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Physiologically significant proteins often contain zinc, 
e.g., as a cofactor of enzymes1 and also as a key element 
to build up the secondary structure of proteins as seen 
in the zinc finger motif of transcription factors.2 It was 
thought that the function of these zinc proteins could 
be modulated by ejecting the zinc, and this approach 
may provide a novel strategy for the rational design of 
drugs and biochemical tools. The effectiveness of this 
concept was exemplified by a recent report of Rice et 
al. that an aromatic C-nitroso compound can oxidize 
cysteine residues of zinc finger protein to eject zinc and 
inhibit HIV-I infectivity in human lymphocyte.3 We 
report herein an alternate approach using novel zinc 
chelators. Previously one of the authors reported hu
man immunodeficiency virus type 1 enhancer binding 
protein, namely HIV-EPl4 (also designated as PRDII-
BFl 5 or MBPl6), which contains two C2H2 type zinc 
fingers and binds to 5'-GGGACTTTCC-3' known as NF-
KB recognition sequence.4 The objective of this study 
is to construct an efficient zinc-coordinating system 
which can abstract zinc from HrV-EPl to inhibit DNA 
binding. 

Recently we reported a metal-chelating system with 
symmetrical structure comprising a (dimethylamino)-
pyridine and histidine methyl ester, namely Me2N-HPH 
(I),7 designed by a total structural revision of our 
previous oxygen-activating molecules.8 We considered 
that the structure of the compound 1 could be modified 
so as to be an efficient zinc trapper. First we tried to 
introduce a trityl group into the imidazole in order to 
alter the chelating characteristics of the imidazolyl 
group. We also attempted to change the methyl ester 
groups of compound 1 into carboxyls since carboxylate, 
together with imidazoles, is recognized as a key struc
tural feature of zinc-chelating site of enzymes such as 
superoxide dismutase9 and carboxypeptidase10 in addi
tion to the aminoacetate portion of EDTA, a strong 
metal chelator widely used in the demetalation proce
dure of biochemical protocols.11 Thus, we prepared 

Table 1. Competitive Zinc Binding Experiments of Compounds 
1-4° 

ZnSO, 

1 + ligand CP101H)10
1 1-Zn(II) + ligand-Zn(II) (1) 

(4:1) 

[ligand/Zn]/[ligand] 
ligand [1-Zn]/[1] 

1 1 
2 0.3 
3 10 
4 16 

" The ratio of zinc complexes were estimated by 1H NMR 
spectroscopy. 
trityl and/or carboxyl derivatives 2 - 4 starting with 
Me2N-HPH (I).12 

H3Cx X H 3 
N 

O f ^ N ^ O 

R 1 OJL.NH HNyL0R, 

Compound R1 R2 Stereochemistry (*) 

1 CH, H SS 
2 CH3 Tn SS 
3 H Trt SS 
4 H Tn RS 

Treatment of metal-free 1—4 with equimolar ZnSO4 

in MeOH afforded the corresponding 1:1 zinc complexes. 
Zinc-chelated 1—4 thus formed were distinguished from 
the metal-free 1-4 by 1H or 13C NMR spectroscopy (for 
NMR data, see the supplementary material).17 13C 
NMR measurement also gave some information on the 
coordination mode of each complex in CD3OD and/or 
CDsOD-D2O (4:1),18 i.e., whereas the coordination of 
the pyridine nitrogen, the secondary amino, and the 
imidazole groups of 1 and 2 was assumed, two carboxyl 
groups of 3 and 4 appeared to bind to the zinc more 
significantly.19 

The zinc affinity of the synthetic ligands 2—4 was 
compared with that of ligand 1 by competitive zinc 
binding experiments using 1H NMR (eq 1). To a 
solution of a mixture of compound 1 (~1 equiv) and a 
compound to be compared (~1 equiv) in CDsOD-D2O 
(4:1),18 ZnS04 '7H20 (<1 equiv) was added and the ratio 
of zinc-chelated compounds was estimated by 1H NMR 
(Table 1). The affinity of the ligand 1 for zinc was 
decreased by introducing trityl group probably due to 
the steric hinderance of the trityl groups and reduced 
basicity of the imidazole. However, zinc binding power 
was greatly improved by changing the methyl ester to 
the carboxyl, and i?S-isomer 4 showed the highest 
affinity for zinc. The same tendency in zinc binding was 
also observed in CD3OD. 

The synthetic chelators 1—4 were found to exhibit 
remarkable inhibitory effect on the DNA binding of HIV-
EPl , even more potent than that of EDTA, as demon
strated by electrophoretic mobility shift assay (Figure 
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Figure 1. Effect of ligands 1 and 4 on the DNA binding of HIV-EPl. HIV-EPl was incubated with each sample in the presence 
of poly(dl-dC) at room temperature for 30 min. A radioactive double-stranded oligonucleotide containing a KB site from the mouse 
K light-chain enhancer (5'-AGCTTCAGAGGGGACTTTCCGAGAGG-3' and 5'-TCGACCTCTCGGAAAGTCCCCTCTGA-3') was 
added. Sample was loaded onto a polyacrylamide band shift gel, and the gel electrophoresis was run. (A) Dose dependence of 1 
and EDTA. (B) Dose dependence of 4 and EDTA. (C) Effect OfZnSO4 (1 equiv of 1, introduced before the addition of DNA). (D) 
Effect of ZnSO4 (3 equiv of 1, introduced after the addition of DNA). 

1, Table 2). The most potent was compound 1 which 
inhibited the DNA binding almost completely at 0.4 mM 
concentration (Figure IA). The most strong zinc chela
tor 4 showed somewhat weaker inhibition (Figure IB). 
Discrepancy between the DNA-binding inhibitory effect 
and the zinc-binding power of ligands may be due to 
their relatively low solubility in aqueous media or 
possibly due to the difference in the dissociation of the 
carboxyl group of the ligand depending on the solvent 
constitution (CD3OD-D2O (4:1) for the NMR measure
ment and H 2 O-CH 3 OH (96:4) for the DNA-binding 
experiments). All these ligands were shown to be 
stronger inhibitors of DNA binding compared with 
EDTA, although EDTA showed stronger affinity for zinc 
(Figure 1, Table 2),20 suggesting the superiority of the 

nitrogen-containing heterocyclic structure in terms of 
amino acid interaction, hydrophobic interaction, or 
possibly electronic effect favorable for the formation of 
presumed intermediary ternary complex with HIV-
E P l - Z n . When zinc was introduced during (Figure IC) 
or after (Figure ID) the DNA-binding inhibition reaction 
with compound 1 (0.7 mM), total recovery of H r V - E P l -
DNA complex was observed. Ethidium displacement 
and footprinting experiments indicated that 1 has 
virtually no interaction with DNA, consistent with the 
observation that metal-free 1 did not inhibit the DNA-
binding of NF-xB.21 These indicated tha t the inhibition 
was indeed caused by the removal of zinc from the zinc 
finger moiety of HIV-EPl and ruled out a competition 
between ligand 1 and HIV-EPl for binding to DNA. 
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Table 2. Inhibition of DNA Binding of HIV-EPl by Synthetic 
Ligands and EDTA 

DNA-bound 
HD7-EP1 (%y compound concn (mM) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 (0.7 mM) + ZnSO4 (0.7 mM)6 

1 (0.7 mM) + ZnSO4 (2.1 mM)c 

2 

4 (1.3 mM) + ZnSO4 (1.3 mM)6 

EDTA 

0.01 
0.05 
0.1 
0.4 
0.7 
1.0 
0.7 
0.7 
1.0 
0.1 
0.4 
0.7 
1.0 
1.3 
1.3 
1.0 
4.0 
7.0 

100 
81 
68 
4 
0 
0 

100 
100 
7 
76 
58 
28 
21<* 
6 

100 
33 
16 
0 

° Quantitation of radioactivity of the electrophoresis band was 
conducted using a image analyzer. 6 ZnSO4 was introduced before 
addition of DNA. c ZnSO4 was added after addition of DNA. 
d Compound 3 showed almost same value by a visual judge. 

Thus, we developed novel zinc-binding heterocycles 
and succeeded in the inhibition of DNA binding of a zinc 
finger protein HIV-EPl. Since this approach can basi
cally be applicable to any zinc proteins and the further 
structural modification of the pyridine-histidine system 
would be easily attained, the present study may provide 
a basis for the control and elucidation of various 
biochemical processes. 
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