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The major physiological role ascribed to the action of 
platelet-derived growth factor (PDGF) is in the regula­
tion of normal cell proliferation.1 Upon binding to its 
receptor, this cytokine induces receptor dimerization and 
autophosphorylation which serves to secure a bioactive 
conformation for PDGF receptor tyrosine kinase (PDG-
FrTK).2 The activated receptor phosphorylates cyto­
plasmic substrates on the phenolic hydroxyl group of 
tyrosine residues facilitating second messenger func­
tion.3 Small-molecule inhibitors of PDGFrTK may 
represent a novel class of therapeutic agents useful for 
the treatment of malignant and nonmalignant disease 
states involving excess cell proliferation.13 In addition 
to cancer,4 these disease states include certain chronic 
inflammatory conditions (tissue fibrosis)5 and athero­
sclerosis or restenosis.6 

A survey of the literature for inhibitors of tyrosine 
kinases reveals three predominant generic structural 
families: the flavonoids,7 exemplified by quercetin (1), 
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and the "acyclic" tyrphostins8 and the "cyclic mimetic" 
tyrphostins,9 represented by 2 and 3. We conducted a 
substructure search of our proprietary compound file 
collection based on 1—3. As a result of this search, a 
series of 3-(4-pyridinyl)quinolines10 was discovered to 
exhibit selective inhibition of/3-type PDGFrTK, with 5,7-
dimethoxy-3-(4-pyridinyl)quinoline (9) emerging as one 
of the more potent inhibitors (IC50 = 80 nM). A subset 
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of these inhibitors (4-IS) and their activities are 
presented in Table I.11 

The parent compound, 3-(4-pyridinyl)quinoline (4) 
inhibits PDGF receptor tyrosine kinase activity with an 
IC50 = 1.5 /M. Mono- or dihydroxylation of the quino-
line ring at positions 5, 6, or 7 [5 (9.2 /M), 8 (1.3 fiM), 
and 10 (36 //M)] typically leads to an attenuation of 
potency relative to 4. In contrast, introduction of the 
more lipophilic methoxy or chlorine substituents in the 
quinoline nucleus results in enhanced inhibitory activity 
as exemplified by compounds 6, 7, 9, 11, and 12. Each 
of these compounds has IC50 values <1.0 /M against 
PDGFrTK. The chlorine atom at ring position 7 (13: 
R4 = Cl, 0.3 fiM) is more effective than either the 
methoxy (6: R4 = OMe, 0.6 /M) or the hydroxy (5: R4 

= OH, 9.2 ^M) group at this position. Of most signifi­
cance is the inhibitory potency of quinoline 9, which 
possesses an IC50 = 80 nM against the enzyme.12 It is 
evident that 5,7-disubstitution on the quinoline ring is 
a preferred substitution pattern, yielding the greatest 
inhibitory activity. Both the 6,7 and 5,6,7 substitution 
patterns afford compounds possessing less activity than 
9. Similar SAR's demonstrating a dependence on ring 
pattern substitution and tyrosine kinase activity and 
selectivity have been noted in the flavonoid and tyr-
phostin classes of inhibitors.70'8'90 For example, Burke 
and co-workers have reported a 3800-fold difference in 
the potency of inhibition of p56lck by isoquinoline (3) 
versus its 6,7-dihydroxy analog.90 

3-(4-Pyridinyl)quinoline analogs bearing a methyl 
group at ring position 4 are devoid of PDGFrTK activity. 
This observation is supported by direct comparison of 
compound pairs 7 (Ri = H; R3 = OMe, 0.4 /M) and 14 
(Ri = Me; R3 = OMe, >50 /M), and 6 (Ri = H; R4 = 
OMe, 0.6 ^M) and 15 (Ri = Me; R4 = OMe, >50 /M). 
The poor tolerance of the C(4) methyl group may be due 
to an unfavorable nonbonded interaction between the 
inhibitor and the enzyme binding site or a more subtle, 
yet unfavorable, ca. 30° change in the dihedral angle 
between the quinoline-pyridine biaryl system.13 

Inhibitors 9—11 and 13 were also examined for their 
selectivity against other tyrosine kinases including 
epidermal growth factor receptor tyrosine kinase (EG-
FrTK), erbB2, p56lok, as well as the serine/threonine 
protein kinases A and C. With the exception of quino­
line 10, the compounds display greater selectivity (>100 
times) for PDGFrTK and produced less than 50% 
inhibition at 10 /M against each of the other tyrosine 
kinases. In the case of inhibitor 10, the dihydroxy 
congener of 11, an IC50 of approximately 5 /M for 
inhibition of EGFrTK activity is observed.14 Inhibitor 
9 was further evaluated against several other recep­
tors15 and is free of ancillary receptor activity at 
concentrations < 10 /M. 

In further studies, several inhibitors from this series 
were also evaluated for their ability to inhibit PDGF-
stimulated [3H]thymidine incorporation into DNA of 
primary human vascular smooth muscle cells (Table 1). 
Compound 9 inhibits agonist-stimulated thymidine 
incorporation into DNA dose dependently with an IC50 
= 0.9 /M.16 In general, all other compounds are 
approximately 10 times less potent in this cell assay 
relative to their inhibition of purified PDGFrTK. How­
ever, there is an apparent correlation between potency 

0022-2623/94/1837-2627$04.50/0 1994 American Chemical Society 



2628 Journal of Medicinal Chemistry, 1994, Vol. 37, No. 17 Communications to the Editor 

Table 1. Structure-Activity Relationship of the 3-(4-Pyridinyl)quinolines 4 - 1 5 against Human Vascular Smooth Muscle PDGFrTK 
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a In vitro IC50 determinations were performed in triplicate according to the assay protocol described in ref 18. b Standard deviations 
were <10%. c See ref 14. d Assays were performed according to ref 19 . e Inhibition of [3H]thymidine incorporation into intact vascular 
smooth muscle cells (VSMC). IC50 determinations were performed in triplicate according to the assay protocol described in ref 16. f Data 
not determined. * Estimated from the percent inhibition at 10 ^M, see ref 14. h 25% inhibition at 10 ftM.' The IC50 of 9 is 0.9 ^M with a 
confidence interval of 0.76-1.02 (n = 9). 
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Figure 1. K determination of quinoline 9 in the PDGFrTK 
autophosphorylation assay. PDGF:PDGFr complexes were 
incubated with increasing concentrations of ATP in the 
absence (D) or presence of 9 (O, 0.5 nM; A, 25 nM; v, 100 nM; 
O, 316 nM). These data represent one of three identical 
experiments. The ATP substrate Km = 11 ± 5 ^M; the 
calculated K for quinoline 9 = 14 ± 2 nM. 

of tyrosine kinase inhibition and the inhibition of this 
PDGF-mediated cellular event for this series of com­
pounds. 

It is established that autophosphorylation of the 
PDGF receptor is an obligatory first event for receptor 
activation.2 In an enzyme kinetic study of PDGFrTK 
autophosphorylation using ATP as the substrate, 9 was 
found to effectively inhibit this reaction. The data 
presented in Figure 1 clearly show a dependence of IC50 
on ATP concentration with the kinetic data best fitting 
a competitive model of inhibition (K = 14 ± 2 nM). As 
a point of reference, ATP-y-S, a nonhydrolyzable ATP 
analog, demonstrated a classical competitive inhibition 
profile against ATP in an identical PDGFrTK autophos­
phorylation kinetic study design.17 The K for ATP-y-S 
is 11.0 ± 0.5 (M, ca. 1000-fold less potent than 9. 
Although the inhibition profile for 9 suggests that this 
compound interacts at the ATP binding site of PDG-
FrTK, 9 exhibits high enzyme affinity and on the basis 
of all other kinase data, exquisite selectivity for PDG-
FrTK. 

In summary, 5,7-dimethoxy-3-(4-pyridinyl)quinoline 
(9) is an inhibitor of PDGFrTK and represents one of 
the most potent (IC50 = 80 nM) and selective (> 100-
fold) inhibitors of this tyrosine kinase yet to be de­
scribed. This discovery of 9 serves to support the 
original hypothesis of Gazit8a that it may be possible to 
identify potent, selective inhibitors of receptor tyrosine 
kinases. The results presented here and elsewhere,9-10 

suggest that the quinoline or isoquinoline bicyclic 
nucleus may be a common pharmacophore among the 
EGFr, PDGFr, and p56lck tyrosine kinases. 
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incorporation into DNA of primary human vascular smooth 
muscle cells (Clonetics) was quantitated in serum-starved (48 
h) cells for multiple concentrations of various inhibitors. Cells 
were incubated with inhibitor for 2 h, followed by addition of 
PDGF-BB (10 ng/mL) for 24 h and of [3H]thymidine (0.5 ptC\J 
mL) for an additional 24 h. Following the 48-h incubation 
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(17) Unpublished observation. 
(18) PDGFrTK assay description: The PDGFrTK autophosphoryla-

tion assay employs an ELISA format measuring PDGK-
stimulated kinase activity from wheat germ purified cell ex­
tracts. Essentially, PDGFrTK from vascular smooth muscle cells 
is incubated overnight at 4 0C in 96-well plates with PDGF-BB 
(150 ng/mL) in the presence of 4 mM MnCl2, 50 mM HEPES, 
10% glycerol, 0.2% Triton X-100, 0.1 mM sodium vanidate, and 
0.5 mM dithiothreitol (total volume = 65 fiL). All test com­
pounds are dissolved in DMSO. Test compounds (10 ̂ L aliquots) 
are incubated with the PDGF-PDGFr complex for 30 min at 4 
0C prior to the addition of ATP. Autophosphorylation is initiated 
at 4 0C by the addition of 25 fih ATP (final [ATP] = 200 ^M), 
and the assay is terminated after 10 min by the addition of 50 
IiL of EDTA (final [EDTA] = 20 mM); 100-^L aliquots of the 
reaction mixture are transferred to corresponding wells of a 
second plate previously coated with anti-PDGFr antibody. The 
phosphorylated tyrosine residues in each well are detected at 
25 0C in a spectrophotometric plate reader (OD = 405 nm) using 
a biotinylated anti-phosphotyrosine/avidin-horse radish peroxi-
dase/ABTS detection system. 

(19) The EGFrTK, P561* and erbB2 assays are carried out similarly 
to the PDGFrTK assay, except that no stimulating ligand is 
employed and the enzyme is captured onto antibody-coated 
plates before the reaction is initiated with ATP. The PKA and 
PKC assays are conducted using a modification of the literature 
procedures. Detailed experimental protocols for each of these 
assays will be reported separately. 


