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Communications to the Editor 

However, the lack of selective 5-HTID antagonists23 has 
frustrated efforts to characterize the functional role of 
5-HTID receptors in the CNS. Current pharmacological 
tools used to antagonize effects at 5-HTID receptors 
include metergoline and methiothepin, but these com
pounds are poorly selective and therefore of limited 
utility. We now report on a novel series of benzanilides 
which represent the first examples of selective 5 -HTID 

antagonists. 

As part of a program to identify selective 5 -HTID 

antagonists we discovered that the benzanilide 1 blocked 
5-HT-induced contractile responses in the dog isolated 
saphenous vein (DSV)18 (Table 1). Although its level of 
activity was modest and significant antagonist activity 
at the 5-HT2A receptor was observed, this compound 
served as a lead on which to base a potency and 
selectivity optimization program. Early modifications 
led to the biaryl anilides which showed a significant 
increase in antagonist potency. Thus, the 4-pyridin-
ylphenyl derivatives 2 and 3 displayed a 1 order of 
magnitude greater potency as antagonists in the DSV. 
More significantly, these compounds were approxi
mately 30-fold more potent in the latter tissue compared 
to the rabbit aorta which measured antagonist activity 
at 5-HT2A receptors. The affinity of 2 and 3 for 5-HTm 
binding sites in guinea pig striatum was similar to their 
antagonist activity in the DSV, and it is likely that the 
5-HTi receptor mediating contraction in the DSV bears 
a close resemblance to the 5 -HTID receptor.24 

Compounds 2 and 3 were evaluated in our model for 
CNS activity: blockade of hypothermia in the guinea 
pig caused by stimulation of central 5-HTID receptors 
by the agonist GR46611.25 Disappointingly, neither of 
these compounds displayed any activity up to 30 mg/kg 
following either subcutaneous or oral administration. 
When the linking amide group orientation was reversed, 
the resulting compound (4) displayed an in vitro phar
macological profile closely paralleling that of 2 and 3. 
However, in contrast to 2 and 3, compound 4 was now 
an effective antagonist (ED50 = 5 mg/kg, po) of the 
hypothermia induced in guinea pigs by GR46611.26 
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Central 5-hydroxytryptamine (5-HT) receptors have 
been classified into four main families: 5-HTi, 5-HT2, 
5-HT3, and 5-HT4,2-7 although others, such as 5-HT5, 
5-HT6, and 5-HT7, have been identified from cloning 
studies.8-10 The 5-HTi family comprises subtypes 
5-HTu, 5-HTIB, 5-HTID, 5-HTiE,n-13 and 5-HTiF

14 (the 
5-HTic receptor has been reclassified as a member of 
the 5-HT2 family). The 5-HTID receptor has recently 
attracted considerable attention since radioligand bind
ing studies have shown it to be widely distributed 
throughout the central nervous system (CNS) where it 
is the most abundant 5-HTi receptor subtype15 playing 
a role as a presynaptic heteroreceptor or as a terminal 
autoreceptor. Activation of this receptor in the CNS 
inhibits neurotransmitter release.16,17 5-HTi receptors, 
very similar to the 5-HTID receptor identified in brain 
tissue, are located in vascular smooth muscle and 
mediate contraction.18 Recently, cloning studies have 
identified a pair of human 5-HTID gene products which 
have been designated 5-HTiDa and 5-HTID/S receptors.19 

Sumatriptan,18 which is effective in the treatment of 
migraine,20 is an agonist at a vascular 5-HTi receptor 
and shows some selectivity for the 5-HTID receptor.21,22 
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Table 1. In Vitro and in Vivo Activities of [(iV^V-dimethylamino)propyl]benzanilidesa 

NHCOv KD-* NMe, 

OMe 
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Compd 
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EtO 

O 
H O H 2 C - O K 

DSV 
(PKB) 

6.9 

7.8 

8.5 

5-HTiDc 

(PKi) 

NT9 

8.0 

NT 

5-HT2Ad 

(PKB) 

6.2 

6.3 

5.9 

5-HT1Ae 
(PW) 

5.2 

4.7 

NT 

Guinea-pig 
hypothermia* 

%lnhibn. (dose/route) 

NT 

<30 (50 mg/kg, po) 

52 (45 mg/kg, po) 

Me 

OHC 

Me 

H O 2 C - ^ , 

Me 

MeO(CHj)2O2C 

Me 

8.4 

8.7 

8.4 

8.2 

7.5 

8.5 

6.3 

5.7 

6.2 

5.3 <30 (45 mg/kg, po) 

<5.0 

NT 

NT 

55 (45 mg/kg, po) 
66 (3 mg/kg, sc) 

a For in vitro data, figures quoted are the mean of two independent determinations, each within 0.2 log units of the mean. 6 Antagonism 
of 5-HT-induced contraction of the dog saphenous vein.18 c Binding affinity, [3H]-5-HT (in the presence of BMY7378 and mesulergine) was 
used to label 5-HTID sites in guinea pig striatum, cf. ref 25. d Antagonism of 5-HT-induced contraction of rabbit isolated aorta.18 e Binding 
affinity, [3H]-8-OH-DPAT was used to label 5-HTiA sites in rat hippocampus, cf. ref 25. f See ref 25. * Not tested. 

Scheme 1° 
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o (i) iV,iV-Dimethyl-2-propynamine, Pd(PPhS)2Cl2, CuI, Et3N, DMF; 25%; (ii) H2, Pd-C, EtOH-DMF; 66%; (iii) (a) SOCl2, (b) 
4-EtOC6H4NH2, pyridine, 48%; (iv) (a) SOCl2, (b) 4-(4-pyridinyl)benzenamine, pyridine; 83%. 

Scheme 2° 
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* (i) (a) SOCl2, (b) 4-BrC6H4NH2, pyridine; 74%; (ii) (a) ra-BuLi, THF, -78 0C; (b) DMF, -78 °C; (c) (J-PrO)3B, -78 0C room temperature; 
76%; (iii) Pd(PPh3)4, Na2CO3, DME-H2O; 80%; (iv) H2, Pt-C, EtOH; 40%; (v) AgNO3, NaOH, H2O, MeOH; 68%. 

Concurrent wi th this discovery, it was found t h a t a potent and selective antagonist activity in the DSV with 
range of subst i tu ted biaryl analogues ( 5 - 8 ) possessed greater t han 100-fold selectivity over the 5-HT2A recep-
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Table 2. In Vitro and in Vivo Activities of Piperazinylbenzanilides0 

^NMe /=\ f̂ NI 

OMe 

DSV 5 5-HT-|Dc 5-HT1 e
d 5-HT2Ae 5-HT-|Af Guinea-pig 

X - Y (pKs) (pKi) (pKi) ( P K B ) (pKi) hypothermia9 
EDsn (mg/kg, PO) 

Compd 

10 

11 

O 
O 

Me 

-Q-
Me 

Me5NOC 

NHCO 

CONH 

CONH 

CONH 

-N / = \ NHCO 

7.9 

8.0 

9.2 

8.2 

8.5 

8.3 

8.5 

8.3 

8.2 

NT" 6.5 

NT 

8.5 

8.2 

8.2 

6.5 

6.4 

4.9 

7.8 

NT 

5.9 

6.5 

6.6 

5.9 

>45 

5.0 (2.0- 9.0) 

0.3 (0.2-0.4) 

0.67(0.2-1.6) 

0.5 (0.2-1.2) 

° For in vitro data, figures quoted are the mean of two independent determinations, each within 0.2 log units of the mean. b Antagonism 
of 5-HT-induced contraction of the dog saphenous vein.18 c Binding affinity, [3H]-5-HT (in the presence of BMY7378 and mesulergine) was 
used to label 5-HTID sites in guinea-pig striatum, cf. ref 25. d Binding affinity, [126I]iodocyanopindolol was used to label 5-HTIB sites in 
rat striatal membranes, cf. ref 25. e Antagonism of 5-HT-induced contraction of rabbit isolated aorta.18''Binding affinity, [3H]-8-OH-
DPAT was used to label 5-HTIA sites in rat hippocampus, cf. ref 25. * See ref 25. h Not tested.' Reduced maximum effect, slowly dissociating 
antagonist. 
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a (i) (a) (ClCH2CH2)ZNMe-HCl, Na2CO3, rc-BuOH; 20%; (b) NaOH, H2O; (ii) (a) SOCl2 (b) 4-(4-pyridinyl)benzenamine, pyridine; 64%; 
(iii) (a) SOCl2; (b) 4-BrC6H4NH2, pyridine, 34%; (iv) (a) n-BuLi, THF, -78 °C; (b) (J-PrO)3B, -78 0C; (c) HCl, H2O; 90%; (v) Pd(PPh3J4, 
Na2CO3, DME-H2O; 70%. 
tor and only weak affinity for the 5 - H T I A receptor. 
However, both 5 and 6 were poorly active in the 
hypothermia test : t he former wi th an ED50 of 45 mg/ 
kg after oral adminis t ra t ion, the la t te r only showing 
activity when given parenteral ly (ED50 = 45 mg/kg, sc). 
The low level of in vivo activity for 6 was rationalized 
by the fact t h a t th is compound is observed to undergo 
rapid metabolism to the corresponding carboxylic acid 
7 which is unlikely to cross the b lood-b ra in barrier. 
However, the derived methoxyethoxy ester 8, itself a 
potent and selective 5 - H T I D antagonis t in vitro, did 
display modest oral activity in the hypothermia tes t 
(ED5 0 = 45 mg/kg). 

NMe2 

GR46611 

This las t observation led us to evaluate bioisosteric 
replacements for the potential ly labile ester function 
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Scheme 4° 
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a (i) (a) KNO3, H2SO4; 83%; (b) Raney Ni, N2H4-H2O, EtOH; 53%; (ii) (a) N2H4-H2O (b) NaNO2, HCl, H2O; (c) A; 12%; (iii) 4-BrC6H4COCl, 

pyridine; 77%; (iv) (a) rc-BuLi, THF, - 1 0 0 0C, (b) (J-PrO)3B, - 1 0 0 0C 78 0C; 76%; (v) 4-pyridinylboronic acid, Pd(PPh3)4, Na2CO3, 
DME-H 2 O; 57%; (vi) Pd(PPh3)4) Na2CO3, DME-H 2 O; 70%; (vii) Pd(PPh3U, Na2CO3, DME-H 2 O; 46%. 

and to combine this with the knowledge that reversal 
of amide orientation (cf. 4) gave improved activity in 
the CNS following oral administration. This strategy 
provided the oxadiazole derivative 9. In vitro, this 
compound has 100-fold selectivity for 5-HTID receptors 
over 5-HTIA, 5-HT2A, and 5-HT2C (pKi = 6.4) receptors 
and, significantly, has pK\ values of 9.9 and 8.9 at 
5-HTiD/3 and 5HTiDa receptors, respectively.25'27 Fur
thermore, it had little or no affinity (pKi) at 5-HT3 (5.2), 
5-HT4 (<5.0), 5-HT uptake (<5.0), cti- and a2-adreno-
ceptor (<6.0), dopamine D1-4 (<5.0), and muscarinic 
M l - 3 (<6.0) binding sites. Sumatriptan-induced con
tractions of the DSV were potently antagonized by low 
concentrations (1-10 nM) of 9 with reduced maximum 
effect. This antagonism was reversible following ex
tensive washing, and it is likely that the high lipo-
philicity of 9 is responsible for the slow dissociation. In 
contrast 1-8 are competitive antagonists in this tissue. 
In vivo, compound 9 is a potent inhibitor of GR46611 
in the hypothermia test with an ED50 of 0.3 mg/kg after 
oral administration. In marked contrast, over a dose 
range of 0.1-10 mg/kg sc, 9 failed to attenuate l-(2,5-
dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced 
(3 mg/kg sc) wet dog shakes in the guinea pig, an effect 
which is potently inhibited by 5-HT2 receptor antago
nists,28 thus underlining its in vivo selectivity. 

The terminal iV^V-dimethylcarboxamide 10 is a po
tent, competitive antagonist in the DSV and shows 
> 10 000-fold selectivity with respect to its antagonist 
activity at 5-HT2A receptors. It also shows potent 
antagonist activity in the guinea pig hypothermia test. 
Interestingly, the alternative amide-linked analogue 11, 
although a potent antagonist in the DSV and potent 
after oral administration in the guinea pig hypothermia 
test showed reduced S-HTiD/5-HTaA selectivity. For 
selected compounds (9—11) we have shown that 5-HTID 
binding affinity correlates well with affinity at the 
5-HTIB receptor, a rodent homologue of the 5-HTID,S 
receptor. 

The compounds listed in Tables 1 and 2 were, for the 
most part, prepared by standard modifications of ben-
zenoid systems with two key aspects of the synthetic 
strategy relying on palladium(0) chemistry. First, in the 
synthesis of 1 and 2 (Scheme 1), the (dimethylamino)-

propyl side chain was constructed via a Sonogashira 
reaction followed by hydrogenation. Second, palladium-
(O)-catalyzed boronic acid coupling provided a versatile 
means of accessing the biaryl systems, either by utiliz
ing a simple arylboronic acid derivative (Scheme 2) or 
via a functionalized anilide system (Schemes 3 and 4). 

In summary, we have discovered a novel series of 
potent and selective 5-HTID receptor antagonists based 
upon a benzanilide pharmacophore. Several of these 
compounds display good CNS activity. In particular 9 
(GR127935) and 10 (GR133867) are likely to be useful 
tools in determining the role of this receptor subtype in 
the CNS. 5-HTID receptor antagonists could also have 
useful therapeutic applications. For example, selective 
blockade of central 5-HTID autoreceptors should facili
tate 5-HT transmission and may therefore offer a novel 
antidepressant therapy. In addition, since 5-HTID 
receptors are present in high density in basal ganglia,15 

selective antagonists may also have potential in the 
treatment of movement disorders. 

S u p p l e m e n t a r y Material Available: Representative syn
thet ic procedures (4 pages). Order ing information is given on 
any current mas thead page. 
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