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Given the three-dimensional structure of a receptor site, there are several methods available 
for designing ligands to occupy the site; frequently, the three-dimensional structure of interesting 
receptors is not known, however. The GERM program uses a genetic algorithm to produce 
atomic-level models of receptor sites, based on a small set of known structure—activity 
relationships. The evolved models show a high correlation between calculated intermolecular 
energies and bioactivities; they also give reasonable predictions of bioactivity for compounds 
which were not included in model generation. Such models may serve as starting points for 
computational or human ligand design efforts. 

Introduction © © 

In recent years there have appeared numerous com
puter programs which can identify potential new ligands, 
based on the three-dimensional structure of a receptor 
site determined by X-ray crystallography, NMR spec
troscopy, or homology modeling.1-2 Some of these pro
grams search libraries of structures or fragments to find 
molecules complementary to the binding site,3,4 and 
others construct molecules de novo5-10 to maximize 
favorable interactions with the binding site. In every 
case, however, the structure of the receptor site or 
related sites must be known. The goal of the present 
research is to produce atomic-level models of receptor 
sites, based on a small set of known structure-activity 
relationships. Such models can then serve as starting 
points for computational or human ligand design efforts. 

Others have used three-dimensional quantitative 
structure-activity relationships (QSAR) to map out 
steric and electrostatic interactions on a grid surround
ing a series of ligands. In particular, Cramer et al.11 

have used statistical methods to correlate such interac
tions with binding for a series of steroids binding to 
carrier proteins. More recently, Davis et al.12 have used 
Goodford's GRID force field13 to map possible receptor 
binding surfaces in a 3D-QSAR study of calcium channel 
agonists. Snyder et al. have recently reviewed efforts 
to construct atomic models of receptors, which they 
classify as "pseudoreceptors" (connected sets of atoms 
or functional groups) or "minireceptors" (unconnected 
sets of atoms or functional groups).14 This group 
constructed a pseudoreceptor model for the NMDA 
receptor by linking together four different functional 
groups at specific points in three-dimensional space 
around a series of agonists.15 In the present work, we 
place a number of explicit model atoms (e.g., 40—60 
atoms) at points in space around a series of ligands and 
calculate intermolecular interactions between ligand 
and receptor model atoms. By changing the types of 
atoms at the various positions, we produce models which 
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Figure 1. Each model is coded as a linear string of atom 
types. Each position in the string corresponds to a particular 
point in coordinate space around the chosen ligands. 

have a high correlation between calculated binding 
energy and bioactivity. 

Theory 

There are several implicit assumptions in our ap
proach. First, it is assumed that the observed bioac
tivity is proportional to the ligand-receptor interaction 
energy; there is no attempt to account for transport or 
metabolic phenomena. Second, it is assumed that the 
compounds selected for study act at a common receptor 
site. Third, an active conformation and alignment of 
ligands in the receptor site is assumed (for the time 
being); work on examining alternate conformations and 
alignments is currently in progress. Finally, ligands and 
receptor models are treated as rigid entities; the current 
implementation of the program does not take into 
account any conformational changes. 

Receptor models are made by placing atoms at points 
in three-dimensional space in which they can simulate 
a receptor surface and interact with the ligands. Figure 
1 illustrates this schematically. Since we have no prior 
knowledge of the receptor structure, the selection of 
number of atoms, types of atoms, and their positions is 
entirely arbitrary, and the number of possible models 
is essentially infinite (a model consisting of 60 atoms 
chosen from eight possible atom types could exist in 
> 1054 forms). From this nearly infinite range of possible 
models, we wish to identify models for which calculated 
ligand binding energy correlates with bioactivity. Such 
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Table 1. 
Work" 

The "Genetic Code" and Parameters Used in This 

atom 
type 
code 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

CHARMm type 

H (H on polar atom) 
HC (H on charged N) 
HA (aliphatic H) 
C (carbonyl C) 
CHlE (CH group) 
CH2E (CH2 group) 
CH3E (CH3 group) 
CT (aliphatic C) 
NP (amide N) 
NT (amine N) 
O (carbonyl O) 
OT (hydroxyl O) 
OC (carboxylate O) 
S 

•C«min 

(kcal/M) 

-0.0498 
-0.0498 
-0.0450 
-0.1410 
-0.0486 
-0.1142 
-0.1811 
-0.0903 
-0.0900 
-0.0900 
-0.2000 
-0.2000 
-0.1591 
-0.0430 

•fCrpin 

0.800 
0.600 
1.468 
1.870 
2.365 
2.235 
2.165 
1.800 
1.830 
1.830 
1.560 
1.540 
1.560 
1.890 

partial 
atomic 
charge 

0.25 
0.35 
0.00 
0.35 
0.00 
0.00 
0.00 
0.00 

-0.40 
-0.30 
-0.50 
-0.60 
-0.55 
-0.20 

° Atom types were chosen from the CHARMm force field, and 
charges are values which approximate those found in the standard 
20 amino acids in the commercially distributed version of the 
CHARMm force field.17 Type 0 corresponds to having no atom at 
all in a given position. 

a highly multidimensional task is clearly beyond the 
capabilities of a systematic approach, so we have chosen 
to attack this problem using a genetic algorithm. 

Genetic algorithms have been used successfully in 
rapidly finding good solutions to very high-dimensional 
problems for which systematic solution is not practical.16 

The requirements for applying a genetic algorithm are 
(1) that a possible solution to the problem can be 
encoded in a linear form, and (2) that a given solution 
can be evaluated quantitatively. A population of pos
sible solutions is generated (often at random), each 
linearly-coded solution is treated as a "gene" or an 
individual member of the population, the "fitness" of 
each individual is calculated, pairs of individuals are 
selected to serve as "parents", and pairs of "offspring" 
solutions are generated by randomly recombining the 
parent genes so that each offspring derives part of its 
gene from each parent. Each offspring is evaluated; if 
the fitness of an offspring is sufficiently high, it replaces 
a less fit member of the population and can serve as a 
parent in sucessive generations. By continuing the 
parent solution—recombination process for a number of 
generations, the overall fitness of the population 
increases—natural selection and survival of the fittest 
takes place. 

The genetic algorithm is implemented as follows for 
our problem, as illustrated in Figure 1. First, a shell 
of atoms (typically 45 to 60) is created around the series 
of superimposed ligands. In the current implementation 
of the program, the ligands are fully surrounded by 
receptor atoms; in a subsequent version, we expect to 
allow for an "open face" for the receptor site model. A 
"gene" consists of a list of atom types (aliphatic H, 
hydrogen bonding H, aliphatic C, carbonyl C, hydroxyl 
O, etc.), with each location in the gene corresponding 
to a specific location in space. 

The "genetic code" is shown in Table 1 and is based 
on the CHARMm force field.17 Most of the atom types 
likely to be encountered in a protein receptor site have 
been included. There are types for aliphatic and polar 
hydrogens; carbonyl and neutral carbon atoms; amide 
and amine nitrogens; carbonyl, hydroxyl, and carboxy
late oxygens; sulfur. Extended atom types (CH, CH2, 
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Figure 2. Fitness score for a model is computed by first 
calculating an interaction energy with each ligand, then 
calculating the regression coefficient for l/exp(energy) versus 
log(bioactivity). 

parent 1 ^L 
1073 655312177 0755531724423 30332326632 
01667743721004055373321756237224562 02 

parent 2 t 
crossover: 
1073 655312177V-*- 4055373321756237224562 02 
0166774372100*^»- 07555317244233 0332326632 

fl offspring 1 
107365531217740553733217 5623722456202 
0166774372100075553172442330332320632 

offspring 2 -JV Vh 

mutate 
Figure 3. Illustration of the recombination and mutation of 
a pair of models to form two new models, (a) A crossover point 
is selected at random, (b) Crossover is applied to form two 
new models, each deriving a portion of its code from each 
parent, (c) Random mutation may be applied to one or both 
of the new models. 

CH3 groups) have been included to permit the inclusion 
of more steric bulk at a given position; such steric bulk 
may be important in distinguishing affinities of different 
ligands for a receptor site. There is also include a "null" 
atom type, i.e., no atom at all at a given position, to 
allow for the possibility of open space on the receptor 
surface. The effect of using different atom types or 
parameter sets has not been extensively investigated. 
However, we have carried out a limited number of 
experiments using a severely reduced genetic code 
(aliphatic C, polar H, carboxylate O, null type) and 
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Figure 4. Typical evolution of a population of 2000 receptor 
models, illustrating the minimum, mean, and maximum 
fitness scores as a function of generation number. 

found the resulting models to be substantially less 
satisfactory (data not shown). 

A population is generated by randomly assigning an 
atom type code to every position of every individual 
"gene". The "fitness'' score for a given gene is produced 
by first calculating intermolecular van der Waals and 
electrostatic energies between a gene (model) and each 
individual ligand; the correlation coefficient for 1/exp-
(energy) versus log(bioactivity) is our criterion for 
measuring fitness (Figure 2). In this way, if a model 
gives a better correlation between calculated binding 
energy and bioactivity, it is assigned a higher fitness 
score. While the fitness function bears some resem
blance to the equation relating equilibrium binding 
constants to Gibbs free energy (K = exp(-AG/i?T)), it 
is not imagined that calculations at this level give real 
free energies. At best, they are approximations of 
intermolecular enthalpy. 

After the initial population is generated and evaluated, 
"parents" are selected in a fitness-weighted random 
manner. Thus, any member of the population may be 
selected, but members with higher fitness are more 
likely to be chosen. The generation of two new "off
spring" models from two parents is illustrated in Figure 
3. First, a point on the gene is chosen at random, and 
the two parent genes are broken at that point. Then, 
the tail end of parent 2 is connected to the head end of 
parent 1, and vice versa, so that each offspring derives 
part of its "genetic material" from each parent. Follow
ing the generation of offspring, random mutation may 
be carried out at a user-selected rate. A Poisson 
distribution is applied to the mutation rate, so that if 
the overall mutation rate is 1.0 per generation, the 
probabilities of having 0, 1, 2, 3, 4, or 5 mutations in a 
given gene are 0.368, 0.368, 0.184, 0.062, 0.016, and 
0.004, respectively. Mutation then takes the form of 
assigning random atom types to the appropriate number 
of randomly selected positions on the gene. Fitness 
scores for the two offspring are then calculated. If an 
offspring has a fitness score higher than the least fit 
member of the population, it takes the place of that 
member; otherwise, it is discarded. The only exception 
is the case where the offspring is identical to an existing 
member of the population; duplicates are not allowed, 
in order to maintain genetic diversity. Without this 
restriction, a reasonably fit member of the population 
sometimes takes over the entire population before 
significant evolution can occur. The result is that good 

partial solutions to the problem (e.g., atoms which 
provide good discrimination at one region of the recep
tor) may be combined with other good partial solutions 
to produce even better models. This version of natural 
selection insures that, in the long run, better solutions 
survive and reproduce, while worse ones are eliminated. 

Methods 
Hardware and Software. All GERM calculations were 

programmed in ANSI C and carried out on Unix workstations 
or PCs. For intermolecular energy calculations, we used eqs 
13 and 14 and the van der Waals parameters from ref 12. 
Partial atomic charges for receptor model atoms are as listed 
in Table 1; these are representative values from the amino acid 
parameter set in CHARMm, which are template-based and 
smoothed. Partial atomic charges for ligand atoms were 
calculated using the CNDO method as implemented in the 
Quanta/CHARMm software package, version 3.2.18 In this 
way, ligand and receptor atoms having the same atom type 
have comparable partial atomic charges (e.g., carboxylate 
oxygens on ligands typically have partial charge of -0.55 ± 
0.05). All conformational analysis was carried out using the 
Quanta/CHARMm program. Local minima corresponding to 
those previously identified19 were superimposed manually. 

Generation of Receptor Models. The shell of atoms 
constituting the model is constructed as follows. First, the 
superimposed ligands are centered with respect to Cartesian 
coordinate space. Next, points are distributed evenly over a 
sphere surrounding the superimposed ligands. A model 
aliphatic carbon atom is placed at each point on the surface 
of the sphere, and its position is adjusted by optimizing its 
radius in a spherical coordinate system so as to get maximal 
van der Waals attraction between the model carbon atom and 
the ligand molecules. Finally, the radial distance is optionally 
adjusted by addition of a fixed distance (the "cushion" param
eter) to the optimized radius. Thus, the receptor model atoms 
form a surface reasonably close to the largest ligands. This 
method of placing atom positions produces a set of points which 
are well spaced out, although it is not guaranteed to locate 
the ideal position for a particular receptor atom, and it would 
not be optimal for surfaces which have very large concave 
faces. The purpose of adding a "cushion" of 0.1-1.0 A is to 
compensate for the lack of flexibility of receptors and ligands 
in our current implementation. 

The population of starting models is generated by filling an 
(m x n) array with random numbers ranging from 0 to 14, 
where m corresponds to the number of members of the 
population (typically 500—2000) and n corresponds to the 
number of atoms constituting a model (typically 50-60). The 
numbers 0-14 correspond to the atom types listed in Table I. 

Evolution of Receptor Models. After the initial models 
are generated, their fitness scores are calculated in the 
following way. First, intermolecular interaction energies are 
calculated between a given model and each ligand in the input 
set. The correlation between l/exp(energy) and log(bioactivity) 
is then calculated for the model, and the correlation coefficient 
becomes the fitness score. Thus, a model is considered to be 
a good one if it provides a good correlation between bioactivity 
and calculated binding energy. 

Ageneration consists of the following sequence of steps: (1) 
selection of two parents, using a fitness-weighted random 
scheme; (2) selection of a random point in the gene for 
crossover; (3) generation of two new genes by switching the 
parental genes from the crossover point onward; (4) carrying 
out random mutation(s) on the offspring; (5) evaluation of the 
fitness scores for the offspring; and (6) replacement of less fit 
members of the existing populations with offspring having 
higher fitness scores. The final step is omitted if the offspring 
is identical to an existing member of the population, in order 
to maintain genetic diversity in the population. The genera
tion process is repeated for a specified number of cycles or until 
the mean fitness of the population does not change signifi
cantly over some number of generations. Typically, if the mean 
fitness does not increase by 0.001 over 250 generations, we 
consider that convergence has occurred. 
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Chart 1 
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XOOH A u u n 

1 log (Potency) = 1.70 

XOOH 

H 2 N \ " Y C O O C H 3 

0 Yl 
2 (Aspartame) v ^ 
log (Potency) = 2.26 

3 log (Potency) = 2.90 
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log (Potency) = 3.30 
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log (Potency) = 4.22 log (Potency) = 4.70 

N C y v Q XOOH 

^ N A N - V Y 

log (Potency) = 3.38 

H H 0 
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log (Potency) = 4.00 

, . C O O C H 3 

.COOH 

X W 
9 H H 

log (Potency) = 2.65 

NC 

r i i ? fC00H 

U " H U^N 
log (Potency) = 3.30 

.CN 

N C V * N .COOH XOOH 

12 H H 

log (Potency) = 3.32 

.CN 

""CW" "OJj" 
15 H H 16 H H 

l3 » H KJ 
log (Potency) = 4.00 

log (Potency) = 2.95 log (Potency) = 3.85 
17 H H 

COOH 

log (Potency) = 4.45 

o* P /** 

*uf° 
19 H H 

•COOH C I ^ ^ ^ N ^ N - ^ C O O H C K ^ ^ N ' S ^ C O O H 
in H H , , H H 

log (Potency) = 4.48 
20 

log (Potency) = 4.90 
21 

log (Potency) = 5.08 

O2N .COOH 

0 

U ^ N V 
H H 

10 (Suosan) 
log (Potency) = 2.85 

NC .COOH 

NC. 

U^N^N'Sf^N 
14 H H KJ 

log (Potency) = 4.30 

N N ĈOOH 
l g H H 

log (Potency) = 4.48 

tuP 
22 H H 

COOH 

log (Potency) = 5.23 

Prediction of Bioactivity from Models. After a model 
(or population of models) has been evolved, it can be used to 
calculate bioactivities of other ligands when docked onto the 
model. Intermolecular van der Waals and electrostatic ener
gies are calculated between the model(s) and ligand, and the 
predicted bioactivity is interpolated from the energy vs bio
activity correlation which constituted the fitness score of the 
model. We typically look at predictions from 50 to 100 models 
in a population and report the mean value and standard 
deviation. Inclusion of more models does not substantially 
change the mean or standard deviation. 

Results 

The user has control of a number of parameters in 
each calculation, including the size of the population, 
the number of atoms constituting a model, the mutation 
rate, and the number of generations to be run. A small 
population will rapidly converge—the population quickly 
becomes very similar, and additional generations pro
duce little or no improvement in fitness scores. If the 
population is too small (100 or less), there is not enough 
"genetic diversity" to evolve very good solutions. Larger 
populations (5000 or more) have broader genetic diver
sity and may evolve to much higher levels of fitness, 
but they also evolve much more slowly. We have 
typically worked with population sizes of 500-2000. 

We find that mutation rate has much less effect on 
fitness scores than does the recombination of genes. 
When crossover is prevented and the only changes are 
due to mutation, evolution is extremely slow. Con
versely, if recombination is applied with a mutation rate 
of 0, evolution progresses well. Our experience to date 
suggests that a mutation rate of 1 per generation is 
somewhat better than no mutation at all, but higher 
mutation rates can degrade performance significantly. 
Especially after a population has reached advanced 
stages of evolution, random change is more likely to 
degrade than to improve a model. 

Typically, we use sets of 4 -10 compounds to generate 
models. We are consistently able to generate models 
for which the correlation between calculated energy and 
bioactivity is in the range r = 0.90-0.99. Figure 4 
shows results of a typical model evolution run. Fitness 
scores are initially fairly low and cover a broad range; 
as the population evolves, there is a rapid increase in 
mean fitness, then a leveling out and convergence. 

We consider that the ultimate test of the evolved 
models will be to use them in ligand design; such work 
is currently in progress. For initial evaluation of the 
method, however, we have chosen to see how well the 
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Table 2. The Compounds Used in This Study, Their Structural 
Types, and Their Reported Potencies 

compound 
structural 

type0 logtpotency6) ref 

1 
2 (aspartame) 
3 
4 (alitame) 
5 
6 (superaspartame) 
7 
8 
9 
10 (suosan) 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

A 
A 
A 
A 
A 
A1U 
A 
A, U 
U 
U 
U 
U 
U 
U 
G 
G 
G 
G 
G 
G 
G 
G 

1.699 
2.255 
2.903 
3.301 
3.380 
4.000 
4.216 
4.699 
2.653 
2.845 
3.301 
3.322 
4.000 
4.301 
2.954 
3.845 
4.447 
4.477 
4.477 
4.903 
5.079 
5.230 

20 
21 
20 
20 
22 
23 
22 
23 
23 
24 
25 
23 
25 
25 
23 
23 
23 
23 
23 
23 
23 
23 

" A = aspartic derivative, U = arylurea or arylthiourea deriva
tive, G = guanidine-aliphatic acid derivative. b Potencies are 
stated on a weight basis relative to 2% sucrose. 

Table 3. Design of Cross-Validation Studies 
(a) L-Aspartic Acid Derivatives 

compd Asp set 1 Asp set 2 Asp set 3 Asp set 4 

V 

V 

(b) Arylurea and Arylthiourea Derivatives 

compd urea set 1 urea set 2 urea set 3 urea set 4 

9 
10 
11 
12 
6 

13 
14 
8 

V 

•J •J 

V 
V 

V 
•J 

V 

V 
V 

(c) Guanidine-Aliphatic Acid Derivatives 

compd Guan set 1 Guan set 2 Guan set 3 Guan set 4 

IS 
16 
17 
18 
19 
20 
21 
22 

V 
V 
V 

V 
V 
V 

V 

V 
V 
V 

V 
V 

V 
V 

V 
N/ 

•J 

•J 

-J 
V 
V 

V 
V 
V 

evolved models can "predict" bioactivity for a series of 
compounds. From a structure—activity series, we select 
a subset around which to evolve models and then see 
how well the models calculate bioactivities for the entire 
series. I t is expected t h a t the models should work well 
for the compounds around which they were constructed. 
The real tes t is whether they can also predict the 
omitted compounds. By runn ing successive subsets , we 
can generate predictions for all compounds in the series. 

Table 4. Results of Calculations on (a) L-Aspartic Acid 
Derivatives, (b) Arylurea and Arylthiourea Derivatives, and (c) 
Guanidine-Aliphatic Acid Derivatives0 

(a) L-Aspartic Acid Derivatives 

compd actual 
set 1 

r = 0.984 

log(potency) 

calculated form 

set 2 set 3 
r = 0.979 r = 0.990 

set 4 
r = 0.996 

1 
2 
3 
4 
5 
6 
7 
8 

1.70 
2.26 
2.90 
3.30 
3.38 
4.00 
4.22 
4.70 

2.04 ± 0.29 1.81 ± 0.07 
2.35 ±0.07 2.10 ±0.15 
3.03 ± 0.07 
3.05 ± 0.05 
3.75 ± 0.43 
4.00 ± 0.11 
4.24 ± 0.09 
4.70 ± 0.09 

3.00 ± 0.11 
2.95 ± 0.06 
3.55 ± 0.10 
3.82 ± 0.58 
4.20 ± 0.09 
4.70 ± 0.11 

1.82 ± 0.07 
2.18 ± 0.08 
3.17 ± 0.48 
3.17 ±0.11 
3.44 ± 0.12 
4.02 ± 0.11 
3.75 ± 0.32 
4.71 ± 0.09 

1.71 ± 0.04 
2.23 ± 0.05 
2.89 ± 0.06 
2.43 ± 0.17 
3.46 ± 0.05 
4.01 ± 0.07 
4.15 ± 0.06 
3.85 ± 0.87 

(b) Arylurea and Arylthiourea Derivatives 

log( potency) 

calculated from 

set 1 set 2 set 3 set 4 
compd actual r = 0.952 r = 0.947 r = 0.963 r = 0.981 

9 
10 
11 
12 
6 

13 
14 
8 

2.65 
2.85 
3.30 
3.32 
4.00 
4.00 
4.30 
4.70 

2.98 ± 0.09 
3.11 ± 0.04 
3.43 ± 0.05 
3.01 ± 0.02 
3.83 ± 0.73 
4.05 ± 0.05 
4.15 ± 0.06 
4.71 ± 0.05 

2.94 ± 0.05 
3.00 ± 0.07 
3.46 ± 0.07 
2.99 ± 0.04 
4.01 ± 0.12 
4.16 ± 0.23 
4.14 ± 0.09 
4.75 ± 0.07 

2.87 ± 0.02 
3.00 ± 0.02 
3.76 ± 0.07 
2.96 ± 0.02 
4.00 ± 0.06 
3.99 ± 0.07 
3.77 ± 0.07 
4.71 ± 0.05 

2.66 ± 0.05 
2.80 ± 0.04 
3.41 ± 0.09 
2.38 ± 0.15 
4.00 ± 0.11 
4.08 ± 0.09 
4.15 ±0.08 
5.25 ± 0.96 

(c) Guanidine-Aliphatic Acid Derivatives 

log(potency) 

calculated from 

compd actual 

15 
16 
17 
18 
19 
20 
21 
22 

2.95 
3.85 
4.45 
4.48 
4.48 
4.90 
5.08 
5.23 

set 1 set 2 set 3 
r = 0.998 r = 0.997 r = 0.952 

3.45 ± 0.18 2.97 ± 0.02 3.31 ± 0.02 
3.84 ± 0.01 2.81 ± 0.12 3.45 ± 0.02 
4.45 ±0.03 4.44 ±0.05 4.01 ± 0.41 
4.50 ±0.02 4.45 ±0.05 4.50 ± 0.06 
4.68 ± 0.08 4.47 ± 0.05 4.51 ± 0.05 
4.89 ± 0.02 4.77 ± 0.23 4.87 ± 0.06 
5.08 ±0.02 5.08 ±0.05 4.78 ± 0.40 
5.23 ±0.02 5.25 ±0.04 5.25 ± 0.05 

set 4 
r = 0.943 

3.34 ± 0.02 
3.44 ± 0.01 
4.45 ± 0.05 
4.46 ± 0.07 
4.51 ± 0.05 
4.86 ± 0.04 
5.11 ±0.04 
5.00 ± 0.41 

" For each set, r is the correlation coefficient ("fitness score") 
as described in the text. Boldface numbers are "predictions" for 
compounds which were not inlcuded in the set of compounds 
around which models were built, log(potency) was calculated for 
the first 100 models in each population. Reported values are mean 
± standard deviation. 

Table 5. Average Errors for Bioactivities Calculated from 
Evolved Models 

model sets 

average error 
for compounds 

included in 
model evolution 

average error 
for compounds 
excluded from 

model evolution 

all Asp sets 
all urea sets 
all Guan sets 

0.08 
0.06 
0.04 

all sets 0.06 

0.44 
0.41 
0.36 

0.40 

We describe here the resul ts of such calculations on 
22 sweet-tasting structures from three structural classes. 
We have chosen these s t ructures for several reasons. 
First , the measured bioactivity (potency relative to 
sucrose s tandards) should be free from complication by 
up take , t ranspor t , and metabolism factors, since the 
receptors a re located on t h e surface of t h e tongue. 
Second, the bioactivities of th is set span a range of 3.5 
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Figure S. Calculated bioactivities for aspartic derivatives. Data points are calculated as averages over the first 100 models in 
the population, and error bars indicate standard deviation, (a) Calculated values from set 1. (b) Calculated values from set 2. 
(c) Calculated values from set 3. (d) Calculated values from set 4. (e) Composite calculated values for all eight aspartic derivatives, 
each taken from the set in which it was not part of the model-generating process. 

orders of magnitude. Third, based on previous modeling 
studies,19 we believe that these three classes of com
pounds act at a common receptor because all have some 
common features (carboxylate, polar NH groups, hydro
phobic groups) which can be superimposed in low-energy 
conformations. Fourth, we have previously addressed 
the conformation and alignment issues for these com
pounds. Finally, these compounds have sufficient struc
tural diversity that they are very difficult to evaluate 
with classical QSAR methodology; there is no single 
"core" structure from which standard substituent con
stants can be applied. Among the ureas, for example, 
there are compounds with different sized chains con
necting urea to carboxylate, compounds with no sub
stitution on the connecting chain, as well as compounds 
with aryl substitution and peptide substitution, ureas, 
and thioureas. 

Chart 1 shows the structures included in the present 
study and their reported log(potencies). Three struc
tural classes are represented: aspartame and other 
L-aspartic acid derivatives (1-8); arylurea- and aryl-
thiourea-acetic acids (6,8-14); and guanidine-aliphatic 
acids (15-22). Table 2 lists the compounds and their 
reported potencies.20-25 The potencies listed are based 
on the concentration of sweetener which matches the 
sweetness recognition threshold of sucrose (approxi
mately 2%), generally measured as described by DuBois 
et al.26 In Table 3, we show the design of the initial 
studies. Using the eight aspartic acid derivatives as an 
example, we generate four sets of models. Each set uses 

six compounds as templates and then calculates bioac-
tivity for all eight compounds, so that each of the eight 
compounds is predicted from models which were not 
specifically built around that particular compound. In 
all of these calculations, we used the following param
eters: 60 atoms per model, population size = 2000, 
mutation rate = 1.0/generation, cushion = 0.5 A, no. 
generations = 10,000. These calculations typically used 
1-2 h of cpu time on a Silicon Graphics 4D-120 
workstation with 16-MHz processors. Table 4 sum
marizes bioactivities calculated from the populations of 
models. 

First, it is apparent from Table 4 that the models are 
able to discriminate analogs on the basis of calculated 
binding energy. In each set of six compounds, the 
correlation coefficient for l/exp(energy) versus log-
(bioactivity) is between 0.943 and 0.998 (r2 > 0.89 in 
every case). Table 5 shows the average errors in 
calculated bioactivities. "Predicted bioactivity" for a 
ligand which was a part of the model generation does 
not vary greatly from one model to another within a 
population, but predictions for ligands which were not 
part of the initial model construction have higher 
variability. For compounds which were part of the 
model-building dataset, average error is 0.04—0.08 log 
unit, and for compounds which were not included in 
model building, average errors for aspartic derivatives, 
urea derivatives, and guanidine derivatives are 0.44, 
0.41, and 0.36 log units, respectively. 
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Figure 6. Calculated bioactivities for urea/tbiourea derivatives. Data points are calculated as averages over the first 100 models 
in the population, and error bars indicate standard deviation, (a) Calculated values from set 1. (b) Calculated values from set 
2. (c) Calculated values from set 3. (d) Calculated values from set 4. (e) Composite calculated values for all eight urea derivatives, 
each taken from the set in which it was not part of the model-generating process. 

Figures 5 -7 show calculated bioactivities for the 
included and excluded compounds in the aspartic, urea, 
and guanidine series, respectively. Not surprisingly, we 
found that the biggest errors in calculated potencies 
correspond to the compounds for which alignment with 
other compounds is poorest. 

Next, we wished to see how well the method can 
handle structural diversity. QSAR and related methods 
are notoriously less effective on structurally diverse 
series than on homologous series. We selected 11 of the 
22 compounds (see Table 6) so as to include the full 
range of potencies and structural types and evolved a 
population of models around them. For this series, we 
used models containing 46 atoms each, a population size 
of 5000 and ran the calculations for 50 000 generations. 
The final mean fitness score was r = 0.944. Not 
surprisingly, these calculations used substantially more 
cpu time (12-20 h) because of the large number of 
structures and larger population sizes. Results are 
shown in Table 6 and Figure 8. Average error for 
compounds around which models were built was 0.20 
log units; for compounds which were not included in 
model construction, average error was 0.44. In all cases, 
the residual error in predicted bioactivity was less than 
0.75. Such a set of models would be more than adequate 
for purposes of screening potential synthetic target 
molecules and identifying those most likely to have 
desired bioactivity. 

Finally, it is important to show that the evolved 
models are not simply artifacts from the large number 

of variables.27 To address this question, we generated 
several series of models around the aspartic derivatives 
(1-8). Using a population size of 2000, mutation rate 
of 1.0, running for 10 generations, and all eight com
pounds, we carried out 10 sets of calculations. The 
resulting r2 values had a mean of 0.955 ± 0.003. We 
then carried out 10 more sets of calculations, scrambling 
the bioactivity data each time, as shown in Table 7. The 
resulting r2 values had a mean of 0.344 ± 0.292, 
indicating that the method is not able to generate 
models which can correlate arbitrary data. 

It is important to recognize that the genetic algorithm 
method is not designed to find a "global best" solution, 
but to rapidly find many "very good" solutions. Since 
we prevent duplicate members in our populations, we 
can evolve thousands of models with very high correla
tion coefficients. With such a highly combinatorial 
problem, it is not surprising that there may be thou
sands of different models with very high fitness scores. 
Visual inspection of the final population from a model 
calculation shows that some atom positions have only 
one or two atom types, while others have a range of 
possible types. This may indicate which sites are most 
important for ligand recognition. Sequence analysis of 
evolved populations will be the subject of a subsequent 
study. 

Figure 9 shows a representative receptor model from 
the population of 5000 constructed around 11 of the 
compounds in the dataset. Compound 22, the most 
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Table 6. Actual and Calculated Potencies of All 22 Compounds 
from Models Built around 11 of the Compounds" 

compound 

1 
2 (aspartame) 
3 
4 (alitame) 
S 
6 (superaspartame) 
7 
8 
9 
10 (suosan) 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

log(potency) 

actual 

1.70 
2.26 
2.90 
3.30 
3.38 
4.00 
4.22 
4.70 
2.65 
2.85 
3.30 
3.32 
4.00 
4.30 
2.95 
3.85 
4.45 
4.48 
4.48 
4.90 
5.08 
5.23 

calculated 

2.09 ± 0.07 
2.64 ± 0.26 
3.39 ± 0.83 
3.12 ± 0.09 
3.43 ± 0.13 
3.90 ± 0.15 
3.65 ± 0.66 
4.69 ±0.15 
2.98 ± 0.17 
3.25 ± 0.09 
4.05 ± 0.26 
2.82 ± 0.12 
4.01 ± 0.15 
4.51 ± 0.36 
3.41 ±0.11 
3.10 ± 0.07 
4.67 ± 0.10 
4.04 ± 0.16 
4.73 ± 0.14 
4.86 ± 0.11 
5.59 ± 0.40 
5.23 ± 0.11 

residual error 

0.39 
0.38 
0.48 
0.18 
0.05 
0.10 
0.57 
0.01 
0.33 
0.41 
0.75 
0.50 
0.01 
0.21 
0.45 
0.74 
0.22 
0.44 
0.26 
0.04 
0.52 
0.00 

° Boldface indicates compounds included in evolution of the 
population of models. Calculated potencies are based on the first 
100 models in the population, ± standard deviation, with residual 
error in the final column. 

potent in the series, is shown in the model to show 
orientation and points of favorable interaction. 

Figure 8. Calculated bioactivities for all 22 compounds. 
Filled circles indicate the 11 compounds used for evolution of 
the models, and open circles are calculated values for the 11 
compounds which were not included in model generation. All 
values are averages calculated from the first 100 models in 
the population. 

As is the case for QSAR and other methods based on 
interpolation, the calculated numbers are quite good for 
compounds which were part of the model building, and 
the least accurate results are seen in cases which lie 
outside the range of structures originally considered. 
Since energy calculations are based in part on a van 
der Waals potential, any compound which extends 
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F i g u r e 9 . S t e r e o view of c o m p o u n d 2 2 enc losed in one of t h e evolved r e c e p t o r m o d e l s . T h i s mode l h a s a fitness score ( co r re l a t ion 
coefficient r for t h e 11 c o m p o u n d s u sed in i t s evo lu t ion ) of 0 .945 . 

T a b l e 7 . Resu l t s of Calcula t ions for Compounds 1 - 8 wi th 
Bioactivity D a t a Scrambled in Orde r to Test for Over-Fi t t ing 

run number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

bioactivity data order 

5 1 7 2 4 6 3 8 
3 5 8 2 4 1 6 7 
5 6 2 4 3 1 8 7 
6 5 8 2 1 3 7 4 
5 3 8 1 4 6 7 2 
7 8 2 5 4 1 6 3 
7 4 2 8 3 5 1 6 
2 1 3 7 5 4 6 8 
6 7 1 2 3 8 4 5 
7 3 5 8 1 2 6 4 

mean rl 

standard deviation 

final r2 

0.797 
0.459 
0.300 
0.170 
0.552 
0.033 
0.050 
0.794 
0.208 
0.079 

= 0.344 
= 0.292 

s u b s t a n t i a l l y beyond s p a c e occupied by t h e s t a r t i n g s e t 
of c o m p o u n d s will h a v e a very unfavorab le i n t e r ac t i on 
e n e r g y a n d , t he re fo re , a low pred ic ted potency. A 
solut ion to t h i s p rob lem which we will a d d r e s s in a 
subsequent version of the program will be to allow for 
an open face on the model receptor site. In any case, 
we believe that the primary value of these models will 
be as tools to design novel lead structures. A model 
which is consistent with known structure-act ivi ty 
relationships should be useful in designing and evaluat
ing new molecular frameworks on which to construct 
active compounds. It is useful to keep in mind that 
these models are not real receptors in any sense—they 
are composed of isolated atoms which are not connected 
to form any kind of protein structure. No intramolecu
lar interactions are taken into account. The models are 
simply a collection of atom types and positions which 
distinguish relative potencies of bioactive compounds, 
on the basis of calculated binding energies. Our goal is 
to derive a working model which aids in drug design, 
not to discern the way in which a receptor protein 
sequence is folded. 

Conclusion 

Using a genetic algorithm, we have developed a 
program which can empirically generate models of 
receptors, based on a limited structure—activity series.28 

These models give very high correlation between cal
culated binding energy and bioactivity. The models also 
give a good indication of bioactivity for compounds which 
were not a part of the model-building process, so they 
should be useful in screening candidates for new analog 
synthesis. Finally, these receptor models are atom-
based and should be adaptable for use with programs 
which design novel ligands based on three-dimensional 
receptor structure. It is expected tha t such models 

should fill the large existing gap for cases where the 
three-dimensional structure of a receptor is not known 
from crystallographic studies. 
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