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Thrombin, a serine protease product of the blood 
coagulation cascade, plays a central role in hemostasis 
and thrombosis.1 Thrombin cleaves fibrinogen to form 
fibrin and activates Factor XIII, which cross-links and 
stabilizes the formed clot. By limited proteolysis, throm
bin activates Factors V, VIII, and XI, which promote 
further thrombin production. Thrombin is a very potent 
stimulator of platelet shape change, aggregation, and 
secretion. In addition, thrombin is mitogenic for vascular 
smooth muscle and can activate endothelial cells, promot
ing cell adhesion. Because of these actions, the proteolytic 
activity of thrombin plays a major role in arterial as well 
as venous thrombosis; therefore, thrombin inhibition 
continues to be an important target for the development 
of new therapeutic agents. 

A large number of synthetic inhibitors of thrombin have 
been patterned originally after substrates or naturally 
occurring inhibitors, most of which are derivatives of 
arginine or benzamidine. Four thrombin active-site 
inhibitors which typify current chemotypes are D-Phe-
Pro-Arg-H (RGH 2958) and various analogs,2 NAPAP, 3 

MD 805,4 and cyclotheonamide A.5 Their modes of binding 
have been determined from crystallographic studies.6 They 
share a common feature: each inhibitor forms antiparallel 
fi hydrogen bonds to Gly216.7 Thus, the amino acid 
residues in the active site are in an orientation similar to 
those of the natural substrates of thrombin. 

We report here a new series of potent thrombin active-
site inhibitors. We believe from structure-activity rela
tionships and the modeled bound conformation for this 
new series tha t the mode of binding is in a "retro" fashion: 
the tripeptide N-terminus is proximal to the active-site 
serine hydroxyl (Serl95), and the peptide backbone forms 
a parallel 0 hydrogen bond to Gly216. We describe briefly 
below the various synthetic analogs and the biological 
studies tha t have led to the elucidation of this binding 
conformation. 

R e s u l t s a n d Discuss ion . Screening of in-house com
pounds had identified 1 as an active-site inhibitor of 
thrombin. Although similar in structure, 2 displays no in 
vitro activity, showing the critical nature of the 6-ami-
nohexanoyl moiety for potency. We have shown previously 
tha t 4, an analog of RGH 2958, is an active-site inhibitor 
of thrombin tha t binds in a fashion similar to PPACK.8 

After examining the modes of binding for the various 
known thrombin inhibitors from their solid-state struc-
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Table 1. In Vitro Inhibition of Thrombin Catalytic Activity for 
1 and Related Compounds 
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0 (a) (i) EDAC-HC1, HOBt, DMF, L-Phe(OMe); (b) (i) TFA, 0 °C; 
(ii) EDAC-HC1, HOBt, DMF, NMM, Boc-L-Phe; (c) (i) TFA, 0 °C; 
(ii) EDAC-HC1, HOBt, NMM, BocNHCH2(CH2)„CH2C02H (n = 1-4); 
(d) (i) TFA, 0 °C; (e) (i) TFA, 0 8C; (ii) H2NC(S03H)NH, Et3N, 
EtOH; (f) (i) LiBH4, MeOH, THF; (ii) TFA, 0 °C; (g) (i) LiBH4, 
MeOH, THF; (ii) TFA, 0 °C; (iii) H2NC(S03H)NH, Et3N, EtOH. 

tures (vide ante), we proposed tha t 1 could bind in one of 
two fashions. In one mode of binding, the peptide 
backbone of 1 is oriented in the same direction as 4; the 
hydroxythioimidazole of 1 functions as an isostere of the 
hydroxy ester of 4, and the aromatic residue interacts with 
the distal pocket of thrombin.9 Unlike 1 and 2, 3 and 4 
display comparable potency, presumably because of a 
vastly different binding orientation for 1 and not solely 
because of the difference in absolute stereochemistry of 
the phenylalanine residues. 

The other binding mode would align the amide backbone 
in a reverse fashion (compared to natural substrates). We 
modeled this new binding orientation of 1 via docking 
studies.12 In the modeled bound conformation, the 
6-aminohexanoyl moiety binds at the specificity pocket, 
and the aromatic and the cyclohexyl residues bind at the 
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Figure 1. The minimized conformation of 16, superimposed upon the hirudin(rHV2)/a-thrombin complex. Compound 16 is shown 
in yellow, hirudin Ilel-Tyr3 is in white, and the various residues defining the active-site region of thrombin are in green. 

Table 2. In Vitro Inhibition of Thrombin Catalytic Activity: 
Side Chain Optimization (Chain Length and N-Terminal 
Functionality) 
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' The TFA salt of 7, shown in Scheme 1. 

proximal and the distal pockets, respectively. The hy-
droxythioimidazole is exposed to solvent. 

Consistant with this model, the cyclohexyl and the 
(hydroxymethyl)thioimidazole moieties in 1 (residues 
binding in or near the distal pocket) could be replaced by 
a phenyl and a methyl ester residue, respectively. This 
gave compound 14. This simplified retro-binding peptide 
was found to be 10-fold less potent than 1 and suitable as 
a template for further study (see Scheme 1). 

Analogs with various aliphatic side chain lengths and 
amino or guanidino termini were prepared, and their 
biological activities were determined (see Table 2). Analog 
16 having a 4-guanidinobutanoyl moiety was the most 
potent active-site inhibitor of thrombin. Thrombin is a 
highly selective hydrolytic serine protease with the typical 
site of cleavage occurring after an arginine residue in the 
various natural substrates.11 The sensitivity in potency 
to the side chain length and the preference for a guanidine 
residue over a primary amine in this series of inhibitors 
is consistent with the N-terminal side chain binding in 
the specificity pocket. The primary alcohols of 13 and 16, 
19 and 20, respectively, were also prepared, and both were 
found to be modestly less active than the corresponding 
methyl esters. 

After the optimal guanidine-terminated side chain was 
determined for the simplified analogs, this residue was 

Table 3. A Comparison of in Vitro Activity for 21 and 
GYKI-14,766 us Several Serine Proteases 
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affixed to 2 to give 21 (the optimized analog of 1). 
Compound 21 displays classic competitive kinetics for the 
inhibition of thrombin with a Kx of 22 nM. In comparison 
toGYKI-14,766,21 displays better selectivity for thrombin 
vs trypsin and plasmin but less than Factor Xa. Compound 
21 (BMS 182,627) represents a promising new thrombin 
active-site inhibitor series. 

Modeling. We have modeled the binding of 16 and 
several other analogs in the active site of thrombin using 
a combination of distance geometry and energy minimiza
tions.12 Compounds in this series, as exemplified by 16, 
bind to the active site of thrombin in a fashion similar to 
the first three amino acid residues of hirudin (Ilel, Thr2, 
and Tyr3).15-17 The key structural features include the 
formation of a ^-parallel hydrogen bond with Gly216 by 
Phe l -0 and Phe3-N, the extension of the 4-guanidino
butanoyl moiety into the specificity pocket, and the 
orientation of the amino acid side chains in regions similar 
to the corresponding three residues of hirudin. Hence, 
the phenyl moiety of the Phel side chain of 16 occupies 
the proximal pocket, a region defined by His57, Tyr60A, 
Trp60D, and Leu99, and the phenyl residue of the Phe3 
side chain occupies the distal pocket.18 Likewise, the Leu2 
side chain of 16 is in a similar position to Thr2 in the 
hirudin/thrombin complex. A stereoscopic view of the 
modeled conformation of 16 superimposed upon the 
hirudin-thrombin complex is shown in Figure 1. 

Studies have shown that the hydrogen bond or salt 
bridge between the a-amino group of Ilel (hirudin) and 
thrombin makes a significant contribution to the binding 
energy.19 In addition, various modifications to the N-
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terminus of hirudin have led to a loss of binding energy. 
Acetylation of this terminal amine eliminates the positive 
charge and decreases the binding energy by 22.7 kJ/mol. 
However, in this new series of inhibitors, we find the amine-
or the guanidine-terminated side chain is an important 
pharmacophore that is required for thrombin active-site 
inhibition as shown through a comparison of 21 and 16, 
2 and 7a, respectively. The protonated guanidine or 
protonated amine terminus interacts with Aspl89 in the 
specificity pocket to significantly enhance binding. This 
new interaction compensates for the loss of electrostatic 
interactions at the N-terminus upon acylation. Also, 
unlike Ilel-Tyr3 of hirudin, the lack of a bulky C-terminal 
attachment makes it easier for these inhibitors to avoid 
unfavorable steric interactions with Serl95 and other 
residues in its vicinity via a slight shift in its backbone 
(Figure 1). Our studies are continuing in this area with 
a focus on structural changes that will enhance potency 
and selectivity but reduce molecular weight. 
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