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We describe a new method, Compass, for predicting the biological activities of molecules based 
on the activities and three-dimensional structures of other molecules. The method improves 
on previous techniques by representing only the surface of molecules, by incorporating a 
nonlinear statistical method, and by automatically choosing conformations and alignments of 
molecules. We use a benchmark problem of steroid binding affinity prediction to compare the 
performance of the method with that of two previous systems: CoMFA and a molecular 
similarity method. Compass predicts steroid affinities substantially more accurately than the 
others, which represent the state of the art. We present experiments showing that the improved 
performance depends on each of the technical innovations. 

Introduction 
Drug discovery proceeds largely by trial and error. 

Typically, thousands of compounds are synthesized for 
each that finally becomes a drug. Each synthesis costs, 
on average, thousands of dollars and a few days to a few 
weeks of effort. This makes drug discovery tremendously 
expensive, and much slower than we would like. Current 
practice is unable to keep up either with the explosively 
increasing understanding of the biological processes 
underlying disease states, or with the number of potential 
targets for pharmaceutical intervention. Accurately pre
dicting the biological activity of hypothetical molecules 
and understanding the basis of those predictions would 
make the process more productive. 

Two approaches to prediction have been taken: struc
ture-based methods and QSAR methods. Structure-based 
methods start with the three-dimensional structure of a 
protein target. This protein may be an enzyme or a 
receptor that has been implicated in a disease process. 
The goal is to inhibit the enzyme or to agonize or antagonize 
the receptor (that is, to induce or prevent its signaling 
function). The strategy, in all three cases, is to find a 
ligand molecule that will bind to the protein's active site. 
Among the factors that bind molecules together are van 
der Waals interactions, the hydrophobic effect, and 
electrostatics. The first two factors favor ligands whose 
shape is complementary to that of the target's active site, 
in the way a key fits a lock. The third favors ligands whose 
polar functionalities are complementary to those adjacent 
in the active site. If the overall shape of the target protein 
and the locations of its polar groups can be determined 
by X-ray crystallography or NMR, one can in principle 
design de novo a ligand intended to be complementary to 
the target. This process is as yet fraught with difficulties, 
is rarely quantitatively predictive, and is very unlikely to 
yield a drug on the first try. However, iterating the process 
of ligand design, synthesis, and co-crystal structure 
determination yields insight that makes the discovery 
process considerably more manageable. It has resulted in 
several drugs, and in some cases substantially decreased 
the amount of synthesis required to find them.1 Structure-
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based methods, however, require the active site structure, 
which is often unavailable; many proteins resist crystal
lization and are too large for NMR. Even when available, 
structures derived from crystallography and NMR may 
be misleading: they may represent an averaged ensemble 
of conformations or reflect a protein conformation that, 
due to side chain motion, is not that of the complex with 
the ideal ligand. 

Quantitative structure-activity relationship (QSAR) 
methods predict the activity of hypothetical compounds 
based on the assayed activity of previously synthesized 
ones. QSAR methods require the identification of at least 
one lead molecule that binds to the active site, even if only 
weakly, and the synthesis and assay of several variants. 
The QSAR method then correlates properties computed 
from the structure of the ligands with their assayed 
activities. The resulting correlation can be used to predict 
the activities of hypothetical molecules and so help decide 
what to synthesize next, in the absence of information 
about the structure of the target. The form of the 
correlation may also be useful in understanding the 
structural features that contribute to activity, and so may 
help in designing improved ligands. 

QSAR methods differ in the set of features of molecules 
that are correlated with activity and in the methods for 
determining the correlation. For the purposes of this 
paper, we can distinguish two broad classes of QSAR 
methods, "traditional" methods and "3D" methods. Tra
ditional QSAR methods use some combination of three 
kinds of features.2 The first type are bulk molecular 
properties, such as the computed or measured octanol/ 
water partition coefficient (which predicts molecular 
hydrophobicity), computed or measured molar refractivity 
(thought to predict polarizability), and molar volume. The 
second type are topological and geometrical features that 
weakly correlate with molecular shape, such as the lengths 
of the principal axes, aspect ratios, number of aromatic 
bonds, and connectivity indices. The third are applicable 
only in cases in which all the molecules consist of 
substitutions on a common parent structure; they encode 
the identity or features of the substituent at each position. 
Traditional QSAR methods yield highly accurate predic
tions in some systems; in others they predict poorly. When 
accurate, they are useful in screening candidates for 
synthesis. However, they may provide little guidance for 
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design. If you find that a hypothetical molecule is 
predicted to have low activity due to high molar refractivity 
or low seventh-order valence chain index, it is not obvious 
how to improve it. Properties such as these are not directly 
grounded in the physics of binding, and when they do 
correlate with activity it is often unclear why. 

3D QSAR methods use as features direct measurements 
of the three-dimensional shapes of molecules and the three-
dimensional distribution of charges in and about them. 
These methods often yield better predictions than tradi
tional QSAR, probably because the features more directly 
reflect the physical processes that govern ligand binding.3 

Further, 3D methods can relate predicted activity to 
specific portions a molecule, for example by explaining 
poor activity in terms of excessive steric bulk in a particular 
region or to a polar functionality of the wrong sign. This 
can directly guide the design of an improved ligand. 

This paper describes a new method, Compass. Compass 
differs from previous methods in three ways: it computes 
physical properties only near the surfaces of molecules; it 
incorporates a nonlinear statistical methodology; and it 
automatically chooses conformations and alignments. We'll 
describe each of these here briefly. 

The enthalpy of ligand-target binding depends on 
interactions across the ligand-target interface. We can 
think of the target active site "measuring" properties of 
the ligand; however, its measurements can occur only at 
the interface. The target cannot determine the internal 
structure of the ligand, it can only sense the field effects 
induced by this structure at the ligand-target interface. 
For example, the electrostatic field within a ligand is not 
relevant to binding; only the electrostatic force it exerts 
across the interface contributes to enthalpy. The same is 
even more obviously true of van der Waals interactions. 

For this reason, Compass measures a ligand's properties 
only around its surface. By avoiding measurements of 
internal properties, Compass avoids spurious correlations 
that can lower predictivity. Further, the surface-only 
representation makes Compass more likely to predict 
across chemical classes. Structurally unrelated molecules 
may bind very similarly if they have similar surface 
characteristics, because they interact similarly with the 
active site, and models based on a surface-only represen
tation should predict this. We have tested this hypothesis 
directly in other work4 in which Compass was able to 
accurately extrapolate activity predictions from one 
structural class to another. 

QSAR techniques have generally used linear statistical 
methods, such as linear regression or partial least squares, 
to find correlations. Nonlinear statistical methods can 
often provide better predictions than linear ones (though 
they must be used with care, to avoid overfitting). Such 
methods, particularly neural networks, have been used in 
traditional QSAR5 and have produced better results in 
some cases. Compass's second innovation is the use of a 
new type of neural network, designed to make best use of 
the surface features and to support the conformation and 
alignment selection process described in the next para
graph. 

We have spoken of "ligand shape" as though it were a 
determinate property. Molecules are flexible, however, 
and can adopt infinitely many conformations, each with 
a slightly different shape. Further, in comparing two 
ligands, one must first align them relative to each other 
to determine a correspondence of parts. Any two molecules 

can be aligned in infinitely many ways. The conformation 
and alignment of a molecule relevant to predicting its 
biological activity are the "bioactive" ones—that is, the 
ones the molecule takes in binding to the active site of the 
target protein. The third innovation in Compass is a 
method for automatically selecting, for use in model 
construction, a conformation and relative alignment for 
each molecule. Ideally these should be the bioactive ones. 
Previous systems required the user to guess these, which 
was a significant difficulty and source of error. Typically, 
studies have used the vacuum minimum energy conformer 
derived from a conformational search or the small-molecule 
crystal conformation. The bioactive conformation may 
be quite different from these. 

To determine whether these new methods actually 
improved performance, we benchmarked Compass on a 
steroid binding affinity problem to which CoMFA6 and a 
molecular similarity method7 had previously been applied. 
Compass's predictive performance is uniformly superior 
across a variety of conditions. In further experiments, we 
showed that each of the three advances contribute to 
predictive accuracy. 

Methods 

Overview. The Compass algorithm is outlined in 
Figure 1. This part of the Methods section surveys the 
algorithm at a high level only; subsequent parts supply 
additional details required to understand the system fully. 
The penultimate part of the Methods section describes 
the benchmark problem used in comparing Compass with 
other methods. Further algorithmic details appear in the 
Experimental Section at the end of the paper. 

Compass operates in three phases. The first phase 
constructs a set of initial guesses as to the bioactive 
conformation and alignment of each molecule. We call a 
conformation in a particular alignment a pose, so these 
are guesses as to the bioactive pose. The second phase 
simultaneously chooses a bioactive pose for each molecule, 
starting from these guesses, and constructs a statistical 
model which explains quantitatively and predictively the 
relationship between the surface characteristics of the 
given molecules and their biological activity. The third 
phase predicts the activity and bioactive pose of a new 
molecule and can also graphically display the basis of the 
prediction in a way that aids molecular design. 

Compass begins the first phase by conducting a standard 
conformational search to find low-energy conformers for 
each molecule. It will eventually choose, for each molecule, 
one of these conformers as the one most likely to be 
bioactive. We use a standard conformational search 
package. 

The user then must identify either a pharmacophore or 
a substructure common to all molecules in the data set. 
This serves as a qualitative hypothesis about the ligand's 
shared binding mode. Compass uses this binding mode 
hypothesis to assign an approximate, initial alignment to 
each conformer on the basis of RMS fit of the pharma-
cophoric groups or substructure.8 We will see that 
Compass later improves these crude alignments. As an 
example of basing alignment on a pharmacophore, in an 
unpublished study we aligned ml muscarinic receptor 
ligands on the basis of the well-known pharmacophore, 
consisting of a protonated amine and either one or two 
acceptor functionalities.9 In the case of the steroid 
experiments reported here, we aligned atoms in the steroid 
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Figure 1. Flow diagram for Compass. 

nuclei, which formed a substructure common to all the 
molecules. In cases in which the correct initial alignment 
is unclear, several can be supplied, and Compass will choose 
among them, using the pose selection algorithm of the 
second phase. 

This second phase, discussed in greater detail in the 
Automatic Pose Selection and Nonlinear Statistical 
Method sections, proceeds iteratively, with three steps 
repeated in a loop. 

1. The first step computes a set of real-valued features 
from each pose. Each feature measures the surface shape 
or the polar functionality of the pose in the vicinity of a 
particular point in space. 

2. The second step constructs a statistical model relating 
structure to predicted activity. We use a neural network, 
which is a nonlinear function of the feature values, as the 
model. The neural network maps feature sets to activities 
and can be used to predict the activity of hypothetical 
molecules. This model can only be as good as the initial 
poses, however. 

3. The third step uses the model to realign the molecules, 
thereby deriving better poses. Since the model measures 
local determinants of binding affinity, it is indirectly a 
model of the binding site, and the realignment process 
can be thought of as allowing a molecule to rotate, translate, 
and alter its conformation to achieve the best fit to a 
binding site. This is analogous to the physical process 
that results in molecules taking up the bioactive pose when 
interacting with the target protein. To the extent that 
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all the the model is accurate, realignment will find for each 
smment molecule a pose closer to the bioactive ones than those 
1 choose previously considered. 
of the Given these improved poses, Compass can build an 

improved model that more accurately reflects the struc-
in the ture—activity relationship. This alternating process of 

tistical model building and reposing iterates to convergence and 
e steps yields, for each molecule, final predictions of activity and 

bioactive pose. Convergence completes the second phase, 
satures The third phase predicts the activity and bioactive pose 
e shape of a new molecule. Compass carries out a conformational 
ty of a search on each molecule and places them in initial 

alignments using the same common substructure or 
elating pharmacophore as was used in applying the first phase to 
stwork, the known molecules. These poses are realigned relative 
i, as the to the neural network model generated in the second phase; 
:tivities the likely bioactive pose is chosen using the selection 
ietical algorithm of the second phase, and the model is used to 
initial predict activity. 

The next several parts of this Methods section describe 
lecules, in more detail the three aspects of Compass that differ 
jasures significantly from previous systems: the molecular rep-
ectly a resentation, the use of a neural network as a nonlinear 
process statistical methodology, and automatic pose selection, 
anslate, Molecular Representation. Because molecular shape 
it to a depends on conformation, Compass cannot represent a 
process molecule with a single set of features. In fact, Compass's 
sewhen shape representation depends on alignment as well as 
tit that conformation. Thus, each pose of a molecule is represented 
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Figure 2. Steric feature computation illustrated for methane, 
using an arbitrary set of sampling points. Each point measures 
the distance to the van der Waals surface of the molecule. 

by a different set of feature values. Each value corresponds 
to a sampling point in an invariant, common reference 
frame. The sampling points, scattered near the surface 
of the molecules, allow one to measure steric and polar 
characteristics in their vicinity. A single set of sampling 
points is used to derive feature values for all poses of all 
molecules. 

Three types of features are used: steric features and 
hydrogen bond donor and acceptor features. Steric 
features consist simply of the distance from a sampling 
point to the van der Waals surface of a molecule in a 
particular pose (Figure 2). 

Donor and acceptor features, similarly, measure the 
distance from a sampling point to the nearest H-bond 
donor or acceptor group. For example, a particular donor 
feature, in sampling a particular pose, might find the 
nearest amine, skipping over nearer hydrocarbon groups 
and a carbonyl. For the present study, it was sufficient 
to define the distance to a polar group as the distance to 
the one non-hydrogen atom in the group. In the bench
mark data set, the only acceptor functionalities are oxygens 
and a fluorine; acceptor features measure the distance to 
them. The only donor functionalities were hydroxyls; in 
this case, the distance is measured to the oxygen, despite 
the fact that the hydrogen has the positive charge in order 
to suppress effects of the arbitrary hydrogen orientation 
chosen in conformational search. We originally used a 
polar feature type based on atomic partial charges and 
Coulomb's law but found this method inaccurate, pre
sumably due to simplifying assumptions such as the 
nontreatment of polarization effects. Bohacek et al.10 

report similar conclusions and independently derived a 
similar H-bond representation. Adding hydrogen bond 
angle features as well as distance features may improve 
performance, but we have not tested this. 

Compass's steric feature type is more precise than grid 
sampling methods,6 which most closely resemble it. The 
van der Waals field of a molecule changes much more 
quickly than can be captured in a typical 2.0-A or even 
1.0-A sampling. In effect, grid sampling of the steric field 
tells only whether the molecule occupies each point or 
not. By measuring distances to the surface, in contrast, 
each sampling point in our representation makes a steric 
measurement whose precision is limited only by the 
approximation of the molecular surface by van der Waals 
spheres. 

A lesser advantage, relative to grid methods, is ef
ficiency: instead of thousands of grid points, only 265 
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sampling points were used in the experiments reported 
here. The smaller number of features also reduces the 
problem of overfitting in model building. 

Nonl inear Statistical Method. This method is used 
to construct the mathematical function that maps sets of 
feature values to activities. 

The assayed activity of molecules will generally be 
highly nonlinear in the distance features defined above. 
An ideal distance to a sampling point places the sampled 
portion of the surface in contact with the hypothetical 
active site, contributing to binding. A shorter distance 
results in steric interference and disfavors binding. A 
greater distance results in lost favorable interactions. Since 
an optimal interaction involves an intermediate distance, 
with poor interactions resulting from either greater or lesser 
distances, any monotonic function of the distances (in
cluding linear functions) would make an inherently poor 
fit to the underlying physics. 

We have instead aplied a nonlinear method, specifically 
a neural network.11 The neural network is a nonlinear 
function that maps sets of feature values (distances) to 
predicted activities. This function constitutes the predic
tive model. In addition to the feature values, it takes as 
inputs a set of parameters. These parameters are set 
automatically, according to a method described in the next 
paragraph, to optimize the model's predictions of the 
compounds whose activities are known. The network 
consists of three "layers"; tha t is, it is a three-deep 
composition of simple nonlinear functions. The "input 
units", which are the functions applied directly to the 
feature values, have a form similar to that of a Gaussian, 
with a central peak and values that drop off toward zero 
on either side: 

G11^x)=Ze-" -#» 

There is one G unit for each feature. The function G 
captures the physical intuition that there is an optimal 
distance, with activity dropping off as the distance goes 
either above or below this value. The argument x is the 
input feature value. The parameter/* is the optimal value 
of x, for which the output of G will be maximized. The 
parameter a determines how quickly activity decreases as 
the feature value moves away from the optimum. This 
parameter might correspond to how flexible the cor
responding portion of the receptor wall is, and so how 
tolerant it is of ligand variation, and thereby may capture 
in part the phenomenon of induced fit. The parameter 
z is a weighting term, which determines how much the 
feature contributes to overall binding. The outputs of 
the G units are fed through two layers of standard sigmoid 
units of the form 

In the benchmark experiments, we used 265 input G units 
(one for each feature), three H units in the intermediate 
layer, and one H output unit t ha t produced the predicted 
activity. 

A neural network—which is to say a continuous, 
differentiable nonlinear function with adjustable para
meters—can be "trained" to approximate a given function 
using the "backpropagation" method.12 This method is a 
gradient descent parameter fit; it repeatedly applies the 
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network to known values of the function to be ap
proximated and selects parameter values that minimize 
the error. In our case, the known values of the function 
are the assayed activities of the known molecules, so the 
difference between the assayed activity and the predicted 
activity is used as the error term in training. 

Backpropagation is an iterative process, which proceeds 
in steps called "epochs". During one epoch, each training 
pair, consisting in our case of the set of features derived 
from a molecule and its assayed activity, is presented to 
the neural network once, and the parameters are adjusted 
for each to decrease prediction error. 

Automatic Pose Selection. The values of the features 
extracted from a molecule depend on its pose, since the 
pose determines the distance from sampling points to the 
surface. Since conformations and alignments can vary 
continuously, there is an infinite space of poses for each 
molecule, and so a corresponding infinite space of sets of 
feature values. Most previous systems require the user to 
choose, from this infinite space, a single pose for each 
molecule. Ideally this should be the bioactive pose, since 
it is the features of the bioactive pose that are relevant in 
determining activity. Predicting the bioactive pose is 
difficult, and incorrect predictions introduce a significant 
form of human bias into the model-building process. The 
need to supply a single, aligned conformation for each 
molecule has been a main hindrance in applying other 
systems.13 

The second, main phase of Compass both builds a model 
predicting activity and selects, for each molecule, a pose 
predicted to be bioactive. The selected poses are used in 
constructing the model, and the model is used in selecting 
poses. Since each depends on the other, the problem is 
solved by an iterative refinement starting from the initial 
poses produced by the first phase. We will show, later in 
the paper, that Compass's choice of poses contributes more 
than any other single factor to its performance.14 

To understand the automatic pose selection algorithm, 
we must first define the notion of the activity predicted 
for an individual pose. This corresponds to the activity 
that would be measured if the molecule were somehow 
locked into a conformation and could bind to the receptor 
in only one alignment—that is, in only one orientation 
and at only one position. It is computed by extracting the 
feature values for the pose and then applying the neural 
network model to produce an activity prediction. 

If the neural network models the target protein's active 
site perfectly, the bioactive pose will be that which 
maximizes predicted activity, because ligands flex and 
move to bind the target proteins as tightly as possible. 
Pose selection exploits this fact; it chooses the pose that 
is predicted most active as the likely bioactive one. 

At any given time, Compass has access to a finite set of 
previously generated poses. Initially, these are those 
produced in the first phase by conformational search and 
approximate alignment. In selecting a pose to treat as 
bioactive, Compass can choose among the existing poses 
or it can generate new poses out of the infinite space of 
possible poses. The second phase is organized as three 
nested loops (Figure 1), which perform different subparts 
of the process more and less often according to their cost. 

Choice among the previously generated poses is cheap, 
so it is applied frequently during model building. On every 
fifth epoch of neural network training, the model is applied 
to the features extracted from each, and that with the 

highest predicted activity is chosen. (One might choose 
on each epoch, but doing so less frequently decreases run 
time without significantly affecting accuracy.) Only the 
features of the maximal pose of each molecule are used in 
the next five training epochs. Thus, only the character
istics of the pose currently predicted to be bioactive are 
used in improving the model, which reflects the physical 
reality that only the characteristics of the bioactive pose 
contribute to the measured activity. 

Generating new poses is much more expensive than 
choosing between existing ones, so it is performed much 
less often, in the outer loop only. Compass generates new 
poses for consideration by using a continuous function 
optimization technique, such as gradient descent. To 
generate improved alignments, each conformation is 
rotated and translated to maximize activity. The features 
are continuous, piece-wise differentiable functions of the 
six alignment variables (three degrees of freedom in 
rotation and three degrees of freedom in translation). Since 
the neural network model is a continuous, differentiable 
function of the features, their composition is a piece-wise 
continuous, differentiable function mapping poses to 
activities. Gradient descent or other similar function 
optimization techniques can then find the alignment that 
maximizes activity.15 It is a straightforward extension of 
the technique to allow the conformational variables, such 
as torsion angles, to vary continuously, as the alignment 
variables do, but we have not yet implemented this. 

The outer, realignment loop is considered to have 
converged when the predicted activities of all molecules 
are close enough to the assayed values. The largest number 
of realignment cycles required for convergence was five in 
the experiments reported in this paper. 

Automatic pose selection is one way Compass addresses 
the general phenomenon of induced fit, whereby a ligand 
and its target protein both change conformation upon 
binding. The use of the a parameters in the neural 
network, which model the flexibility of regions of the 
receptor wall, is another. Finally, Compass can model 
some cases in which a protein side chain moves to either 
of two locations, resulting in distinct energetically ad
vantageous interaction regions, by placing sampling points 
that measure proximity to each region. However, many 
cases of induced fit, such as those in which a whole protein 
loop shifts, are unlikely to be captured. 

Benchmarking. We applied Compass to a steroid 
binding affinity prediction problem previously studied by 
Cramer, Patterson, and Bunce using CoMFA6 and by Good, 
So, and Richards,7 who applied a molecular similarity 
method.16 The data set (Figure 3) consists of 21 steroids 
assayed for binding affinity to two transport proteins, 
corticosteroid binding globulin (CBG), and testosterone-
binding-globulin (TBG)17 and an additional 10 steroids 
assayed for CBG binding only.18 

Both previous studies used a statistical technique called 
cross-validation19 in measuring predictive ability. In a 
cross-validation experiment involving n molecules, a model 
is built from all but the first molecule, and this model is 
used to predict the activity of the first molecule. Then all 
but the second molecule are used to create a model that 
predicts the second molecule, and so on. In this way, each 
molecule is predicted, as though the system had never 
seen it before, on the basis of all the other molecules. (This 
is actually a special case of cross-validation, called "hold-
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HO CH2OH 

29 30 31 
Figure 3. Structures of the 31 steroids in the benchmark data set. 

one-out" cross-validation. Hold-one-out cross validation using the 21-molecule set with a cross-validated experi-
was the type used in all the studies described here.) mental design. Only when development was complete were 

In the previous studies, systems were initially developed the 10 additional molecules predicted on the basis of a 
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Figure 4. Scatterplots of predicted versus actual binding affinities for the 21 molecules in cross-validation. Panel a, CBG assay; b, 
TBG assay. 

model derived from the 21. We used the same experi
mental design in applying Compass. 

Good et al. applied both their molecular similarity 
method and CoMFA to generate three types of models, 
using steric features only, using polar features only, and 
using both steric and polar features. This allowed them 
to break down the contributions of steric and polar effects 
to binding. We generated the same three types of models 
using Compass. 

We obtained the conformations used in the original 
CoMFA study from Tripos Associates20 and took these as 
input to the conformational search. As initial alignments, 
we supplied the same alignments used in the previous 
studies, which optimize RMS fit of the 3, 5, 6,13,14, and 
17 carbons of each conformation to the corresponding 
atoms of the standard conformation of deoxycortisol (11). 

Performance Metrics. An activity prediction method 
has two functions: it should help choose between candi
dates for synthesis, and it should help design better 
candidates. It is hard to quantify the second role, but it 
is possible to quantify the first. An estimate of the 
predictive accuracy ofa method helps its developers known 
whether they are making progress; it also helps medicinal 
chemists know how far to trust predictions. 

The comparison papers report two measures of predic
tive performance: cross-validated r2 is reported for cross-
validations, and a standard error metric is reported for 
the 10-molecule prediction set. Cross-validated r2 mea
sures how well a model predicts data not used in model 
construction. An r2 of 1.0 results from perfect prediction; 
r2 = 0.0 corresponds to random prediction. Cross-validated 
r2 should not be confused with the conventional r2 metric, 
which measures only how well a model fits the data it was 
generated from. It is easy to develop models that achieve 
virtually perfect conventional r2 but that have little or no 
predictive value. Accordingly, all r2 values cited in this 
paper are cross-validated. 

The "standard error" metric reported in previous papers 
is inapplicable to Compass because it is specific to the 
type of model the previous systems built (a partial least 
squares model). Therefore, in its place we report Kendall's 
T, a measure of how well a system predicts the ordering 

Table 1. Comparative Performance Results for Various Systems 
Applied to the Steroid Binding Problem" 

both 
steric 
polar 

both 
steric 
polar 

CoMFA 

0.69 
0.76 
0.64 

0.44 
0.48 
0.60 

Similarity 

CBG 
0.53 
0.63 
0.50 

TBG 
0.74 
0.24 
0.73 

Compass 

0.89 
0.87 
0.81 

0.88 
0.51 
0.67 

° Numbers are cross-validated r2 values. We report numbers for 
two different assays (CBG, TBG), for three different model-
construction conditions (steric and polar features together, steric 
features only, polar features only), and for three methods (CoMFA, 
the molecular similarity method of Good et al., and Compass). The 
both-features condition is the significant result, and so is boldfaced; 
the other conditions are controls. Numbers for CoMFA and the 
similarity method are taken directly from Good et al.7 who ran a 
more recent version of CoMFA and obtained somewhat better results 
than Cramer et al.6 The results from Compass come from runs using 
uniform control settings throughout. 

of data. A perfect r (1.0) is obtained when molecules sorted 
by predicted assay value are in the same order as when 
they are sorted by actual assay value. Random prediction 
results in a zero r; predicting the reverse order yields —1.0. 

Results 
We ran two classes of experiments: those aimed at 

evaluating Compass's predictive performance and those 
aimed at understanding the reasons for that performance. 
In the first class, the main result is that Compass makes 
substantially better predictions on the steroid binding 
benchmark than previous methods. This is true for both 
assays (CBG and TBG) and for both the 21-molecule data 
set and for predicting the 10 additional molecules on the 
basis of the structures and activies of the 21. Comparative 
performance is most clearly illustrated in Tables 1 and 2 
and Figures 4 and 5. The results from the second class 
of experiments demonstrate that Compass's strong per
formance is in fact explicable in terms of the theoretical 
considerations that led to its design. These results are 
presented formally in Tables 1, 5, and 6, but are perhaps 
best understood by examining Figures 6—8. 
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F i g u r e 5. Scatterplots of predicted versus actual binding affinities for the 10-molecule set. Panel a, CoMFA; b, Compass. Molecule 
31 is marked with an arrow in each plot. Good et al.7 do not report raw data, so there is no corresponding scatterplot. 
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F i g u r e 6. Effect of realignment in the polar-only model construction condition, illustrated in cartoon form for clarity. Top row, initial 
alignments of two molecules, each with two polar functionalities, one active and one inactive. The steroid nucleus, represented as 
the box shape, is aligned perfectly. The rightmost panel in this row shows the two molecules superimposed in their initial alignments. 
Middle row, realignment using only polar feature information results in the inactive molecule rotating to align its polar functionalities 
with those of the active one. Superimposition of the two, at the right, shows that they are almost indistinguishable in the positioning 
of polar functionalities, although sterically very different. Realignment hurts predictive performance in the polar-only condition 
because inactive molecules come to look like active ones. Bottom row, realignment using only steric features moves the second molecule 
only slightly, trading off slightly increased steric violations all over the molecule with decreased mismatch a t the right end. In this 
case, the molecules are easily distinguished because the steric fit a t this end is still poor. 

Table 2. Kendall's r Measure of Predictive Accuracy for Two 
Systems Applied to the 10 Held-Out Molecules" 

prediction set CoMFA Compass 

22 -31 
22-30 

0.28 
0.34 

0.46 
0.84 

0 Activities were predicted on the basis of a model built from the 
other 21 molecules and their assay values. Data for the similarity 
method are unavailable. We report results both for all 10 molecules 
and for the 9 molecules with 31 ignored. 

Pred ic t ive pe r fo rmance of t h e four m e t h o d s is s h o w n in 
Tab le 1, which d i sp lays c ross -va l ida ted r 2 s for al l t h r e e 
s y s t e m s , b o t h a s s a y s , a n d t h e t h r e e mode l cons t ruc t i on 
condi t ions (s ter ic f e a t u r e s only, po la r f e a t u r e s only, a n d 

all f ea tu res ) descr ibed i n t h e B e n c h m a r k i n g section above. 
( N u m b e r s for C o M F A a n d t h e s imi la r i ty m e t h o d a r e t a k e n 
from p a p e r s desc r ib ing t hose methods . ) In t h i s t a b l e we 
see t h a t C o m p a s s , in t h e s t a n d a r d model cons t ruc t i on 
condi t ion, ach ieved r 2 v a l u e s of 0.88 a n d 0.89, w h e r e a s t h e 
b e s t p rev ious resu l t , for a n y a s s a y in a n y condi t ion , w a s 
0.76. 

F i g u r e 4 shows s c a t t e r p l o t s of p red ic t ed v e r s u s a c t u a l 
ac t iv i t ies for t h e 2 1 molecu les in c ross -va l ida t ion t e s t s . I t 
s h o w s plots for bo th a s s a y s , u s ing seric a n d po la r f e a t u r e s 
combined . As one can see , t h e po in t s c lu s t e r q u i t e t igh t ly 
a b o u t t h e 45° ze ro -e r ro r l ine . S imi la r ly , F i g u r e 5 s h o w s 
s c a t t e r p l o t s , for C o M F A a n d C o m p a s s , of a c t u a l v e r s u s 
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Table 3. Predicted and Assayed Activities for Molecules 
Held-Out in 21-fold Cross-Validation" 

Table 5. Cross-Validated Performance of Compass on the 
21-Molecule Set with Automatic Pose Selection Partially or 
Completely Disabled" 

molecule 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

assay 

6.279 
5.000 
5.000 
5.763 
5.613 
7.881 
7.881 
6.892 
5.000 
7.653 
7.881 
5.919 
5.000 
5.000 
5.000 
5.225 
5.225 
5.000 
7.380 
7.740 
6.724 

prediction 

6.012 
5.156 
5.021 
6.836 
5.118 
7.484 
7.691 
7.711 
4.995 
7.682 
7.614 
6.107 
4.989 
4.851 
4.912 
5.377 
5.525 
5.215 
7.473 
7.248 
6.955 

assay 

5.322 
9.114 
9.176 
7.462 
7.146 
6.342 
6.204 
6.431 
7.819 
7.380 
7.204 
9.740 
8.833 
6.633 
8.176 
6.146 
7.146 
6.362 
6.944 
6.996 
9.204 

prediction 

6.530 
8.989 
9.063 
7.081 
6.614 
6.190 
6.287 
6.458 
7.347 
6.945 
6.681 
9.062 
9.162 
6.893 
8.077 
5.955 
6.984 
6.367 
7.047 
6.777 
9.079 

" Molecules are numbered according to the convention of Good et 
al.1 Predictions are from models using steric and polar features 
combined. Values are logil/K). 

Table 4. Assayed and Predicted Activities for the 10 Molecules 
Held-Out during System Development" 

molecule 

22 
23 
24 
25 
26 

CBG 
assay 

7.512 
7.553 
6.779 
7.200 
6.114 

prediction 

7.062 
7.729 
6.462 
7.466 
5.994 

molecule 

27 
28 
29 
30 
31 

CBG 
assay 

6.247 
7.120 
6.817 
7.688 
5.797 

prediction 

6.383 
6.625 
7.403 
7.741 
7.779 

" Assay values are available for CBG affinity only. Predictions 
are using both polar and steric features. Values are log(l/K). 

predicted activities of the 10 molecules held out during 
system development. Here we see that only the Compass 
results approach linearity. (Raw data for the similarity 
method are unavailable, so we are unable to present a 
corresponding plot.) Tables 3 and 4 report the raw 
predictions corresponding to the figures; we present these 
data only so that others can perform alternative analyses 
of them. 

Table 2 compares predictive performance on the 10 
molecule set using the r metric. We actually report results 
both for the full set of 10 and with molecule 31 dropped. 
Molecule 31 is the only one with a non-hydrogen 9-sub-
stituent. It is a fluorine, which is also the only non-oxygen 
functionality in the data set. It is otherwise identical to 
30, which is 100 times more active. All the methods 
substantially overpredicted the activity of 31, and the 
comparison papers have reported results with and without 
it. As can be seen from the table and the scatterplots in 
Figure 5, Compass is substantially more predictive than 
alternatives, with or without 31. In fact, CoMFA does not 
perform better than chance at p = 0.1. The Compass 
result with 31 is significant a t p = 0.03, and atp = 0.001 
without 31. In fact, predictive performance on the nine 
molecules 22 -30 is comparable to that on the 21 molecules 
from which the model was derived. 

We conducted a series of experiments aimed at dis
covering the sources of the system's performance. These 
experiments removed from Compass, or added to CoMFA, 
various combinations of the three main technical advances 
incorporated in Compass. Table 5 displays the results of 

full no single no 
assay posing realignment conformation posing 
CBG 089 088 086 0.79 
TBG 0.88 0.85 0.69 0.73 

0 Entries are cross-validated r2s. No realignment, alignments 
held fixed. Single conformation, system supplied only with the 
single conformation used in the CoMFA study, but allowed to 
optimize alignment. No posing, system allowed to use only the 
original CoMFA conformations and alignments. 

Table 6. Results of Experiments Substituting Compass Surface 
Features into CoMFA" 

poses 

initial 
selected 

grid 

0.76 
nd 

assay 

CBG 

surface Compass grid 

0.73 0.79 0.60 
0.85 0.89 nd 

TBG 

surface 

0.72 
0.59 

Compass 

0.73 
0.88 

" First row, features derived from Tripos poses; second row, features 
derived from Compass-selected poses. For each assay, we report 
results under three conditions. The first, "grid", is the best result 
from all reported CoMFA runs, using whichever combination of polar 
and steric features gave the highest cross-validated r2 value. The 
second, "surface", is the result of supplying the Compass surface 
features to PLS, using again the feature set that gave the best results. 
The third is the result from Compass (with pose selection disabled 
in the first row). Nd, experiment not done. 

partially or completely disabling automatic pose selection. 
In this experiment, described later in more detail, we 
turned off the iterative realignment process or gave the 
system only the Tripos-supplied low-energy conformation 
used in the CoMFA study, or both, and measured 
predictive performance. Predictivity uniformly dropped. 
In fact, without pose selection, performance of Compass 
drops almost to the level of the best previous results. The 
effect of conformational selection was significantly greater 
than that of realignment. 

Table 6 reports the results of two other experiments 
with a similar aim. In these experiments, we supplied 
Compass's surface features to partial least squares (PLS), 
the statistical component of CoMFA, in place of CoMFA's 
grid features. In one experiment, we supplied surface 
features for the CoMFA pose; in the other, we supplied 
the surface features of the pose Compass predicted to be 
bioactive. In the case of CBG, supplying the surface 
features of the bioactive pose resulted in better perfor
mance, and those of the initial pose in worse performance; 
in the case of TBG, the reverse effect held. The reason 
that supplying the surface features (of either set of poses) 
does not consistently improve performance is that the 
features are inherently nonlinear and may require a 
nonlinear statistical method to make use of them. PLS 
is a linear method and may not be able to make sense of 
nonlinear inputs. The CoMFA features, in contrast to 
the Compass ones, are in units of energy and so should 
combine linearly. 

These results show that adding to CoMFA any one of 
the new capabilities incorporated in Compass may either 
improve or degrade performance. All three are required 
to get the best predictions because they act synergistically. 

Discussion 

Nonlinear Statistical Method. Compass's neural 
network model improves predictivity for two reasons: it 
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is able to combine multiple feature types synergistically 
and it is able to exploit the distance-based features. 

Although the binding of steroids to CBG and TBG 
involves both steric and polar interactions, it was difficult 
for previous methods to combine information about these 
effects. Examination of Table 1 shows that in only one 
case (the similarity method applied to TBG) was a previous 
system able to produce a combined model that was as 
predictive as or more predictive than the single-feature-
type models (and then not significantly so). Good et al. 
have suggested that the difficulty CoMFA and the 
similarity method had in combining feature types was an 
inherent problem with PLS: the greater dynamic range 
of the steric features leads to electrostatic features being 
eliminated in variable selection. 

Compass, on the other hand, successfully combined 
feature types for both assays. (This despite the fact that 
its sterics-only and polar-only models were more predictive, 
on both assays, than any previous such model; in other 
words, Compass has the best r2 value in each row. The 
one exception is the TBG assay modeled with polar features 
only, for which Compass did worse than the similarity 
method but better than CoMFA. Later in the paper we 
will suggest an explanation.) 

This ability to combine information about sterics and 
polar functionalities is illustrated by Compass's perfor
mance in predicting molecule 16's TBG activity under the 
three different feature type conditions. Molecule 16, like 
9 and 15, has a hydroxyl 3-substituent, a carbonyl 17-
substituent, and no other heteroatoms. However, 9 and 
15 are 100 times more potent. Molecule 16 has a fully 
saturated steroid nucleus, and its 3-hydroxyl substituent 
is a. In most but not all of its 11 energetically accessible 
conformational minima, the hydroxyl is placed well below 
the plane of the B, C, and D rings. However, under all 
three model construction conditions, the same conforma
tion is chosen from among the 11, one of those that is 
relatively flat. In the steric-only model, it is oriented purely 
on the basis of steric fit. It is predicted to be about 1 log 
unit too low, because it is penalized for imperfect steric 
fit without being rewarded for good polar fit. Conversely, 
in the polar-only model, the conformation is oriented to 
maximize proper placement of the carbonyl and hydroxyl 
oxygens while ignoring sterics entirely. It is predicted to 
be 1.5 log units high in this case—very close to the activity 
of molecules 15 and 9. In the combined feature type model, 
the conformation is oriented primarily on the basis of steric 
fit, but the prediction, incorporating polar factors as well, 
is very accurate (less than 0.2 log units low). Figure 8 
shows molecules 15 and 16 in their chosen poses using 
Compass's graphical design tool. The saturation of the 
blue dots indicates how well the carbonyl is positioned; 
yellow dots indicate steric violations. Molecule 15 shows 
no steric violations and a good carbonyl fit; molecule 16's 
orientation is chosen to minimize steric violations (which 
cannot be entirely avoided) while picking up some benefit 
from a less-good carbonyl position. This model, then, is 
able to combine the information that the molecule has the 
appropriate polar groups with the fact that it is impossible 
to simultaneously place them correctly while respecting 
the steric requirements. 

By comparing the "surface" columns of Table 6 with 
the "Compass" columns, one can see the effect of adding 
a nonlinear statistical method to the surface features. This 
improves performance in all cases, although much more 

so in some than others. Our conclusion from the full series 
of PLS control experiments is that the three advances 
incorporated into Compass are synergistic in effect, and 
all three are required for best performance. 

The importance of a nonlinear method is suggested also 
by a pilot experiment of Good et al.7 replacing linear PLS 
with a quadratic model (GOLPE). This improved cross-
validated r2 for CBG, using both feature types, from 0.533 
to 0.828. This number is still lower than that for Compass, 
however. Further, it appears that this experiment was 
not performed with a true cross-validation methodology, 
because the assay values of all molecules (including those 
held out for prediction) were used in variable selection 
prior to model building. 

Automatic Pose Selection. Figure 7 illustrates the 
importance of automatic pose selection. It shows two 
conformations of molecule 28, a member of the 10-molecule 
prediction set. The top conformation is the one used in 
the CoMFA study. The assayed CBG affinity of 28 is 
7.12. On the basis of the top conformation, CoMFA 
predicts an affinity of 5.38, an error of 1.74 log units. This 
is more than half the range of the data (2.88 log units). By 
choosing the bottom conformation, unavailable to CoMFA, 
Compass predicts 6.63, an error of only 0.49 log units. 
When Compass is supplied only with the top conformation, 
it predicts 5.35, almost exactly the same value as CoMFA's 
prediction. Thus, in this case, the ability to choose among 
multiple poses is crucial to accurate prediction. 

Two sets of experiments show quantitatively that 
automatic pose selection can improve performance of 3D 
prediction systems: experiments that remove pose selec
tion from Compass and experiments that simulate adding 
it to a CoMFA-like system. 

The first set of experiments is reported in Table 5, which 
displays the results of disabling realignment, conformer 
selection, or both. This substantially degrades perfor
mance. That supplying only the CoMFA conformation to 
Compass substantially degrades performance strongly 
suggests that the bioactive conformation is not the low-
energy conformation and that optimal performance re
quires a 3D method to choose conformations itself. 
(Strictly, the CoMFA conformations are not necessarily 
the lowest-energy ones; they were derived in part from 
crystal structures and in part from conformational search.) 

In this study disabling realignment (while allowing 
conformation selection) does not substantially degrade 
performance. This suggests that the initial alignments of 
the steroid nuclei are close to correct. In a previous study,4 

however, we found that realignment was crucial to 
performance; presumably our initial alignments of those 
molecules were less accurate. 

Experiments with disabling realignment suggest an 
explanation for Compass's performance in the polar-
features-only condition on the TBG assay, which was lower 
than that for the similarity method (but higher than that 
for CoMFA). Disabling realignment in this case actually 
improves performance, from 0.67 to 0.72 (comparable to 
the similarity method's 0.73). The reason is that the polar 
features alone do not sufficiently constrain realignment. 
Most of the molecules have polar functionalities only at 
the two extreme ends of the molecule, the 3 and 17 
positions. Polar features are therefore insensitive to most 
of the molecule, and models based on them cannot 
constrain realignment well. In realignment, low-affinity 
molecules rotate drastically to align their polar function-
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Figure 7. Conformations of molecule 28. The top conformation is that used in the CoMFA study. The bottom conformation is that 
selected by Compass. 

alities with those of the high-affinity molecules while 
ignoring unfavorable steric interactions, and their activities 
are overpredicted (Figure 6). Since the polar-only model 
is insensitive to the shape and alignment of the steroid 
nucleus, it is unable to prevent this. On the other hand, 
in the combined model, the steric features in effect 
constrain realignment by adding information about prob
able disallowed steric overlaps with the receptor. The 
combined model-building condition is, of course, the form 
we always use in practice. 

The second set of experiments demonstrating the 
importance of automatic pose selection is reported in the 
"surface" columns of Table 6. Here we supplied either 
the CoMFA pose or the Compass-selected pose of each 
molecule to a system consisting of Compass surface features 
and a linear (PLS) model. Supplying Compass-selected 
poses simulates the effect of adding automatic pose 
selection to the linear system. Of course, although the 
Compass-selected poses are intended to be the bioactive 
ones, they are actually chosen to optimize Compass's neural 
network model and might not optimize PLS performance. 
Even if these poses are close to the bioactive ones, a linear 
model may not be able to exploit them. In fact, using the 
selected poses significantly improves performance on the 
CBG assay (0.73 to 0.85). On the other hand, it hurts 
performance on the TBG assay (0.72 to 0.59). The reason 
for this is tha t the conformations for several low-affinity 
molecules used in the CoMFA study are very dfferent from 
those chosen by Compass, which makes them easy to 
discriminate from high-affinity molecules. The Compass-
selected conformations are much more similar to those of 
the high-affinity molecules because the pose selection 
process chooses the conformation with the highest pre
dicted activity as the likely bioactive one. This conforma
tion is likely to be the one most similar to conformations 
of high-affinity molecules, since tha t is what is required 
to fit the model. Had it by chance been high-affinity 
molecules that had the unusual conformations, pose 
selection would have helped PLS; as it was, pose selection 
hur ts PLS in this case. (This illustrates the predictive 

bias—accidental in this case—introduced by using only a 
single pose for each molecule.) 

C o n c l u s i o n 

We have described a new method, Compass, for pre
dicting unknown biological activities based on relating 
molecular structures to their known biological activities. 
The method incorporates several technical advances; 
theory predicts, and experiments confirm, that these result 
in substantially improved predictive accuracy. A bench
mark study shows that Compass outperforms previous 
systems on the data set used in their development. 

Many extensions and improvements to the system are 
planned or underway. First, we will add additional feature 
types to the system. For example, we plan to add the 
internal energy of conformations as a feature type. Surface 
hydrophobicity is another candidate feature.21 A more 
detailed model of hydrogen bonding, including perhaps 
bond angles and the partial charges of the ligand donor 
or acceptor atoms, may improve predictivity, as may 
consideration of other polar phenomena such as aromatic 
interactions. Compass currently makes no reference to 
the entropic contribution to binding, which in some cases 
dominates the enthalpic contribution; we plan to add 
techniques that would estimate the entropy term. 

Compass currently requires the user to supply a 
qualitative hypothesis about how ligands bind in the form 
of a common substructure or a pharmacophore. It should 
be possible to use standard maximum-common-subgraph 
algorithms to find common substructures and active analog 
techniques to find pharmacophores, thereby automating 
this step. 

QSAR techniques currently give no estimate of the 
reliability of their predictions. A person, looking at ligand 
structures, can easily identify some molecules as outliers 
with, for example, a bulky substi tuent in a region where 
no other molecule protrudes. Little confidence should be 
placed in a prediction of the activity of such a molecule, 
because the data on which to base a prediction are simply 
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Figure 8. Comparison of molecules 15 (top) and 16 (bottom) in their chosen poses. Small white dots represent the Connolly surface. 
The saturation of the large blue dot indicates how close to optimal the distance from a polar sampling point to the carbonyl is. Large 
yellow dots indicate steric violations. Large brown dots indicate portions of the molecule that are close to optimal. 

not available. We are developing means tha t will provide 
a confidence measure for predictions. In the later stages 
of the lead optimization process, one may choose to avoid 
synthesizing candidate molecules with low predictive 
confidence, preferring those that are predicted to be highly 
active with high confidence. In an earlier phase, one might 
deliberately synthesize molecules tha t are difficult to 
predict, in order to systematically explore the space of 
variation, and thereby to collect information about binding 
requirements as efficiently as possible, maximizing the 
information gained from each synthesis. 

Although it would often be very useful to accurately 
predict binding affinities, in many drug discovery projects 
highly active compounds are well-known and the difficulty 
is selectivity instead. If one could predict activity against 
several targets sufficiently accurately, then that would 
suffice to predict selectivity; we believe tha t other methods 
can be developed that would predict selectivity more 

accurately, in some cases, than activities against any of 
the individual targets could be predicted. 

Ligand flexibility is a limitation on the applicability of 
the current implementation of Compass. Standard con
formational search methods make it impractical to use 
the system to analyze ligands with much more than a 
thousand conformers. We are developing new search 
techniques that may make it practical to predict the 
activities of short peptides and other very flexible com
pounds. 

Exper imenta l Sect ion 

Computational Requirements. We performed our experi
ments on a Silicon Graphics Iris Indigo with an R4000 processor 
and 96 megabytes of main memory. The run time of the first 
phase, initial pose generation, is dominated by conformational 
search, which requires several hours per molecule. However, the 
results are independent of any subsequent variations in experi-



Biological Activities from Molecular Surface Properties Journal of Medicinal Chemistry, 1994, Vol. 37, No. 15 2327 

mental design and can be saved and reused in many experiments. 
The second phase, model building, takes only about 1 min per 
molecule, and the resulting model can be applied to predict a 
new molecule in a few seconds. 

Sampling Points. The sampling points were scattered 2.0 A 
outside the averaged van der Waals surface of all the initial poses. 
In addition, in areas where at least one pose extended an 
additional 2.0 A beyond the 2.0-A shell, points were added at the 
maximum excursion of any pose. This resulted in a total of 265 
sampling points, ofwhich 191 were steric and 74 polar. We have 
found that small changes in number and positions of sampling 
points make little difference in system performance. 

Conformational Search. We used the BATCHMIN Monte 
Carlo search procedure22 with the AMBER force field23 to generate 
the set of conformers. We used the default parameter settings: 
energy minimization to less than 0.05 kJ/A gradient, retaining 
all local minima within 50 kj/mol of the global minimum, and 
performing 1000 search steps. The 1000-step default was 
sufficient to ensure oversampling for all molecules in the 
benchmark study, so the search probably found all low-energy 
conformers. The 50-kJ default energy window is probably wider 
than realistic; it is unlikely that the bioactive conformation of 
a relatively rigid molecule would be so far above the global 
minimum. However, the conformers Compass selected were 
almost always of much lower energy. We also conducted some 
experiments with a 20-kJ cutoff, and this did not significantly 
affect performance. We also believe that the force field used, 
and such details as solvated versus in vacuo computations will 
not significantly affect results in the case of relatively inflexible 
molecules. The reason is that all that is required is for the 
conformational search to turn up a conformation close in internal 
coordinates to the truly bioactive one. The energy assigned to 
this conformation is not used by Compass. Therefore it is not 
necessary to get the energies exactly correct, and indeed although 
the chose conformation must be fairly close to the global minimum 
in energy, it need not be at a local minimum. We have not, 
however, systematically experimented with alternative force 
fields. 

Model Construction. All activities were normalized to the 
interval [0, 1] in order to accommodate the sigmoidal transfer 
function of the output unit. The learning rate (gradient descent 
step size) was -0.05. We did not use a momentum term, so the 
momentum coefficient was effectively 0.0. We ran 200—500 
backpropagation epochs between reposings, with early termina
tion on convergence. Learning is considered to have converged 
when the predicted activity of each molecule is within 0.05 of the 
assayed activity. The backpropagation code used in the experi
ments was based on that of Jain.24 

In the study reported here, we used gradient descent to optimize 
alignments, with a step size of 0.03 and 20 descent steps per 
realignment. In other studies, we have applied more sophisticated 
optimization techniques, including simulated annealing and 
genetic algorithms but found gradient descent sufficient in this 
case. 

Performance Metrics. Cross-validated r2 is defined6 as 

r = 1 

Here the at are the assayed activities of the molecules, a is the 
mean of the at, and the pi are the predicted molecular activities. 
The numerator is the squared errors of the predictions, and the 
denominator is a measure of how much variation there is in the 
actual activities. 

Kendall's r metric is defined as follows.25 Consider all n(n -
l)/2 pairings of n distinct molecules. Each pair is considered to 
have been predicted correctly if the one with the greater assayed 
activity is given the greater predicted activity and incorrectly if 
the reverse is true. Then, in the absence of molecules with 
identical assayed or predicted values, 

_ correct — incorrect 
n(n- l)/2 

We believe that x is a better metric of activity prediction 
techniques than other alternatives (including r2) because it 
measures directly how well a method answers the question "Which 
candidate should be synthesized next?". It also provides a linear 
penalty for error, instead of the quadratic penalty imposed by 
r2. The quadratic penalty makes getting a single molecule very 
wrong, and all the others perfect, result in a bad r2, even though 
operationally one may be happy with the results. The single 
error will typically not significantly slow the drug discovery 
process. Getting a single molecule very wrong, with all the others 
perfect, will give a good r, however. We have found that the 
linear error penality also makes r significantly more stable under 
small system changes than r2; this noise-insensitivity makes it 
easier to improve performance during development. 
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