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Perhaps one of the most exciting new developments in 
the field of artificial intelligence research is the emergence 
of useful applications of artificial neural networks. The 
appeal of these experiments is that they are attempts to 
simulate intelligence by the construction of models of the 
human brain which have similarities to the physical 
structure and organization of the brain. Artificial neural 
networks consist of simple processing units which are often 
arranged in interconnected layers. Typically, data are 
introduced to an input layer and passed through a so-
called hidden layer to produce a response at an output 
layer. 

One of the tasks which the human mind carries out so 
well is pattern recognition. If we consider that many 
statistical procedures are examples of pattern recognition, 
then the use of neural networks to perform these functions 
holds much promise. There have been several recent 
reports1-3 of the application of networks to the analysis of 
chemical data sets in the field of quantitative structure-
activity relationships (QSAR). Networks have also been 
applied to the prediction of other properties from a 
consideration of chemical structure, for example, the musk 
odor of a set of nitrobenzene derivatives4 and the aqueous 
solubility of a diverse set of compounds.5 We are involved 
in the search for an explanation of biological activity in 
terms of chemical structure and are thus interested in any 
new methods to achieve this end. 

Standard statistical techniques such as regression and 
discriminant analysis are frequently used in QSAR, and 
the neural network analogues of these methods have shown 
interesting results. In the parlance of pattern recognition 
methodology these techniques are "supervised learning" 
since the data are used to supervise the learning, or training, 
of the algorithms. Since these supervised methods seek 
to fit a model to a data set, there is the potential for 
apparently good fits to occur by chance. The danger of 
chance correlations has been recognized for regression 
analysis6 and discriminant analysis,7,8 and guidelines have 
been proposed which will minimize the possibility of these 
chance effects happening. The situation is not so clear in 
the case of modeling using a neural network since the "fit" 
of a network is dependent on the network architecture as 
well as the data used to describe the biologically active 
molecules. 

We have shown9 that neural networks can be trained to 
carry out discriminant analysis using random numbers as 
input data. Network performance was dependent on the 
ratio of cases to connections (p) as proposed by Andrea 
and Kalayeh.2 Since the networks were able to train using 
random numbers, it would appear that they are "mem­
orizing" the data. Discriminant analysis requires a yes/ 
no decision for classification which may lend itself to the 
way that neural networks operate. By contrast, regression 
involves training to values of a continuous target variable. 
We have examined the performance of networks designed 

to carry out multiple linear regression by using random 
numbers as input data and a single, random, continuous 
target. 

Detailed results from these experiments are given in 
Table I, and Figure 1 summarizes these data with a plot 
of correlation coefficient CR2) vs p for the four input unit 
networks. In order to recommend a critical p value for 
regression analysis, it is necessary to decide which is an 
acceptable risk of chance correlation. In other words, what 
value of R2 by random fit can be tolerated without 
prejudicing the results of data modeling by regression. In 
an examination of chance effects using a standard re­
gression package and random numbers, Topliss and 
Edwards demonstrated the importance of the number of 
variables considered.6 As the number of observations in 
a data set was increased, for a given number of starting 
variables, so the average number of variables included in 
the resultant regression equations decreased, as did the 
average R2 value. It is difficult to compare directly these 
results with ours since the experiments were designed to 
judge the probability of a chance fit based on the ratio of 
observations to descriptors screened. The numbers of 
terms in the reported regression equations, and hence 
adjustable parameters, are low compared with the equiv­
alent quantity (connections) in the network models. 
However, our results are in broad agreement since R2 

increases as p decreases. A decrease in p is effectively a 
decrease in the ratio of the number of observations to 
adjustable parameters which might be likened to an 
increase in the number of variables considered. 

Inspection of Figure 1 shows that the increase in the R2 

curve is at its steepest in the region of 1 < p < 3, and at 
the mid-point of this region 74% of the variation in the 
"dependent" (random) variable is described by the net­
work. Whatever level of chance correlation might be 
considered acceptable for a particular application, it seems 
unlikely that such a high figure would be reasonable. Real 
data, however, with its inbuilt structure, both dependent 
and independent, may not behave like this. A reported 
regression analysis by a network of a set of DHFR 
inhibitors2 states that the optimum range for p was 1.8 < 
p < 2.2. At smaller values than this range the network 
simply "memorized" the data while at higher values than 
2.2 the network predictions were poor. The performance 
of these networks was assessed not just by fit, but also by 
prediction; using random numbers one would obviously 
expect prediction to be poor. 

One potential reason for the observed poor predictions 
at p values higher than 2.2 may have been that too few 
connections were available to develop the linear, nonlinear, 
and/or complex cross-product terms required to relate 
biological to chemical properties. An alternative way of 
reducing the possibility of chance effects which allows a 
lower value of p was described recently by Weinstein et 
al.10 In this study, the number of cases was randomly 
divided into 10 subsets. Ten networks were trained using 
nine-tenths of the data, and for each network a different 
test set was left out for prediction. Using such a scheme, 
a lower value of p may be employed as network performance 
can be monitored via cross-validation. Cross-validation 
has not been used to assess the performance of these fits 
to random data since it seems most likely that there is no 
"true" model in the data and thus a test of predictive ability 
should always give poor results. With real or structured 
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Table I. Effect of Varying Network Architecture on Regression 
Performance 

network0 

architecture 

4,1,1 
4,2,1 
4,3,1 
4,4,1 
4,5,1 
4,6,1 
4,7,1 
4,8,1 
4,4,1 
4,4,1 
4,4,1 
4,4,1 
6,3,1 
2,6,1 

connections6 

7 
13 
19 
25 
31 
37 
43 
49 
25 (15 cases) 
25 (45 cases) 
25 (55 cases) 
25 (135 cases) 
25 
25 

Pc 

7.14 
3.85 
2.63 
2.0 
1.61 
1.35 
1.16 
1.02 
0.6 
1.8 
2.2 
5.4 
2.0 
2.0 

total RMS 
error 

0.261 ± 0.005 
0.212 ± 0.006 
0.190 ± 0.008 
0.143 ± 0.006 
0.108 ± 0.009 
0.081 ± 0.004 
0.042 ± 0.004 
0.035 ± 0.008 
0.020 ± 0.002 
0.140 ± 0.007 
0.163 ± 0.006 
0.242 ± 0.005 
0.130 ± 0.006 
0.187 ± 0.010 

R2 ± SEM 

0.214 ± 0.022 
0.434 ± 0.035 
0.542 ± 0.041 
0.743 ± 0.025 
0.852 ± 0.023 
0.915 ± 0.012 
0.977 ± 0.005 
0.985 ± 0.007 
0.996 ± 0.001 
0.770 ± 0.025 
0.672 ± 0.023 
0.318 ± 0.015 
0.779 ± 0.025 
0.555 ± 0.047 

" Network architecture, giving the number of units in the input, 
hidden, and output layers, respectively.b The number of connections 
in the network. Results are the average of 10 experiments for each 
network architecture. New sets of random numbers were generated 
for each experiment.c Ratio of the number of cases (50, unless 
otherwise stated) to the number of connections. 
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Figure 1. Plot of fl2 vs p for the first 12 network architectures 
listed in Table I. Random numbers (uniformly distributed) were 
generated using the RSI data analysis package (BBN software, 
Staines, U.K.), and novel data sets were generated for each 
individual experiment. Neural networks were created using a 
commercial package, ANS1M (Science Applications International 
Corporation, San Diego, CA) and trained using the feed forward, 
back propagation algorithm.12'13 Networks consisted of an input 
layer, an output layer, and a single layer of hidden units. The 
number of units in the hidden layer was altered to investigate 
network performance with respect to the number of connections. 
The data sets used for the regression analysis simulations typically 
had 50 cases (equivalent to 50 compounds) of five random 
variables, corresponding to four independent variables and one 
dependent variable. A limited number of networks were inves­
tigated by varying the number of cases, thus altering p, and two 
additional series of networks were run in which the number of 
independent input variables was changed. Training was halted 
when the maximum output unit error was less than 0.05 or the 
total RMS error was reducing at rate of less than 1 x 10-6 per 
cycle through the data. In the latter case, network weights and 
biases were perturbed by small random values, and training was 
allowed to continue until either of the above criteria was reached, 
and the network was then halted. This perturbation was applied 
in an attempt to ensure that the network had trained to the 
desired global minimum endpoint. Results from each trained 
network were assessed by comparison of the output and target 
values; since the output is a continuous variable, it is possible to 
calculate a correlation coefficient. 

data, however, cross-validation is a useful measure of 
predictive ability and may also be used to judge how far 
network training should be carried out. 

An additional factor concerning the choice of p involves 
the number of input units. In the first part of Table I and 
in Figure 1 we have concentrated our examination of chance 
effects using networks with four input units. Although 
we had previously found9 that the number of input units 
did not appear to affect the results of discriminant analysis 
using two output units, regression by networks involves 
training to a continuous target using a single output neuron. 
We therefore investigated the dependence of regression 
performance on the number of input units. Table I 
demonstrates that at a p value of 2.0 the 2,6,1 network 
series does not perform to the same level as the 4,4,1 
network, an R2 value of 0.55 for the former and 0.74 for 
the latter. The other network with a p value of 2.0, the 
6,3,1 network, gives an R2 value of 0.78 which is a slight 
improvement on the 4,4,1 result but which perhaps suggests 
that network performance is reaching a maximum as a 
function of the number of input units. Additional work 
is being carried out to assess the performance character­
istics of networks with differing numbers of units in the 
input layer. Furthermore, as random numbers do not 
adequately represent the type of data normally encoun­
tered in a QSAR study (i.e., structured), the experiments 
reported here will be repeated using structured data and 
a number of real QSAR data sets. 

In conclusion, it has been shown that neural networks 
may be used to perform standard statistical tasks such as 
regression and discriminant analysis but that they suffer 
from the dangers of chance effects as shown here with 
randon number data. The ratio of observations to 
connections in a network has been shown to be an 
important determinant of performance, as has the number 
of units employed in the input (i.e. number of variables) 
layer. Some general guidelines concerning the ratio of 
observations to connections, p, can be stated: 

For two unit discriminant networks p should exceed 
2.0.9 

For regression networks which do not employ a training/ 
test set procedure to monitor overtraining, p should exceed 
3 to keep chance correlations below R2 = 0.5. 

Alternatively, p values below 3 can be employed if some 
form of cross-validation scheme is implemented to examine 
predictive ability and thus avoid overtraining. The 
advantage of using a lower p value is that sufficient 
connections are available if complex nonlinear and cross-
product terms are needed to solve the problem. 

Finally, it appears that neural networks offer some 
advantage over standard statistical methods of modeling 
data since they can recognize complex relationships in the 
data without these having to be explicitly included in the 
analysis. One disadvantage to this form of modeling is 
that the importance of individual variables, as shown by 
the magnitude of their regression or discriminant coef­
ficients, is not seen. It is possible to extract the connection 
weights from individual variables, but it has been suggested 
that contributions, the product of hidden unit activations 
and weights, is a more useful determinant of the "respon­
sibility" of individual units in a network.11 
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