than that of the fluorine analogue 14 a ($\mathrm{IC}_{50}=36 \mathrm{nM}$) but the same as that of the chlorine analogue $12 a\left(\mathrm{IC}_{50}=15 \mathrm{nM}\right)$ and almost the same as that of the (2-adamantylozy)carbonyl analogue 7 ($\mathrm{IC}_{50}=6.4 \mathrm{nM}$).

Table I. Physical and Chemical Data of Compounds and Intermediates

no.	molecular formula	$\operatorname{mp}_{(0)}$	analysis	method of purification ${ }^{\text {c }}$
5	$\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	89-95	C, H, N	F
6	$\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{3}$	82-88	C, H, N	J
7	$\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4}$	96-100	C, H, N	F
8	$\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4}$	147-155	C, H, N	F
9	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$	98-104	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$	F
10	$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	62-66	C, H, N	E
11	$\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}$	69-73	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$	I
12a	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}-0.25 \mathrm{H}_{2} \mathrm{O}$	117-127	C, H, N, Cl	F
12b	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$	128-136	C, H, N, Cl	H
12c	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$	146-152	C, H, N, Cl	H
14a	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	61-65	C, H, N	F
14b	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}$	75-80	C, H, N	H
14c	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}$	75-81	C, H, N	H
15a	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$	81-86	C, H, N	A
15b	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$	85-89	C, H, N	A
15c	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$	84-89	C, H, N	A
15d	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$	80-88	C, H, N	A
150	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$	83-88	C, H, N	A
$15 f$	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$	82-87	C, H, N	A
16a	$\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	124-131	C, H, N	B
16b	$\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	107-112	C, H, N	B
16c	$\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{4}$	76-80	C, H, N	B
17a	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$	45-48	C, H, N	D
17b	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$	50-55	C, H, N	A
17c	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$	50-55	C, H, N	A
17d	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$	95-103	C, H, N	B
17 e	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$	50-55	C, H, N	A
17 f	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$	50-55	C, H, N	A
18b	$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3}$	155-158	C, H, N	B
19c	$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6}$	97-102	C, H, N	A
20c	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$	95-103	$\mathrm{C}, \mathrm{H}, \mathrm{N}$	B
21 b	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	117-126	C, H, N	A
21c	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	118-128	$\mathrm{C}, \mathrm{H}, \mathrm{N}$	A
24c	$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	106-111	C, H, N	A
26c	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	131-135	C, H, N	A
27g	$\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5}$	169.1	C, H, N	C
27 h	$\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5}$	179.1	C, H, N	C
27 i	$\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5}$	59-62	C, H, N	C
27 j	$\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5}$	172	C, H, N	C
27k	$\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5}$	55-57	C, H, N	C
271	$\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5}$	179.2	C, H, N	C
28 g	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$	179.3-183	C, H, N	B
28 h	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$	194.3-194	C, H, N	A
$28 i$	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{\circ} \mathbf{0 . 5} \mathrm{H}_{2} \mathrm{O}$	112-120	C, H, N	A
28j	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$	176.3-177	C, H, N	B
28k	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$	111-122	C, H, N	A
281	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$	195.6	C, H, N	A
29m	$\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5}$	168.5-169	C, H, N	G
$29 n$	$\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5}$	68-71	C, H, N	C
290	$\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5}$	69-73	C, H, N	C
29p	$\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{5}$	171.4	C, H, N	C
30m	$\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}$	123-127	C, H, N	F
30n	$\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}$	108-112	C, H, N	F
300	$\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5}$	102-106	C, H, N	B
30p	$\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5}$	102-107	C, H, N	C

${ }^{a}$ Methods of Purification: $\mathrm{A}=30 \% \mathrm{H}_{2} \mathrm{O}$ in MeOH , reverse phase silica; $\mathrm{B}=25 \% \mathrm{H}_{2} \mathrm{O}$ in MeOH , reverse phase silica; $\mathrm{C}=20 \% \mathrm{H}_{2} \mathrm{O}$ in MeOH , reverse phase silica; $\mathrm{D}=\mathrm{CH}_{2} \mathrm{Cl}_{2}$, normal phase silica; E $=1 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, normal phase silica; $\mathrm{F}=2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, normal phase silica; $\mathrm{G}=\mathbf{2 5 \%}$ EtOAc in n-hexane; $\mathrm{H}=\mathbf{2 0 \%}$ iPrOH in n-hexane, Pirkle, normal phase silica HPLC; $\mathrm{I}=$ Recrystallized from EtOAc/ n-hexane; $\mathrm{J}>98 \%$ by HPLC.

This result supports the idea that not all the carbon atoms of the adamantane cage are employed in CCK-B receptor binding. The two individual diastereoisomers of 16 a were prepared by the enantioselective synthesis of the trans-2-methylcyclohezanols. ${ }^{11-14}$ The ($1 R, 2 R$)-trans-[(2methylcyclohexyl)oxy]carbonyl group was deemed to be optimal for the CCK-B receptor having a binding affinity (IC_{50}) for 16 c of 9.3 nM compared to the ($1 S, 2 S$)-isomer 16 b , which had an IC_{50} value of 73 nM at the CCK-B receptor.

The trans-[(2-methylcyclohexyl)oxy]carbonyl group was then appended to selected compounds, replacing the

Table II. CCK Binding Affinities of N-Terminal Substituted Derivatives

no.	R^{1}	R^{2}	$\mathrm{IC}_{50}{ }^{\text {a }}$ (nM)		A/B ratio
			CCK-A	CCK-B	
5	2-adamantyl ${ }^{\text {b }}$	H	377 (250-559)	48 (38-59)	7.9
6	1-adamantyl ${ }^{\text {b }}$	H	785 (758-818)	210 (170-260)	3.9
7	2-adamantyl	$\mathrm{CH}_{2} \mathrm{OH}$	775 (691-885)	6.4 (4.2-8.9)	121
8	1-adamantyl	$\mathrm{CH}_{2} \mathrm{OH}$	1040 (840-1560)	21.6 (12-30)	48
9	2-chloro-1-adamantyl	$\mathrm{CH}_{2} \mathrm{OH}$	711 (575-961)	8.8 (4.4-14)	80
10	cyclohexyl ${ }^{\text {b }}$	H	625 (377-1040)	517 (444-565)	1.2
11	(\pm)-trans ${ }^{2}$-chlorocycloheryl	H	196 (118-272)	49 (17-87)	4.0
12a	(土)-trans-2-chlorocyclohexyl	$\mathrm{CH}_{2} \mathrm{OH}$	66 (40-107)	15 (12-22)	4.4
12b	trans-2-chlorocyclohexyl isomer I	$\mathrm{CH}_{2} \mathrm{OH}$	118(105-146)	140 (116-169)	0.8
12c	trans-2-chlorocyclohexyl isomer II	$\mathrm{CH}_{2} \mathrm{OH}$	265 (226-329)	6.95 (6.4-7.8)	38
14a	(\pm)-trans-2-fluorocyclohexyl	$\mathrm{CH}_{2} \mathrm{OH}$	288 (123-550)	36 (34-39)	8.0
14b	trans-2-fluorocycloheryl isomer I	$\mathrm{CH}_{2} \mathrm{OH}$	251 (121-530)	149 (132-173)	1.7
14 c	trans-2-fluorocyclohexyl isomer II	$\mathrm{CH}_{2} \mathrm{OH}$	266 (196-362)	23 (21-28)	12
16a	(\pm)-trans-2-methylcyclohexyl	$\mathrm{CH}_{2} \mathrm{OH}$	66 (31-120)	16 (14-19)	0.4
16b	(1S,2S)-trans-2-methylcyclohexyl	$\mathrm{CH}_{2} \mathrm{OH}$	75 (62-91)	73 (58-120)	1.0
16c	(1R,2R)-trans-2-methylcyclohexyl	$\mathrm{CH}_{2} \mathrm{OH}$	288 (227-424)	9.3 (6.6-14)	31

${ }^{a} \mathrm{IC}_{50}$ represents the concentration (nM) producing half-maximal inhibition of specific binding of [${ }^{125}$ I]Bolton-Hunter-labeled CCK-8 to CCK receptors in the mouse cerebral corter (CCK-B) or the rat pancreas (CCK-A). The values given are the geometric mean and the range from at least three separate experiments. ${ }^{b}(R S)$ - α-methyltryptophan.

Table III. CCK Binding Affinities of Some [(2-Methylcycloheryl)oxy]carbonyl-Substituted Dipeptoids

no.	4	\square	R^{1}	R^{2}	$\mathrm{IC}_{50}{ }^{\text {a }}$ (nM)		A/B ratio
					CCK-A	CCK-B	
216	S	S	$\mathrm{CH}_{2} \mathrm{NHCOCH}=\mathrm{CHCO}_{2} \mathrm{H}$ (trans)	H	47 (39-53)	6.5 (4.6-9.1)	7
21c	R	R	$\mathrm{CH}_{2} \mathrm{NHCOCH}=\mathrm{CHCO}_{2} \mathrm{H}$ (trans)	H	154 (90-292)	1.2 (1.1-1.3)	128
19c	R	R	$\mathrm{CH}_{2} \mathrm{NHCOCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	H	391 (233-1050)	13 (9-25)	30
26c	R	R	H	$\mathrm{NHCOCH}=\mathrm{CHCO}_{2} \mathrm{H}$	511 (492-531)	4.0 (2.3-10)	128
24c	R	R	H	$\mathrm{NHCOCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	1810 (1310-2500)	3.9 (1.8-7.4)	464

${ }^{a}$ Binding affinities as defined in footnote a, Table II.

2 -adamantyl group. These are shown in Table III. Previously reported compounds ${ }^{1,5,6}$ are shown in Table IV for comparison. Examination of these tables reveals that the ($1 R, 2 R$)-[(2-methylcyclohexyl)oxy]carbonyl group is optimal for binding to the CCK-B receptor. This group, however, is better tolerated than the (2-adamantylozy). carbonyl group at the CCK-A receptor, thus the former show less CCK-B selectivity. The ($1 S, 2 S$)-isomers have approximately $6-10$-fold less affinity than the ($1 R, 2 R$). isomers for the CCK-B receptor.

A previous observation for some of the (2-adamantyl-oxy)carbonyl-containing series of compounds concluded that the inversion of stereochemical centers of the tryptophan and/or substituted phenethylamine groups independently decreased CCK-B binding affinity, but had little effect on CCK-A receptor binding affinity. ${ }^{1,2}$ Therefore, taking a selective CCK-B receptor ligand with modest CCK-A binding affinity [for example 30 m (IC_{50} CCK-B $=0.15 \mathrm{nM} ; \mathrm{IC}_{50}$ CCK-A $=25.5 \mathrm{nM}$)] and inverting the α-methyltryptophan center cause a decrease of approximately 100 -fold in CCK-B binding affinity ($300 \mathrm{IC}_{50}$ CCK-B $=13.2 \mathrm{nM}$). Inverting the substituted pheneth-
ylamide center gives a similar decrease in CCK-B affinity ($30 \mathrm{n} \mathrm{IC}_{50} \mathrm{CCK}-\mathrm{B}=9.3 \mathrm{nM}$). The combined effect of inverting both centers gave compound 30p (IC_{50} CCK-B $=260 \mathrm{nM}$; IC_{50} CCK-A $=2.8 \mathrm{nM}$), which is now 100 -fold selective for the CCK-A receptor over CCK-B. Hence, both CCK-B-selective (e.g. CI-988, 2: $\mathrm{R}=2$-Adoc) and CCK-A-selective ligands (30p) have been produced from the dipeptoid chemical class of CCK ligands.
Ligands have also been discovered by this strategy that have equal high nanomolar binding affinity at both CCK-A and CCK-B receptor subtypes. This was achieved by the combined strategies of stereochemical inversion together with the trans-[(2-methylcyclohezyl)oxy]carbonyl selective groups. The results are summarized in Table V. For example, compound 28i, which has the (R, R, R, S)-configurations at the optical centers has a 53 -fold selectivity for the CCK-B receptor, but the (S, S, R, S)-diastereoisomer 28 h has decreased CCK-B affinity (10 -fold) and modestly increased CCK-A binding affinity. The result is the ligand 28 h [Table V, $\mathrm{IC}_{50}=3.9 \mathrm{nM}$ (CCK-A), 4.2 nm (CCK-B)], which has mized, nanomolar affinity for both CCK-A and CCK-B receptor subtypes.

Table IV. CCK-B Receptor Binding Affinities of CCK-B-Selective Ligands

\mathbf{R}^{1}	$\mathbf{R}^{\mathbf{2}}$	$\mathrm{IC}_{60}{ }^{\text {a }}$ (nM)		A/B ratio
		CCK-A	CCK-B	
$\mathrm{CH}_{2} \mathrm{OH}$	H	780 (690-850)	6.3 (4.2-8.9)	120
$\mathrm{CH}_{2} \mathrm{OCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$	H	740 (690-790)	3.4 (2.5-5.8)	220
$\mathrm{CH}_{2} \mathrm{NHCOCH}=\mathrm{CHCO}_{2} \mathrm{H}$	H	440 (430-440)	0.8 (0.4-1.2)	550
$\mathrm{CH}_{2} \mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$	H	950 (740-1100)	4.2 (2.9-6.3)	230
$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	H	69.7 (69.7-69.7)	0.21 (0.18-0.85)	332
H	$\mathrm{NHCOCH}=\mathrm{CHCO}_{2} \mathrm{H}$	790 (680-1000)	0.7 (0.5-1.0)	1100
H	$\mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$	4300 (1200-8500)	1.7 (1.3-2.7)	2500
devazepi	329)	0.1 (0.3-0.2)	31 (18-43)	0.0032
		230 (170-380)	5.1 (4.6-5.4)	45
sulfated	-33)	0.1 (0.08-0.2)	0.3 (0.2-0.3)	0.33
		600 (500-660)	0.8 (0.5-0.9)	750

${ }^{a}$ Binding affinity as defined in footnote a, Table II.
Table V. CCK Binding Affinities for the Stereoisomers of CCK Dipeptoids

no.	R	\square	-	$\mathrm{IC}_{60}{ }^{\text {a }}$ (nM)		A/B ratio
				CCK-A	CCK-B	
30m	2-adamantyl	R	S	25.5 (18.1-35.8)	0.15 (0.09-0.21)	170
300	2-adamantyl	S	S	539 (463-629)	13.2 (10.4-16.9)	41
30n	2-adamantyl	R	R	186 (133-268)	9.3 (8.4-10.5)	20
30p	2-adamantyl	S	R	2.82 (1.4-5.1)	260 (208-292)	0.01
28g	(\pm)-trans-2-methylcyclohexyl	R	S	8.9 (6.8-12)	0.6 (0.5-1)	15
28h	(1S,2S)-trans-2-methylcyclohexyl	R	S	3.9 (2.2-5.4)	4.2 (3.9-4.7)	1
$28 i$	(1R,2R)-trans-2-methylcyclohexyl	R	S	18 (15-20)	0.34 (0.18-0.25)	53
28 j	(\pm)-trans-2-methylcyclohexyl	S	R	12 (8-18)	815 (619-1200)	0.01
28k	(1S,2S)-trans-2-methylcyclohexyl	S	R	20 (20-21)	1260 (860-2180)	0.016
281	(1R,2R)-trans-2-methylcyclohexyl	S	R	7.9 (6.5-9.4)	1160 (823-1680)	0.007

${ }^{a}$ Binding affinities as defined in footnote a, Table II.

Biological Results

We have, by evaluation of the structure-activity relationships described above, designed peptoid ligands with nanomolar affinity that possess selectivity for either the CCK-A or the CCK-B receptor and ligands that have high, but mixed, affinity for both receptor subtypes. The pharmacological properties of representative examples of compounds that are selective for the CCK-B receptor have been described elsewhere. ${ }^{1,4}$ Here we report on some of the pharmacological properties of compounds that are selective for the CCK-A receptor, and for mized A/B affinity ligands. Compound 30 p is a potent and selective antagonist for the CCK-A receptor. This has been demonstrated by its ability to block CCK-A-mediated responses in the rat dorsal raphe ($K_{\mathrm{e}}=12.8 \mathrm{nM}$). It failed to block CCK-B-mediated responses in the rat ventromedial nucleus of the hypothalamus, except at elevated concentrations ($K_{\mathrm{e}}=1150 \mathrm{nM}$), where the CCK-B component of 30p may play a part. 30p Also blocked CCK-8S-induced amylase secretion from pancreatic acinar cells. Figure 1 shows a parallel rightward shift in the concen-tration-response to CCK-8S ($K_{\mathrm{e}}=16 \mathrm{nM}$). The Schild analysis of this curve gives a $K_{B}=13 \mathrm{nM}$, with a slope value of 0.9 . These data support competitive antagonism of compound 30p at the CCK-A receptor (Figure 2).

Figure 1. Inhibition by compound 30p of CCK-8S-evoked amylase secretion from pancreatic acinar cells.

The CCK-A-selective compound 281 has been shown not to block CCK-B-mediated responses in the rat ventromedial nucleus of the hypothalamus at concentrations up to 300 nM but does block CCK-8S-evoked amylase secretion inthe pancreas (Figure 3). Compound 28h, which has high affinity for both CCK-A and CCK-B receptors, blocks CCK-B-mediated effects in the rat ventromedial nucleus of the hypothalamus ($K_{\mathrm{e}}=8.8 \mathrm{nM}$) and inhibits the CCK-A-mediated amylase release from the pancreas when stimulated with CCK-8S (Figure 3). We can therefore conclude that compounds 30p and 281 are

Figure 2. Schild analysis of compound 30p inhibition of CCKevoked amylase release.

Figure 3. Antagonism of CCK-8S-evoked amylase secretion from rat dispersed pancreatic acini.

Figure 4. The effect of CCK-receptor antagonists in the mouse light/dark box.
selective, competitive antagonists for the CCK-A receptor, while 28 h is an antagonist at both the CCK-A and CCK-B receptors.

The role of CCK receptors in anxiety has been described previously. ${ }^{1-4}$ However, the new ligands described above can be used to distinguish whether the anxiolytic effect is a CCK-A- or CCK-B-mediated effect. Thus it has been previously shown that selective CCK-B antagonists are potent anxiolytic agents, whereas agonists at this receptor increase anxiety levels in a wide range of animal models. ${ }^{8}$ Similarly, in the mouse light/dark box test, the selective CCK-B antagonist 30 m was shown to have a minimum effective dose (MED) of $0.01 \mathrm{mg} / \mathrm{kg} \mathrm{sc}$ (Figure 4). The enantiomer of 30 m (30p), which has a 100 -fold selectivity for the CCK-A receptor, has an MED of $1 \mathrm{mg} / \mathrm{kg} \mathrm{sc}$. This is 100 -fold less active in this test than the B-selective compound, a similar ratio to its CCK-A and CCK-B binding affinities (Table V) and to the K_{e} ratios from the dorsal

Table VI. Electrophysiology Data: Equilibrium Constant ($K_{\text {e }}$) Values for Compounds Used in the Present Study

no.	rat VMH $K_{\mathrm{e}}{ }^{a}(\mathrm{nM})$	range
30 m	2.8	$(0.1-8.4)$
28 h	8.8	$(5.4-10.8)$
30 p	1150.0	$(520-2500)$
	12.8^{b}	$(5.2-26.7)$
$\mathbf{2 8 1}$	inactive to 300 nM	

${ }^{a}$ All K_{e} determinations are the mean of at least three separate experiments. ${ }^{b}$ Data from rat dorsal raphé (CCK-A receptors).
raphé and the ventromedial hypothalamus (Table VI). Compound 281, which is a CCK-A-selective compound is inactive in the black/white box test up to a dose of 10 $\mathrm{mg} / \mathrm{kg} \mathrm{sc}$. Its enantiomer, $\mathbf{2 8 h}$, which is a mired CCK-A/-B compound, has equal affinity at both CCK-A and CCK-B receptor subtypes and has an MED in the light/ dark box test of $0.1 \mathrm{mg} / \mathrm{kg}$ (sc). These data lend support to the hypothesis that the anxiolytic actions of these CCKreceptor dipeptoid ligands are mediated via the CCK-B receptor and not the CCK-A receptor.

Conclusions

The current structure-activity relationships of the N-terminal groups of these dipeptoid ligands, together with the stereochemical requirements at the N -terminal group, the α-methyltryptophan, and the C-terminal groups, have identified selective CCK-A and CCK-B as well as mixed A/B ligands of high affinity. These compounds have been used to delineate the role of CCK-A and CCK-B receptors in models of anxiety and have added support to the hypothesis that the CCK-B receptor rather than the CCK-A receptor is primarily involved in anxiety, as assessed by the mouse light/dark box test. ${ }^{3,8}$

Experimental Section

(1) Biology. (a) Receptor Binding Assays. CCK-A receptor binding assays were performed on male rat pancreas. Tissue (250 mg) homogenized in ice-cold Tris- HCl (pH 7.4) (50 mL of a 50 mM solution) was centrifuged at 20000 g . The pellet was washed once by resuspension in Tris- HCl followed by recentrifugation and resuspended in a standard assay buffer (SAB) comprising 10 mM Hepes (pH 7.2 at $21^{\circ} \mathrm{C}$), $130 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 4.7 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} 1,2-\operatorname{bis}(2$-aminoethoxy)ethane, and $0.25 \mathrm{mg} / \mathrm{mL}$ bacitracin at a tissue concentration of 0.5 mg original wet weight per mL of buffer.

CCK-B receptor binding assays were performed on male mouse cerebral cortex. Tissue homogenized in 10 volumes of 50 mM ice-cold Tris- HCl buffer (pH 6.9 at $21^{\circ} \mathrm{C}$) was centrifuged for 15 min at 20000 g . The pellet was washed by resuspension in ice-cold 50 mM Tris- HCl and recentrifuged as above. The final pellet was then washed and resuspended in a $S A B$ comprising 10 mM Hepes (pH 7.2 at $21^{\circ} \mathrm{C}$), $130 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl} 2$, $4.7 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM}$ 1,2-bis(2-aminoethoxy)ethane, and $0.25 \mathrm{mg} /$ mL bacitracin at a tissue concentration of 2 mg original wet weight per $m L$ of SAB.

For each of the binding assays, aliquots of tissue $(400 \mu \mathrm{~L})$ were incubated at $21^{\circ} \mathrm{C}$ for 120 min with 35 pM [$\left.{ }^{125 \mathrm{I}}\right]$ Bolton Hunterconjugated $\operatorname{CCK}(26-33)$ (${ }^{125 I}$-CCK 8 S) in the absence and presence of a range of concentrations of the test compound in a final volume of $500 \mu \mathrm{~L}$. Nonspecific binding was estimated by $1 \mu \mathrm{M} \mathrm{CCK} 8 \mathrm{~S}$.

After each incubation, the assay was terminated by rapid filtration under vacuum through Whatman GF/B filter strips followed by washing three times with 4 mL of ice-cold NaCl . Radioactivity was then measured using a Packard series 5000γ counter.
(b) Amylase Release Experiments. Amylase release was measured from rat dispersed pancreatic acinar cells. Male Sprague-Dawley rats were sacrificed by decapitation and the
abdominal cavities opened. The bile duct was cannulated and 5 mL of Hanks Balanced Salt solution buffered to pH 7.4 using 10 nM HEPES containing 1500 units of collagenase (Sigma Type VII) and $500000 \mathrm{KIU} / \mathrm{mL}$ Aprotinin (Trasylol, Bayer) infused into the pancreas. The pancreas was removed, placed in a conical flask and incubated for 15 min with 10 mL of digestion fluid that had been saturated with oxygen and then incubated at $37^{\circ} \mathrm{C}$ with agitation for 30 min . The tissue was then dispersed using a pipet and the mixture filtered through nylon mesh $(200 \mu \mathrm{M})$. The dispersed acini cells were then sedimented under mild centrifugation and washed by centrifuging through 41% BSA. The tissue was suspended in Hanks solution (pH 7.4) containing 0.1% BSA. Aliquots were then incubated in a final volume of 2 mL for 20 min at $37^{\circ} \mathrm{C}$ with sulfated cholecystokinin octapeptide in the presence and absence of test compound. After the incubation, aliquots of the supernatant were taken for determination of amylase activity using a Phadebas kit (Phamacia Ltd., Milton Keynes, U.K.).
(c) Electrophysiology. CCK-B-mediated responses measured in the rat ventromedial nucleus of the hypothalamus (VMH) were as described earlier, ${ }^{2}$ with the exception that all measurements were made using the CCK-B-selective agonist pentagastrin in order to eliminate possible CCK-A receptor activation.

CCK-A-mediated responses, which were measured in the rat dorsal raphé, were measured as described earlier. ${ }^{9}$
(d) Light/Dark Box Test. The mouse light/dark box test was carried out using male TO mice ($20-25 \mathrm{~g}$), obtained from Bantin and Kingman (Hull, U.K.). The time spent by the mice in the illuminated section of the box was determined as previously described. ${ }^{3}$ All test compounds were dissolved in $0.9 \%(w / v)$ saline and administered subcutaneously (sc) 40 min before the test at a total volume of $10 \mathrm{~mL} / \mathrm{kg}$.
(2) Chemistry. Melting points were determined with a Mettler FP800 or a Reichart Thermovar hot-stage apparatus and are uncorrected. Proton NMR spectra were recorded on a Bruker AM300 spectrometer; chemical shifts were recorded in parts per million (ppm) downfield from tetramethylsilane. IR spectra were recorded using the compound (neat) on a sodium chloride disk with a Perkin-Elmer 1750 Fourier transform spectrophotometer. Optical rotations were determined using a Perkin-Elmer 241 polarimeter. Mass spectra were recorded with a Finnegan 4500 or a ZAB-E VG Analytical spectrometer. Elemental analyses were determined by Medac Ltd., Uxbridge, U.K. Normal-phase silica gel used for chromatography was Kieselgel-60 (230-400 mesh) and reverse-phase silica gel used was Lichroprep RP-18 (230-400 mesh), both supplied by E. Merck, A. G., Darmstadt, Germany. Anhydrous solvents were dried over 4-A molecular sieves prior to use. The filter aid used throughout was Celite, purchased from the Aldrich Chemical Co. Ltd., Gillingham, England.

General Method A. A solution of an appropriate chloroformate (1 mmol) and N-phenethyl- α-methyl-($R S$)-tryptophanamide 3 (1 mmol) in anhydrous THF (20 mL) was treated by the dropwise addition of a solution of triethylamine $(1.2 \mathrm{mmol})$ in THF (10 mL) at room temperature. The resulting mixture was left stirring for 4 h and filtered, and the filtrate was evaporated to dryness in vacuo. The residue was then subjected to chromatographic separation.

General Method B. A solution of α-methyl-(R)-tryptophanyl-(S)-phenylalaninol $4(1.4 \mathrm{mmol})$ and triethylamine $(1.6 \mathrm{mmol})$ in anhydrous THF (20 mL) was treated dropwise with a solution of an appropriate chloroformate (1.4 mmol) in anhydrous THF (20 mL) at room temperature. The resultant mirture was left for 4 h and filtered, and the filtrate was evaporated in vacuo. The residue was then subjected to chromatographic separation.

Tricyclo[3.3.1.1 $\left.1^{3.7}\right]$ dec-2-yl (\pm)-[1-(1H-indol-3-ylmethyl)-1-methyl-2-0x0-2-[(2-phenylethyl)amino]ethyl]carbamate (5) was prepared according to general method A: yield 77%; IR (film) 1701 and $1656 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 1.5-2.00(17 \mathrm{H}, \mathrm{m})$, $2.67(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 3.40-3.50(3 \mathrm{H}$, $\mathrm{m}), 4.80(1 \mathrm{H}, \mathrm{br} 8), 5.25(1 \mathrm{H}, \mathrm{br}$ s), $6.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.95(1 \mathrm{H}$, $\mathrm{d}, J=2 \mathrm{~Hz}$) $7.10-7.30(7 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.58$ (1 $\mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$), $8.08(1 \mathrm{H}, \mathrm{br}$ s); MS (FAB) $m / e 500(100)$.

Tricyclo[3.3.1.1 $\left.{ }^{\text {3.7 }}\right] \mathrm{dec}-1-\mathrm{yl}$ (\pm)-[1-($1 \boldsymbol{H}$-indol-3-ylmethyl)-1-methyl-2-0x0-2-[(2-phenylethyl)amino]ethyl]carbemate (6) was prepared according to general method A: yield 49%; IR
(film) 1700 and $1660 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.50(3 \mathrm{H}, \mathrm{s}), 1.63(6$ $\mathrm{H}, \mathrm{br} \mathrm{s}), 2.00-2.05(6 \mathrm{H}, \mathrm{m}), 2.14(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.66(1 \mathrm{H}, \mathrm{t}, J=7$ $\mathrm{Hz}), 2.67(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.40-3.50$ ($3 \mathrm{H}, \mathrm{m}$), 4.93 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.98-7.60(10 \mathrm{H}, \mathrm{m})$, $8.24(1 \mathrm{H}, \mathrm{br} \mathrm{s})$.

Tricyclo[3.3.1.1 $\left.{ }^{3.7}\right] \mathrm{dec}-2$-yl $\left[R\right.$ - $\left.\left(R^{*}, S^{*}\right)\right]$-[2-[[1-(hydroxy-methyl)-2-pheny lethyl]amino]-1-(1H-indol-3-ylmethyl)-1-methyl-2-oxoethyl]carbamate (7) was prepared according to general method B: yield 80%; $[\alpha]^{20}{ }_{\mathrm{D}}=+11.6^{\circ}(c=1.02, \mathrm{MeOH})$; IR (film) $3500-3200,2907,2854,1695$, and $1659 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.39(3 \mathrm{H}, \mathrm{s}), 1.50-2.00(14 \mathrm{H}, \mathrm{m}), 2.75-2.85(3 \mathrm{H}, \mathrm{m})$, $3.32(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 3.40-3.50(2 \mathrm{H}, \mathrm{m}), 3.70-3.80(1 \mathrm{H}, \mathrm{m})$, 4.15-4.25 ($1 \mathrm{H}, \mathrm{m}$), $4.82(1 \mathrm{H}, \mathrm{br}$ s), $5.01(1 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 7.05-7.25(7 \mathrm{H}, \mathrm{m}), 7.35(1$ $\mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{s})$.
Tricyclo[3.3.1.1,7]dec-1-yl [\boldsymbol{R}-($\left.\left.\boldsymbol{R}^{*}, \mathcal{S}^{*}\right)\right]$-[2-[[1-(hydroxy-methyl)-2-phenylethyl]amino]-1-(1H-indol-3-ylmethyl)-1-methyl-2-oxoethyl]carbamate (8) was prepared according to general method B: yield 66%; $[\alpha]^{20} \mathrm{D}=+23.4^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3500-3200,2912,2884,1675,1650$, and $1520 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33(3 \mathrm{H}, \mathrm{s}), 1.68(6 \mathrm{H}, \mathrm{s}), 2.11(6 \mathrm{H}, \mathrm{s}), 2.20(3 \mathrm{H}, \mathrm{s})$, $2.81(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 2.85-2.95(1$ $\mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz})$, 3.44-3.51 ($1 \mathrm{H}, \mathrm{m}$), $3.75-3.85(1 \mathrm{H}, \mathrm{m}), 4.20-4.30(1 \mathrm{H}, \mathrm{m}), 4.82$ $(1 \mathrm{H}, \mathrm{s}), 6.18(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.95-7.31(8 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}$), $7.61(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$), $8.15(1 \mathrm{H}, \mathrm{s})$; MS (EI) m / e 529.0 (0.2), 152.1 (11.4), 135.1 (46.4), 130.0 (100).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-1-methyl-2-oxo-2-[(2-phenylethyl)amino]ethyl]-, cyclohexyl ester, (\pm)- (10), was prepared according to general method A: yield 74\%; IR (film) 1702 and $1656 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.15-1.90(13 \mathrm{H}, \mathrm{m})$, $2.67(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.40-3.50(3$ $\mathrm{H}, \mathrm{m}), 4.55-4.65(1 \mathrm{H}, \mathrm{m}), 5.08(1 \mathrm{H}, \mathrm{s}), 6.15-6.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.96$ $(1 \mathrm{H}, \mathrm{s}), 7.05-7.30(7 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.58(1 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{s})$; MS (CI) $m / e 449$ (9.1) and 83 (100).
Carbamic acid, [1-(1H-indol-3-ylmethyl)-1-methyl-2-oxo-2-[(2-phenylethyl)amino]ethyl]-, 2-chlorocyclohexylester, trans-(土). (11), was prepared according to general method A: yield 79%; IR (film) $3500-3200,2941,2862,1709,1656$, and 1495 cm^{-1}; NMR (CDCl_{3}) $\delta 1.20-1.40(3 \mathrm{H}, \mathrm{m}), 1.53(1.5 \mathrm{H}, \mathrm{s}), 1.56$ (1.5 $\mathrm{H}, \mathrm{s}), 1.60-1.80(3 \mathrm{H}, \mathrm{m}), 1.95-2.20(2 \mathrm{H}, \mathrm{m}), 2.55-2.70(2 \mathrm{H}, \mathrm{m})$, 3.15-3.50 ($4 \mathrm{H}, \mathrm{m}$), 3.70-3.80 ($1 \mathrm{H}, \mathrm{m}$), 4.60-4.75 ($1 \mathrm{H}, \mathrm{m}$), 5.28 ($1 \mathrm{H}, \mathrm{s}$), $6.10-6.25(1 \mathrm{H}, \mathrm{m}), 6.96(1 \mathrm{H}, \mathrm{s}), 7.00-7.25(7 \mathrm{H}, \mathrm{m}), 7.35$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.53-7.60(1 \mathrm{H}, \mathrm{m}), 8.37(1 \mathrm{H}, \mathrm{s})$; MS m/e (FAB) 482.2 (100), 352.1 (71.8), 333.1 (84.3), 304.1 (95.6).

Carbamic acid, [2-[[1-(hydroxymethyl)-2-phenylethyl]-amino]-1-(1H-indol-3-ylmethyl)-1-methyl-2-oxoethyl], 2-chlorocyclohexyl ester (Trp center is R, phenyl ethyl center is S, and ring centers are trans) (12a), was prepared according to general method B: yield 73\%; IR (film) 3500-3200, 2940, 2864, 1699 , and $1600 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.20-1.45(3 \mathrm{H}, \mathrm{m}), 1.32$ (3 $\mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.70-1.80(3 \mathrm{H}, \mathrm{m}), 2.09-2.25(2 \mathrm{H}, \mathrm{m}), 2.67-$ $2.83(2 \mathrm{H}, \mathrm{m}), 3.28-3.52(3 \mathrm{H}, \mathrm{m}), 3.63-3.83(2 \mathrm{H}, \mathrm{m}), 4.10-4.30$ $(1 \mathrm{H}, \mathrm{m}), 4.68-4.80(1 \mathrm{H}, \mathrm{m}), 5.97(1 \mathrm{H}, \mathrm{s}), 6.08(1 \mathrm{H}, \mathrm{s}), 6.09(1$ $\mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.91-7.60(10 \mathrm{H}, \mathrm{m})$, 8.08 ($1 \mathrm{H}, \mathrm{m}$).

Compound 12a was separated into two isomers (I and II) on a Pirkle Prep-D-phenylglycine (Prep 1010) column using 20\% iPrOH in n-hexane.

Carbamic acid, [2-[[1-(hydroxymethyl)-2-phenylethyl]-amino]-1-(1H-indol-3-ylmethyl)-1-methyl-2-0xoethyl]-, 2-chlorocyclohexyl ester (isomer I) (ring centers are trans, Trp center is R, other center is $\mathcal{S})\left[(+)\right.$-form of 12b]: $[\alpha]^{20} \mathrm{D}=$ $+50.5^{\circ}(c=0.2, \mathrm{MeOH}$); IR (film) $3500-3200,2931,2862,1699$, 1661, and $1495 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.20-1.40(3 \mathrm{H}, \mathrm{m})$, 1.40 (3 $\mathrm{H}, \mathrm{s}), 1.65-1.80(3 \mathrm{H}, \mathrm{m}), 2.05-2.15(1 \mathrm{H}, \mathrm{m}), 2.20-2.30(1 \mathrm{H}, \mathrm{m})$, $2.60-2.70(1 \mathrm{H}, \mathrm{br}$ s), $2.78(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{d}, J$ $=14.5 \mathrm{~Hz}), 3.42(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.40-3.50(1 \mathrm{H}, \mathrm{m}), 3.65-$ $3.85(2 \mathrm{H}, \mathrm{m}), 4.10-4.20(1 \mathrm{H}, \mathrm{m}), 4.65-4.75(1 \mathrm{H}, \mathrm{m}), 5.13(1 \mathrm{H}$, s), $6.23(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{s}), 7.10-7.28(7 \mathrm{H}, \mathrm{m}), 7.35$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.20(1 \mathrm{H}, \mathrm{s})$.

Carbamic acid, [2-[[1-(hydroxymethyl)-2-phenylethyl]amino -1 -($1 H$-indol-3-ylmethyl)-1-methyl-2-0xoethyl]-, 2 -chlorocyclohexyl ester (isomer II) (ring centers are trans, Trp center is R, other center is \mathcal{S}) [(-)-form of 126]: $[\alpha]^{20} \mathrm{D}=$ $-1.0^{\circ}(c=0.2, \mathrm{MeOH})$; $\mathrm{IR}($ film $) 3500-3200,2942,2864,1696$,

1658, and $1515 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.20-1.45(3 \mathrm{H}, \mathrm{m}), 1.32$ (3 $\mathrm{H}, \mathrm{s}), 1.65-1.85(3 \mathrm{H}, \mathrm{m}), 2.00-2.30(2 \mathrm{H}, \mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=$ 7.5 and 14 Hz), $2.79(1 \mathrm{H}, \mathrm{dd}, J=7$ and 14 Hz), $3.33(1 \mathrm{H}, \mathrm{d}, J$ $=14.5 \mathrm{~Hz}), 3.40-3.50(1 \mathrm{H}, \mathrm{m}), 3.49(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.70-$ $3.80(2 \mathrm{H}, \mathrm{m}), 4.20-4.30(1 \mathrm{H}, \mathrm{m}), 4.70-4.80(1 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}$, s), $6.11(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{s}), 7.05-7.25(7 \mathrm{H}, \mathrm{m}), 7.35$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=8$ Hz), 8.18 (1 H , s).

Carbamic acid, [2-[[1-(hydroxymethyl)-2-phenylethyl]-amino]-1-(1H-indol-3-ylmethyl)-1-methyl-2-0xoethyl]-, 2-fluorocyclohexyl ester (ring is trans-(\pm)-, Trp is R, other center is S) (14a), was prepared according to general method B: yield 77%; IR (film) $3500-3200,2940,2870,1696,1658$, and $1515 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.26-1.39(7 \mathrm{H}, \mathrm{m}), 1.53-1.78(2 \mathrm{H}, \mathrm{m}), 2.04-2.12$ ($2 \mathrm{H}, \mathrm{m}$), 2.67-2.81 ($3 \mathrm{H}, \mathrm{m}$), $3.31(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}$), 3.42-3.49 ($2 \mathrm{H}, \mathrm{m}$), 3.71 ($1 \mathrm{H}, \mathrm{m}), 4.18-4.48(2 \mathrm{H}, \mathrm{m}), 4.80(1 \mathrm{H}, \mathrm{m}), 5.02$ $(0.5 \mathrm{H}, \mathrm{s}), 5.04(0.5 \mathrm{H}, \mathrm{s}), 6.14(0.5 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.25(0.5 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{m}), 7.09-7.37(8 \mathrm{H}, \mathrm{m}), 7.57(1 \mathrm{H}, \mathrm{m}), 8.16$ ($1 \mathrm{H}, \mathrm{s}$).

Compound 14a was separated into two isomers (I and II) on a Pirkle Prep-D-phenylglycine (Prep 1010) column using 20\% iPrOH in n-hezane as eluant.

Carbamic acid, [2-[[1-(hydroxymethyl)-2-phenylethyl]-amino]-1-(1H-indol-3-ylmethyl)-1-methyl-2-oxoethyl]-, 2-fluorocyclohezyl ester (indole center is R, hydroxymethyl center is $S)[(+)$-isomer 14 b$]:[\alpha]^{20} \mathrm{D}=+58^{\circ}\left(c=0.2, \mathrm{CHCl}_{3}\right)$; IR (film) $3500-3200,2945,2870,1700,1664$, and $1520 \mathrm{~cm}^{-1} ;$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.80(6 \mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}, \mathrm{s}), 2.00-2.20(2 \mathrm{H}, \mathrm{m})$, $2.64(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 2.79(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{d}$, $J=14.5 \mathrm{~Hz}), 3.40-3.50(2 \mathrm{H}, \mathrm{m}), 3.68-3.77(1 \mathrm{H}, \mathrm{m}), 4.10-4.30$ $(1.5 \mathrm{H}, \mathrm{m}), 4.4-4.8(0.5 \mathrm{H}, \mathrm{m}), 4.70-4.85(1 \mathrm{H}, \mathrm{m}), 5.01(1 \mathrm{H}, \mathrm{s})$, $6.23(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 7.09-7.30(7 \mathrm{H}$, m), $7.35(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.12(1 \mathrm{H}$, s); MS m/e (FAB) 496.3 (100), 366.2 (34), 317.2 (86).

Carbamic acid, [2-[[1-(hydroxymethyl)-2-phenylethyl]-amino]-1-(1 H-indol-3-ylmethyl)-1-methyl-2-oxoethyl]-, 2-fluorocyclohezyl ester (indole center is R, hydrozymethyl center is S) $[(-)$-icomer 14 c$]$: $[\alpha]^{20} \mathrm{D}=-3^{\circ}\left(c=0.2, \mathrm{CHCl}_{3}\right)$; IR (film) $3500-3200,2920,2880,1697,1660$, and $1515 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.80(6 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{s}), 2.00-2.20(2 \mathrm{H}, \mathrm{m})$, $2.70-2.85(3 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.40-3.50(2 \mathrm{H}, \mathrm{m})$, 3.70-3.80 ($1 \mathrm{H}, \mathrm{m}$), 4.15-4.50 ($2 \mathrm{H}, \mathrm{m}$), 4.75-4.90 ($1 \mathrm{H}, \mathrm{m}$), 4.98 $(1 \mathrm{H}, \mathrm{s}), 6.11(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{s}), 7.05-7.30(7 \mathrm{H}, \mathrm{m})$, $7.35(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}$ m / e (FAB) 496.3 (100), 366.3 (30), 317.2 (68).
trans-(\pm)- α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]car-bonyl]-D-tryptophan Methyl Ester (17a). A stirred solution of (\pm)-trans-2-methylcycloheranol ($1.37 \mathrm{~g}, 12.0 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with solid bis(trichloromethyl) carbonate ($1.48 \mathrm{~g}, 4.99 \mathrm{mmol}$) followed by the dropwise addition of pyridine ($0.95 \mathrm{~g}, 12 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL). After 1 h at $0^{\circ} \mathrm{C}$ the solvent was removed in vacuo at a temperature not exceeding $20^{\circ} \mathrm{C}$. The residue was redissolved in EtOAc (50 mL) and filtered. The solvent was then evaporated in vacuo and redissolved in anhydrous THF (20 mL). This solution was then added to a solution of $\mathrm{D}-\alpha$ methyltryptophan methyl ester ($2.32 \mathrm{~g}, 10.0 \mathrm{mmol}$) in anhydrous THF (60 mL) at $0^{\circ} \mathrm{C}$. After the addition was complete, a solution of $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~g}, 11 \mathrm{mmol})$ in THF (20 mL) was added dropwise. This reaction mixture was then stirred for 3 h at ambient temperature and then the solvent removed in vacuo. The residue was dissolved in $\mathrm{EtOAc}(50 \mathrm{~mL})$ and washed with 1 M citric acid solution ($2 \times 20 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, saturated $\mathrm{NaHCO} \mathrm{H}_{3}$ solution ($2 \times 20 \mathrm{~mL}$), and $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase was evaporated to dryness and chromatographed to give the product as a foam ($2.8 \mathrm{~g}, 75 \%$): $[\alpha]^{20} \mathrm{D}=+34^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3280-3480,2932,2858,1740,1698,1504$, and $1457 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.92(1.5 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 0.93(1.5 \mathrm{H}, \mathrm{d}, J=$ $6.4 \mathrm{~Hz}), 1.00-1.62(6 \mathrm{H}, \mathrm{m}), 1.65(1.5 \mathrm{H}, \mathrm{s}), 1.67(1.5 \mathrm{H}, \mathrm{s}), 1.70-$ $1.80(2 \mathrm{H}, \mathrm{m}), 1.98-2.08(1 \mathrm{H}, \mathrm{m}), 3.35(0.5 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz})$, $3.38(0.5 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.45-3.60(1 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}, \mathrm{s})$, 4.25-4.40 (1 H, m), 5.25-5.40 (1 H, br s), 6.94-6.97 (1 H, m), $7.05-7.20(2 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{d}, J=$ 7.8 Hz), 8.11 (1 H , s); MS (FAB) m/e 373.2 (18), 313.2 (3.7), 275.2 (4.2), 233.1 (96.1), 216.1 (100).
trans-(\pm)- α-Methyl- N-[[(2-methylcyclohezyl)ozy]car-bonyl]-D-tryptophan (15a). A solution of ester 17 a ($3.7 \mathrm{~g}, 10$ mmol) in aqueous 1,4 -diozane (100 mL of a $1: 2$, water/diozane mixture) was treated with $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{~g}, 30 \mathrm{mmol})$ and the mixture stirred at room temperature for 36 h . The reaction mixture was then concentrated in vacuo to one-third its original volume and diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. This was then washed with EtOAc (50 mL). The aqueous phase was then acidified to pH 2 with 2 M HCl solution and extracted with EtOAc (2×50 mL). The organic phases were combined, washed with $\mathrm{H}_{2} \mathrm{O}$ (3 $\times 20 \mathrm{~mL}$), and dried over MgSO_{4}. This was filtered and the filtrate evaporated to dryness in vacuo to give the crude product which was chromatographed to give 15 as a foam ($2.7 \mathrm{~g}, 77 \%$): $[\alpha]^{20}{ }_{\mathrm{D}}=+17.5^{\circ}(c=1, \mathrm{MeOH})$; IR (film) 3500-3200, 2936, 3200$2400,1708,1505$, and $1456 \mathrm{~cm}^{-1}$; NMR (DMSO- d_{6}) $\delta 0.87(1.5 \mathrm{H}$, $\mathrm{d}, J=6.5 \mathrm{~Hz}), 0.9(1.5 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.95-1.75(8 \mathrm{H}, \mathrm{m}), 1.27$ (3 H, s), 1.85-2.00 (1 H, m), 3.09 (0.5 H, d, J=14.3 Hz), 3.13 (0.5 $\mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}$), 3.30-3.45 ($1 \mathrm{H}, \mathrm{m}$), 4.13-4.28 ($1 \mathrm{H}, \mathrm{m}$), 6.85$7.05(4 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz})$, 10.90 ($1 \mathrm{H}, \mathrm{s}$), 12.30-12.45 (1 H , br); MS (FAB) m/e 359.2 (18.1), 313.2 (10.6), 263.1 (19.7), 219.1 (88.4), 202.1 (100).

Carbamic Acid, [2-[[1-(Hydroxymethyl)-2-phenylethyl]-amino]-1-(1H-indol-3-ylmethyl)-1-methyl-2-oxoethyl]-, 2 Methylcyclohexyl Ester (ring centers are trans, Trp center is R, other center is S) (16a). A solution of the acid 15a (1.79 $\mathrm{g}, 5.00 \mathrm{mmol}$) in EtOAc (20 mL) was treated with pentafluorophenol $(0.92 \mathrm{~g}, 5.00 \mathrm{mmol})$ and then N, N^{\prime}-dicyclohexylcarbodiimide ($1.08 \mathrm{~g}, 5.30 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was filtered and the filtrate treated dropwise with a solution of (S)-(-)-2-amino-3-phenylpropanol ($0.83 \mathrm{~g}, 5.50 \mathrm{mmol}$) in EtOAc (5 mL). This mixture was stirred for 4 h at room temperature and filtered, the filtrate evaporated to dryness in vacuo, and the residue chromatographed over reverse-phase silica to give the product $16 a$ as white needles ($1.47 \mathrm{~g}, 60 \%$): IR (film) 3500-3200, $2932,2858,1690,1660,1497$, and $1255 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.90$ ($1.5 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$), $0.91(1.5 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}$), $1.00-1.75$ (8 $\mathrm{H}, \mathrm{m}), 1.36(1.5 \mathrm{H}, \mathrm{s}), 1.39(1.5 \mathrm{H}, \mathrm{s}), 1.92-2.00(1 \mathrm{H}, \mathrm{m}), 2.70-2.80$ ($3 \mathrm{H}, \mathrm{m}$), 3.28-3.48 (3 H, m), 3.65-3.80 ($1 \mathrm{H}, \mathrm{m}$), 4.10-4.38 (2 H, m), $4.94(0.5 \mathrm{H}, \mathrm{s}), 4.99(0.5 \mathrm{H}, \mathrm{s}), 6.11(0.5 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.14$ ($0.5 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$), $6.91(1 \mathrm{H}, \mathrm{s}), 7.05-7.30(7 \mathrm{H}, \mathrm{m}), 7.35(1$ $\mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}$ (FAB) $m / e 492.2$ (100), 352.1 (43.4), 334.1 (25.2), 245.1 (14.6).
(1S-trans)- α-Methyl- N-[[(2-methylcyclohezyl)oxy]car-bonyl]-D-tryptophan Methyl Ester (17b). The method was as for 17a except using ($1 \mathrm{~S}, 2 \mathrm{~S}$)-2-methylcyclohexanol: yield 89%; $[\alpha]^{20_{\mathrm{D}}}=+54.3^{\circ}(c=1, \mathrm{MeOH})$; IR (film) 3500-3300, 2932, 1739, 1697, 1502, and $1456 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.93(3 \mathrm{H}, \mathrm{d}, J=6.5$ $\mathrm{Hz}), 1.00-1.80(8 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{s}), 2.00-2.10(1 \mathrm{H}, \mathrm{m}), 3.36(1$ $\mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}$), $3.45-3.60(1 \mathrm{H}$, br m), $3.67(3 \mathrm{H}, \mathrm{s}), 4.25-4.40$ ($1 \mathrm{H}, \mathrm{m}$), $5.35-5.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{s}), 7.05-7.20(2 \mathrm{H}, \mathrm{m})$, $7.34(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.09(1 \mathrm{H}$, s); MS (FAB) m/e 373.2 (34.5), 233.1 (86.2), 216.1 (100).
(1S-trans)- α-Methyl- N [[(2-methylcyclohezyl)oxy]car-bonyl]-D-tryptophan (15b). The method was as for 15a except using 17b: yield 96%; $[\alpha]^{20} \mathrm{D}=+42.3^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $4000-2800,1703,1504$, and $1456 \mathrm{~cm}^{-1}$; NMR (DMSO-d $d_{6} \delta 0.91$ ($3 \mathrm{H}, \mathrm{d}, J=0.4 \mathrm{~Hz}$), 0.97-1.75 ($8 \mathrm{H}, \mathrm{m}$), 1.28 (3 H, s), 1.85-1.95 $(1 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}),(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 4.15-4.25$ ($1 \mathrm{H}, \mathrm{m}$), $6.80-7.06(4 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.46(1$ $\mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 10.90(1 \mathrm{H}, \mathrm{s}), 12.20-12.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}$ (FAB) m/e 359.1 (100), 313.2 (13.8), 263.0 (25.1), 219.0 (75.1), 202.1 (85.0).

Carbamic Acid, [2-[[1-(Hydroxymethyl)-2-phenylethyl]-amino]-1-(1 \boldsymbol{H}-indol-3-ylmethyl)-1-methyl-2-0xoethyl]-, 2 Methylcyclohezyl Ester, [1S-[1 $\left.\left.\alpha\left[S^{*}\left(R^{*}\right)\right], 2 \beta\right]\right]$ - (16b). The method was as for 16a except using 15b: yield $=44 \% ;[\alpha]^{20}{ }_{D}=$ $+32.3^{\circ}$ ($c=1.04, \mathrm{MeOH}$); IR (film) $3500-3200,2931,2859,1690$, 1659,1497 , and $1254 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.91(3 \mathrm{H}, \mathrm{d}, J=6.4$ $\mathrm{Hz}), 1.00-1.80(8 \mathrm{H}, \mathrm{m}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.90-2.00(1 \mathrm{H}, \mathrm{m}), 2.76(2$ $\mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{d}, J=14.7$ $\mathrm{Hz}), 3.35-3.50(2 \mathrm{H}, \mathrm{m}), 3.65-3.75(1 \mathrm{H}, \mathrm{m}), 4.10-4.20(1 \mathrm{H}, \mathrm{m})$, $4.28(1 \mathrm{H}, \mathrm{dt}, J=4$ and 10 Hz$), 5.03(1 \mathrm{H}, \mathrm{s}), 6.16(1 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.10-7.30(7 \mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}$, $\mathrm{d}, J=8.0 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.21(1 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}(F A B)$ m/e 492.3 (100), 352.2 (90.8), 362.2 (55.0), 334.2 (44.6), 266.1 (35.5), 221.1 (280).
(1R-trans)- α-Methyl-N-[[(2-methylcyclohezyl)oxy]car-bonyl]-D-tryptophan Methyl Ester (17c). The method was as for 17a except using ($1 R, 2 R$)-trans-2-methylcyclohexanol: yield 86%; $[\alpha]^{20}{ }_{D}=+11.5^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3500-3200,2931$, 2857, 1733, 1696, 1502, and $1457 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.92$ (3 $\mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.99-1.75(8 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{s}), 1.98-2.08(1$ $\mathrm{H}, \mathrm{m}), 3.38(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=14.5 \mathrm{~Hz}$), 3.66 ($3 \mathrm{H}, \mathrm{s}$), 4.25-4.40 ($1 \mathrm{H}, \mathrm{m}$), $5.25-5.40(1 \mathrm{H}$, br s), 6.94 (1 H , $\mathrm{d}, J=2.3 \mathrm{~Hz}), 7.05-7.17(2 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.53$ ($1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$), 8.23 ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 373.2 (30.6), 313.2 (6.5), 259.0 (9.7), 233.1 (79.2), 216.1 (100).
(1R-trans)- α-methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]car-bonyl]-(R)-tryptophan (15c). The method was as for 15a except using 17c: yield $=97 \% ;[\alpha]^{20}{ }_{\mathrm{D}}=-6.5^{\circ}(c=1, \mathrm{MeOH})$; IR (film) 3500-3200, 1703, 1503, and $1457 \mathrm{~cm}^{-1}$; NMR (DMSO$\left.d_{6}\right) \delta 0.87(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}), 0.95-1.77(8 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{s})$, $1.88-2.00(1 \mathrm{H}, \mathrm{m}), 3.08(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{d}, J=$ $14.1 \mathrm{~Hz})$, $4.15-4.25(1 \mathrm{H}, \mathrm{m}), 6.88-7.05(4 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 10.90(1 \mathrm{H}, \mathrm{s}), 12.20-12.50$ ($1 \mathrm{H}, \mathrm{br}$ s); MS (FAB) m/e 358.9 (100), 313.1 (7.2), 263.0 (21.9), 219.0 (57.4), 202.1 (62.0).

Carbamic Acid, [2-[[1-(Hydroxymethyl)-2-phenylethyl]-amino]-1-(1H-indol-3-ylmethyl)-1-methyl-2-oxoethyl]-, 2 Methylcyclohexyl Ester, [1R-[1 $\left.\left.\alpha\left[R^{*}\left(\mathcal{S}^{*}\right)\right], 2 \beta\right]\right]$ - (16c). The method was as for 16a except using 15 c : yield 81%; $[\alpha]^{20} \mathrm{D}=$ $-3.25^{\circ}(c=0.52, \mathrm{MeOH}$) IR (film) $3500-3200,2932,2859,1690$, and $1663 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.00-$ $1.80(8 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.90-2.00(1 \mathrm{H}, \mathrm{m}), 2.70-2.85(2 \mathrm{H}$, $\mathrm{m}), 2.90-3.00(1 \mathrm{H}, \mathrm{br}$ s), $3.29(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 3.43(1 \mathrm{H}$, $\mathrm{d}, J=14.7 \mathrm{~Hz}$) $3.50-3.60(1 \mathrm{H}, \mathrm{m}), 3.65-3.75(1 \mathrm{H}, \mathrm{m}), 4.15-4.25$ $(1 \mathrm{H}, \mathrm{m}), 4.32(1 \mathrm{H}, \mathrm{dt}, J=4$ and 10 Hz$), 5.00(1 \mathrm{H}, \mathrm{s}), 6.14(1$ $\mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 7.05-7.25(7 \mathrm{H}, \mathrm{m})$, $7.34(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.32(1 \mathrm{H}$, s); MS (FAB) m/e 492.2 (100), 352.1 (39.2), 362.2 (27.2), 334.1 (25.1).

Carbamic Acid, [2-[[1-(Azidomethyl)-2-phenylethyl]ami-no]-1-(1B-indol-3-ylmethyl)-1-methyl-2-oxoethyl], 2-Methylcyclohexyl Ester, [1S-[1 $\left.\left.\alpha\left[\mathcal{S}^{*}\left(R^{*}\right)\right], 2 \beta\right]\right]$ - (18b). A stirred solution of $15 \mathrm{~b}(1.79 \mathrm{~g}, 5.00 \mathrm{mmol})$ and pentafluorophenol (0.92 $\mathrm{g}, 5.00 \mathrm{mmol}$) in EtOAc (50 mL) at $0^{\circ} \mathrm{C}$ was treated with N, N^{\prime} dicycloherylcarbodiimide ($1.08 \mathrm{~g}, 5.20 \mathrm{mmol}$). After 4 h at $0^{\circ} \mathrm{C}$ the mixture was filtered and (S)- α-(azidomethyl)-2-phenylethanamine ($0.968 \mathrm{~g}, 5.50 \mathrm{mmol}$) was added to the filtrate. This was stirred at room temperature for 18 h , washed with 1 M HCl $(2 \times 30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, saturated NaHCO_{3} solution (2×30 $\mathrm{mL})$, and $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered and the filtrate evaporated to dryness. The residue was then separated by silica gel chromatography to give the product 18 b as a white solid ($1.1 \mathrm{~g}, 43 \%$): $[\alpha]^{19}{ }_{\mathrm{D}}=+41^{\circ}(c=1, \mathrm{MeOH}$); IR (film) $3440-$ $3200,2932,2859,2103,1700$, and $1658 \mathrm{~cm}^{-1}$; NMR ($\mathrm{CDCl}_{3} / \mathrm{D}_{2} \mathrm{O}$) $\delta 0.92(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.00-1.80(8 \mathrm{H}, \mathrm{m}), 1.50(3 \mathrm{H}, \mathrm{s})$, $1.95-2.05(1 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{dd}, J=14$ and 8 Hz$), 2.75(1 \mathrm{H}$, dd, $J=14$ and 8 Hz), $3.10(1 \mathrm{H}, \mathrm{dd}, J=4$ and 12 Hz), 3.21 (1 $\mathrm{H}, \mathrm{dd}, J=4$ and 12 Hz), $3.23(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}$), $3.48(1 \mathrm{H}, \mathrm{d}$, $J=15 \mathrm{~Hz}), 4.05-4.15(1 \mathrm{H}, \mathrm{m}), 4.32(1 \mathrm{H}, \mathrm{dt}, J=10$ and 4 Hz$)$, $5.08(1 \mathrm{H}, \mathrm{s}), 6.39(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{d}, J=29 \mathrm{~Hz})$, $7.10-7.30(7 \mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz}), 8.21$ ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 517.3 (35.9), 491.3 (65.6), 377.2 (100), 359.1 (33.0), 291.1 (25.8), 245.0 (49.0).

2-Butenoic Acid, 4-[[2-[[3-(1 \boldsymbol{H}-Indol-3-yl)-2-methyl-2-[[[(2-methylcyclohexyl)oxy]carbonyl]amino]-1-oxopropyl]-amino]-3-phenylpropyl]amino]-4-0x0-, [1S-[1 $\alpha\left[\mathcal{S}^{*}\left[\boldsymbol{R}^{*}(E)\right]\right]$,-2阬]- (21b). Step 1. The azide $18 \mathrm{~b}(1.08 \mathrm{~g}, 2.10 \mathrm{mmol})$ was suspended in $1 \% \mathrm{AcOH}$ in EtOH (100 mL) with $10 \% \mathrm{Pd} / \mathrm{C}(0.1$ $\mathrm{g}, 10 \% \mathrm{w} / \mathrm{w}$) and put under an atmosphere of hydrogen at 50 psi at $30^{\circ} \mathrm{C}$ for 2 h . The mizture was filtered and the solvent removed from the filtrate in vacuo. The residue was suspended between saturated NaHCO_{3} solution (70 mL) and EtOAc (100 mL). The aqueous phase was reextracted with two further portions of EtOAc, and the combined organic phases were dried over MgSO_{4}, filtered, and evaporated in vacuo to dryness, to give the amine intermediate in quantitative yield, which was used immediately.

Step 2. A solution of the amine prepared in step $1(0.5 \mathrm{~g}, 1.0$ mmol) and methyl pentafluorophenyl fumarate ($0.326 \mathrm{~g}, 1.10$ mmol) in EtOAc (10 mL) was stirred for 16 h at room temperature. The solvent was evaporated in vacuo and the residue separated
by silica gel chromatography to give the product as a white solid ($0.34 \mathrm{~g}, 56 \%$): IR (film) $3500-3200,2930,2858,1750-1660$, and $1666 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.91(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.00-1.90$ ($9 \mathrm{H}, \mathrm{m}$), $1.34(3 \mathrm{H}, \mathrm{s}), 2.73(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 3.10-3.20(1 \mathrm{H}$, m), $3.30(2 \mathrm{H}, \mathrm{s}$), 3.78 ($3 \mathrm{H}, \mathrm{s}$), $3.75-3.85$ ($1 \mathrm{H}, \mathrm{m}$), $4.20-4.35$ (2 $\mathrm{H}, \mathrm{m}), 4.99(1 \mathrm{H}, \mathrm{s}), 6.04(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{d}, J=$ $15.5 \mathrm{~Hz}), 6.90-7.30(10 \mathrm{H}, \mathrm{m}), 7.36(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.58(1$ $\mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.21(1 \mathrm{H}, \mathrm{s})$.

Step 3. The ester prepared in step $2(0.34 \mathrm{~g}, 1.0 \mathrm{mmol})$ as a solution in THF (200 mL) was treated with LiOH solution (5.6 mL of a 0.1 M solution, 1 mmol). This mixture was left stirring for 16 h , and the reaction mixture was made slightly acidic with 1 N HCl. The solvents were removed in vacuo, and the residue was purified using silica gel chromatography to give the product 21b as a crystalline white solid ($0.25 \mathrm{~g}, 76 \%$): $[\alpha]^{20} \mathrm{D}=+111.6^{\circ}$ ($c=1.07$, MeOH; IR (film) $3500-3200,2932,1700$, and $1660 \mathrm{~cm}^{-1}$; NMR (CD_{3} OD) $\delta 0.97(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.00-1.80(8 \mathrm{H}, \mathrm{m})$, $1.21(3 \mathrm{H}, \mathrm{s}), 1.90-2.00(1 \mathrm{H}, \mathrm{m}), 2.60-2.75(2 \mathrm{H}, \mathrm{m}), 2.95-3.05$ ($1 \mathrm{H}, \mathrm{m}$), 3.18 ($1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}$), 3.30-3.40 ($1 \mathrm{H}, \mathrm{d}$), $3.65-3.75$ ($1 \mathrm{H}, \mathrm{m}$), 4.25-4.40 ($2 \mathrm{H}, \mathrm{m}$), $6.70(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.94-7.25$ ($9 \mathrm{H}, \mathrm{m}$), $7.30(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$; MS (FAB) m/e 589.3 (28.9), 516.4 (52.6), 428.3 (17.4), 307.1 (100), 289.1 (50.6).

2-Butenoic Acid, 4-[[2-[[3-(1 \boldsymbol{H}-Indol-3-yl)-2-methyl-2-[[[(2-methylcyclohexyl)oxy]carbonyl]amino]-1-oxopropyl]. amino $]$-3-phenylpropyl]amino $]$-4-oxo-, [1R-[1 $\alpha\left[R^{*}\left[\mathcal{S}^{*}(\boldsymbol{L})\right]\right]$, $2 \beta]]$ - (21c). Step 1. The method was as for 18b except using 15 c : yield 92%; IR (film) $3450-3200,2937,2860,2103,1700$, and $1660 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.91(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.00-1.80$ ($8 \mathrm{H}, \mathrm{m}$), 1.47 ($3 \mathrm{H}, \mathrm{s}$), 1.95-2.05 ($1 \mathrm{H}, \mathrm{m}$), $2.67(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 13.6 Hz), $2.75(1 \mathrm{H}, \mathrm{dd}, J=6.3$ and 13.6 Hz), $3.10-3.30$ (3 $\mathrm{H}, \mathrm{m}), 3.5(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}), 4.20-4.40(2 \mathrm{H}, \mathrm{m}), 5.04(1 \mathrm{H}$, s), $6.41(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 7.05-7.30$ $(7 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.17$ ($1 \mathrm{H}, \mathrm{s}$).

Step 2. The method was as for 21b, step 1, (above), except using 18c: yield $100 \% ; \mathrm{mp}=150-159^{\circ} \mathrm{C}$ (EtOAc); $[\alpha]^{20}{ }_{\mathrm{D}}=+20.8^{\circ}$ ($c=0.25, \mathrm{MeOH}$); IR (film) $3500-3200,2930,2857,1690,1657$, 1515 , and $1455 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.89(3 \mathrm{H}, \mathrm{s}), 1.00-1.80(8$ $\mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.95-2.05(1 \mathrm{H}, \mathrm{m}), 2.51(1 \mathrm{H}, \mathrm{dd}, J=7.1$ and 13.5 Hz$), 2.65-2.80(3 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 3.52$ ($1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}$), 4.10-4.25 ($1 \mathrm{H}, \mathrm{m}$), $4.30-4.40(1 \mathrm{H}, \mathrm{m}), 4.95$ $(1 \mathrm{H}, \mathrm{s}), 6.25(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz})$, $7.05-7.30(7 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{d}, J=$ $8.2 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{s})$.

Step 3. The method was as for 21 b , step 2 , except using amine from step 2 above: yield $82 \% ;\left[\alpha{ }^{20} \mathrm{D}=+77.8^{\circ}(c=0.063, \mathrm{MeOH})\right.$; IR (film) 3450-3200, 2931, 2858, 1728, 1691, and $1666 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.83(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.00-1.80(8 \mathrm{H}, \mathrm{m}), 1.32(3$ $\mathrm{H}, \mathrm{s}), 1.93-2.03(1 \mathrm{H}, \mathrm{m}), 2.65-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-3.20(1 \mathrm{H}, \mathrm{m})$, $3.27(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.37(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 3.78(3 \mathrm{H}$, s), 3.80-3.90 ($1 \mathrm{H}, \mathrm{m}$), 4.27-4.37 ($2 \mathrm{H}, \mathrm{m}$), 4.93 ($1 \mathrm{H}, \mathrm{s}$), 6.01 (1 $\mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$), $6.83(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{d}, J=$ $2.3 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 7.03-7.28(8 \mathrm{H}, \mathrm{m}), 7.36(1$ $\mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.21(1 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB})$ m/e 603.3 (7.7), 307.0 (25.4), 288.9 (20.1), 153.9 (100).

Step 4. The method was as for 21b, step 3, except using ester 20 from step 3 above: yield $73 \% ;[\alpha]^{20}{ }_{\mathrm{D}}=+74^{\circ}(c=0.42, \mathrm{MeOH})$; IR (film) $3500-3200,2933,2858,1695$, and $1662 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.00-1.80(11 \mathrm{H}, \mathrm{m}), 2.00-2.10$ ($1 \mathrm{H}, \mathrm{m}$), 2.60-2.75 ($2 \mathrm{H}, \mathrm{m}$), $2.95-3.05$ ($1 \mathrm{H}, \mathrm{m}$), 3.16 ($1 \mathrm{H}, \mathrm{d}, J$ $=14.5 \mathrm{~Hz}), 3.36(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.60-3.70(1 \mathrm{H}, \mathrm{m}), 4.25-$ $4.40(2 \mathrm{H}, \mathrm{m}), 6.72(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 6.90-7.30(9 \mathrm{H}, \mathrm{m}), 7.30$ ($1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$), $7.50(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$); MS (FAB) m / e 589.2 (13.1), 307.1 (66.7), 289.0 (42.5), 220.2 (100).

Butanoic Acid, 4-[[2-[[3-(1 H-Indol-3-yl)-2-methyl-2-[[[(2-methylcyclohexyl)oxy]carbonyl]amino]-1-oxopropyl]ami-no]-3-phenylpropyl]amino]-4-0x0-, [1R-[1 $\left.\left.\alpha\left[R^{*}\left(S^{*}\right)\right], 2 \beta\right]\right]$ (19c). A solution of the amine prepared in the synthesis of 21c, Step $2(0.30 \mathrm{~g}, 0.6 \mathrm{mmol})$, and succinic anhydride $(0.09 \mathrm{~g}, 0.90$ mmol) in $\mathrm{EtOAc}(30 \mathrm{~mL})$ was stirred for 16 h at room temperature. The solvent was removed in vacuo and the residue purified by chromatography to give the product (19c) ($0.216 \mathrm{~g}, 61 \%$): $[\alpha]^{20_{D}}$ $=+37.0^{\circ}(c=0.224, \mathrm{MeOH})$; IR (film) $3500-3200,2930,2859$, 1700 , and $1660 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.82(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$), $1.00-1.75(8 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.90-2.00(1 \mathrm{H}, \mathrm{m}), 2.35-2.70$
($6 \mathrm{H}, \mathrm{m}$), 2.85-3.00(1 H, m), $3.23(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 3.30(1$ $\mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}$), $3.45-3.65(1 \mathrm{H}, \mathrm{m}), 4.20-4.30(2 \mathrm{H}, \mathrm{m}), 5.26$ ($1 \mathrm{H}, \mathrm{s}$), $5.10-5.80(1 \mathrm{H}, \mathrm{br}), 6.15-6.25(1 \mathrm{H}, \mathrm{br}$ s), 6.90-7.20 (9 $\mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.72$ (1 H, s); MS (FAB) 592.1 (100), 461.2 (36.5), 433.6 (41.8), 251.1 (98.5), 234.1 (43.6), 203.1 (90.5).

Butanoic Acid, 4-[[2-[[3-(1B-Indol-3-yl)-2-methyl-2-[[[(2-methylcyclohezyl)oxy]carbonyl]amino]-1-ozopropyl]ami-no]-1-phenylethyl]amino]-4-0x0-, [1R-[1 $\left.\left.\alpha\left[R^{*}\left(R^{*}\right)\right], 2 \beta\right]\right]$ - (24c). Step 1. A solution of acid 15c ($0.34 \mathrm{~g}, 0.95 \mathrm{mmol}$) in EtOAc (20 mL) at $0^{\circ} \mathrm{C}$ was treated with pentafluorophenol ($0.175 \mathrm{~g}, 0.95$ mmol) followed by N, N^{\prime}-dicyclohexylcarbodiimide ($0.206 \mathrm{~g}, 1.00$ mmol). After 4 h , the reaction mixture was filtered and a solution of $(R)-N^{\beta}$ [(benzyloxy)carbonyl]- β-aminobenzeneethanamine ($0.324 \mathrm{~g}, 1.20 \mathrm{mmol}$) in EtOAc (5 mL) was added. This mixture was left for 16 h at room temperature and evaporated to dryness in vacuo, and the residue was purified by reverse-phase silica gel chromatography using $3: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as eluant to give the product $(0.55 \mathrm{~g}, 95 \%)$, which was used immediately in step 2: NMR (CDCl_{3}) $\delta 0.88(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.90-1.80(8 \mathrm{H}, \mathrm{m}), 1.50$ ($3 \mathrm{H}, \mathrm{m}$), $1.90-2.00(1 \mathrm{H}, \mathrm{m}), 3.23(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}$), 3.39 (1 $\mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}$, $3.30-3.45(1 \mathrm{H}, \mathrm{m}), 3.60-3.73(1 \mathrm{H}, \mathrm{m}), 4.20-$ $4.30(1 \mathrm{H}, \mathrm{m}), 4.70-4.80(1 \mathrm{H}, \mathrm{br}$ s), $5.06(2 \mathrm{H}, \mathrm{s}), 5.18(1 \mathrm{H}, \mathrm{s})$, 6.30-6.40 (1 H, m), 6.35-6.45 ($1 \mathrm{H}, \mathrm{br}$ s), $6.94(1 \mathrm{H}, \mathrm{s}), 7.08-7.38$ ($13 \mathrm{H}, \mathrm{m}$), $7.55(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$), $8.01(1 \mathrm{H}, \mathrm{s})$.

Step 2. A mixture of the benzylurethane from step $1(0.55 \mathrm{~g}$, 0.9 mmol) and $10 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$, in absolute $\mathrm{EtOH}(100 \mathrm{~mL})$, was put under an atmosphere of hydrogen at 50 psi and $30^{\circ} \mathrm{C}$ for 2 h . The mixture was then filtered and the filtrate evaporated to dryness to give $0.372 \mathrm{~g}(80 \%)$ of product, which was used immediately without purification in step 3: IR (film) 3500-3200, $2930,2860,1699$, and $1652 \mathrm{~cm}^{-1}$.

Step 3. A solution of the amine prepared in step $2(0.1 \mathrm{~g}, 0.21$ mmol) and succinic anhydride ($0.03 \mathrm{~g}, 0.30 \mathrm{mmol}$) in EtOAc (30 mL) was stirred at room temperature for 16 h . The solvent was removed under diminished pressure and the residue purified to give product $24 \mathrm{c}(0.093 \mathrm{~g}, 77 \%)$ as a white, noncrystalline solid: $[\alpha]^{20} \mathrm{D}=-33.5^{\circ}(c=0.81, \mathrm{MeOH})$; IR (film) $3500-3100,2933$, 2860,1714 , and $16661 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.88(3 \mathrm{H}, \mathrm{d}, J=6.4$ $\mathrm{Hz}), 1.00-1.35(4 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{s}), 1.40-1.80(4 \mathrm{H}, \mathrm{m}), 1.95^{-}$ $2.05(1 \mathrm{H}, \mathrm{m}), 2.40-2.65(4 \mathrm{H}, \mathrm{m}), 3.20-3.35(3 \mathrm{H}, \mathrm{m}), 3.75-3.85$ ($1 \mathrm{H}, \mathrm{m}$), 4.20-4.30 ($1 \mathrm{H}, \mathrm{m}$), 4.90-5.00 (1 H, m), 5.30-5.40 (1 H , br s), 6.40-6.55 (1 H , br s), $6.97(1 \mathrm{H}, \mathrm{s}), 7.05-7.30(8 \mathrm{H}, \mathrm{m}), 7.33$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.60(1 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}$ (FAB) m/e 577.2 (12.7), 447.2 (2.9), 323.0 (6.0), 217.0 (100).

2-Butenoic Acid, 4-[[2-[[3-(1H-Indol-3-yl)-2-methyl-2-[[[(2-methylcyclohexyl)oxy]carbonyl]amino]-1-oxopropyl]-amino]-1-phenylethyl]amino]-4-0x0-, [1R-[1 $\alpha R^{*}\left[R^{*}\right.$. (E) $]$],2 β]]- (26c). A solution of mono[2-(trimethylsilyl)ethyl] fumarate ($0.216 \mathrm{~g}, 1.00 \mathrm{mmol}$) in EtOAc (20 mL) at $0^{\circ} \mathrm{C}$ was treated with pentafluorophenol $(0.184 \mathrm{~g}, 1.00 \mathrm{mmol})$ and N, N^{\prime}. dicyclohexylcarbodiimide ($0.218 \mathrm{~g}, 1.06 \mathrm{mmol}$). After 2 h , the amine prepared in example 24 c , step $2(0.35 \mathrm{~g}, 0.74 \mathrm{mmol})$, was added and the resulting mixture left for 24 h at room temperature. The mixture was filtered, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, dried over MgSO_{4}, and evaporated to dryness in vacuo. The residue was partially purified using reverse-phase silica gel chromatography, using $3: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as eluant to give 0.4 g of material which was taken up in THF (20 mL) and treated with tetrabutylammonium fluoride in THF (3 mL of a $1 M$ solution) and left for 12 h at room temperature. The solvent was then removed under diminished pressure and the residue purified by chromatography to give product $26 \mathrm{c}(0.2 \mathrm{~g}, 47 \%)$ as a white, noncrystalline solid: $[\alpha]^{20_{D}}=+36.1^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3500-3000,2933,2858,1707$, and $1666 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.85$ $(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.00-1.75(8 \mathrm{H}, \mathrm{m}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.95-2.05$ $(1 \mathrm{H}, \mathrm{m}), 3.22(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.33(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz})$, $3.50-3.80(2 \mathrm{H}, \mathrm{m}), 3.50-4.20(1 \mathrm{H}, \mathrm{br}), 4.20-4.30(1 \mathrm{H}, \mathrm{m}), 5.10^{-}$ $5.20(1 \mathrm{H}, \mathrm{m}), 5.30(1 \mathrm{H}, \mathrm{s}), 6.60-6.80(1 \mathrm{H}, \mathrm{br}$ s), $6.79(1 \mathrm{H}, \mathrm{d}$, $J=15.4 \mathrm{~Hz}), 6.90-7.35(10 \mathrm{H}, \mathrm{m}), 7.50(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$, 7.75-7.85 ($1 \mathrm{H}, \mathrm{m}$), 8.59 (1 H , s); MS (FAB) m/e 575.1 (54.2), 435.1 (28.7), 417.2 (46.0), 308.2 (34.5), 288.9 (100), 219.1 (48.7).
trang-(\pm)- α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]carbo-nyl]-L-tryptophan, Methyl Ester (17d). The method was as for 17a except using L- α-methyltryptophan: yield $=90 \%$; $[\alpha]^{20} \mathrm{D}$ $=-34^{\circ}(c=1, \mathrm{MeOH})$; IR (film) 3240-3480, 2932, 2858,
$1740,1698,1504$, and $1457 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.92(1.5 \mathrm{H}, \mathrm{d}$, $J=6.5 \mathrm{~Hz}), 0.93(1.5 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.00-1.62(6 \mathrm{H}, \mathrm{m}), 1.65$ (1.5 H, s), $1.67(1.5 \mathrm{H}$, s), $1.70-1.80(2 \mathrm{H}, \mathrm{m}), 1.98-2.08(1 \mathrm{H}, \mathrm{m})$, $3.35(0.5 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.38(0.5 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.45-3.60$ ($1 \mathrm{H}, \mathrm{m}$), $3.67(3 \mathrm{H}, \mathrm{s}), 4.25-4.40(1 \mathrm{H}, \mathrm{m}), 5.25-5.40(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 6.94-6.98 ($1 \mathrm{H}, \mathrm{m}$), 7.05-7.20 ($2 \mathrm{H}, \mathrm{m}$), $7.33(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$), 7.54 ($1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$), 8.09 ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 373.2 (8.7), 233.1 (63.3), 216.1 (100).
trans-(土)- α-Methyl- N-[[(2-methylcyclohezyl)ozy]car-bonyl]-L-tryptophan (15d). The method was as for 15a except using L- α-methyl tryptophan: yield $97 \% ;[\alpha]^{20} \mathrm{D}=-18^{\circ}(c=1$, MeOH); IR (film), 3500-3200, 3200-2400, 2933, 1750-1600 (br), 1505 , and $1457 \mathrm{~cm}^{-1}$; NMR (DMSO- d_{6}) $\delta 0.87(1.5 \mathrm{H}, \mathrm{d}, J=6.5$ $\mathrm{Hz}), 0.91(1.5 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.95-1.30(4 \mathrm{H}, \mathrm{m}), 1.27(1.5 \mathrm{H}$, s), 1.28 (1.5 H, s), $1.35-1.50(1 \mathrm{H}, \mathrm{m}), 1.53-1.63(1 \mathrm{H}, \mathrm{m}), 1.65-$ $1.75(2 \mathrm{H}, \mathrm{m}), 1.85-2.00(1 \mathrm{H}, \mathrm{m}), 3.09(0.5 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz})$, $3.13(0.5 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 3.30-3.45(1 \mathrm{H}, \mathrm{m}), 4.13-4.28(1 \mathrm{H}$, $\mathrm{m}), 6.80-7.05(4 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}), 10.90(1 \mathrm{H}, \mathrm{s}), 12.30-12.45(1 \mathrm{H}, \mathrm{br}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / e$ 359.2 (14.8), 269.2 (11.8), 263.1 (24), 244.9 (27.1), 219.1 (93.4), 202.1 (100).
(1S-trans)- α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]car-bonyl]-L-tryptophan, Methyl Ester (17e). The method was as for $17 b$ except using $L-\alpha$-methyltryptophan: yield $86 \% ;[\alpha]^{20} D$ $=-11.3^{\circ}(c=1, \mathrm{MeOH}$); IR (film) 3500-3300, 2937, 1735, 1694, 1502 , and $1453 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.93(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$), $1.00-1.80(8 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.98-2.08(1 \mathrm{H}, \mathrm{m}), 3.39(1 \mathrm{H}$, $\mathrm{d}, J=14.4 \mathrm{~Hz}$), $3.45-3.58(1 \mathrm{H}$, br d), $3.67(3 \mathrm{H}, \mathrm{s}), 4.25-4.38(1$ $\mathrm{H}, \mathrm{m}), 5.30-5.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{s}), 7.05-7.20(2 \mathrm{H}, \mathrm{m}), 7.34$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.06(1 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}$ (FAB) $m / e 373.2$ (60.6), 233.1 (89.7), 216.1 (100).
(1S-trans)- α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]car-bonyl]-L-tryptophan (15e). The method was as for $15 b$ except using L- α-methyltryptophan: yield $95 \% ;[\alpha]^{20} \mathrm{D}=+6.8^{\circ}(c=1$, MeOH); IR (film) $400-2800,1708$ (br), 1502 , and $1455 \mathrm{~cm}^{-1}$; NMR (DMSO-d d_{6}) $0.87(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}$), $0.95-1.77(8 \mathrm{H}, \mathrm{m}), 1.27$ (3 H, s), 1.88-2.00 ($1 \mathrm{H}, \mathrm{m}$), $3.10(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}$), 3.39 (1 $\mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}), 4.15^{-4.25}(1 \mathrm{H}, \mathrm{m}), 6.85-7.06(4 \mathrm{H}, \mathrm{m}), 7.31$ ($1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$), $7.45(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 10.90(1 \mathrm{H}, \mathrm{s})$, 12.39-12.45 (1 H, br); MS (FAB) m/e 359.0 (48.1), 313.0 (17.1), 263.0 (20.9), 219.2 (87.9), 202.0 (100).
(1R-trans)- α-Methyl- N-[[(2-methylcyclohexyl)oxy]car-bonyl]-L-tryptophan, Methyl Ester (17f). The method was as for 17 c except using $\mathrm{L}-\alpha$-methyltryptophan: yield $82 \% ;\left[\alpha{ }^{20} \mathrm{D}\right.$ $=-53.9^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3500,3300,2934,1738,1697$, 1502 , and $1457 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$, $1.00-1.80(8 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{s}), 2.00-2.10(1 \mathrm{H}, \mathrm{m}), 3.35(1 \mathrm{H}$, $\mathrm{d}, J=14.4 \mathrm{~Hz}), 3.45-3.06(1 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}, \mathrm{s}), 4.25-4.40(1 \mathrm{H}$, $\mathrm{m}), 5.30-5.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.05-7.20$ (2 $\mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.09$ ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 373.2 (100), 259.1 (9.7), 233.1 (66.1), 216.1 (46.5).
(1R-trans)- α-Methyl-N-[[(2-methylcyclohexyl)oxy]car-bonyl]-L-tryptophan (15f). The method was as for 15c except using $L-\alpha$-methyltryptophan: yield $96 \% ;[\alpha]^{20} \mathrm{D}=-42^{\circ}(c=1$, MeOH); IR (film) $4000-2800,1708 \mathrm{br}, 1505$, and $1475 \mathrm{~cm}^{-1}$; NMR (DMSO-d ${ }_{6}$) $\delta 0.91(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 0.97-1.77(8 \mathrm{H}, \mathrm{m}), 1.28$ ($3 \mathrm{H}, \mathrm{s}$), $1.85-1.95$ ($1 \mathrm{H}, \mathrm{m}$), 3.13 ($1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}$), 3.35 (1 $\mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}), 4.15-4.25(1 \mathrm{H}, \mathrm{m}), 6.80-7.06(4 \mathrm{H}, \mathrm{m}), 7.31$ ($1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$), $7.45(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 10.90(1 \mathrm{H}, \mathrm{s})$, 12.30-12.50 (1 H , br); MS (FAB) m/e 359.0 (45.0), 311.9 (13.8), 263.0 (21.9), 244.9 (12.5), 219.0 (76.9), 202.1 (100).
β-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]-carbonyl]-D-tryptophyl]-L-3-(phenylmethyl)-, Phenylmethyl Ester (ring centers are trang-(\pm)) (27 g). A solution of $15 a(1.074 \mathrm{~g}, 3.00 \mathrm{mmol})$ and pentafluorophenol $(0.552 \mathrm{~g}, 3.00$ mmol) in EtOAc $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with N, N^{\prime}. dicylohexylcarbodiimide ($0.649 \mathrm{~g}, 3.15 \mathrm{mmol}$). After 4 h the mixture was filtered and benzyl (\mathbf{S})- β-aminobenzenebutanoate $(0.888 \mathrm{~g}, 3.30 \mathrm{mmol})$ was added to the filtrate. This mixture was left for a further 16 h , filtered, and washed with $1 \mathrm{M} \mathrm{HCl}(2 \times$ $30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, saturated NaHCO_{3} solution ($2 \times 30 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase was evaporated to dryness in vacuo and the residue purified by chromatography to give the product 27 g , which was recrystallized from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1.57 \mathrm{~g}, 86 \%):[\alpha]^{20} \mathrm{D}=+26^{\circ}\left(c=1, \mathrm{CHCl}_{3}\right)$;

IR (film) 3500-3200, 2931, 2859, 1723, 1660, 1496, and $1456 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.89(1.5 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.91(1.5 \mathrm{H}, \mathrm{d}, J=$ $6.5 \mathrm{~Hz}), 1.00-1.35(4 \mathrm{H}, \mathrm{m}), 1.40-1.50(1 \mathrm{H}, \mathrm{m}), 1.45(3 \mathrm{H}, \mathrm{s})$, 1.55-1.75 ($3 \mathrm{H}, \mathrm{m}$), 1.95-2.05 ($1 \mathrm{H}, \mathrm{m}$), 2.25-2.45 ($2 \mathrm{H}, \mathrm{m}$), 2.64 $(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 13.5 Hz), $2.82(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and 13.6 $\mathrm{Hz}), 3.25(0.5 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}), 3.27(0.5 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz})$, $3.40(0.5 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 3.41(0.5 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}), 4.22-4.32$ ($1 \mathrm{H}, \mathrm{m}$), 4.35-4.50 ($1 \mathrm{H}, \mathrm{m}$), $5.02(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}$), 5.10 (1 $\mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 5.11(1 \mathrm{H}, \mathrm{s}), 6.85-7.40(15 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}$, $\mathrm{d}, J=7.7 \mathrm{~Hz}$), 8.02 (1 H , s); MS (FAB) m/e 610.3 (48.6), 480.3 (28.2), 470.3 (40.6), 452.2 (28.3), 339.2 (27.1), 270.0 (68.5), 220.1 (100).
β-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[(2-methylcyclohexyl)oxy]-carbonyl]-D-tryptophyl]-L-3-(phenylmethyl)- (ring centers are trang-(土)) (28 g). A solution of the benzyl ester $27 \mathrm{~g}(1.1 \mathrm{~g}$, 1.80 mmol) in absolute EtOH (100 mL) was treated with 10% $\mathrm{Pd} / \mathrm{C}(0.11 \mathrm{~g}, 10 \% \mathrm{w} / \mathrm{w})$ and put under an atmosphere of hydrogen at 50 psi and $30^{\circ} \mathrm{C}$ for 4 h . This mixture was then filtered and evaporated to dryness in vacuo. The residue was purified by chromatography to give product $28 \mathrm{~g}(0.8 \mathrm{~g}, 86 \%)$ as white needles recrystallized from $\mathrm{MeOH} .[\alpha]^{20} \mathrm{D}=+15.6^{\circ}(c=0.5, \mathrm{MeOH})$; IR (film) $3500-3200,2932,2858,1711,1659,1496$, and $1456 \mathrm{~cm}^{-1}$; NMR (DMSO-d ${ }_{6}$) $\delta 0.84(1.5 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.90(1.5 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}), 1.18(3 \mathrm{H}, \mathrm{s}), 0.95-1.45(5 \mathrm{H}, \mathrm{m}), 1.50-2.85(2 \mathrm{H}, \mathrm{m})$, 3.05-3.17 (1 H, m), 3.23-3.38 ($1 \mathrm{H}, \mathrm{m}$), 4.10-4.30 ($2 \mathrm{H}, \mathrm{m}$), 6.07 ($1 \mathrm{H}, \mathrm{s}$), 6.75-7.05 ($3 \mathrm{H}, \mathrm{m}$), $7.10-7.30(6 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J$ $=7.7 \mathrm{~Hz}), 7.56(0.5 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.60(0.5 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $10.80(1 \mathrm{H}, \mathrm{s}), 12.20-12.30(1 \mathrm{H}, \mathrm{br}$ s); MS (FAB) m/e 520.3 (100), 390.1 (17.2), 380.1 (27.5), 362.2 (20.6), 201.8 (16.0).
β-Alanine, N-[α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]. carbonyl]-D-tryptophyl]-L-3-(phenylmethyl)-, Phenylmethyl Ester, (1S-trans)- (27h). The method was as for 27gexcept using 15b: yield 90%; $[\alpha]^{20} \mathrm{D}=+37.7^{\circ}\left(c=0.77, \mathrm{CHCl}_{3}\right)$; IR (film) $2931,2865,1721,1658,1496$, and $1456 \mathrm{~cm}^{-1} ;$ NMR (DMSO$\left.d_{6}\right) \delta 0.90(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 1.00-1.75(8 \mathrm{H}, \mathrm{m}), 1.17(3 \mathrm{H}, \mathrm{s})$, $1.85-1.95(1 \mathrm{H}, \mathrm{m}), 2.41(1 \mathrm{H}, \mathrm{dd}, J=15.7$ and 6.5 Hz$), 2.47(0.5$ $\mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$), $2.50-2.55$ (0.5 H , masked by DMSO peaks), $2.67(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and 13.6 Hz), $2.79(1 \mathrm{H}, \mathrm{dd}, J=7.7$ and $13.5 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}$), 4.10-4.20 ($1 \mathrm{H}, \mathrm{m}$), 4.25-4.40 ($1 \mathrm{H}, \mathrm{m}$), 5.04 ($1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}$), $5.08(1 \mathrm{H}, \mathrm{d}, J=12.9 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{s}), 6.85-7.05$ $(2 \mathrm{H}, \mathrm{m}), 7.10-7.40(11 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.66(1$ $\mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$), $10.83(1 \mathrm{H}, \mathrm{s})$; MS (FAB) $m / e 610.0(8.7), 220.0$ (10.3), 173.0 (54.8), 130 (100).
β-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]-carbonyl]-D-tryptophyl]-L-3-(phenylmethyl)-, (1S-trans)(28h). The method was as for 28 g except using 27 h : yield 77%; $[\alpha]^{20}{ }_{\mathrm{D}}=+30^{\circ}(c=0.5, \mathrm{MeOH})$; IR (film) $3500-3000,2922,2855$, 1695, 1651, 1494, and $1454 \mathrm{~cm}^{-1}$; NMR (DMSO-d d_{6}), $\delta 0.90(3 \mathrm{H}$, $\mathrm{d}, J=6.2 \mathrm{~Hz}), 1.00-1.75(8 \mathrm{H}, \mathrm{m}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.85-1.95(1 \mathrm{H}$, $\mathrm{m}), 2.25(1 \mathrm{H}$, dd, $J=6.6$ and 16.0 Hz), $2.38(1 \mathrm{H}, \mathrm{dd}, J=5.8$ and 16.1 Hz), $2.70(1 \mathrm{H}, \mathrm{dd}, J=6.3$ and 13.4 Hz$), 2.80(1 \mathrm{H}$, dd, $J=7.6$ and 13.5 Hz), $3.13(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{d}, J$ $=14.6 \mathrm{~Hz}), 4.10-4.33(2 \mathrm{H}, \mathrm{m}), 6.70(1 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{s}), 6.85-$ $7.05(12 \mathrm{H}, \mathrm{m}), 7.15-7.30(6 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.61$ ($1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$), $10.80(1 \mathrm{H}, \mathrm{s}), 12.10-12.40(1 \mathrm{H}, \mathrm{br})$.
β-Alanine, $\quad \boldsymbol{N}$-[α-Methyl- \boldsymbol{N}-[[(2-methylcyclohezyl)oxy]-carbonyl]-D-tryptophyl]-L-3-(phenylmethyl)-, Phenylmethyl Ester, (1R-trans). (27i). The method was as for 27 g except using 15c: yield 97%; $[\alpha]^{20} \mathrm{D}=7.6^{\circ}\left(c=1, \mathrm{CHCl}_{3}\right.$); IR (film) $2933,2865,1722,1659,1496$, and $1456 \mathrm{~cm}^{-1}$; NMR (DMSO- d_{6}) $\delta 0.84(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 0.90-1.75(8 \mathrm{H}, \mathrm{m}), 1.16(3 \mathrm{H}, \mathrm{s})$, 1.88-1.98 ($1 \mathrm{H}, \mathrm{m}$), $2.39(1 \mathrm{H}, \mathrm{dd}, J=6.8$ and 15.7 Hz), 2.48 (1 H , dd, $J=6.2$ and 16.1 Hz , 2.67 ($1 \mathrm{H}, \mathrm{dd}, J=6.3$ and 13.4 Hz), 2.77 ($1 \mathrm{H}, \mathrm{dd}, J=7.6$ and 13.5 Hz), 3.08 ($1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}$), $3.32(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 4.12-4.40(2 \mathrm{H}, \mathrm{m}), 5.04(1 \mathrm{H}, \mathrm{d}, J=$ 12.7 Hz), $5.08(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}$), $6.71(1 \mathrm{H}, \mathrm{s}), 6.85-7.40(14$ $\mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 10.85$ ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 610.0 (13.3), 480.0 (10.1), 469.9 (14.2), 220.0 (12.2), 173.0 (68.6), 130.0 (100).
$\boldsymbol{\beta}$-Alanine, \boldsymbol{N} - [α-Methyl- \boldsymbol{N}-[(2-methylcyclohexyl)oxy]-carbonyl]-D-tryptophyl]-L-3-(phenylmethyl)-, (1R-trans)(28i). The method was as for 28 g except using 27i: yield 73\%; $[\alpha]^{20} \mathrm{D}=-5.4^{\circ}(c=0.5, \mathrm{MeOH})$; IR (film) $3500-3000,2927,2867$, $1704,1655,1495$, and $1454 \mathrm{~cm}^{-1}$; NMR (DMSO- d_{6}) $\delta 0.84(3 \mathrm{H}$, $\mathrm{d}, J=6.4 \mathrm{~Hz}), 0.95-1.75(8 \mathrm{H}, \mathrm{m}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.85-1.95(1 \mathrm{H}$,
m), 2.24 (1 H , dd, $J=7.0$ and 15.9 Hz), 2.36 ($1 \mathrm{H}, \mathrm{dd}, J=5.6$ and 16.1 Hz), $2.70(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and 13.6 Hz$), 2.78(1 \mathrm{H}, \mathrm{dd}$, $J=7.5$ and 13.6 Hz), $3.09(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{d}, J$ $=14.4 \mathrm{~Hz}), 4.10-4.35(2 \mathrm{H}, \mathrm{m}), 6.68(1 \mathrm{H}, \mathrm{s}), 6.85(1 \mathrm{H}$, s), $6.86-$ $7.05(2 \mathrm{H}, \mathrm{m}), 7.10-7.30(6 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.56$ ($1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$), $10.80(1 \mathrm{H}, \mathrm{s}), 12.00-12.40(1 \mathrm{H}, \mathrm{br})$; MS (FAB) m / e.
β-Alanine, N-[α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]-carbonyl]-L-tryptophyl]-D-3-(phenylmethyl)-, Phenylmethyl Ester (ring centers are trans-(土)) (27j). The method was as for 27 g except using 15 d and benzyl (R)- β-aminobenzenebutanoate: yield $84 \% ;[\alpha]^{20}{ }_{D}=-24.8\left(c=0.5, \mathrm{CHCl}_{3}\right)$; IR (film) $3500-3200,2925,1720,1658,1495$, and $1456 \mathrm{~cm}^{-1}$; NMR (CHCl_{3}) $\delta 0.89(1.5 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 0.92(1.5 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$), $1.00-1.35(4 \mathrm{H}, \mathrm{m}), 1.40-1.50(1 \mathrm{H}, \mathrm{m})$, 1.46 ($3 \mathrm{H}, \mathrm{s}$), $1.55-1.75$ ($3 \mathrm{H}, \mathrm{s}$) $1.95-2.05(1 \mathrm{H}, \mathrm{m}), 2.25-2.45$ ($2 \mathrm{H}, \mathrm{m}$), 2.65 (1 H , dd, $J=8.4$ and 13.6 Hz), $2.82(1 \mathrm{H}, \mathrm{dd}, J=6.3$ and 13.5 Hz$), 3.24$ $(0.5 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 3.26(0.5 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 3.40(0.5 \mathrm{H}$, $\mathrm{d}, J=14.9 \mathrm{~Hz}), 3.41(0.5 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 4.22-4.32(1 \mathrm{H}, \mathrm{m})$, $4.35-4.50(1 \mathrm{H}, \mathrm{m}), 5.03(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{s}), 5.11$ ($1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}$), 6.85-7.40 ($15 \mathrm{H}, \mathrm{m}$), $7.58(1 \mathrm{H}, \mathrm{d}, J=7.8$ Hz), 8.01 ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 610.3 (29), 480.2 (23.8), 470.2 (29.4), 452.2 (20.4), 339.1 (26.9), 269.8 (61.5), 263.0 (53), 248.1 (37.8), 219.9 (100), 206.1 (49.2).
β-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]-carbonyl]-L-tryptophyl]-D-3-(phenylmethyl). (ring mixtures are trans-(\pm)) (28j). The method was as for 28 g except using 27j: yield 78\%; $[\alpha]^{20}{ }_{\mathrm{D}}=-11.8^{\circ}(c=0.5, \mathrm{MeOH}$); IR (film) $3500-3200,2931,1713,1660,1496$, and $1456 \mathrm{~cm}^{-1}$; NMR (DMSO$\left.d_{6}\right) \delta 0.84(1.5 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.90(1.5 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}$), 0.95-1.45 ($5 \mathrm{H}, \mathrm{m}$), 1.18 ($3 \mathrm{H}, \mathrm{s}$), 1.50-1.75 ($3 \mathrm{H}, \mathrm{m}$), 1.85-1.97 ($1 \mathrm{H}, \mathrm{m}$), 2.20-2.40 ($2 \mathrm{H}, \mathrm{m}$), 2.65-2.85 ($2 \mathrm{H}, \mathrm{m}$), $3.05-3.17$ (1 H , m), 3.23-3.38 ($1 \mathrm{H}, \mathrm{m}$), 4.10-4.30 ($2 \mathrm{H}, \mathrm{m}$), 6.67 ($1 \mathrm{H}, \mathrm{s}$), 6.75-7.05 $(3 \mathrm{H}, \mathrm{m}), 7.10-7.30(6 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.55(0.5$ $\mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.59(0.5 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 10.80(1 \mathrm{H}, \mathrm{s})$, 12.15-12.35 (1 H, br); MS (FAB) m/e 520.3 (100), 380.2 (17.4), 362.1 (12.3), 249.1 (9.9).
β-Alanine, N-[α-Methyl- N-[[(2-methylcyclohexyl)oxy]-carbonyl]-L-tryptophyl]-D-3-(phenylmethyl)-, Phenylmethyl Ester, (1S-trans)-(27k). The method was as for 27i except using 15e: yield 91%; $[\alpha]^{20} \mathrm{D}=-7.4^{\circ}\left(c=1, \mathrm{CHCl}_{3}\right)$; IR (film) 2927, 1721, 1657, and $1496 \mathrm{~cm}^{-1}$; NMR (DMSO- d_{6}) $\delta 0.84(3 \mathrm{H}$, $\mathrm{d}, J=6.5 \mathrm{~Hz}), 0.90-1.75(8 \mathrm{H}, \mathrm{m}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.85-1.95(1 \mathrm{H}$, $\mathrm{m}), 2.38(1 \mathrm{H}, \mathrm{dd}, J=6.9$ and 15.8 Hz), $2.45(0.5 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$), $2.47-2.52(0.5 \mathrm{H}$, obscured by DMSO peaks), $2.66(1 \mathrm{H}, \mathrm{dd}, J=$ 6.4 and 13.5 Hz), $2.77(1 \mathrm{H}, \mathrm{dd}, J=7.4$ and 13.4 Hz$), 3.07(1 \mathrm{H}$, $\mathrm{d}, J=14.5 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 4.10-4.40(2 \mathrm{H}, \mathrm{m})$, $5.04(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 6.71(1 \mathrm{H}$, s), $6.85(1 \mathrm{H}, \mathrm{s}), 6.86-740(13 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$, $7.62(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 10.83(1 \mathrm{H}, \mathrm{s}) ;$ MS (FAB) m/e $610.0(5.3)$, 184 (13.8), 173.0 (53.9), 130 (100).
β-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]-carbonyl]-L-tryptophyl]-D-3-(phenylmethyl)-, (1S-trans)(28k). The method was as for 28g except using 27k: yield 62%; $[\alpha]^{20_{D}}=+5.6^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3450-3000,2927,2857$, $1710,1658,1495$, and $1456 \mathrm{~cm}^{-1}$; NMR (DMSO- d_{6}) $\delta 0.84(3 \mathrm{H}$, $\mathrm{d}, J=6.5 \mathrm{~Hz}), 0.95-1.75(8 \mathrm{H}, \mathrm{m}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.85-1.95(1 \mathrm{H}$, m), $2.24(1 \mathrm{H}, \mathrm{dd}, J=6.9$ and 16 Hz), $2.36(1 \mathrm{H}, \mathrm{dd}, J=5.8$ and $15.9 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and 13.6 Hz$), 2.78(1 \mathrm{H}, \mathrm{dd}, J=$ 7.7 and 13.7 Hz), $3.09(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}$), $3.32(1 \mathrm{H}, \mathrm{d}, J=14.4$ $\mathrm{Hz}), 4.10-4.35(2 \mathrm{H}, \mathrm{m}), 6.68(1 \mathrm{H}, \mathrm{s}), 6.85(1 \mathrm{H}, \mathrm{s}), 6.86-7.05(2$ $\mathrm{H}, \mathrm{m}), 7.10-7.30(6 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.55(1 \mathrm{H}$, $\mathrm{d}, J=8.6 \mathrm{~Hz}), 10.79(1 \mathrm{H}, \mathrm{s}), 12.22(1 \mathrm{H}, \mathrm{s})$.
$\boldsymbol{\beta}$-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]-carbonyl]-L-tryptophyl]-D-3-(phenylmethyl)-, Phenylmethyl Ester, (1R-trans)- (271). The method was as for 27j except using 15f: yield 96%; $[\alpha]^{20}$ D $=-36.9^{\circ}\left(c=1, \mathrm{CHCl}_{3}\right)$; IR (film) $2930,2859,1722,1658,1496$, and $1456 \mathrm{~cm}^{-1} ;$ NMR (CDCl_{3}) $\delta 0.92$ ($3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$), $0.95-1.25(8 \mathrm{H}, \mathrm{m}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.95-2.05$ ($1 \mathrm{H}, \mathrm{m}$), 2.27-2.45 ($2 \mathrm{H}, \mathrm{m}$), $2.65(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and 13.5 Hz), 2.82 ($1 \mathrm{H}, \mathrm{dd}, J=6.4$ and 13.5 Hz), $3.27(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}$), $3.40(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}), 4.20-4.50(2 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{d}, J=$ $12.2 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{s}), 5.11(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{d}$, $J=2.3 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.05-7.40(13 \mathrm{H}, \mathrm{m}), 7.59$ ($1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$), $7.99(1 \mathrm{H}, \mathrm{s})$; MS (FAB) m/e 610.0 (21.6), 470.0 (13.9), 173.0 (58), 130.0 (100).
β-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[[(2-methylcyclohexyl)oxy]-carbonyl]-L-tryptophyl]-D-3-(phenylmethyl)-, (1R-trans)(281). The method was as for 28 g except using 271: yield 67%; $[\alpha]^{20}{ }_{\mathrm{D}}=-28.8^{\circ}(c=0.5, \mathrm{MoOH})$; IR (film) $2922,1711,1664,1515$, and $1454 \mathrm{~cm}^{-1}$; NMR (DMSO-d $\left.d_{6}\right) \delta 0.90(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}$), 1.00-1.75 (8 H, m), 1.18 (3 H, s), 1.85-1.95 ($1 \mathrm{H}, \mathrm{m}$), 2.27 (1 H , dd, $J=6.7$ and 15.9 Hz), $2.38(1 \mathrm{H}$, dd, $J=5.7$ and 16 Hz), 2.70 ($1 \mathrm{H}, \mathrm{dd}, J=6.4$ and 13.5 Hz), $2.80(1 \mathrm{H}, \mathrm{dd}, J=7.5$ and 13.5 Hz), $3.13(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 4.10-$ $4.30(2 \mathrm{H}, \mathrm{m}), 6.70(1 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{s}), 6.85-7.05(2 \mathrm{H}, \mathrm{m})$, $7.15-7.30(6 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}), 10.80(1 \mathrm{H}, \mathrm{s}), 12.15-12.40(1 \mathrm{H}, \mathrm{br})$.
$\boldsymbol{\beta}$-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[(tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2-yl-oxy)carbonyl]-D-tryptophyl]-L-3-(phenylmethyl)-, Phenylmethyl Ester (29m). A solution of [(2-adamantyloxy)carbonyl]-α-methyl-D-tryptophan ($2.0 \mathrm{~g}, 5.05 \mathrm{mmol}$) and pentafluorophenol ($0.93 \mathrm{~g}, 5.05 \mathrm{mmol}$) in EtOAc (30 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with N, N^{\prime}-dicyclohexylcarbodiimide ($1.09 \mathrm{~g}, 5.30 \mathrm{mmol}$). This mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and filtered and the filtrate treated with benzyl (S) $\boldsymbol{\beta}$-aminobenzenebutanoate (1.30 $\mathrm{g}, 4.8 \mathrm{mmol}$) and left at room temperature for 16 h . This mixture was then filtered and the filtrate evaporated to dryness in vacuo and the residue purified by chromatography to give the product as a white crystalline solid ($2.1 \mathrm{~g}, 68 \%$): $[\alpha]^{20} \mathrm{D}=+16.3^{\circ}(c=0.5$, MeOH); IR (film) 3500-3200, 2911, 2857, 1723 (br), and 1659 cm^{-1}; NMR (CDCl_{3}) $\delta 1.44(3 \mathrm{H}, \mathrm{s}), 1.50(1 \mathrm{H}, \mathrm{s}), 1.54(1 \mathrm{H}, \mathrm{s})$, $1.70-2.05(12 \mathrm{H}, \mathrm{m}), 2.40(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 2.67(1 \mathrm{H}, \mathrm{dd}, J$ $=8.1$ and 13.5 Hz), $2.82(1 \mathrm{H}, \mathrm{dd}, J=6.5$ and 13.6 Hz), $3.29(1$ $\mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}$), $3.34(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}$), $4.40-4.50(1 \mathrm{H}$, $\mathrm{m}), 4.81(1 \mathrm{H}, \mathrm{s}), 5.03(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=12$ $\mathrm{Hz}), 5.14(1 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 7.05-7.40(13 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{s})$; MS (FAB) $m / e 648.3$ (100), 518.2 (27.6), 452.8 (21.4), 307.1 (22.4), 270.1 (36.8), 220.1 (39.3).
β-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[(tricyclo[3.3.1.13,7]dec-2-yl-oxy)carbonyl]-D-tryptophyl]-L-3-(phenylmethyl)- (30m). A solution of the benzyl ester $29 \mathrm{~m}(2.0 \mathrm{~g}, 3.1 \mathrm{mmol})$ in EtOH (100 $\mathrm{mL})$ was treated with $10 \% \mathrm{Pd} / \mathrm{C}(0.2 \mathrm{~g}, 10 \% \mathrm{w} / \mathrm{w})$ and put under an atmosphere of hydrogen at a pressure of 50 psi at $30^{\circ} \mathrm{C}$ for 8 h . This mixture was filtered, the filtrate evaporated to dryness in vacuo, and the residue purified by chromatography to give the acid 30 m as a white noncrystalline solid ($1.5 \mathrm{~g}, 87 \%$): $[\alpha]^{20} \mathrm{D}=$ $+18.7^{\circ}\left(c=0.15 \mathrm{CHCl}_{3}\right)$; IR (film) $3500-3200,2908,2856,1708$, and $1658 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.50(4 \mathrm{H}, \mathrm{s}), 1.54(1 \mathrm{H}, \mathrm{s}), 1.70-$ $2.05(2 \mathrm{H}, \mathrm{m}), 2.27-2.34(2 \mathrm{H}, \mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=8.1$ and 13.5 $\mathrm{Hz}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=6.3$ and 13.6 Hz$), 3.23(1 \mathrm{H}, \mathrm{d}, J=14.7$ $\mathrm{Hz}), 3.43(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{m}), 4.81(1 \mathrm{H}, \mathrm{s}), 5.41$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.87-7.31(10 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.50$ ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 558.4 (100).
β-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[(tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2-yl-oxy)carbonyl]-D-tryptophyl]-D-3-(phenylmethyl)-, Phenylmethyl Ester (29n). The method was as for 29m except using benzyl (R) - β-aminobenzenebutanoate: yield $72 \% ;[\alpha]^{20}{ }_{D}=+32.6^{\circ}$ ($c=1, \mathrm{MeOH}$); IR (film) $3500-3200,2909,2855,1723$, and 1660 cm^{-1}; NMR (CDCl_{3}) $\delta 1.49(4 \mathrm{H}, \mathrm{s}), 1.59(1 \mathrm{H}, \mathrm{s}), 1.65-1.85(8 \mathrm{H}$, m), 1.90-2.05 ($4 \mathrm{H}, \mathrm{m}$), $2.25(1 \mathrm{H}$, dd, $J=5.6$ and 16.3 Hz), 2.38 $(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and 16.3 Hz), 2.68 ($1 \mathrm{H}, \mathrm{dd}, J=8$ and 13.6), $2.82(1 \mathrm{H}, \mathrm{dd}, J=6.3$ and 13.6 Hz), $3.24(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}$), $3.39(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 4.35-4.45(1 \mathrm{H}, \mathrm{m}), 4.80(1 \mathrm{H}, \mathrm{s}), 5.03$ $(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{s})$, $6.83-6.86(1 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 7.00-7.40(13 \mathrm{H}, \mathrm{m})$, 7.57 ($1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$), 8.11 ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 648.5 (3.7), 270.3 (12.5), 184.1 (30.4), 173.3 (32.7), 135.3 (100).
$\boldsymbol{\beta}$-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[(tricyclo[3.3.1.1 ${ }^{\text {s,7 }}$] $]$ dec- $\mathbf{2 - y l}$ -oxy)carbonyl]-D-tryptophyl]-D-3-(phenylmethyl)- (30n). The method was as for 30m except using 29n: yield 61%; $[\alpha]^{20}{ }^{D}=$ $+36.0^{\circ}(c=1, \mathrm{MeOH}) ; 3450-3200,2908,2854,1711$, and 1659 cm^{-1}; NMR (CDCl_{3}) $\delta 1.50(1 \mathrm{H}, \mathrm{s}), 1.53(4 \mathrm{H}, \mathrm{s}), 1.70-2.00(12$ $\mathrm{H}, \mathrm{m}), 2.25-2.40(2 \mathrm{H}, \mathrm{m}), 2.65-2.85(2 \mathrm{H}, \mathrm{m}), 3.22(1 \mathrm{H}, \mathrm{d}, J=$ 14.7 Hz), $3.40(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}$), $4.35-4.45(1 \mathrm{H}, \mathrm{m}), 4.80(1$ $\mathrm{H}, \mathrm{s}), 5.41(1 \mathrm{H}, \mathrm{s}), 6.70-6.80(1 \mathrm{H}, \mathrm{m}), 6.91(1 \mathrm{H}, \mathrm{s}), 7.05-7.27$ $(2 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 8.28$ ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 558.3 (22.2), 445.2 (26.7), 444.2 (100), 418.2 (71.9), 307.2 (32.6).
$\boldsymbol{\beta}$-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[(tricyclo[3.3.1.1 ${ }^{\text {3,7 }}$] $]$ dec-2-yl-oxy)carbonyl]-L-tryptophyl]-L-3-(phenylmethyl)-, Phenyl-
methyl Ester (290). The method was as for 29 m except using [(2-adamantyloxy)carbonyl]- α-methyl-L-tryptophan: yield 63%; $[\alpha]^{20}{ }_{\mathrm{D}}=-28.1^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3500-3200,2909,2855$, 1723 , and $1660 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.49(4 \mathrm{H}, \mathrm{s}), 1.54(1 \mathrm{H}, \mathrm{s})$, $1.68-1.85(8 \mathrm{H}, \mathrm{m}), 1.90-2.05(4 \mathrm{H}, \mathrm{m}), 2.25(1 \mathrm{H}, \mathrm{dd}, J=5.6$ and 16.3 Hz), $2.3(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and 16.3 Hz), $2.68(1 \mathrm{H}, \mathrm{dd}, J=$ 8 and 13.6 Hz), $2.82(1 \mathrm{H}, \mathrm{dd}, J=6.3$ and 13.6 Hz$), 3.24(1 \mathrm{H}$, $\mathrm{d}, J=14.7 \mathrm{~Hz})$, $3.39(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}$), $4.35-4.45(1 \mathrm{H}, \mathrm{m})$, $4.80(1 \mathrm{H}, \mathrm{s}), 5.03(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=12.2$ Hz), $5.30(1 \mathrm{H}, \mathrm{s}), 6.82-6.90(2 \mathrm{H}, \mathrm{m}), 7.00-7.40(13 \mathrm{H}, \mathrm{m}), 7.57$ ($1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$), $8.16(1 \mathrm{H}, \mathrm{s})$; MS (FAB) m/e 648.3 (90.4), 518.2 (60.6), 470.2 (40.9), 452.2 (41.3), 339.2 (45.7), 307.2 (73.6), 270.2 (100), 220.1 (94.5).
$\boldsymbol{\beta}$-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[(tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2-yl-oxy)carbonyl]-L-tryptophyl]-L-3-(phenylmethyl)- (300). The method was as for 30m except using 290: yield 76%; $[\alpha]^{20} \mathrm{D}=$ $-36.6^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3500-3200,2919,2859,1712$, and $1658 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.50(1 \mathrm{H}, \mathrm{s}), 1.53(4 \mathrm{H}, \mathrm{s}), 1.70-2.00$ ($12 \mathrm{H}, \mathrm{m}$), $2.27(1 \mathrm{H}, \mathrm{dd}, J=5.1$ and 16.2 Hz), $2.36(1 \mathrm{H}, \mathrm{dd}, J$ $=5.5$ and 16.3 Hz), $2.71(1 \mathrm{H}, \mathrm{dd}, J=7.7$ and 13.7 Hz), 2.81 (1 $\mathrm{H}, \mathrm{dd}, J=6.3$ and 13.5 Hz), $3.22(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}$), $3.40(1$ $\mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}$), $4.35-4.45(1 \mathrm{H}, \mathrm{m}), 4.80(1 \mathrm{H}, \mathrm{s}), 5.43(1 \mathrm{H}$, s), $6.76(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 7.05-7.25$ $(7 \mathrm{H}, \mathrm{m}), 7.32(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.33$ ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 558.3 (100), 428.1 (41.5), 400.2 (62.6), 362.1 (40.3), 307.2 (29.0).
$\boldsymbol{\beta}$-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[(tricyclo[3.3.1.1 ${ }^{\text {3,7 }}$]dec-2-yloxy) carbonyl]-L-tryptophyl]-D-3-(phenylmethyl)- (29p). The method was as for 29 m except using [(2-adamantyloxy)carbonyl]. α-methyl-L-tryptophan and benzyl (R)- β-aminobenzenebutanoate: yield $69 \% ;[\alpha]^{20}{ }_{\mathrm{D}}=-15.5^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3500-3200,2907,2855,1722$, and $1660 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.45$ ($3 \mathrm{H}, \mathrm{s}$), $1.50-1.58$ ($2 \mathrm{H}, \mathrm{m}$), $1.70-2.05(12 \mathrm{H}, \mathrm{m}), 2.41(2 \mathrm{H}, \mathrm{d}, J$ $=4.8 \mathrm{~Hz}), 2.68(1 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{and} 13.5 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{dd}, J$ $=6.6$ and 13.6 Hz$), 3.30(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{d}, J=$ $14.6 \mathrm{~Hz}), 4.40-4.50(1 \mathrm{H}, \mathrm{m})$, $4.82(1 \mathrm{H}, \mathrm{s}), 5.04(1 \mathrm{H}, \mathrm{d}, J=12.1$ $\mathrm{Hz}), 5.13(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{s}), 6.88(1 \mathrm{H}, \mathrm{d}, J=$ 2.3 Hz), $6.98(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$), $7.05-7.40(13 \mathrm{H}, \mathrm{m}), 7.59(1$ $\mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$), 7.99 ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/e 648.3 (100), 518.2 (36.3), 452.2 (33.0), 307.2 (30.4), 270.1 (42.8), 220.1 (34.6).
$\boldsymbol{\beta}$-Alanine, \boldsymbol{N}-[α-Methyl- \boldsymbol{N}-[(tricyclo[3.3.1.1 $\left.{ }^{\text {3,7 }}\right]$ dec-2-yl-oxy)carbonyl]-L-tryptophyl]-D-3-(phenylmethyl)- (30p). The method was as for 30 m except using 29 p : yield 68%; $[\alpha]^{24} \mathrm{D}=$ $-11.6^{\circ}(c=1, \mathrm{MeOH})$; IR (film) $3500-3200,2907,2856,1708$, and $1657 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.49(4 \mathrm{H}, \mathrm{s}), 1.54(1 \mathrm{H}, \mathrm{s}), 1.70-205$ $(12 \mathrm{H}, \mathrm{m}), 2.40-2.50(2 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=8$ and 13.6 Hz$)$, $2.84(1 \mathrm{H}, \mathrm{dd}, J=6.5$ and 13.6 Hz), $3.24(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}$), $3.44(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 4.40-4.50(1 \mathrm{H}, \mathrm{m}), 4.81(1 \mathrm{H}, \mathrm{s})$, $5.30-5.35(1 \mathrm{H}, \mathrm{br}$ s), $6.84(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{s})$, 7.04-7.28 ($7 \mathrm{H}, \mathrm{m}$), $7.31(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$), $7.56(1 \mathrm{H}, \mathrm{d}, J=7.7$ Hz), 8.34 (1 H, в); MS (FAB) m/e 558.3 (50.0), 428.2 (10.2), 400.3 (10.3), 362.2 (12.2), 323.0 (11.5), 217.0 (100).

References

(1) Horwell, D. C.; Hughes, J.; Hunter, J. C.; Pritchard, M. C.; Richardson, R. S.;Roberts, E.; Woodruff, G. N. Rationally designed 'dipeptoid' analogues of CCK. α-Methyltryptophan derivatives as highly selective and orally active gastrin and CCK-B antagonists with potent anxiolytic properties. J. Med. Chem. 1991, 34, 404414.
(2) Hughes, J.; Boden, P; Costall, B.; Domeney, A.; Kelly, E.; Horwell, D. C.; Hunter, J. C.; Pinnock, R. D.; Woodruff, G. N. Development of a class of selective cholecystokinin type \mathbf{B} receptor antagonists having potent anxiolytic activity. Proc. Natl. Acad. Sci. U.S.A. 1991, 87, 6728-6732.
(3) Singh, L.; Field, M. J.; Hughes, J.; Menzies, R.; Oles, R. J.; Vass, C. A.; Woodruff, G. N. The behavioural properties of CI-988, a selective cholecystokinin-B receptor antagonist. Br.J. Pharmacol. 1991, 104, 239-245.
(4) Field, M. J.; Hughes, J.; Lewis, A. S.; Oles, R. J.; Singh, L.; Vass, C. A.; Woodruff, G. N. The anxiolytic-like actions of the selective CCK-B receptor antagoniat. CI-988. Br. J. Pharmacol. 1991, 102, 256.
(5) Eden, J. M.; Higginbottom, M.; Hill, D. R.; Horwell, D. C.; Hunter, J. C.; Martin, K.; Pritchard, M. C.; Rahman, S. S.; Richardson, R. S.; Roberts, E. Rationally designed "dipeptoid" analogues of CCK. N-terminal structure-activity relationships of α-methyl tryptophan derivatives. Eur. J. Med. Chem., in press.
(B) Boden, P. R.; Eden, J. M.; Higginbottom, M.; Hill, D. R.; Horwell, D. C.; Hunter, J. C.; Martin, K.; Pritchard, M. C.; Richardson, R. S.; Roberts, E. Rationally designed "dipeptoid" analogues of CCK. C-terminal structure-activity relationships of α-methyl tryptophan derivatives. Eur. J. Med. Chem., in press.
(7) Horwell, D. C.; Ratcliffe, G.; Roberts, E. Stabilities of tryptophanylphenethylamides toacid and alkaline conditions. Bio.Med. Chem. Lett. 1991, 1, 3, 169-172.
(8) Singh, L.; Field, M. J.; Hughes, J.; Vass, C. A.; Woodruff, G. N. Central administration of a CCK-B receptor antagonist induces anxiety. Br. J. Pharmacol. 1991, 102, 45p.
(9) Singh, L.; Lowis, A. L.; Field, M. J.; Hughes, J.; Woodruff, G. N. Evidence for an involvement of the brain cholecystokinin B receptor in anxiety. Proc. Natl. Acad. 1991, 88, 1130.
(10) Boden, P. R.; Woodruff, G. N.; Pinnock, R. D. Pharmacology of a cholecystokinin receptor on 5 -hydrozytryptamine neurones in the dorsal raphe of the rat brain. Br. J. Pharmacol. 1991, 102, 635638.
(11) Hansch, C.; Leo, A. J. Substituted Constants for Correlation Analysis in Chemistry and Biology; Wiley: New York, 1979; p 44.
(12) Brown, H. C.; Schwier, J. R.; Singaram, B. Simple Syntheais of Monoisopinocampheylborane of High Optical Purity. J.Org.Chem. 1978, 43 (22), 4395.
(13) Brown, H. C.; Singaram, B. Chiral Synthesis via Organo boranes. 1. A Simple Procedure to Achieve Production of Essentially 100% Optical Purity in Hydroboration of Alkenes with Monoisopinocampheylborane. Synthesis of Boronic Esters and Derived Products of Very HIgh Enantiomeric Purities. J. Am. Chem. Soc., 1984, 106, 1707.
(14) Brown, H. C.; Yoon, M. N. Monoisopinocampheylborane-A New Chiral Hydroborating Agent for Relatively Hindered (Trisubstituted) Olefins. J. Org. Chem. 1978, 43, 5074.
(15) Bäckström, R.; Sjöbers, B. Resolution of Cis and Trans-2methylcyclohexanol. Ark. Kemi. 1967, 26 (47), 549.

[^0]: Asp-Tyr $\left(\mathrm{OSO}_{3} \mathrm{H}\right)$-Met-Gly-Trp-Met-Asp-Phe-NH2

