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A computational approach for molecular design, PRO_LIGAND, has been developed within 
the PROMETHEUS molecular design and simulation system in order to provide a unified 
framework for the de novo generation of diverse molecules which are either similar or 
complementary to a specified target. In this instance, the target is a pharmacophore derived 
from a series of active structures either by a novel interpretation of molecular field analysis 
data or by a pharmacophore-mapping procedure based on clique detection. After a brief 
introduction to PRO_LIGAND, a detailed description is given of the two pharmacophore 
generation procedures and their abilities are demonstrated by the elucidation of pharmaco­
phores for steroid binding and ACE inhibition, respectively. As a further indication of its efficacy 
in aiding the rational drug design process, PRO_LIGAND is then employed to build novel 
organic molecules to satisfy the physicochemical constraints implied by the pharmacophores. 

Introduction 

With the increasing importance of structure-based 
drug design in pharmaceutical research,1-5 there has 
recently been much interest in the development of 
computer programs which automate the de novo design 
of molecular structures satisfying a set of steric and 
chemical constraints.6-25 In a recent paper,26 we have 
described our own approach for de novo molecular 
design called PRO_LIGAND and demonstrated its ap­
plication to the design of organic molecules, with 
particular emphasis on the design of inhibitors of 
enzymes of known structure. 

However, while the number of protein structures 
determined by X-ray crystallography and NMR is ever 
increasing and likely to grow rapidly within the foresee­
able future,27'28 there are many instances where the 3-D 
structure of the proposed biochemical target has not yet 
been elucidated. In such a situation, more indirect 
methods must be adopted. For instance, a series of 
analogues to a known lead may be synthesized and 
assayed for activity. In order to rationalize subsequent 
optimization of the lead molecule, it is necessary that 
the available structure-activity data are analyzed in 
order to define the structural and physicochemical 
properties which are required for biological activity. 
More specifically, we require that a pharmacophore is 
defined, which can be used as a template for the 
automated design of new molecules within 
PRO_LIGAND. 

In this paper we describe two different approaches 
for objectively extracting a pharmacophore: molecular 
field analysis (MFA)29 and pharmacophore mapping30 

and discuss the use of the PRO_LIGAND program in 
the generation of novel molecules which satisfy the 
pharmacophore constraints derived from series of known 
active molecules. 

De Novo Design with PRO_LIGAND. As the 
previous paper in this series has detailed, 
PRO_LIGAND is a de novo design program which is 
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an integral part of our in-house molecular design and 
simulation system, PROMETHEUS. The modules com­
prising PRO_LIGAND and their operation are de­
scribed below. For fuller details, the reader is referred 
to ref 26. 

The normal sequence of events in applying 
PRO_LIGAND to a molecular design study is as fol­
lows. The first stage is the definition of a design base 
from one or more input molecular structures. The 
design base represents the key structural features which 
will guide the design process and typically requires the 
extraction of the active site from a receptor or, as in 
the present example, the extraction of a pharmacophore 
from a set of active analogues. 

Next, a design model is constructed, which is a 3-D 
template that describes the idealized steric and hydrogen-
bonding features of the chemical structures to be 
designed. These features are represented by interaction 
sites. 12>13'31 Hydrogen bond acceptors and donors are 
represented by A-Y and D-X vectors, respectively, while 
lipophilic regions are characterized by L or R points 
according to whether the site is aliphatic or aromatic 
in nature. These sites are generated to be either 
complementary or similar to the design base atoms, 
depending on whether the object is to design a molecule 
to fit into a known receptor or to mimic a set of active 
analogues. The type and location of these sites are 
generated via a user-definable rule base. 

The structure generation module produces molecular 
structures consistent with the design model by as­
sembling small 3-D molecular fragments from precon-
structed libraries. These library fragments are labeled 
to indicate the types of interaction sites they may match, 
and a rapid graph—theoretical algorithm is used to seek 
fits of the fragments on to the design model. The fitting 
procedure also corrects or eliminates any bad inter- or 
intramolecular van der Waals' clashes. A great variety 
of modes of fragment assembly are available to the user, 
including a continuous growth procedure and proce­
dures for inter- and intrafragment bridging. In addi­
tion, the user also has full control over the structuring 
and ranking of the fragment libraries. Each gener-
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ated solution is scored on the basis of the number of 
design model features it has succeeded in fulfilling and 
on certain structural characteristics, such as the num­
ber of rings or asymmetric carbon atoms. 

Finally, the user may subject the built structures to 
a structure refinement stage, in which a genetic algo­
rithm32 approach is employed to breed further high-
scoring structures from those produced by structure 
generation. This module will be described in detail in 
a future paper. 

How information from MFA or pharmacophore map­
ping can be integrated into this strategy will be detailed 
in the following sections. 

Construction of a Design Model by MFA. A 
PRO_LIGAND design model may be derived from a 
3D-QSAR analysis of a set of molecules with known 
biological activities. The method we have used here is 
MFA, using software developed in-house which follows 
closely the approach of Cramer's comparative molecular 
field analysis (CoMFA). Below we offer a description 
of our method and its adaptation to pharmacophore 
identification. 

The first step in MFA is the selection of a low-energy 
conformer of each molecule, followed by superimposition 
to a common reference frame by an appropriate align­
ment procedure. For each molecule, a molecular me­
chanics potential energy field is plotted on a cubic grid 
in 3-D space, using a suitable probe atom. The potential 
energy terms are generally separated into steric and 
electrostatic energies. The set of interaction energies 
derived for specific grid points is used as the set of 3D-
QSAR parameters to describe each molecule in the 
subsequent regression analysis. Because the number 
of parameters (i.e., grid energies) generally far exceeds 
the number of molecules, a component-extractive re­
gression procedure such as partial least squares (PLS) 
is used.33,34 This method extracts the orthogonal latent 
variables which optimally describe the variance within 
both the descriptor matrix and the activity matrix while 
ensuring maximal correlation between the descriptor 
and activity components. 

In this paper we do not specifically address any 
deficiencies in the standard MFA method (such as the 
need for better procedures for structural alignment) but, 
rather, focus on the derivation of a pharmacophore. In 
order to define a pharmacophore from the MFA, we have 
developed a method of interpreting the PLS regression 
coefficients which to our knowledge has not been 
reported previously in the literature. Generally, a MFA 
is interpreted in terms of 3-D plots of significant PLS 
regression coefficients, each regression coefficient being 
associated with a particular grid point in 3-D space and 
a particular energy component (steric, electrostatic, 
etc.). Visual inspection of significant positive and 
negative coefficients allows the identification of regions 
of 3-D space in which steric interactions and electro­
static interactions are favored or disfavored. A problem 
with this approach is that the user tends to derive a 
qualitative rather than a quantitative judgement of 
which chemical features are correlated with activity. For 
example, a substituent which is too bulky may be 
disfavored in a certain region of space, but it may not 
be obvious what the optimal size of substituent should 
be. Similarly, a hydrogen bond donor in the ligand may 
be required to match a region of positive electrostatic 

coefficients, but it may be difficult to derive the optimal 
position and direction of the hydrogen bond donor. 

Our approach for the interpretation of the PLS model 
is to calculate the contributions of individual atoms to 
the predicted activity of the molecule. It is also possible 
to decompose these atomic contributions into contribu­
tions from each energy term or principal component. We 
will use the acronym PACs to denote these predicted 
activity contributions. The advantage of this approach 
is that it allows the user to identify quantitatively those 
atoms which are responsible for the activity of the 
molecule and to explore the relative importance of 
individual energy terms and principal components. 

It is worth noting that the derivation of PACs is 
simply a method of interpreting an MFA model: it is 
not capable of optimizing the parameters involved in 
the generation of the model. The quality of any MFA 
is dependent on many parameters, and of particular 
importance are the chosen conformations and align­
ments. All such parameters need to be optimized in 
terms of the predictive value of the resulting MFA 
model. Note also that the quality of the pharmacophore 
which is extracted by the analysis of PACs will always 
be limited by the nature of the training set: as with 
any MFA, one must ensure that the training set fully 
explores all areas of substituent space which are con­
sidered to be relevant. 

As an example of the use of PACs in defining a 
pharmacophore, we have examined a typical QSAR 
study from the literature: a set of 35 steroids with 
reported binding affinities to the progestogen and 
androgen receptors.35 In such an example, a typical 
design goal is to define a pharmacophore which repre­
sents the key chemical features required to bind to a 
particular receptor and then to use PRO_LIGAND to 
generate a set of novel molecules to fit the pharmaco­
phore. 

Construction of a Design Base by Pharmaco­
phore Mapping. In some instances, the MFA tech­
nique may not be applicable in a straightforward 
manner. This is particularly so when the set of active 
structures shows considerable structural diversity and 
when the structures are conformationally flexible. In 
such a scenario, the choice of a suitable conformer for 
each structure and the subsequent alignment can be 
problematic. An alternative strategy to MFA in such 
circumstances is pharmacophore mapping—-the elucida­
tion of a set of structural features common to all the 
members of an active series which may be responsible 
for their observed activity. 

Several strategies for pharmacophore mapping have 
been described in the literature including the well-
established active analog approach36-38 and ensemble 
distance geometry39 as well as some more recent 
innovations.40"42 For the purposes of PRO_LIGAND, 
we decided to adopt one of these newer techniques: the 
clique-detection approach described by Martin et al.40 

The input to this algorithm is a set of low-energy 
conformations for each member of the active series. One 
member is then selected to be the reference compound, 
and the algorithm then takes one of its conformations 
and compares it with all the conformations of the other 
structures in the series. Each pairwise comparison uses 
the Bron-Kerbosch43 clique-detection algorithm to de­
termine the maximal common substructure (MCS) of the 
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two conformations. The MCSs from each pairwise 
comparison are stored, and when all the comparisons 
have been performed, an algori thm originally described 
by Br in t and Willett4 4 is used to extract the MCS t h a t 
is common to all members of the series. If such a set of 
s t ruc tura l features exists, it consti tutes a possible 
pharmacophore. If no MCS can be found for the whole 
series, the algori thm cycles to the next conformation of 
the reference compound and repeats the process unti l 
a solution is found or all the conformations of the 
reference compound have been investigated. A distance 
tolerance for the matching process can be specified by 
the user. 

The clique-detection method has several advantages 
compared to existing strategies for pharmacophore 
mapping.4 0 Firstly, the re is the decoupling of the 
conformational analysis procedure from the pharma­
cophore elucidation step. This means t ha t once the 
conformational analysis has been performed, any num­
ber of experiments can be performed upon the resul t ing 
conformers wi th minimal computat ional expense. The 
other techniques have the conformational analysis as 
an integral pa r t of the pharmacophore elucidation. 
Secondly, the conformations involved in the clique-
detection procedure are guaran teed to be low-energy, 
whereas in other techniques the solutions generated 
may be geometrically feasible but energetically unsa t ­
isfactory. Finally, and perhaps most significantly, the 
clique-detection method identifies both the bioactive 
conformations and the superposit ion rule s imulta­
neously. In other words, the algorithm not only discov­
ers those conformations capable of fitting the pharma­
cophore bu t also discovers the pharmacophore itself. 
This is in contrast to the other procedures which require 
the user to suggest a set of pharmacophoric points 
beforehand to which the algori thms seek to match the 
set of s t ructures . 

In PRO_LIGAND, each generated pharmacophore 
consti tutes a viable design base. Interaction sites are 
then constructed to be ei ther similar or complementary 
to the design base as desired, in order to form the design 
model required by the s t ructure generation module. 

M e t h o d s 

Calculation of PACs. The first stage in the generation of 
a pharmacophore from MFA is the calculation of PACs. This 
follows the general procedure of deriving a predicted activity 
for a molecule on the basis of the PLS regression coefficients. 
A general algorithm is given in ref 45. In simple terms, for a 
one component model the predicted molecular activity, A;, for 
any molecule is 

np np 

A1 = Yf^ + JC]Et (i) 
J=I .7=1 

where Ey and Ey are the electrostatic and steric energies at 
grid point j due to molecule i, CJ and C* are the PLS 
regression coefficients for the two energy terms at grid point 

j , and np is the total number of grid points. For subsequent 
components, Ey is replaced by the matrix of residuals. The 
basis of our novel approach to the interpretation of a PLS 
regression is to treat the predicted molecular activity, Aj, as 
the sum of atomic activities, a,-*, summed over na atoms 

na 

4 = Xa1, (2) 
A=I 

This is calculated by partitioning the energy at each grid point 
into the contributions due to each atom 

np np 

** = X % + ]Tc^ (3) 
j=i i=i 

where eyk represents the grid energy at pointy due to atom k 
in molecule i and 

na 

E« = Yem (4) 
k=\ 

PAC is synonymous with an, when it represents total activity 
for a single atom, but note that PACs can also be derived easily 
to describe the activity of a functional group or be decomposed 
further into the contributions due to individual energy terms 
or principal components. 

The sum of the PACs for all atoms in a molecule is equal to 
the predicted activity of the molecule (eq 2). For this to be 
true, there are several points which require attention. Most 
importantly, eq 4 is not true for all grid points in normal 
implementations of MFA since Ey and Ey are truncated when 
a clash occurs between a grid point and an atom. In our 
implementation, a clash is defined as a steric energy greater 
than EB

dSLSh (typically a value of 5 kcal/mol is used). When a 
clash occurs, Ey is truncated to Es

daBh and then partitioned 
among all atoms in proportion to eyk (having first truncated 
eyk to .Eciash)- The electrostatic energy at that point, Ey, is set 
to the average value of Ey for all other molecules (because a 
mean value has no weight in the PLS regression) and is then 
partitioned equally among all atoms. 

Equation 2 also assumes that suitable scaling of grid 
energies has taken place to take account of block-scaling, i.e., 
when each set of energies has been scaled to unit variance, in 
order to weight equally the contribution of electrostatic and 
steric energies in the PLS regression.46 In practice we have 
omitted block-scaling and instead have scaled the electrostatic 
contribution by suitable choice of probe charge. 

It is also worth noting that it is usual in PLS to mean center 
the activity data. Thus in eq 2, A1 and an, represent mean-
centered predicted activity contributions. The corrected (or 
activity-centered) predicted molecular activity, Af, is simply 

A' = A1 + Ymean (5) 

where Ymean is the mean of the observed activity data. In order 
to derive activity-centered PACs, it is necessary to distribute 
Ymean among individual atoms and energy components. There 
is no clear-cut way of doing this other than to divide Ymean 
equally among all atoms. In practice we have found it more 
useful to deal with the mean-centered PACs as this allows one 
to define default PAC cutoffs (i.e., for the purpose of defining 
interaction sites) which are less sensitive to the magnitude of 
the activity data. To avoid confusion, all PACs quoted as 
examples in this paper are mean-centered. 

Extraction of a Design Model from PACs. The next 
stage in design model generation is to select from each 
molecule of the training set those functional groups which 
constitute the pharmacophore, i.e., the hydrogen-bonding sites 
and the steric contacts which have been predicted by MFA to 
be most strongly correlated with activity. These groups are 
selected automatically within the program on the basis of 
chemistry and PACs, using default or user-defined PAC 
tolerances. 

Hydrogen bond donor and acceptor sites are selected first 
and are generated as vectors as described earlier (i.e., D-X and 
A-Y vectors to describe donor and acceptor sites, respectively). 
For example, a D-X vector will be generated from any HO or 
HN group with suitable electrostatic, steric, and total PACs. 
Typically one would desire a positive electrostatic PAC and a 
positive total PAC, but the user can make the criteria more 
or less strict as desired. (Note that a positive PAC implies a 
positive contribution to biological activity, which is assumed 
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to be the desired response.) Any atom not assigned as a donor 
or acceptor may be designated as a lipophilic site, L. Note 
that aliphatic and aromatic lipophilic sites are not presently 
differentiated. 

Having generated sites from each molecule in the set, the 
algorithm then compresses sites of a similar type if they are 
within a defined distance cutoff: hence unnecessary sites are 
discarded and replaced by a site with the average Cartesian 
coordinates. 

By suitable choice of PAC cutoff values, it is possible to 
generate a variety of pharmacophores for use in structure 
generation. Thus one may wish to select almost all atoms from 
the training set, in order to drive structure generation toward 
forming molecules which closely mimic the chemistry of the 
training set. Alternatively one may choose to form a very 
sparse pharmacophore which represents only a small number 
of key functional groups, which would result in a set of 
solutions with greater structural diversity. 

A further use of PACs is for the generation of a receptor 
envelope. This can assist the visualization of the shape of the 
pharmacophore or the hypothetical binding site and can also 
be used for clash checking during structure generation to 
ensure that a designed molecule does not grow too far from 
the interaction sites and encroach into the putative receptor 
wall. The first step is to use PACs to define which atoms in 
the training set are favorable, unfavorable, or indifferent as 
sites for envelope generation. Then an envelope is generated 
at a suitable distance around all favorable atoms and allowed 
to clash with any atoms labeled as unfavorable, provided that 
it does not clash with any favorable or indifferent atoms in 
any molecule. 

The envelope itself is generated from the original set of MFA 
grid points and is simply the subset of points which are in 
suitable van der Waals' contact with favorable atoms. The 
nature of the van der Waals' contact is determined by examin­
ing the steric energy associated with each grid point inter­
acting with each atom (as this quantity, e^, has already been 
calculated): a steric energy below a minimum cutoff (e^., -0 .1 
kcal/mol) defines a favorable contact, while an energy above 
a maximum cutoff (e.g., 0.1 kcal/mol) defines a clash. In this 
way a shell of points is extracted from the original grid points 
which reflects a van der Waals's surface around the favorable 
pharmacophore sites. 

The advantages of the use of PACs can be summarized as 
(1) ease of interpretation of predicted activity in terms of 

individual atom or group contributions, 
(2) ease of definition of pharmacophore atoms as points or 

vectors taken from coordinates of the original set of molecules, 
(3) a user-defined rule base to determine what PACs are 

considered favorable: hence the user may choose to create a 
very detailed or a very sparse pharmacophore or a receptor 
envelope which encloses a small or large volume, and 

(4) easily adaptable to any type of MFA field {e.g., hydro­
phobic potentials), and to take account of any additional 
chemical parameters which are not 3-D (e.g., log P is some­
times appended to the 3-D parameter set). More generally, 
this approach could be applied to any 3D-QSAR method in 
which the chemical descriptors can be partitioned into contri­
butions from individual atoms or groups. 

In some cases, the elucidated pharmacophore may be very 
"sparse", i.e., contain only a few features separated by large 
distances. In such instances, the design model generation 
module may be instructed to fill the volume defined by the 
pharmacophore features with a uniform density of L sites to 
help the growth of structures across the empty space. 

Molecular Field Analysis of Progestogen and Andro­
gen Receptor Binding. As an example of the generation of 
a pharmacophore from MFA, a 3D-QSAR analysis on a set of 
steroids was performed using an in-house implementation of 
MFA. The set of steroids (Table 1) was built and geometry-
optimized within MOPAC 6.0,47 using the AMI Hamiltonian 
(with the PRECISE convergence criteria). Each steroid was 
then aligned to steroid 1 by RMS superimposition of the ring-
junction carbon atoms (positions 5, 8—10, 13, 14). This is a 
reasonable starting point for aligning a set of such similar 
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Table 1. Structures and Relative Binding Affinities of the 35 
Steroids Examined in this Study" 

no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

A 

4 
4,9 
4,9,11 
4 
4,9 
4,9,11 
4 
4,9 
4,9,11 
4 
4,9 
4,9,11 
4,9,11 
4 
4,9 
4,9,11 
4,9,11 
4 
4,9 
4,9,11 
4 
4,9 
4,9,11 
4 
4,9 
4,9,11 
4 
4,9 
4,9,11 
4 
4,9 
4,9,11 
4 
4,9 
4,9,11 

C7a C13 

CH3 

CH3 

CH3 

C2H5 
C2H5 
C2H5 
C3H7 
C3Hv 
C3H7 
CH3 

CH3 

CH3 

C2H5 
CH3 CH3 

CH3 CH3 

CH3 CH3 

CH3 C2H5 
CH3 

CH3 

CH3 

C2H5 
C2H5 
C2H5 
C3H7 
C3H7 
C3H7 
CH3 I 
CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

C17a 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

C2H 
C2H 
C2H 
C2H 
C2H 
C2H 
C2H 
C2H 
C2H 

,CX JS •cr 

CH3 

CH3 

CH3 

C17/3 

OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 

COCH3 

COCH3 

COCH3 

COCH3 

COCH3 

COCH3 

PR 

20 
17 
74 
34 
26 
86 

4.5 
4.6 

38 
100 

71 
208 
230 
214 
198 
306 
236 
156 

42 
63 

170 
68 
76 
73 
11 
61 

190 
218 
274 
230 
181 
230 
317 
230 
230 

AR 

154 
134 
197 
126 

93 
172 
108 

42 
105 
146 

64 
204 
143 
108 
122 
180 
124 

43 
19 
70 
84 
41 
83 
44 
10 
66 
37 
29 

138 
6.4 
8.8 

16 
5.5 
1.1 
1.9 

0 The relative binding affinities of progesterone and testosterone 
to the progestogen (PR) and androgen (AR) receptors, respectively, 
are arbitrarily taken to be 100. 

structures, given that our main purpose is to illustrate the 
features of de novo design. 

Atom-centered partial charges were derived from the AMI 
electrostatic potential, with the default MOPAC ESP param­
eters. Steric parameters for van der Waals' energies were 
taken from the Robson—Piatt force field.48 

A cubic grid was created around the set of superimposed 
molecules at a spacing of 1.5 A. The grid was then truncated 
such that, for each molecule, grid points were retained if they 
were no closer than 2.0 A to any atom and within 5.0 A of at 
least one atom; a grid point outside these limits with respect 
to one particular molecule would still be retained provided it 
fell within these limits for another molecule. This approach 
serves to reduce the number of grid points compared with 
using a full cubic grid (as in CoMFA) by eliminating points 
which are too close or too distant to contribute significantly 
to the model. The final grid consisted of 831 points. 

The energy calculations were performed using a methyl 
probe with a charge of 0.5 and a distance-dependent dielectric. 
Hydrophobic fields were also evaluated, using the parameters 
of Viswanadhan et al.,49 but omitted in the final model because 
they were not found to contribute significantly. A steric cutoff 
of 5 kcal/mol was used; thus, any steric energy greater than 5 
kcal/mol was truncated to 5 kcal/mol, and the electrostatic 
energy associated with this point was set to the mean of the 
electrostatic energies of all other molecules at this point. 

The resulting grid energies were correlated against log-
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Table 2. Di- and Tripeptide Inhibitors of ACE 

inhibitor sequence IC50 (nM) 

Nle-Ala-Pro 
Val-Trp 
Leu-Ala-Pro 
Ile-Tyr 
Phe-Ala-Pro 
Arg-Ala-Pro 
Phe-Pro-Pro 

700 
1700 
2300 
3700 
4200 
16000 
78000 

Table 3. Correlation coefficients (and in parentheses standard 
deviations) for the Principal Components Extracted for the 
Androgen (AR) and Progestogen (PR) PLS Models" 

(relative binding affinity) for both the progestogen and andro­
gen receptors, using an in-house implementation of PLS 
regression. The final PLS models were chosen by a leave-one-
out cross-validation method.50 

In order to generate a pharmacophore, atoms were extracted 
from the original coordinates of the training set according to 
the following rule base, which was chosen in order to select 
only the most important interaction sites for this particular 
example: 

PACs are summed for united functional groups (e.g., car-
bonyls and methylenes each count as a single group). 

D-X and A-Y sites are generated from, for example, NH and 
C=O groups, respectively, provided that the electrostatic PACs 
and total PACs are both greater than 0.05 (note PACs are 
expressed in the same units as the original activity data: here 
as log(relative binding affinity)). 

L sites are generated from any atoms not defined as D or A 
provided that steric PAC is greater than 0.05. 

Favorable sites for envelope generation are defined as any 
atom with a steric PAC greater than -0.05, with all other 
atoms defined as unfavorable sites (these cutoffs were chosen 
in order to generate an envelope which encompassed the whole 
volume of the steroids while clashing only with groups with 
the most negative PACs). 

Sites of a similar type within 0.5 A were compressed into a 
single site. 

As a very sparsely populated pharmacophore was generated 
by the above criteria, the volume defined by the interaction 
sites was filled in by a wash of L interaction sites, at a 
minimum spacing of 0.5 A. 

Structure generation was performed only for the progesto­
gen pharmacophore. This was because the training set does 
not explore a wide variety of substituent positions but con­
centrates mostly on D-ring substituents, which are generally 
disfavored for androgen receptor binding. Thus the androgen 
pharmacophore is very similar to the steroid skeleton, and it 
was decided that more varied designs would result from 
examining the progestogen pharmacophore. 

The structure generation module used a continuous growth 
strategy, as this proved most efficient at growing a molecule 
which hit both of the hydrogen bond acceptor sites present in 
the progestogen pharmacophore. Structure generation ac­
cessed the full general organic library but was constrained to 
test fragments with an acceptor site before any other chem­
istries. 

Pharmacophore Mapping—ACE Inhibitors. As a fur­
ther test of PRO_LIGAND, we decided to use the data 
presented by Teig61 for seven peptidic ACE inhibitors to 
generate a pharmacophore for ACE inhibition and then to 
build structures to conform to it. The seven peptides together 
with their activities are shown in Table 2. 

The initial requirement is to generate a diverse set of low-
energy conformers of each peptide. There are many methods 
of achieving this, and the one we have followed is to apply a 
novel molecular dynamics algorithm aimed at maintaining 
constant potential energy (RUSH dynamics), which has been 
shown to be effective at exploring conformational space ef­
ficiently.52 Fifty conformations of each peptide were generated 
by taking snapshots from a RUSH dynamics simulation, 
followed by minimization of each snapshot. The molecular 
dynamics simulation was carried out in vacuo at 410 K; 15 000 
steps were simulated, saving a snapshot every 300 steps. 
These conformations were minimized by the method of con-

compo­
nent 

AR PR 
Jf2COnV (SD) R2 

cross 

(SD) R2 

conv (SD) R2 cross (SD) 

1 
2 
3 
4 
5 
6 
7 
8 

0.720(0.311) 
0.885 (0.202) 
0.925 (0.167) 
0.934 (0.159) 
0.938 (0.157) 

0.594 (0.375) 
0.790 (0.274) 
0.826 (0.254) 
0.834 (0.252) 
0.842 (0.249) 
0.821 (0.271) 
0.807 (0.286) 
0.810 (0.289) 

0.639 (0.308) 
0.772 (0.248) 
0.839(0.212) 
0.857 (0.203) 
0.873 (0.195) 

0.492 (0.365) 
0.601 (0.328) 
0.690 (0.294) 
0.700 (0.294) 
0.708 (0.295) 
0.681 (0.314) 
0.691 (0.315) 
0.681 (0.326) 

° Correlation coefficients (R2) are quoted for conventional and 
cross-validated models. The final PLS model for each receptor 
consisted of five components. 

jugate gradients to a gradient norm of less than 0.1 kcal/mol/ 
A. All calculations were carried out using the Robson-Platt 
force field.48 

The clique-detection algorithm was then used to deduce a 
pharmacophore from these input conformations. A solution 
was obtained using inhibitor 1 as the reference molecule and 
a distance tolerance of 1.5 A. Only heavy atoms were 
considered in the matching process. 

R e s u l t s 

D e r i v a t i o n of a S t e r o i d P h a r m a c o p h o r e a n d 
S u b s e q u e n t D e s i g n . A five-component PLS model 
was derived from MFA for both androgen and progesto­
gen receptor binding. As can be seen from Table 3, the 
cross-validated correlation coefficient (R2) is somewhat 
higher for the androgen receptor but for both receptors 
is comparable to the magni tude of values quoted in the 
l i tera ture for CoMFA studies on steroids binding to 
steroid receptors53 and binding globulins.54 Small modi­
fications to the MFA paramete r s (e.g., grid spacing, 
probe charge, addition of hydrophobic parameters ) did 
not significantly improve the model. 

Derivation of PACs allows an analysis of the PLS 
model in t e rms of atomic or group contributions. A 
typical breakdown for the progestogen receptor relative 
binding affinity is demonst ra ted for steroids 25 and 35 
in Figure 1. It can be seen t h a t most a toms have small 
negative or positive contributions, with the main con­
tributions to activity coming from the C17 subst i tuents . 
The observed distribution of PACs clearly demonstrates 
tha t the difference in predicted activity between steroids 
25 and 35 is mostly due to the presence of the C13 
propyl chain (which resul ts in a steric clash) and the 
replacement of the favored C17 acetyl with the disfa­
vored hydroxyl. It should be noted t ha t this part i t ion 
is entirely dependent on the quali ty of the MFA/PLS 
model: hence the C3 carbonyl, which is known to be 
essential for activity, is not seen to have a major 
contribution, simply because the t ra in ing set does not 
feature molecules without this moiety. Note also t h a t 
this carbonyl does not necessarily have a constant PAC 
throughout the t ra ining set because it does not occupy 
a constant position in space (as increasing the number 
of double bonds in the steroid skeleton produces a more 
p lanar skeleton and thus al ters the position of the 
carbonyl). 

The absolute values of PACs are less useful t han the 
relative values across a series of molecules. Table 4 
demonst ra tes the use of PACs to highlight differences 
in s t ruc tura l requi rements between the two receptors. 
Thus androgen receptor binding favors the 17/3 hydroxyl 
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Figure 1. Example of PACs derived for progestogen receptor 
binding of steroids 35 (upper) and 25 (lower). The sum of the 
PACs within a molecule is equal to the mean-centered pre­
dicted logfrelative binding affinity). In this case, this is equal 
to 0.65 for steroid 35 and -0.65 for steroid 25. Note that the 
PACs have been summed for functional groups (e.g., C=O). 

Table 4. Examples of PACs for Certain 17/? Substituents in 
Steroids I1 27, and 30° 

substituent 

OH 
acetyl (C=O) 
acetyl(CH3) 
lactone ( - C O - ) 
lactone (a-CH2> 
lactone (/9-CH2) 

E 

-0.10 
0.18 
0.05 
0.08 

-0.02 
0.07 

PR 

S 

-0.02 
0.21 
0.18 
0.22 
0.19 
0.23 

tot 

-0.12 
0.39 
0.23 
0.30 
0.17 
0.30 

E 

0.22 
-0.24 
-0.08 
-0.01 

0.11 
-0.06 

AR 

S 

-0.05 
-0.41 
-0.34 
-0.30 

0.00 
-0.10 

tot 

0.17 
-0.65 
-0.42 
-0.31 

0.11 
-0.15 

" PACs are quoted in terms of electrostatic (E) and steric (S) 
components, as well as their sum (tot). The PACs represent 
contributions to the mean-centered predicted logfrelative binding 
affinity) for the progestogen (PR) and androgen (AR) receptors. 

but disfavors the carbonyls of the acetyl and lactone 
groups. The PLS model interprets the poor activity of 
these lat ter groups as being in part an electrostatic 
effect and in par t a steric effect. Conversely, bulky 
hydrogen bond-accepting groups are seen to be favored 
for progestogen receptor binding. 

Figure 2 demonstrates the pharmacophores generated 
for the progestogen receptor and androgen receptor. The 
definition of interaction sites using the PACs detailed 
above results in very sparse pharmacophores, in which 
only the key steric and electrostatic interactions are 
present. These features are 

The most active C3 carbonyl is for the most planar 
skeleton (i.e., with A 4,9,11). 

At C17, an H-bond donor is favored for androgen 
receptor binding (cf. the hydroxyl in steroid 1), while 
two possible H-bond acceptor sites are favored for 
progestogen receptor binding (cf. the carbonyls in 
steroids 27 and 30). 

Several steric/lipophilic sites are retained, most no­
tably those describing the bulky C17 substituents which 
favor progestogen receptor binding. 

For the progestogen pharmacophore, the volume 
enclosed by these interaction sites was filled by a wash 
of lipophilic sites in order to facilitate structure building. 
In this way, PRO_LIGAND is encouraged to build 

Figure 2. Pharmacophores generated for the androgen recep­
tor (upper) and progestogen receptor (center), superimposed 
upon a steroid skeleton for reference. Hydrogen bond acceptor 
sites are colored red, hydrogen bond donor sites blue, and steric 
(lipophilic) sites green. Also shown is the design model (lower) 
from the sparse progestogen pharmacophore (center), gener­
ated by filling the enclosed volume with a wash of lipophilic 
sites. 

designs which bridge the acceptor sites with a diversity 
of chemistries, i.e., nonsteroidal ligands for the steroid 
receptor. 

A set of structures generated by PRO-LIGAND is 
shown in Figure 3 as 2-D structure diagrams (1 -5 ) . It 
can be seen that they achieve suitable bridging of the 
C3 and C17 acceptor sites by a variety of ring structures. 
Although the design model encouraged the formation 
of nonsteroidal solutions, note also that one solution (1) 
is very steroid-like, having formed rings equivalent to 
rings A, C, and D. Not all favorable steric contacts have 
been achieved, but it is possible to take all or part of 
one of the solutions and use it as a seed from which to 
grow further fragments. In this way, it is possible for 
the drug designer to drive PRO_LIGAND toward areas 
of chemistry which are of particular interest. The 
results shown in Figure 3 can be thought of as the initial 
phase of design generation, when one is mostly con­
cerned with brain storming for novel solutions which 
are capable of bridging across a particular pharmaco­
phore. Development of any single idea into a feasible 
drug candidate clearly requires a greater concentration 
of effort to fine tune the physicochemical and structural 
features. 
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Figure 3. Some examples of PRO_LIGAND-generated de­
signs for the progestogen pharmacophore. 

Negatively-chiirgcu1 group 

d: 

Hydrojihobic region 

dS = 6.59 + 1.5 
d6 = 3.78 + 1.5 

l l ydrophob i t region 

d1 = 4.90 ± 1.5 
d2 = 3.47 ± 1.5 

d3 = 6.77+ 1.5 
d4 = 2.89 -t 1.5 

Figure 4. Pharmacophore for ACE inhibition. 

Pharmacophore Mapping—ACE Inhibitors . For 
the ACE inhibitor test case, a four-point pharmacophore 
was deduced consisting of two lipophilic regions, an 
acceptor group, and a negatively charged group as 
shown in Figure 4. The run in question took only 78 
CPU s on an R3000 SGI Indigo workstation. This model 
is in agreement with that described by Teig51 and also 
with the present consensus concerning the requirements 
for inhibitor binding to ACE, viz., 

1. an ionizable C-terminal carboxyl group capable of 
ionic binding to a positively charged enzyme residue 
{e.g., Lys, Arg), 

2. a carbonyl oxygen to accept a hydrogen bond from 
a donor XH group on the receptor, and 

3. a zinc-binding functional group such as a carboxy-
late, hydroxamate, phosphonate, or thiolate. 

It can be seen that our pharmacophore satisfies 
requirements 1 and 2; indeed, the carboxyl oxygen-
carbonyl oxygen distance is in concurrence with the 
active-site geometry deduced by systematic/constrained 
search on a more structurally diverse training set37-38 

which included functional groups capable of zinc bind­
ing. This pharmacophore was then presented to 
PRO_LIGAND as the design base for a set of structure 
generation runs. The design model was generated to 
be similar to the design base, with the volume between 
the pharmacophore features filled with a wash of 
lipophilic sites in order to aid the growth of structures 
across empty space. 

Figure 5. Some proposed ACE inhibitors designed by 
PRO_LIGAND. 

The structure generation module was then invoked, 
and a variety of building strategies were employed to 
generate the three diverse structures (6 -8 ) illustrated 
in Figure 5. All these structures satisfy the constraints 
of the pharmacophore both as built by PRO_LIGAND 
and after minimization with the COSMIC force field.5556 

The detail of the building processes involved is given 
in what follows. AU CPU times refer to an entry-level 
(R3000) SGI Indigo workstation. 

The core of 6 was built by a grow-and-fuse strategy 
using the fragments shown in Figure 6a. In this 
strategy, molecular fragments are joined sequentially 
in a "build-up" approach to structure assembly; ad­
ditionally the algorithm seeks to generate ring struc­
tures in the designed molecules. The generation of this 
core took about 120 CPU s. On examination of this 
structure, it was seen that while the requirement for 
an acceptor, the negative charge, and one lipophilic 
region (the ethyl side chain) has been fulfilled, another 
lipophilic region needed to be added. Accordingly, 
PRO_LIGAND was run in a ring-bracing mode which 
resulted in the joining of two Z-butadiene fragments on 
to the existing core to yield an intermediate which is 
likely to reduce spontaneously to yield the final struc­
ture (6). The CPU time required for ring-bracing was 
about 10 s. 

To generate 7, an alternative "outside-in" building 
mode was employed in which two fragments were first 
placed to satisfy the H-bonding requirements of the 
pharmacophore. Then, a lipophilic fragment was sought 
to bridge these two fragments. This is illustrated in 
Figure 6b. The CPU time required for this operation 
was about 4 s. Once again, it was observed that further 
augmentation of the lipophilic features was required, 
and thus a ring-bracing run was used to place the 2,3-
butene fragment to form the cyclohexene ring as shown 
in the figure. 

The third structure, 8, was generated in a similar 
manner to 6, i.e., a grow-and-fuse strategy followed by 
a ring-bracing run as illustrated in Figure 6c. The CPU 
time required for these actions totaled 200 s. 

Discuss ion 

In the first paper of this series,26 the capabilities of 
PRO_LIGAND were demonstrated in the context of 
"direct" drug design, i.e., the search for novel ligands 
based upon a known target structure. In this paper, 
we have focused upon the alternative situation of 
"indirect" design where knowledge about the target 
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Figure 6. Construction processes for structures 6—8. Dashed 
lines represent bonds that will be formed between molecular 
fragments. 

molecule can only be obtained second-hand from com­
pounds known to bind to it. Given that the structure 
of the majority of receptors and enzymes of therapeutic 
interest are yet to be determined, it is clear that the 
design of new pharmaceuticals will often be carried out 
indirectly. It is thus important that efficient, useful 
computational tools be developed to aid molecular 
design under these conditions. 

Here, we have reported the integration of two such 
tools into our in-house de novo design methodology, 
PRO_LIGAND. Firstly, we have presented a novel 
method for the interpretation of MFA models by the 
derivation of atomic predicted activity contributions. 
Although useful in itself as a means of directly inter­
preting the PLS regression in terms of chemical struc­
ture and properties, the method also allows a straight­
forward approach to the generation of pharmacophores 
and receptor envelopes. Secondly, we have developed 
a pharmacophore-mapping procedure based on the 
proven technique of clique detection,40'42 which is seen 
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to be an efficient means of objectively deducing phar­
macophores from multiple conformations of a series of 
molecules. 

Pharmacophores extracted by MFA or clique detection 
can be used for searching 3-D structural databases.57 

However, while database searching is an efficient means 
of identifying structures which have already been 
synthesized and may even be immediately available, 
there remains a need to generate novel chemistries 
which satisfy the pharmacophore. Thus, as a comple­
ment to 3-D database searching, de novo design tools 
have recently become of great interest. 

We have demonstrated that PRO_LIGAND is an 
intuitive and effective method for the de novo design of 
structures of considerable diversity while, it is hoped, 
retaining the activity of the original series. Hence 
PRO_LIGAND can be of considerable utility in the 
generation of novel lead molecules as part of a rational 
molecular design process. The application of 
PRO_LIGAND to the de novo design of peptides and 
DNA-binding drugs will be reported in future papers, 
as will the use of a genetic algorithm for structure 
refinement. 
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