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The replacement of the peptide bond with a function
ality that mimics the biological mode of action continues 
to be a major strategy for drug design. As part of our 
continuing efforts in search of therapeutic agents for 
AIDS, we recently described a stereochemical^ defined 
tetrahydrofuran ring as a surrogate for the asparagine 
side chain in the design of HIV protease inhibitors.1 We 
were intrigued by the possibility of further exploiting 
this concept with the ultimate goal of producing a 
polyether template to mimic the peptide region which 
binds to the viral enzyme.2 

After visual inspection of the X-ray crystal structure 
of the HIV-I protease-inhibitor (Ro 31-8959) complex,3 

it was tempting to speculate that a fused bicyclic 
tetrahydrofuran could effectively hydrogen bond to the 
NH of the Asp 29 and 30 residues and thereby replace 
the quinaldic amide-asparagine amide fragment of the 
Ro 31-8959 inhibitor. In the hydroxyethylamine isostere 
derived inhibitors of which Ro 31-8959 is prototypical, 
inclusion of a P3 ligand is essential for low nanomolar 
activity against the HIV protease. Since there was 
considerable rotational freedom about the four bonds 
connecting the two carbonyls involved, a rigid cyclically 
constrained system might provide additional gains in 
binding energy, to offset loss of the P3 hydrophobic 
binding of the quinoline ring. In this paper, we report 
the structure-based design of a fused bis-tetrahydrofu
ran that effectively replaces two amide bonds and a IOTT-
aromatic system of the present clinical candidate 12 (Ro 
31-8959).4 

The synthetic route leading to the bis-tetrahydrofuran 
(bis-Thf) 4 is outlined in Scheme 1. As shown, optically 
pure (3i?)-diethyl malate 1 was alkylated utilizing the 
procedure reported by Seebach.5 The diastereomer 2 
was obtained as the major (selectivity 12:1) product in 
85% yield after distillation. The diastereomeric mixture 
was converted to the isopropylidene derivative 3 by LAH 
reduction in diethyl ether followed by treatment with a 
catalytic amount ofp-TsOH in acetone at 23 0C for 12 h 
(59% isolated yield). Swern oxidation and subsequent 
reaction with camphorsulfonic acid (CSA) in methanol 
afforded the methyl acetal 4 as a mixture (ratio 4:1) in 
73% yield. Methyl acetal 4 was converted to bis-Thf 5 
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a Key: (a) LDA, CH2=CHCH2Br; (b) LAH, Et2O; (c) acetone, 
p-TsOH; (d) Swern oxidation; (e) CSA, MeOH; (f) ozonolysis then 
NaBH4; (g) CSA, CH2Cl2; (h) DPC, Et3N, CH2Cl2. 

Scheme 2° 

12 (Ro 31-8959) 
a Key: (a) mixed carbonate 6, CH2Cl2; (b) mixed carbonate 8, 

CH2Cl2; (c) ref 1. 

by the following reaction sequence: (1) ozonolytic cleav
age of the terminal olefin, (2) NaBH4 reduction of the 
resulting aldehyde in ethanol at O 0C, and (3) exposure 
of the corresponding alcohol with CSA in methylene 
chloride at 23 0C for 12 h. The desired bis-Thf ligand 5 
((X23D -4.3°, c 0.215, CHCl3) was obtained in 81% yield 
(from 4) after silica gel chromatography.6 Similarly, bis-
Thf ligand 7 ((X24D +3.9°, c 0.32, CHCl3) with a 3S,3aR,-
6aS-configuration was synthesized, starting from opti
cally pure (3>S)-diethyl malate following the sequence 
of reactions described above. The ligands 5 and 7 
readily reacted with dipyridyl carbonate and triethyl-
amine in methylene chloride to furnish the correspond-
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Figure 1. X-ray structure of the inhibitors 10 (magenta) and 12 (green) bound to the HIV-I protease. 

ing active carbonates 6 and 8 in good yields (75—80%)." 
Reaction of the active carbonate 6 with the hydroxy-
ethylamine l b isostere 9 in methylene chloride at 23 0C 
provided only the inhibitor 10 (white solid, mp 9 8 - 1 0 1 
0C) by 1H NMR and HPLC analyses (96% yield). 
Similarly, t reatment of active carbonate 8 with amine 
9 afforded the inhibitor 11 (white solid, mp 8 5 - 8 9 0C) 
in 94% isolated yield. 

The binding properties of the inhibitors 10 and 11 
were determined by enzyme inhibition assays.8 As is 
evident, the ring stereochemistry and conformational 
rigidity associated with bis-Thf ligands have a signifi
cant effect on their in vitro potencies. The inhibitor 10 
derived from (3i?,3aS,6ai?-bis-Thf has shown an enzyme 
inhibitory activity (IC60) of 1.8 ± 0.2 nM (n = 6). In 
comparison, inhibitor 12 (Ro 31-8959), containing as-
paragine in the P2-position and quinaldic amide in the 
Pa-position, exhibited an IC50 value of 0.23 ± 0.10 nM 
(rc = 3). The inhibitor with (3S,3afl,6aS)-bis-Thf as the 
P2-ligand 11, IC50 = 6.4 nM (« = 2) was less potent than 
10. More strikingly, the enhanced inhibitory potency 
of 10 relative to the (3S-tetrahydrofuranylurethane (IC50 
132 nM; CIC95 >800 nM) or the BOC derivative (IC50 

>3 /iM)9 was also reflected in its antiviral potency. 
Inhibitor 10 has prevented the spread of HIV-I in MT4 
human T-lymphoid cells infected with IHb isolate10 a t 
an average concentration (n = 4) of 46 ± 4 nM (CIC95). 
In head to head comparison, inhibitor 10 was equipotent 
to present clinical candidate 12 (Ro 31-8959), CIC95 = 
23 ± 7 nM.11 In contrast, inhibitor 11 has shown an 
antiviral potency of 200 nM. 

In an effort to gain insight into the ligand binding 
site interactions, a single crystal of the inhibitor 10 
complexed with HIV-I protease was generated, and the 
three-dimensional structure was determined by X-ray 
diffraction to 2.10-A resolution.12 A stereoview of the 
bound conformation of inhibitors 10 (magenta) and 12 

(green) as determined by X-ray crystallographic analysis 
of the enzyme—inhibitor complex is shown in Figure I.13 

The (R)-hydroxyl group of inhibitor 10 is positioned 
symmetrically between the two aspartates of the en
zyme. Both the asparagine of 12 and the bis-Thf of 10 
are located in the S2 subsite.14 As shown, bis-Thf 
oxygen-1 of 10 and the P2 asparagine carbonyl of 12 are 
within hydrogen bonding distance (3.5 and 3.2 A, 
respectively) to the Asp 30 NH present in the S2 binding 
domain of the HIV-I protease. Also, the bis-Thf oxy-
gen-6 and the P3 quinoline amide carbonyl of 12 interact 
with the Asp 29 NH (bonding distance 3.0 and 3.3 A, 
respectively) positioned in the region. Like other re
ported protein—ligand complex structures, the P2 bis-
Thf urethane carbonyl and the tert-butyl amide carbonyl 
of 10 hydrogen bond to the critical water molecule that 
interacts with the flap He 50 NH residues. 

Thus, incorporation of a conformationally constrained 
bis-Thf as the P2 ligand provided an inhibitor 10, with 
comparable in vitro antiviral activities to inhibitors in 
the hydroxyethylamine class with both P2 and P3 
ligands. Design of such a high-affinity ligand led to 
improved aqueous solubility,15 decreased log P value,16 

and reduction in molecular weight due to exclusion of 
the P3 ligand. The molecular weight of the bis-Thf is 
essentially half the combined molecular weight of the 
P2 asparagine and P3 quinoline ligands of inhibitor 12 
(Ro 31-8959). The present studies offer many important 
aspects of the molecular design that could facilitate the 
design of other novel protease inhibitors with improved 
biological actions. 
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